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Abstract
The influence of unit Reynolds number ( Re

1
= 17.5 × 106–80 × 106 m−1 ), Mach number ( M = 0.35–0.77) and incompress-

ible shape factor ( H
12

= 2.50–2.66) on laminar–turbulent boundary layer transition was systematically investigated in the 
Cryogenic Ludwieg-Tube Göttingen (DNW-KRG). For this investigation the existing two-dimensional wind tunnel model, 
PaLASTra, which offers a quasi-uniform streamwise pressure gradient, was modified to reduce the size of the flow separation 
region at its trailing edge. The streamwise temperature distribution and the location of laminar–turbulent transition were 
measured by means of temperature-sensitive paint (TSP) with a higher accuracy than attained in earlier measurements. It 
was found that for the modified PaLASTra model the transition Reynolds number ( Re

tr
 ) exhibits a linear dependence on the 

pressure gradient, characterized by H
12

 . Due to this linear relation it was possible to quantify the so-called ‘unit Reynolds 
number effect’, which is an increase of Re

tr
 with Re

1
 . By a systematic variation of M, Re

1
 and H

12
 in combination with a 

spectral analysis of freestream disturbances, a stabilizing effect of compressibility on boundary layer transition, as predicted 
by linear stability theory, was detected (‘Mach number effect’). Furthermore, two expressions were derived which can be 
used to calculate the transition Reynolds number as a function of the amplitude of total pressure fluctuations, Re

1
 and H

12
 . 

To determine critical N-factors, the measured transition locations were correlated with amplification rates, calculated by 
incompressible and compressible linear stability theory. By taking into account the spectral level of total pressure fluctua-
tions at the frequency of the most amplified Tollmien–Schlichting wave at transition location, the scatter in the determined 
critical N-factors was reduced. Furthermore, the receptivity coefficients dependence on incidence angle of acoustic waves 
was used to correct the determined critical N-factors. Thereby, a found dependency of the determined critical N-factors on 
H

12
 decreased, leading to an average critical N-factor of about 9.5 with a standard deviation of � ≈ 0.8.

1  Introduction

Natural laminar flow (NLF) technology is a functional tech-
nology to reduce wall shear stress and fuel consumption of 
commercial aircraft (Crouch 2015; Fujino et al. 2003). It is 
implemented on aerodynamic surfaces with zero to moderate 
sweep angles, where the predominant instabilities leading 
to transition to turbulence are Tollmien–Schlichting (T–S) 
waves. In particular, T–S waves are the main instability 
mechanism for two-dimensional laminar boundary layers 
developing on smooth surfaces. They are excited via the 
receptivity process and the initial stage of their amplifica-
tion can be described by linear stability theory; in a second 

amplification stage, the T–S waves become unstable to three-
dimensional perturbations, described by secondary instabil-
ity theory. The secondary instabilities lead to the formation 
of Λ-structures which cause ‘hair-pin’ vortices close to the 
wall and result in the break down to turbulence (Schlichting 
and Gersten 2000). This transition process is also referred to 
as ‘natural’ laminar–turbulent transition which is typical for 
low freestream disturbance environments, as encountered in 
flight (Joslin 1998).

However, many conventional wind tunnels have dis-
turbance levels higher than in flight, which can cause the 
mechanism of ‘natural transition to be changed or bypassed 
and can lead to discrepancies between transition locations 
measured in wind tunnels and in flight (Fisher and Dough-
erty 1982; Michel and Froebel 1988) Results from Meier 
et al. (1987) indicate that the movement of transition loca-
tion is not determined by the root mean square (RMS) turbu-
lence level, but instead by the spectral level in the frequency 

 *	 Steffen Risius 
	 steffen.risius@dlr.de

1	 Deutsches Zentrum für Luft- und Raumfahrt, Bunsenstraße 
10, 37073 Göttingen, Germany

http://orcid.org/0000-0002-5530-9609
http://crossmark.crossref.org/dialog/?doi=10.1007/s00348-018-2538-8&domain=pdf


	 Experiments in Fluids (2018) 59:86

1 3

86  Page 2 of 29

range, in which the T–S waves are most unstable. Therefore, 
they concluded from their experiments that “the Reynolds 
number at which the transition onset was detected can be 
correlated perfectly with the spectral level in the frequency 
range representative for the Tollmien–Schlichting waves” 
(Meier et al. 1987).

1.1 � Unit Reynolds number effect

The described correlation can be used to explain the so-
called ‘unit Reynolds number effect’, which refers to an 
increase in transition Reynolds number with unit Reynolds 
number, measured in self-similar boundary layers.1 A con-
cise explanation of the unit Reynolds number effect was 
given by Arnal and Délery (2004) with the words “when 
the unit Reynolds number increases (for a fixed value of the 
Mach number), the range of unstable waves shifts to higher 
frequencies. In the freestream, the energy of the correspond-
ing pressure fluctuations decreases, so that the transition 
Reynolds number increases”.

1.2 � Mach number effect

By the systematic variation of M, Re1 and H12 in combina-
tion with a spectral analysis of freestream disturbances, it 
was also possible to investigate the so-called ‘Mach number 
effect’ on laminar–turbulent transition in two-dimensional 
boundary layers. The Mach number effect refers to a sta-
bilizing effect of compressibility on boundary layer transi-
tion, as predicted by linear stability theory: the consideration 
of compressibility effects in linear stability theory leads to 
reduced growth rates of Tollmien–Schlichting waves (Arnal 
and Vermeersch 2011). Under the assumption of a con-
stant critical N-factor (see below) the reduced growth rates 
will lead to a delay of laminar–turbulent transition (Arnal 
and Vermeersch 2011). However, in wind tunnel experi-
ments, the stabilizing compressibility effect is opposed by 
an increased initial amplitude of the T–S waves, due to an 
increased freestream disturbance level with Mach number 
(Arnal 1989). Therefore, the direct comparison of transition 
Reynolds numbers, measured at different Mach numbers, is 
not meaningful, due to changes in the disturbance spectrum, 
as shown in Sect. 3.1.

1.3 � Transition prediction by the eN‑method 
and correction of determined critical N‑factors

The eN-method is based on linear stability theory (Schli-
chting and Gersten 2000) and was first published in 1956 
(van Ingen 1956; Smith and Gamberoni 1956). Since then, 
it has been widely used for transition prediction on aircraft 
surfaces (Hue et al. 2015, 2018; Schrauf 1994, 2000, 2005; 
Schrauf et al. 1996, 1998; Streit et al. 2011; van Ingen 2008; 
Voogt 1996). The N-factor method uses growth rates of T–S 
waves in a laminar boundary layer calculated by linear sta-
bility theory and assumes that transition takes place where 
the most unstable disturbances are amplified by a factor of 
eN , where N is assumed to be a universal constant. However, 
it has been found that the critical N-factor is not a universal 
constant, but instead depends strongly on the flow conditions 
(van Ingen 2008). Therefore, it varies for each wind tunnel 
and model and has to be determined by a semi-empirical 
method, based on a correlation of stability calculations with 
experimental data (van Ingen 2008).

It has been concluded, that the major drawback of the eN
-method, is its implicit assumption that all unstable waves 
have the same initial amplitude, which is not possible in 
practical applications due to variations in the external 
disturbance spectrum and receptivity (Arnal 1989). This 
observation was succinctly worded by Stetson et al. (1986) 
who stated that “knowledge of the stability characteris-
tics of a boundary layer is only part of the problem. The 
external disturbances must be prescribed in order to make 
boundary layer transition prediction based upon stability 
considerations”.

To improve the N-factor method Mack (1977) made  
one of the earliest attempts to take the turbulence level of 

velocity fluctuations, Tuu =
√

1

3

(
u�2 + v�2 + w�2

)
∕U

∞
 , into 

account and corrected the critical N-factor with

For a turbulence intensity of 0.07% [which is typical of 
low turbulence subsonic wind tunnels (Michel and Froe-
bel 1988)] Mack’s correlation gives a critical N-factor of 
Ncrit = 9 . However, it has been found that Mack’s method 
is most useful at high turbulence levels above Tuu ≈ 0.1% , 
while it shows much scatter in low-turbulence environments, 
as relevant for this study (van Ingen 2008).

The low reliability in low-turbulence environments may 
be explained by the fact that the RMS turbulence level is not 
sufficient to describe the disturbance environment. Instead, 
the spectral level in the frequency range representative for 
Tollmien–Schlichting waves leading to transition has to be 
considered as described above.

Besides total pressure fluctuations also static pressure 
fluctuations have to be considered. However, the static 

(1)N = −8.43 − 2.4 ln(Tuu).

1  The transition Reynolds number, Retr , is defined as 
Retr = U

∞
⋅ xtr∕�∞ , with the transition location, xtr , freestream veloc-

ity, U
∞

 , and kinematic viscosity, �
∞

 . The unit Reynolds number is 
defined as Re1 = U

∞
∕�

∞
 in units of m−1.
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pressure fluctuations in DNW-KRG remain almost constant 
for the investigated frequency, Mach number and Reynolds 
number ranges (Koch 2004).

1.4 � Compressible and incompressible N‑factor 
analysis

The linear stability analysis, used for the N-factor method, 
can be carried out either with or without incorporation of 
compressibility effects (Schrauf 2006). It has been found that 
critical N-factors exhibit a larger scatter when they are cal-
culated with compressible linear stability theory, than in the 
case of incompressible linear stability theory (Schrauf 1994, 
2000; Schrauf et al. 1998). This observation contradicts the 
general expectation that a model which incorporates more 
physical processes (i.e., compressibility effects) produces 
more consistent results. Therefore, it has been conjectured 
that compressibility effects in linear stability theory may be 
compensated by another physical mechanism that leads to 
less consistent results of the determined compressible criti-
cal N-factors (Schrauf 2000).

1.5 � Scope of the work

1.5.1 � Unit Reynolds number effect

The unit Reynolds number effect has been observed in vari-
ous hypersonic facilities (Stainback 1967; Stainback et al. 
1974; McCauley et al. 1966; Softley et al. 1969) and was 
carefully investigated by Stetson et al. (1986). However, it 
has never been investigated in a large subsonic flow regime 
before, which is most relevant for commercial aircraft today. 
To examine the unit Reynolds number effect for the transonic 
Cryogenic Ludwieg-Tube Göttingen (DNW-KRG), a sys-
tematic experimental investigation of the influences of unit 
Reynolds number ( Re1 = 17.5 × 106–80 × 106 m−1 ), incom-
pressible shape factor ( H12 = 2.50–2.66) and Mach number 
( M = 0.35 , 0.50 and 0.65) on transition Reynolds number 
was conducted in this study. In DNW-KRG unit Reynolds 
numbers of up to Re1 = 400 × 106 m−1 can be achieved for 
two-dimensional test models by decreasing temperature 
down to 100 K and increasing pressure up to 10 bar (Rose-
mann 1997). In the current study the charge temperature was 
kept constant at about 283 K, while the charge pressure of 
the wind tunnel was varied to adjust the unit Reynolds num-
ber.2 The Mach number of the flow was varied by adjusting 
the cross section of the sonic throat downstream of the test 
section (Koch 2004), while a variation of the shape factor 

was achieved by varying the angle-of-attack of the model 
(Costantini 2016; Risius et al. 2018). Limitations to the test 
envelope were due to: (a) the maximal charge pressure of 
DNW-KRG, which limited the maximal unit Reynolds num-
ber, (b) boundary-layer separation downstream of a pressure 
minimum in the leading-edge area at high angles-of-attack, 
(c) blockage effects of the model inside the test section at 
large negative angles-of-attack, which limited the range of 
examinable pressure gradients (shape factors), and (d) the 
chord length of the model, which limited the detectable tran-
sition location.

Due to the systematic approach, the current work exceeds 
earlier investigations on the unit Reynolds number effect, as 
it does not only give a qualitative explanation, but allows a 
quantitative calculation of the transition Reynolds number as 
a function of incompressible shape factor and unit Reynolds 
number for three different Mach numbers.

1.5.2 � Mach number effect

Due to the inherent coupling of Mach number and freestream 
disturbance spectrum the direct comparison of transition 
Reynolds numbers, measured at different Mach numbers, 
is not meaningful. However, in this paper it will be shown 
that a comparison of transition Reynolds numbers, obtained 
at different Mach numbers, can be conclusive if the total 
pressure disturbance spectrum is approximated as a func-
tion of Re1 , H12 and M and if this approximation is used to 
express the transition Reynolds number as a function of the 
incompressible shape factor and of the spectral level of total 
pressure fluctuations.

1.5.3 � Correction of compressible and incompressible 
critical N‑factors

Incompressible and compressible stability theory was 
employed to calculate critical N-factors for all available 
Mach and Reynolds numbers. To conduct a correction of 
the determined critical N-factors, the spectral level of total 
pressure fluctuations in the frequency range of T–S waves 
leading to transition was used. It will be shown that this 
correction leads to a significantly better correlation of the 
determined compressible critical N-factors.

To correct the influence of acoustic disturbances in the 
present study, the dependence found by Heinrich et  al. 
(1988) was approximated linearly and used to correct the 
influence on the determined critical N-factors of the inci-
dence angle of acoustic waves reaching the boundary layer. 
It was assumed that this incidence angle of the acoustic 
waves is equal to the angle-of-attack of the model in the 
wind tunnel.2  The ‘charge temperature’ and ‘charge pressure’ are the working gas 

temperature and pressure at rest before the fast-acting valve of DNW-
KRG is opened and the test run is initiated.
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1.6 � Outline of the paper

In the next section of the paper (Sect. 2), the experimental 
setup, TSP data analysis, boundary layer computations and 
linear stability calculations are described.

In Sect.  3, first a spectral analysis of total pressure 
fluctuations, measured in the freestream of the wind tun-
nel, is presented (Sect. 3.1). Afterwards a method to cor-
rect the influence of non-adiabatic surface temperatures 
on the transition location, is shown (Sect. 3.2). Then, the 
influence of the incompressible shape factor on transition 
Reynolds number is approximated linearly for all Mach 
and unit Reynolds numbers (Sect. 3.3). These relations are 
used to calculate the transition Reynolds number as a func-
tion of the unit Reynolds number with the help of a power 
law approximation (Sect. 3.4). Afterwards, a function is 
derived which gives the most amplified frequency of T–S 
waves at transition location depending on unit Reynolds 
number and incompressible shape factor (Sect. 3.5). In 
the last part of Sect. 3, the above relations are combined 
to give the transition Reynolds number as a function of 
the spectral level of total pressure fluctuations for both 
approximations derived (Sect. 3.6). These relations allow 
a comparison of the transition Reynolds numbers measured 
at different Mach numbers and, therefore, different total 
pressure turbulence levels.

In Sect. 4, the determined critical N-factors of incom-
pressible and compressible linear stability theory are pre-
sented. The correction of compressible critical N-factors is 
carried out by correcting initial amplitudes with the spectral 
level of total pressure fluctuations in the frequency range 
relevant for T–S induced transition (Sect. 4.1). Furthermore, 
the receptivity coefficients dependence on incidence angle 
is used to correct determined critical N-factors (Sect. 4.2).

Measurement uncertainties and repeatability of the results 
are analyzed and discussed in Sect. 5. In the last parts of 
the paper the main outcome of the analysis is summarized 
and discussed (Sect. 6) and finally a conclusion is drawn 
(Sect. 7).

2 � Experimental setup and boundary layer 
computations

The experimental data presented in this paper originates 
from six different measurement campaigns of the modified 
PaLASTra wind tunnel model that were carried out over a 
time span of two years. Most of the data presented was taken 
during the first wind tunnel entry, while later measurements, 
marked as ‘later entry’ (abbreviation: ‘l.e.’), were used only 
for completion of the data and check of repeatability.

2.1 � The Cryogenic Ludwieg‑Tube Göttingen

The experiments were performed in the transonic Cryogenic 
Ludwieg-Tube Göttingen (Rosemann 1997; Koch 2004). 
The blow down wind tunnel is operated intermittently with 
gaseous nitrogen as driving gas and has good flow quality. 
The total temperature turbulence level,3 TuT0 , in the center 
of the test section, is lower than 0.04% at Mach number 
M = 0.8 , at unit Reynolds number of Re1 = 30 × 106 m−1 
and a charge temperature, Tc ≈ 282 K, and it decreases with 
lower Mach numbers. The mass flux turbulence level3, Tu

�u , 
in the center of the test section is approximately 0.06% at 
M = 0.8 , Tc ≈ 283 K and 30 × 106 < Re1 < 77 × 106 m−1 ; 
it increases slightly at lower Mach numbers, but remains 
smaller than 0.08% (Koch 2004). To guarantee an inter-
ference-free flow around the wind tunnel model, the upper 
and lower test section walls were adapted (Rosemann 
1997). The uncertainties in the inflow Mach and Reynolds 
numbers in the present work were within M = ± 0.002 and 
Re1 = ± 0.25 × 106 m−1.

Fig. 1   Side view of the original 
PaLASTra model with an 
additional aft part at the trailing 
edge and Temperature-Sensitive 
Paint (TSP) on top. The original 
chord length of c = 0.2 m is 
used for normalization of the 
chordwise coordinate

3  The turbulence level of a quantity x is defined as 

Tu
x
=

√
(x − x)2∕x = xRMS∕x , where x is the temporal average of x 

and xRMS is the RMS of the fluctuations.
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2.2 � The two‑dimensional wind tunnel model 
PaLASTra

The wind tunnel model used for the present study was the 
two-dimensional PaLASTra model (Costantini et al. 2015b, 
2016a, b; Costantini 2016). On the lower surface of the orig-
inal PaLASTra model an abrupt contour change was imposed 
at x∕c = 80% (Fig. 1) to fix boundary layer separation (Cos-
tantini et al. 2016a). However, the large separation region, 
originating downstream of the original PaLASTra model, 
leads to strong pressure fluctuations (i.e., acoustic noise) 
inside the test section; these are likely to increase the initial 
amplitude of the disturbances within the laminar boundary 
layer (through the receptivity process) and thus reduce tran-
sition Reynolds numbers (Costantini et al. 2016a).

To reduce the separation region, an additional aft part 
was designed and attached to the original PaLASTra model 
as shown in Fig. 1. This modification of the model reduces 
the size of the separation region and the magnitude of the 
emitted pressure fluctuations. After modification, the separa-
tion-induced pressure fluctuations were below the minimum 
observable quantity of a Kulite pressure transducer (CCQ-
093), which was operated at up to 200 kHz and mounted 
flush with the test section side wall at a location upstream 
of the model.4

A typical pressure distribution on the upper side of the 
modified PaLASTra model, measured by pressure taps (with 
0.25 mm diameter), is shown in Fig. 2. Downstream of the 

leading edge region with x∕c > 20% , the pressure gradi-
ent is essentially uniform on a large portion of the upper 
surface. Only around x∕c = 35% the pressure distribution 
shows some slight variations from an ideally smooth one, 
due to a model part junction (Costantini et al. 2015b, 2016a; 
Costantini 2016).

Because T–S waves and the transition position are very 
sensitive to the surface quality great care was taken to 
achieve smooth surface conditions. The surface waviness 
was less than h∕a ≤ 0.0025 , where h is half the amplitude 
of the wave and a corresponds to its quarter wavelength in 
streamwise direction, thus fulfilling the criteria for allow-
able waviness for laminar flow (Fage 1943; Gluyas 1967; 
Carmichael 1959). The model surface was polished to 
an average roughness of Ra = 0.038 μm with a standard 
deviation of 0.01μm , while the mean roughness depth was 
Rz = 0.32 μm with a standard deviation of 0.11 μm . In the 
leading edge region the average roughness and mean rough-
ness depth were even further reduced to Ra = 0.027 μm 
and Rz = 0.20 μm . The step at the model part junction at 
x∕c = 35% was less than 0.5 μm (Costantini 2016).

Non-intrusive global measurement of the sur-
face temperature distribution was carried out using a 

-0.4

-0.3

-0.2

-0.1

 0

 0.1

0 0.2 0.4 0.6 0.8 1

-c
p

x/c

Fig. 2   Chordwise evolution of pressure coefficient, cp , on model 
upper side at Re1 = 30 × 106 m−1 , M = 0.65 and an angle-of-attack 
of − 1.5◦ . The measurement uncertainty of the pressure tap measure-
ment leads to an error of cp ≲ ± 0.005 (not shown in the plot). The 
flow conditions are the same as in Figs. 3, 4, 5, 6, 7 and 8

Fig. 3   TSP result image where bright and dark areas correspond to 
laminar and turbulent regions, respectively. The flow direction is from 
left to right. The whitened strips indicate metallic surfaces of the model 
where no TSP had been applied. Markers indicating every 10% chord 
are visualized by thin white lines. The two turbulent wedges in the mid-
span domain are caused by pressure taps in the leading edge region. 
The red line indicates the detected transition location by the maximal 
gradient technique at the undisturbed flow locations (Costantini et  al. 
2016a; Costantini 2016). The flow conditions are the same as in Fig. 2

4  The minimum observable quantity is restricted by the amplitude of 
pressure fluctuations emitted by the turbulent boundary layer of the 
test section side wall in which the Kulite pressure transducer was 
mounted.
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temperature-sensitive paint (Ondrus et al. 2015). TSP formu-
lation, surface quality, optical setup, acquisition and evalu-
ation of the TSP images were similar to the ones described 
in Costantini et al. (2016a). Enhancements were made in the 
data acquisition by installation of new LEDs to illuminate 
the TSP, leading to an increased temporal resolution and 
contrast of TSP result images. Furthermore, a new camera 
setup was developed; it was used during the later entries of 
the PaLASTra model and increased the spatial resolution, 
temporal resolution and contrast of the result images even 
further.

The transition detection in the current study was con-
ducted by the maximum gradient technique, which has been 
described by Costantini (2016) and Costantini et al. (2016a). 
However, it was not only conducted at ten spanwise loca-
tions, as in earlier studies (Costantini et al. 2015b, 2016a; 
Costantini 2016), but in this work it was extended to almost 
the complete span. Side wall effects, turbulent wedges and 
significant flow disturbances were excluded from the transi-
tion detection, as shown in Fig. 3. The RMS of the variation 
in transition location along the span was determined for each 
data point and plotted as an error bar in Fig. 10.

To determine the surface temperature distribution on 
the upper side of the model, the TSP was calibrated in an 
external calibration chamber (Egami et al. 2012). Surface 
temperature distributions in the streamwise direction, which 
were extracted from the TSP data at five spanwise sections, 
are shown in Fig. 4.

The described improvements in the measurement tech-
nique allowed the determination of transition locations with 
a higher accuracy than in earlier measurements (Costantini 
et al. 2012, 2015b, 2016a, b; Costantini 2016) as well as 
the correction of temperature effects (see Sect. 3.2). These 
advances made it possible to conduct a systematic analysis 

of unit Reynolds number, Mach number and pressure gradi-
ent effects on transition, as described in Sect. 3.

2.3 � Boundary layer computations

Laminar boundary layer computations were performed using 
the compressible boundary layer solver COCO (Schrauf 
1998), which was modified in order to incorporate not only 
the measured surface pressure but also the measured surface 
temperature distributions as inputs. Thus, it was accounted 
for the influence of the non-adiabatic surface temperature on 

Fig. 4   Left image: the same 
TSP result image as shown in 
Fig. 3 with temperature evalua-
tion of TSP (Risius et al. 2018). 
Red circles indicate the location 
of thermocouples embedded 
in the TSP (Costantini et al. 
2016a). Right image: tempera-
ture distribution measured by 
TSP (colored lines, correspond 
to those in left image) and 
their average (black line) as a 
function of chordwise coordi-
nate (Risius et al. 2018). The 
transition location is detected 
at the maximal temperature 
gradient at x∕c ≈ 61% , marked 
by a vertical orange line. The 
flow conditions are the same as 
in Fig. 2
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f(x) =  av.

Fig. 5   Distribution of incompressible shape factor, H12 , on the model 
upper side, computed for the same test conditions as in Fig. 2 under 
the assumption of a completely laminar boundary layer. The continu-
ous green lines at x∕c = 0.24 and 0.9 indicate the region where the 
shape factor was averaged to determine H12 , which is used for the fur-
ther analysis. The average value of H12 is visualized by the green dot-
ted line. For quantification of the measurement uncertainty, the RMS 
was also determined (as shown in Figs. 10, 15)
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the boundary layer. COCO calculates a fully laminar bound-
ary layer, which was used to determine incompressible dis-
placement ( �1 ) and momentum thickness ( �2 ) of the laminar 
boundary layer. The average incompressible shape factor,5 
H12 = �1∕�2 , was determined by averaging the incompress-
ible shape factor curve between 24 < x∕c < 90% to char-
acterize the boundary layer velocity profile (Fig. 5).6 As 
an alternative to the use of H12 to quantify the influence 
of the pressure gradient, it is also possible to use the Har-
tree parameter �H , based on the average pressure gradient, 
�cp∕�x , over the region 24 < x∕c < 90% (see Fig. 5) with 
(Meyer and Kleiser 1989):

Figure 6 shows the relationship between H12 and �H , which 
can be approximated for all Mach and unit Reynolds num-
bers by �H = −0.687 ⋅ H12 + 1.810 . The use of �H for the 
quantification of the pressure gradient leads to similar results 
as the use of H12 (Risius et al. 2018). However, it can be seen 
from Fig. 6 that the intercept with the y-axis of the linear 
approximation depends on the Mach number. Furthermore, 

(2)�H =

(
1

2
−

1 − cp

x
(
�cp∕�x

)

)
−1

.

it should be noted that �H is not constant over the complete 
upper surface (Costantini et al. 2016a). For these reasons, 
the use of H12 appears more appropriate for the analysis 
presented in this paper.

The results of boundary layer computations are also plot-
ted as streamwise flow velocity, u, normalized by streamwise 
velocity at the boundary layer edge, ue , against the normal-
ized distance from the wall, y∕�1 , at different chordwise 
coordinates, x/c (Fig. 7). It can be seen that the upper side of 
the modified PaLASTra model exhibits a nearly self-similar 
boundary layer profile downstream of x∕c = 5% (under the 
assumption of laminarity over the whole model surface). 
The same trend was observed for other unit Reynolds num-
bers. The boundary layer flow developing along the PaLAS-
Tra model can be regarded as self-similar for the current 
investigation.

2.4 � Linear stability analysis

The boundary-layer velocity profiles that were calculated 
with COCO are used to conduct a local linear stability anal-
ysis by solving the Orr–Sommerfeld equation, which is a 
fourth-order differential equation, used to calculate ampli-
fication rates of T–S waves (Orr 1907; Sommerfeld 1908). 
It has been shown that for incompressible two-dimensional 
flow configurations the two-dimensional perturbations are 
most unstable (Squire 1933). This assumption, known as 
Squire’s theorem, is strictly only valid for incompressible 
flows. However, it has been shown that it is also valid for the 
flow conditions investigated in this study (Costantini et al. 
2015a, 2016a; Arnal 1992). The ratio between the amplitude 
A at a streamwise position x and the initial amplitude A0 at 
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Fig. 6   Hartree parameter, �H , as a function of shape factor, H12 , 
for all available Mach numbers [ M = 0.35 (blue), 0.50 (red), 0.65 
(green/yellow) and 0.77 (purple)] and unit Reynolds numbers 
( Re1 = 17.5 × 106–80 × 106 m−1 ). The legend is shown in Fig. 22
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Fig. 7   Streamwise flow velocity, u, normalized by streamwise velocity 
at the boundary layer edge, ue , plotted against distance from the wall, 
y, normalized by incompressible boundary layer displacement thick-
ness, �1 , for different chordwise coordinates, x/c. Beyond a chordwise 
coordinate of about x/c = 5% the normalized velocity profile remains 
almost identical. The flow conditions are the same as in Fig. 2

5  The incompressible shape factor was used instead of the compress-
ible shape factor, to allow a comparison of different Mach numbers at 
the same pressure gradient.
6  The same analysis was carried out for an averaged shape fac-
tor curve between 60 < x∕c < 90% , to exclude discontinuities of 
the pressure distribution, caused by the model part junction at 
x∕c = 35% . The obtained results show the same trends as the ones 
presented here, but with a smaller standard deviations in the shape 
factor.
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the initial position x0 is given by A∕A0 = eN , where N is 
determined by the envelope strategy which uses the most 
amplified T–S wave at the transition location. Amplification 
rates of T–S waves for the computed boundary layer were 
determined by means of LILO (Schrauf 2006). According 
to linear, local stability theory and the quasi-parallel flow 
assumption, compressible and incompressible stability com-
putations were carried out and their results were correlated 
with the measured transition location to assess critical N-fac-
tors (Fig. 8). Furthermore, the frequency of the most ampli-
fied T–S wave at the transition location, ftr , was determined.   

The black lines correspond to different amplified frequen-
cies ranging from fmin ≈ 6 kHz– fmax = 83 kHz. The enve-
lope N-factor curve, indicating the maximal amplification, 
is marked by a red line. By reading off the maximum ampli-
fication at the transition location (blue line at x∕c ≈ 0.6 ) the 
compressible critical N-factor was determined ( Ncomp ≈ 8 ). 
When maximal possible variations of the transition location 
( ±10% ) are projected on the N-factor curve (green lines) an 
uncertainty of about N ≈ ±1 can be estimated

3 � Analysis of stability modifiers

The influences of pressure gradient and unit Reynolds num-
ber on transition Reynolds number were analyzed separately 
for M = 0.35 , 0.50 and 0.65. Detailed results will be mainly 
shown for M = 0.35 , while data from the other Mach num-
bers will be summarized in tables and shown in Figs. 24, 
25, 26 and 27 in "Appendix". For better readability, unit 
Reynolds numbers and transition Reynolds numbers will be 
normalized, leading to the definition of Re∗

1
= Re1∕(10

6 m) 
and Re∗

tr
= Retr∕10

6 , respectively.

In the following analysis, important equations are labeled 
with roman numbers, to allow easier referencing of the coeffi-
cients later on. Slopes are labeled with � and intercepts with � . 
Coefficients that are used directly in the approximation of the 
shape factor are labeled with hi , where i = 0 , 1, or 2, depend-
ing on the degree of Hi

12
 , to which hi corresponds.

3.1 � Spectral analysis of total pressure fluctuations

To quantify flow disturbances relevant for the amplification of 
T–S waves leading to transition, the normalized spectral level 
of total pressure fluctuations, p⋆ = p�

0
∕p̄0 , of a measurement 

conducted by Koch (2004) was reanalyzed. In the log–log plot 
the frequency dependency of p⋆ was approximated between 
390 and 10 kHz by the following relation (shown by black 
dashed lines in Fig. 9):

  0
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Fig. 8   Compressible N-factors of Tollmien–Schlichting waves from 
compressible linear stability analysis as a function of normalized 
chordwise coordinate x/c, computed for the same test conditions as 
in Fig. 2
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Fig. 9   Power spectrum of total pressure fluctuations of DNW-
KRG for different Mach numbers and a unit Reynolds number 
of Re1 = 30 × 106 m−1 . The measured curves at M = 0.50 (blue) 
and M = 0.65 (red) were averaged from measurements at 15% and 
50% test section width [see Fig.  4.37 of Koch (2004)]. The decline 
of energy at frequencies between fmin ≈ 102.6 Hz ≈ 390Hz and 
fmax = 104 Hz was approximated by Eq. (3), as shown by the dashed 
black lines. The function at M = 0.35 (dashed yellow line) was calcu-
lated by Eq. (I). Data is based on Koch (2004)

Table 1   Approximated 
coefficients �I,M and �I,M of the 
double logarithmic relation 
between the spectral level of 
total pressure fluctuations and 
the frequency, calculated with 
Eq. (I)

M �I,M �I,M

0.35 − 0.445 − 2.923

0.45 − 0.441 − 2.770

0.50 − 0.440 − 2.693

0.55 − 0.438 − 2.616

0.60 − 0.436 − 2.540

0.65 − 0.434 − 2.462
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To calculate �I,M and �I,M at any Mach number, the coef-
ficients �I,M and �I,M , measured at M = 0.45 , 0.50, 0.55, 
0.60 and 0.65 (Koch 2004), were approximated by another 
set of linear functions, with �I,M = 0.036 ⋅M − 0.458 and 
�I,M = 1.537 ⋅M − 3.462 , which leads to the following 
approximation of p⋆:7 

The approximated coefficients �I,M and �I,M are summa-
rized in Table 1 and shown by a yellow line for M = 0.35 
in Fig. 9.8 

It can be seen from Fig. 9 that p⋆ increases with Mach 
number in the investigated frequency range. Therefore, also 
the RMS total pressure turbulence level increases with M 
(Koch 2004). This fact prohibits a direct comparison of tran-
sition Reynolds numbers measured at different Mach num-
bers (Risius et al. 2018).

Concerning the unit Reynolds number influences, it has 
been shown that the total pressure turbulence level (RMS-
value) of DNW-KRG increases with unit Reynolds number 
(Koch 2004). However, the turbulence level growth is exclu-
sively due to an increasing energy of pressure fluctuations 
at frequencies below 1.5 kHz. When the spectral distribu-
tion is analyzed, it can be seen that the energy contained in 
higher frequencies is independent of the unit Reynolds num-
ber and decreases with increasing frequencies (Koch 2004). 
The described increase of the total pressure turbulence level 
(RMS-value) is thus only caused by frequencies below the 
relevant frequency range of Tollmien–Schlichting waves 
( 5000Hz ≲ fTS ≲ 30, 000Hz ) and has no relevant influence 
on the current experiment. Therefore, a  spectral distribution 
of total pressure fluctuations which is independent of unit 
Reynolds number can be assumed in this analysis.

3.2 � Correction of non‑adiabatic surface 
temperature

Due to the working principle of DNW-KRG, the expanding 
flow leads to a pressure and temperature drop at the begin-
ning of each test run, which causes a temperature difference 
between the flow and the surface of the model. Therefore, 
the (non-adiabatic) model surface temperature, Tnaw , is gen-
erally higher than the adiabatic wall temperature, Taw , which 

(3)log
(
p⋆

)
= 𝛼I,M ⋅ log (f ) + 𝛽I,M .

(I)p⋆ = f 𝛼I,M ⋅ 10𝛽I,M = f 0.036⋅M−0.458
⋅ 101.537⋅M−3.462

enhances boundary layer instability and can cause transition 
to occur further upstream than in the adiabatic case (Boe-
hman and Mariscalco 1976; Costantini et al. 2015b, 2016a; 
Costantini 2016; Fisher and Dougherty 1982; Liepmann and 
Fila 1947; Mack 1984; Özgen 2004; Schlichting and Gersten 
2000). However, the influence of a non-adiabatic surface 
temperature on the transition Reynolds number can be cor-
rected (Costantini 2016; Costantini et al. 2016a). To correct 
the measured non-adiabatic transition Reynolds number, 
Re⋆

tr,naw
 , and calculate the adiabatic transition Reynolds num-

bers, Re⋆
tr
 , the following approximation is used, based on a 

linearized fit of the data from Costantini (2016):9

Because the temperature difference between non-adiabatic 
and adiabatic model surface temperature, ΔT = Tnaw − Taw , 
is small compared to the adiabatic surface temperature, 
with ΔT∕Taw ≲ 0.05 ≪ 1 (Costantini 2016), the lineariza-
tion is valid for all Mach numbers and wall temperature 
ratios investigated in this study.10 The exponent � was 

(4)
Re⋆

tr,naw

Re⋆
tr

≈

(
Tnaw

Taw

)
𝜑

≈ 𝜑 ⋅

Tnaw

Taw
− 𝜑 + 1

Table 2   Intercepts, hII,0 , for measured unit Reynolds number and 
Mach number (see Eq. II)

Re∗
1

M = 0.35 M = 0.50 M = 0.65

17.5 63.14
22.5 86.26
30.0 105.15 103.96 103.09
40.0 117.21 128.77 139.84
50.0 148.00 171.05 141.63

Table 3   Slopes, hII,1 , for measured unit Reynolds number and Mach 
number (see Eq. II)

For each slope the number of evaluated data points and the coefficient 
of determination of the linear fit, R2 , is given in brackets

Re∗
1

M = 0.35 M = 0.50 M = 0.65

17.5 − 22.74 (3; 0.962)
22.5 − 31.43 (3; 1.000)
30.0 − 38.52 (11; 0.992) − 38.09 (6; 0.999) − 37.97 

(7; 0.997)
40.0 − 42.94 (6; 0.971) − 47.52 (4; 0.999) − 52.13 

(2; 1.000)
50.0 − 54.75 (9; 0.981) − 63.83 (4; 1.000) − 52.73 

(2; 1.000)

7  In this study the approximation is also used for frequencies above 
10 kHz.
8  The same analysis can be carried out with a dimensionless fre-
quency F = 2�f �∕U2

∞
 that leads to the following approximation of 

the second coefficient: �I,M = 1.530 ⋅M − 7.367 . However, to calcu-
late the transition Reynolds number as a function of the spectral level 
of total pressure fluctuations a dimensional formulation of the rela-
tionship is required (see Sects. 3.5, 3.6).

9  The term ‘transition Reynolds number’ will always refer to the adi-
abatic Re⋆

tr
 in this paper.

10  The observed trends of the linearized fit were confirmed by apply-
ing the eN-method with a changing surface temperature distribution 
and comparing the determined transition locations under the assump-
tion of a constant critical N-factor.
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found to take different values, depending on Mach number, 
with � = − 7 (for M = 0.35 ), � = − 6 (for M = 0.50 ) and 
� = − 3.5 (for M = 0.65 ) at the original PaLASTra model in 
DNW-KRG, which may be due to an increase in turbulence 
level with Mach number (Costantini 2016).

3.3 � Influence of shape factor on transition Reynolds 
number

It was found that the transition Reynolds number increases 
linearly with a more pronounced favourable pressure gra-
dient, corresponding to a shape factor decrease, which is 
shown in Fig. 10 for M = 0.35 . The graphs for M = 0.50 
and M = 0.65 are available in "Appendix". Consequently a 
linear function

with an intercept, hII,0 , and a slope, hII,1 , was fitted through 
each combination of Mach and Reynolds number (shown 
by solid lines in Fig. 10). The coefficients hII,0 and hII,1 are 
summarized in Tables 2, 3, respectively. It can be seen that 
for a fixed value of H12 ≲ 2.6 an increasing unit Reynolds 
number leads to an increasing transition Reynolds number 
(Fig. 10, Table 2). Furthermore, an increasing unit Reynolds 
number leads to a decreasing slope hII,1 (Fig. 10, Table 3).11  

(II)Re∗
tr
= hII,1 ⋅ H12 + hII,0,

3.4 � Influence of unit Reynolds number ( Re⋆
1

 ) 
on transition Reynolds number ( Re⋆

tr
)

The approximation of the double logarithmic relation 
between the spectral level of total pressure fluctuations, p⋆ , 
and the frequency (Eq. 3) motivates the use of a power law 
approach to approximate the transition Reynolds number as 
a function of the unit Reynolds number. It is known (Arnal 
1989) that in ‘noisy’ hypersonic wind tunnels a power rela-
tion exists with

(5)Re⋆
tr
∼

(
Re⋆

1

)
𝛼III .
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Fig. 10   The transition Reynolds number as a function of the incom-
pressible shape factor, H12 , for different unit Reynolds numbers at 
M = 0.35 . The vertical and horizontal error bars are RMS values of the 
transition location variation along the span (Fig. 3) and the chordwise 
shape factor approximation (Fig.  5), respectively. Black circles mark 
the calculated transition Reynolds numbers with the help of Eq. (III)

Table 4   Coefficients hIII,�,i with i = 0, 1, 2 of the quadratic functions 
used to approximate �III for the dependence of Re⋆

tr
 on Re⋆

1
 (Eq. III)

M hIII,�,2 hIII,�,1 hIII,�,0

0.35 − 19.21 94.87 − 116.45

0.50 − 25.77 128.25 − 159.09

0.65 − 24.01 119.71 − 148.83

Table 5   Coefficients hIII,�,i 
with i = 0, 1, 2 of the quadratic 
functions used to approximate 
�III for the dependence of Re⋆

tr
 

on Re⋆
1
 (Eq. III)

M hIII,�,2 hIII,�,1 hIII,�,0

0.35 10.77 − 54.50 69.11
0.50 29.37 − 147.63 185.75
0.65 25.20 − 127.19 160.89
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Fig. 11   Transition Reynolds number as a function of unit Reynolds 
number in a double logarithmic plot for different values of H12 at 
M = 0.35 . The symbols correspond to transition Reynolds numbers 
computed with Eq. (II) for Re⋆

1
= 17.5 , 30, 40 and 50, corresponding 

to log(Re⋆
1
) ≈ 1.24 , 1.48, 1.60 and 1.70, respectively. The approxima-

tions are shown by solid lines

11  The determined intercepts ( hII,0 ) and slopes ( hII,1 ) can be approxi-
mated linearly as a function of unit Reynolds number to give a linear 
approximation of Re∗

tr
 as a function of Re∗

1
 and H12 which is not shown 

here.



Experiments in Fluids (2018) 59:86	

1 3

Page 11 of 29  86

The exponent �III is an empirical constant which was found 
to range between 0.1 and 0.6 for hypersonic flows (Arnal 
1989). To find the value of �III for PaLASTra in DNW-KRG, 
the transition Reynolds number was plotted as a function 
of the unit Reynolds number, calculated with Eq. (II), for 
different values of H12 in a log–log plot (Fig. 11). In agree-
ment with the hypersonic results, it was found in the present 
work that �III takes values between 0.1 and 0.6 for acceler-
ated flows, depending on Mach number and H12 (also see 
Fig. 26 in "Appendix"). The dependence of Re∗

tr
 on Re∗

1
 was 

approximated via

where quadratic functions were used to approximate �III 
and �III with �III = hIII,�,2 ⋅ H

2
12
+ hIII,�,1 ⋅ H12 + hIII,�,0 and 

�III = hIII,�,2 ⋅ H
2
12
+ hIII,�,1 ⋅ H12 + hIII,�,0 . A plot of the 

approximated quadratic functions is shown in Fig. 12 for 
M = 0.35 (and in Fig. 26 for M = 0.50 and M = 0.65 in 
"Appendix"). The coefficients hIII,�,i and hIII,�,i with i = 0 , 1, 
2 are summarized in Tables 4 and 5, respectively. 

The dependency of the transition Reynolds number on 
the unit Reynolds number, approximated by the power 
law approach (Eq. III), is shown for each Mach number 
in Fig. 13 for constant values of H12 = 2.51 , 2.54 and 
2.59, while the found dependency of Re⋆

tr
 on H12 is shown 

in Fig. 14 for Re⋆
1
= 10 , 50 and 80. It can be seen that 

the transition Reynolds number increases with Re⋆
1
 and 

decreases with H12 . It can also be seen that the transi-
tion Reynolds number decreases with increasing Mach 
number, mainly because of the increasing level of total 
pressure fluctuations with Mach number (Sect. 3.1). 

(III)Re∗
tr
=

(
Re∗

1

)
�III

⋅ 10�III ,
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Fig. 12   Coefficients �III and �III as a function of H12 at M = 0.35 with 
approximations based on quadratic functions with �III = hIII,�,2 ⋅ H
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12
+
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2
12
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Fig. 13   Transition Reynolds number, Re⋆
tr
 , as a function of unit Reyn-

olds number, Re⋆
1
 , based on the power law approximation (Eq.  III) 

with H12 = 2.51 , 2.54 and 2.59
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Fig. 14   Transition Reynolds number, Re⋆
tr
 , as a function of shape 

factor, H12 , based on the power law approximation (Eq.  III) with 
Re⋆

1
= 10 , 50 and 80

Table 6   Coefficients �IV , hIV,�,1 and hIV,�,0 of the linear functions used 
to approximate the dependence of ftr on Re1 (Eq. IV)

M �IV hIV,�,1 hIV,�,0

0.35 260.9 41,024 − 103,346
0.50 338.5 72,506 − 181,870
0.65 482.1 130,938 − 333,150
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3.5 � Relation between frequency of most amplified 
T–S wave at the transition location ( f

tr
 ) 

and the unit Reynolds number ( Re⋆
1

)

The frequency of the most amplified T–S wave at the transi-
tion location, ftr , was calculated using LILO as described in 

Sect. 2.3.12 In Fig. 15 ftr is plotted as a function of the shape 
factor, H12 , for different unit Reynolds numbers. To find the 
dependency of ftr on Re⋆

1
 the following analysis was carried 

out: linear functions were used to approximate the relation-
ship between ftr and H12 with ftr = aRe⋆

1
⋅ H12 + bRe⋆

1
 for each 

Re⋆
1
 . The average slope, ā =

1

n
ΣRe⋆

1
aRe⋆

1
 , was determined and 

a linear function with the slope ā was plotted through the 
mean values of H12 and ftr , for each Re⋆

1
 . These functions 

were used to find linear relations between ftr and Re⋆
1
 for 

selected values of H12 . The dependency of ftr on the Re⋆
1
 can 

then be written as:

where the coefficient �IV was approximated linearly by 
�IV = hIV,�,1 ⋅ H12 + hIV,�,0 . The coefficients �IV , hIV,�,0 and 
hIV,�,1 are summarized in Table 6. The dependence of ftr on 
Re∗

1
 is visualized in Fig. 16 for a fixed value of H12 = 2.59 . 

It can be seen that the unstable frequencies increase linearly 
with Re⋆

1
 . The linear increase of ftr with Re⋆

1
 agrees with 

expectations from the definition of the dimensionless fre-
quency, F, used in instability computations: F = 2� ⋅ f ⋅ �∕u2

e
 

(Arnal et al. 1997; Schlichting and Gersten 2000). This 
observation is also in agreement with previous results pre-
sented in the literature (Masad and Zurigat 1994; Reed et al. 

(IV)
ftr = 𝛼IV ⋅ Re⋆

1
+ 𝛽IV

= 𝛼IV ⋅ Re⋆
1
+ (hIV,𝛽,1 ⋅ H12 + hIV,𝛽,0),
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Fig. 15   Frequency of the most amplified T–S wave at the transition 
location as a function of H12 for different values of unit Reynolds 
numbers at M = 0.35 . The same analysis has been carried out and is 
presented in Fig. 27 of "Appendix" for M = 0.50 and M = 0.65 . Error 
bars are RMS values of the H12 approximation as shown in Fig. 5. For 
comparison the black circles show the approximated value of ftr with 
the help of Eq. (IV)
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Fig. 16   Frequency of the most amplified T–S wave at the transition 
location as a function of unit Reynolds number for a constant value 
of H12 = 2.59 at M = 0.35 , M = 0.50 and M = 0.65 . The data of later 
tunnel entries, which was also used for approximation, is in agree-
ment with data of the first tunnel entry
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Fig. 17   Dimensionless frequency Ftr of the most amplified T–S wave 
at the transition location as a function of H12 for all available Mach 
( M = 0.35 to 0.77) and unit Reynolds numbers ( Re1 = 17.5 × 106 m−1 
to 80 × 106 m−1 ). The legend is shown in Fig. 22

12  Frequencies of the most amplified waves calculated by incom-
pressible and compressible stability theory were almost identical. In 
this case the incompressible calculations were used.
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1996; Zurigat et al. 1992). The relationship given in Eq. (IV) 
can also be expressed with a dimensionless frequency,

which leads to:

The resulting relationship (Eq. IVa) is shown in Fig. 17 and can 
be approximated by Ftr = 1.140 × 10−4 ⋅ H12 − 2.746e − 4 . 
Equation (IVa) reveals no dependency on Mach and unit 
Reynolds numbers since they were integrated into Ftr . How-
ever, to perform a combination of the equations, as shown in 
the next section (Sec. 3.6), it is necessary to express the unit 
Reynolds number dependency explicitly, as done in Eq. (IV), 
to eliminate Re⋆

1
 in Eq. (III) (see Sect. 3.6.2).13 Therefore, 

dimensional frequencies will be used in the following.

3.6 � Combination of equations

The equations labeled with Roman numbers can be com-
bined to express the transition Reynolds number as a func-
tion of the spectral level of total pressure fluctuations and 
H12 . Therefore, the unit Reynolds number is first expressed 
as a function of the frequency of the most amplified T–S 
wave at transition location. Then, the resulting function is 
inserted into Eq. (III).

(6)Ftr =
2� ⋅ ftr

Re1 ⋅ U∞

,

(IVa)Ftr = hIV,�,1,F ⋅ H12 + hIV,�,0,F

3.6.1 � Relationship between the unit Reynolds number 
( Re⋆

1
 ) and the spectral level of total pressure 

fluctuations ( p⋆)

The relation between unit Reynolds number, Re⋆
1
 , and the 

spectral level of total pressure fluctuations, p⋆ , for the fre-
quency of the most amplified T–S wave at transition location 
can be found by combination of Eqs. (IV) and (I) with f = ftr 
and solving for Re⋆

1
:

3.6.2 � Transition Reynolds number ( Re⋆
tr

 ) as a function 
of spectral level of total pressure fluctuations ( p⋆ ) 
and H

12

To gain the transition Reynolds number as a function of 
spectral level of total pressure fluctuations Eq. (V) can be 
inserted into Eq. (III):

Equation (7) is plotted as function of H12 for a constant 
value of p⋆ = 1 ⋅ 10−4.5 ≈ 3.162 × 10−5 in Fig. 18. It can be 
seen from Fig. 18, that the calculated transition Reynolds 

(V)

Re∗
1

=
1

𝛼IV

(
ftr − 𝛽IV

)

=
1

𝛼IV

((
p⋆

10𝛽1

) 1

𝛼1
− 𝛽IV

)

=
1

𝛼IV

((
p⋆

10𝛽1

) 1

𝛼1
− (hIV,𝛽,1 ⋅ H12 + hIV,𝛽,0)

)

(7)
Re∗

tr
=

(
Re∗

1

)
𝛼III

⋅ 10𝛽III

=

(
1

𝛼IV

((
p⋆

10𝛽I

) 1

𝛼I
− 𝛽IV

))𝛼III

⋅ 10𝛽III

2.52 2.54 2.56 2.58 2.6
0

2

4

6

8

10

12

14

16

18

Fig. 18   Transition Reynolds number, calculated by Eq.  (7), 
is plotted as a function of H12 for a constant value of 
p⋆ = 10−4.5 ≈ 3.162 × 10−5 . Re⋆

tr
 decreases with increasing H12 and 

Re⋆
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 increases with M 
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Fig. 19   Transition Reynolds number, calculated by Eq. (7), is plotted 
as function of p⋆ for a constant value of H12 = 2.54 . Re⋆

tr
 decreases 

with increasing p⋆ and Re⋆
tr
 increases with M 

13  This observation can also be understood from a physical stand-
point, since the geometry and dimensions of the wind tunnel and 
wind tunnel model are relevant for the described analysis.
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Fig. 20   Incompressible critical N-factors, Ninc , Ninc,p⋆ and Ninc,p⋆ ,C 
(from top to bottom) as a function of H12 at all available Mach 
( M = 0.35–0.77) and unit Reynolds numbers ( Re1 = 17.5 × 106 m−1 
to 80 × 106 m−1 ). The legend is shown in Fig. 22
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Fig. 21   Compressible critical N-factors, Ncomp , Ncomp,p⋆ and Ncomp,p⋆ ,C 
(from top to bottom) as a function of H12 at all available Mach 
( M = 0.35–0.77) and unit Reynolds numbers ( Re1 = 17.5 × 106 m−1 
to 80 × 106 m−1 ). The legend is shown in Fig. 22
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numbers increases with increasing flow acceleration (cor-
responding to decreasing H12).

At a fixed spectral level of total pressure fluctuations 
( p⋆ = 10−4.5 ) the transition Reynolds numbers at different 
Mach numbers can finally be compared: it can be seen that 

the transition Reynolds numbers increase significantly with 
Mach number. This observation may be explained by com-
pressibility effects, as predicted by linear stability theory 
(see Sect. 1.2), which were now isolated.

Transition Reynolds numbers, calculated by Eq. (7), are 
plotted as function of p⋆ with a constant value of H12 = 2.54 
in Fig. 19. It can be seen that for all p⋆ , shown in Fig. 19, 
the calculated transition Reynolds numbers also show a 
significant increase with Mach number, which may also be 
accounted to compressibility effects.

4 � Compressible and incompressible critical 
N‑factors and methods for correction

The critical N-factors were determined for all available data 
points with compressible and incompressible stability theory 
and shown in the top graphs of Figs. 20 and 21, respec-
tively. It can be seen that in both cases the determined criti-
cal N-factors generally decrease with decreasing H12.

For comparison of the Mach number influence on the 
determined critical N-factors, the N-factors of the first tunnel 
entry were analyzed separately for each Mach number and 
their mean and standard deviation are compared in Table 7. 
Furthermore, the determined mean critical N-factors are 
plotted as a function of M in Fig. 23. While the compress-
ible critical N-factors decrease over the whole Mach number 
range, the incompressible critical N-factors remain almost 
constant for M = 0.50 and 0.65. Therefore, the standard 
deviation over all Mach numbers of the compressible criti-
cal N-factor is larger than in the incompressible case (see 
Table 7 last row). However, when the Mach numbers are 
analyzed separately, the compressible critical N-factors 
exhibit a smaller variation (standard deviation, � , and maxi-
mal variation, ΔN = Nmax − Nmin ) than in the incompressible 
case.

To capture the expected increase in initial disturbance 
amplitude by an increased spectral level of total pressure 
fluctuations, a correction method of the critical N-factor was 
developed. The correction method is founded on three basic 
assumptions of linear stability theory and receptivity (van 
Ingen 2008):

1.	 The critical N-factor relates the starting amplitude of the 
T–S wave, A0 , to the amplitude of the T–S wave at which 
transition occurs, ATS,tr (van Ingen 2008): 

2.	 The Tollmien–Schlichting waves become unstable 
and lead to transition at a certain amplitude. [Often 

(8)N = ln

(
ATS,tr

A0

)
= ln

(
ATS,tr

)
− ln

(
A0

)
.

Fig. 22   Legend for all available Mach ( M = 0.35 to 0.77) and unit 
Reynolds numbers ( Re1 = 17.5 × 106 m−1–80 × 106 m−1 plotted in 
Figs. 6, 17, 20 and 21
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Fig. 23   Comparison of determined mean critical N-factors as a 
function of Mach number. Compressible critical N-factors, Ncomp , 
decrease with increasing Mach numbers (data from Table 7)
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an amplitude of about 1% of the freestream velocity, 
ATS,tr ≈ 0.01 ⋅ U

∞
 is assumed (Herbert 1997; Würz et al. 

2012b)].
3.	 The receptivity process remains unchanged and a lin-

ear relation between initial amplitude of the T–S wave, 
A0 , and the spectral level of total pressure fluctuations, 
p⋆ , exists with A0 ∼ p⋆ (Fuciarelli et al. 2000; Lin et al. 
1992; Saric and White 1998; Saric et al. 1999).

4.1 � Correction of the critical N‑factors 
with the spectral level of total pressure 
fluctuations ( p⋆‑correction)

A corrected critical N-factor was defined for an arbitrary 
reference spectral level of p⋆

ref
= 1.5 × 10−5 , in parallel with 

Eq. (8):

To gain a reference critical N-factor, Eq. (8) was subtracted 
from Eq. (9). The reference critical N-factor, Np⋆ , was then 
calculated under the assumption of a linear relationship 
between A0 and p⋆ , with:

The spectral level ( p⋆ ) corresponding to the critical N-fac-
tor was determined by inserting the frequency of the most 
amplified T–S wave at transition location and the Mach 
number into Eq. (I).

It can be seen from Fig. 23 and Table 7 that the depend-
ency of the corrected compressible critical N-factor 
( Ncomp,p⋆ ), exhibits much less variation with Mach num-
ber than the compressible critical N-factor without cor-
rection. Table  7 also shows that the corrected critical 
N-factors ( Ncomp,p⋆ and Ninc,p⋆ ) exhibit smaller standard 
deviations and maximal variations than the compressible 

(9)Np⋆ = ln

(
ATS,tr

A0,p⋆

)
= ln

(
ATS,tr

)
− ln

(
A0,p⋆

)

(10)Np⋆ = ln

(
A0

A0,p⋆

)
+ N = ln

(
p⋆

p⋆
ref

)
+ N

and incompressible N-factors ( Ncomp and Ninc ). However, it 
can also be seen from the plots in the middle of Figs. 20 and 
21 that the critical N-factors corrected by the corresponding 
spectral level ( Ncomp,p⋆ and Ninc,p⋆ ) still show a dependency 
on H12 . Therefore, the influence of acoustic disturbances is 
analyzed in the next section.

4.2 � Correction of the determined critical N‑factors 
by receptivity dependency of acoustic 
disturbances on incidence angles (C‑correction)

Random fluctuations can be decomposed into three distinct 
modes: vorticity, sound and entropy (Michel and Froe-
bel 1988; Kovasznay 1953). While the influence of total 
pressure fluctuations which correspond to non-isentropic 
variations that constitute the entropy mode, acoustic distur-
bances, which correspond to isentropic fluctuations, will be 
investigated in this section. In the following, the depend-
ence of receptivity on the incidence angle of acoustic dis-
turbances is used to correct the determined critical N-factor. 
The correction method is founded on the following four 
assumptions:

1.	 The acoustic disturbances remain constant for the inves-
tigated ranges of frequency, Mach and Reynolds num-
bers.

2.	 The receptivity of acoustic disturbances depends 
strongly on the incidence angle by which disturbances 
are coupled into the boundary layer (Erturk and Corke 
2001; Fuciarelli et al. 2000; Goldstein and Hultgren 
1989; Haddad and Corke 1998; Hammerton and Ker-
schen 1996; Heinrich et al. 1988). The receptivity coef-
ficient, C, is defined as the ratio of T–S wave amplitude 
to acoustic wave amplitude. It increases with increasing 
incidence angle, � , and can be approximated linearly for 
small angles (Heinrich et al. 1988), with a slope, c, via 

3.	 Acoustic disturbances in the wind tunnel are assumed to 
originate mainly from the storage tube. Therefore, they 

(11)C = 1 + c ⋅ �.

Table 7   Determined critical N-factors by compressible theory 
( Ncomp ), incompressible theory ( Ninc ), corrected spectral level of total 
pressure fluctuations ( Ncomp,p⋆ and Ninc,p⋆ ) and additionally corrected 

receptivity of acoustic disturbances ( Ncomp,p⋆ ,C and Ninc,p⋆ ,C ) with 
their standard deviations ( � , behind the ± sign) and the maximal vari-
ation of the N-factor ( ΔN = Nmax − Nmin ) in round brackets

#The row labeled with ‘all’, refers to all available critical N-factors, as shown in Figs. 20 and 21

M Ninc Ncomp Ninc,p⋆ Ncomp,p⋆ Ninc,p⋆ ,C Ncomp,p⋆ ,C

0.35 9.50 ± 0.68 (2.46) 9.43 ± 0.65 (2.42) 9.68 ± 0.65 (2.43) 9.61 ± 0.62 (2.27) 9.91 ± 0.59 (2.16) 9.84 ± 0.57 (2.09)
0.50 8.82 ± 0.75 (2.41) 8.30 ± 0.65 (2.01) 9.43 ± 0.74 (2.37) 8.91 ± 0.63 (1.98) 9.68 ± 0.64 (2.07) 9.16 ± 0.54 (1.68)
0.65 8.86 ± 0.53 (1.76) 7.77 ± 0.47 (1.65) 9.95 ± 0.49 (1.61) 8.86 ± 0.43 (1.47) 9.91 ± 0.60 (2.45) 9.13 ± 0.38 (1.29)
All# 8.99 ± 0.95 (4.29) 8.50 ± 1.14 (4.90) 9.60 ± 0.84 (4.06) 9.11 ± 0.87 (4.02) 9.85 ± 0.76 (3.81) 9.36 ± 0.78 (3.53)
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can be assumed to be aligned with the flow direction. 
Hence, the incidence angle, � , is assumed to have the 
same magnitude as the angle-of-attack of the model, � , 
with � = |�|.

4.	 A constant value of c = 0.1818∕◦ is assumed, which 
is based on an approximation of results by Heinrich 
et al. (1988) for a flat plate with sharp leading edge at 
M = 0.1.14

Based on these assumptions a receptivity corrected N-fac-
tor, NC , can be derived in parallel with Eq. (10). Under the 
assumption of a reference receptivity coefficient, Cref = 1 , 
these assumptions lead to the following correction:

The N-factor corrections of total pressure fluctuations 
(Eq. 10) and acoustic disturbances (Eq. 12) can be combined 
to calculate corrected N-factors, Np⋆,C , via:

The results are compared in Figs.  20, 21 (bottom) and 
Table 7. By correcting the angular dependency of the recep-
tivity coefficient, the dependency of the determined critical 
N-factors on H12 is reduced but not completely eliminated. 
It can be seen that the corrected compressible N-factors, 
Ncomp,p⋆,C , show the smallest maximal variations.

5 � Uncertainties and repeatability

This section contains four parts: In the first part, uncertain-
ties of the measured variables are described (Sect. 5.1). In 
the second part, uncertainties of the transition Reynolds 
number analysis are discussed (Sect. 5.2), while, in the 
third part, uncertainties in the analysis of critical N-factors 
are specified (Sect. 5.3). In the last part of this section, the 
repeatability for different wind tunnel entries is discussed 
(Sect. 5.4).

(12)NC = ln

(
C

Cref

)
+ N = ln (1 + c ⋅ |�|) + N.

(13)Np⋆,C = ln

(
p⋆

p⋆
ref

)
+ ln (1 + c ⋅ |𝛼|) + N.

5.1 � Uncertainties of measured parameters

The inf luence of measurement uncertainties of the 
flow parameters (unit Reynolds number, Mach num-
ber, freestream and wall temperatures) are so small that 
they can be neglected in the current analysis. To quan-
tify the uncertainties in transition Reynolds number and 
shape factor, their root mean square (RMS) were deter-
mined (Sect.  2.2, 2.3), leading to (Re⋆

tr
)RMS = 0.5 and 

(H12)RMS = 0.01 , which corresponds to relative errors of 
about 5 and 0.5% , respectively. Based on Figs. 9 and 15, 
the uncertainties in the spectral level ( p⋆ ) and in the most 
amplified frequency at transition location ( ftr ) are esti-
mated to be about 10%.

5.2 � Uncertainties in the transition Reynolds 
number analysis

In the relation between the unit Reynolds number and the 
transition Reynolds number (Sect. 3.4) where a power law is 
used ( Re∗

tr
=

(
Re∗

1

)
�III

⋅ 10�III with �III and �III approximated 
by quadratic functions), variations are about 5% , as shown 
in Fig. 12.

Further uncertainties are induced by the calculated 
transition Reynolds number, based on the correction of 
the non-adiabatic surface temperature (Sect. 3.2): the 
used coefficients for correction were measured with the 
original PaLASTra model which induces additional pres-
sure fluctuations inside the test section. The influence of 
these pressure fluctuations on the transition location is 
too complex to be quantified, so that the approximations 
should be checked with the modified PaLASTra model 
in the future.

Due to large uncertainties in the quantification of (a) nose 
bluntness and (b) receptivity effects, they were not included 
in the transition Reynolds number analysis. These effects 
may lead to further uncertainties in the determined transition 
Reynolds numbers, which are difficult to estimate. Based on 
the above discussions, a rigorous error calculus is not pos-
sible for the derived equation (Eq. 7), but may be assumed 
to be in the order of about 10%.

The derived function (Eq. 7) can also be extrapolated to 
other spectral levels and shape factors; however, this should 
be done with great caution as it is not based on measure-
ments. Furthermore, it should be noted that the power spec-
trum of total pressure fluctuations was only measured up 
to 10 kHz and extrapolated for higher frequencies. In this 
context, it would of course be useful to extend the measure-
ment to larger measurement ranges, or repeat them with a 
higher accuracy. Nevertheless, the presented results are an 
important step to describe the Mach number and unit Reyn-
olds number effect quantitatively.

14  The found receptivity coefficients vary strongly, depending on 
nose shape, nose radius and Mach number [eg. Heinrich et al. (1988) 
and Shahriari et al. (2016)]. Therefore, the assumed value of c ≈ 0.2 
can only be an approximation, which is used to investigate the plau-
sibility of the investigated trends. The main goal of the described 
C-correction method is to illustrate the working principle, which can 
be used in the future for other investigations with more appropri-
ate values of c. For further discussion on the influence of c, see also 
Sect. 6.3.2.
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5.3 � Uncertainties in the critical N‑factor analysis

Even more difficult is the quantification of uncertainties 
of the determined critical N-factors, because addition-
ally uncertainties in the receptivity process (discussed in 
Sect. 6.3.2) and linear stability analysis would have to be 
considered.

Due to the many unknown factors the description of 
uncertainties shall be restricted to the found variations in 
N-factors. When the maximum possible variations of the 
transition location ( ± 10% ) are projected onto the N-factor 
curve, an uncertainty of about N = ± 1 can be estimated 
(Fig. 8). Hence, the value of ±1 can be seen as a meaning-
ful estimation for the uncertainty of the determined critical 
N-factors.

At a fixed value of H12 a scatter of the determined criti-
cal N-factors between ΔN = 3 (without corrections) and 
ΔN = 1.5 (with corrections applied) was found. When 
the dependence on H12 is included and all available data 
points are analyzed, variations between ΔN = 4.9 (without 
corrections) and ΔN = 3.5 (with corrections applied) are 
found.

In general, it should be emphasized that the scatter of the 
found N-factors is smaller than in most previous investiga-
tions conducted at high Reynolds numbers (Schrauf 1994, 
2000, 2005; Schrauf et al. 1996, 1998).

5.4 � Repeatability of wind tunnel entries

As mentioned in Sect. 2, the modified PaLASTra model was 
repeatedly tested in DNW-KRG in six different measure-
ment campaigns over a time span of two years. Between 
the second entry and later entries the test section of the 
wind tunnel was consolidated and slightly modified. Also 
the PaLASTra model was disassembled several times within 
this time range. However, it can be seen from Figs. 6, 17, 
20 and 21, that in general a good repeatability of the results 
can be found when a sufficient amount of data points are 
acquired.

6 � Discussion of results

In this study the influence of unit Reynolds number, Mach 
number and pressure gradient (quantified by the incompress-
ible shape factor) on the transition Reynolds number was 
investigated; these effects will be summarized and discussed 
in the first part of this section (Sect. 6.1). Furthermore, a 
correction of the determined compressible and incompress-
ible critical N-factors was carried out as is summarized and 
discussed in the second part of this section (Sect. 6.2).

6.1 � Factors influencing transition Reynolds number

6.1.1 � Unit Reynolds number effect

A concise summary of the observed increase of Retr with 
Re1 was given by Arnal (1989), who stated that “the rela-
tive motion of the environmental disturbances spectrum and 
of the linearly unstable frequency range can give rise to a 
strong unit Reynolds number effect”. Arnal also noted that 
the cause for the unit Reynolds number effect may be a com-
bined response to many factors, such as changes in (a) nose 
bluntness, (b) the receptivity of the model boundary layer, 
(c) the freestream disturbance spectrum and (d) the range of 
potentially unstable frequencies (Arnal 1989).

Based on the factors (c) and (d), Stetson et al. (1986) 
gave a good schematic explanation of the unit Reynolds 
number effect with the following words: “With increasing 
unit Reynolds number, generally it is expected that the fre-
quencies of the most unstable boundary layer disturbances 
will increase more rapidly than the upper frequency excita-
tion limit of the environment. The result is that disturbances 
above some frequency may not grow even though they are 
unstable”.

Founded on the same approach, the unit Reynolds number 
effect was investigated in this work. However, instead of 
assuming an upper frequency excitation limit of the envi-
ronment (like Stetson et al. 1986), in this investigation the 
excitation intensity of the environment is quantified by the 
spectral level of total pressure fluctuations. Furthermore, it 
is not assumed that disturbances above some frequency will 
not grow at all [as done by Stetson et al. (1986)] instead 
it is assumed that the initial amplitude of disturbances in 
the boundary layer varies, depending on Mach number and 
frequency. With this approach it was not only possible to 
give a qualitative explanation of the unit Reynolds number 
effect, but also to describe it quantitatively. To achieve this 
quantitative description, two approximations were carried 
out in this paper:

1.	 The spectral level of total pressure fluctuations was 
approximated as a function of frequency and Mach num-
ber (Eq. I).

2.	 The dependence of Re⋆
tr
 on Re⋆

1
 was approximated with 

the help of a power law approach (Eq. III).

The power law used to quantify the dependence of Re⋆
tr
 on 

Re⋆
1
 is given by Re∗

tr
=

(
Re∗

1

)
�III

⋅ 10�III (Eq. III). The expo-
nents found for accelerated flows ( �III = 0.1–0.6), agree with 
findings in hypersonic wind tunnels (Arnal 1989) The coef-
ficients �III and �III were calculated with the help of quadratic 
approximations, �III = hIII,�,2 ⋅ H

2
12
+ hIII,�,1 ⋅ H12 + hIII,�,0 

and �III = hIII,�,2 ⋅ H
2
12
+ hIII,�,1 ⋅ H12 + hIII,�,0 , for each Mach 

number separately.
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6.1.2 � Mach number effect

As discussed in Sect. 1.2, a stabilizing effect of compress-
ibility on boundary layer transition is predicted by linear 
stability theory. However, an increased initial amplitude of 
the T–S waves, due to an increased freestream disturbance 
level, prohibits a direct comparison of transition Reynolds 
numbers measured at different Mach numbers (Arnal 1989). 
To allow a comparison of transition Reynolds numbers 
measured at different Mach numbers, which have a different 
freestream disturbance level, an additional third approxima-
tion was carried out (Sects. 3.5, 6.1.1):

3.	 The frequency of the most amplified T–S wave at the 
transition location was approximated as a function of 
H12 and Re⋆

1
 (Eq. IV).

By combination of the above equations (labeled with roman 
numbers) the unit Reynolds number was eliminated, and the 
transition Reynolds number was expressed as functions of 
the freestream disturbance environment, characterized by 
p⋆ , and by the shape factor, H12 (Eq. 7). For a compari-
son of different Mach numbers, a fixed spectral level of 
total pressure fluctuations ( p⋆ = 10−4.5 ) or a fixed shape 
factor ( H12 = 2.54 ) were entered into Eq. (7) and visual-
ized in Figs. 18 and 19. Within the measurement range 
( 2 × 10−5 ≤ p⋆ ≤ 5 × 10−5 and 2.51 ≤ H12 ≤ 2.6 )  the 
resulting functions show similar trends. It was found that 
the transition Reynolds number decreases with increasing p⋆ 
(Fig. 19) and also with increasing H12 (Fig. 18), as expected 
(Schlichting and Gersten 2000).

Since the different freestream disturbance levels are cor-
rected in Figs. 18 and 19, the transition Reynolds numbers 
at different Mach numbers can be compared conclusively. It 
can be seen that the transition Reynolds number increases 
significantly with Mach number. This result reveals the 
expected trend of larger Mach numbers leading to larger 
transition Reynolds numbers at the same freestream distur-
bance level, the reason being the stabilizing effect of com-
pressibility on T–S waves (Arnal and Vermeersch 2011).

6.2 � Calculation and correction of the critical 
N‑factor

The N-factor method is a widely used method for transi-
tion prediction on two-dimensional boundary layers (van 
Ingen 2008). However, large discrepancies have been found 
in the determined critical N-factors (Schrauf 1994, 2000, 
2005; Schrauf et al. 1996, 1998). In the first part of this 
section, the results of compressible and incompressible 
critical N-factors are compared and the influences of unit 
Reynolds number, Mach number and shape factor on Re⋆

tr
 

are discussed (Sects. 6.2.1, 6.2.2). In the second part, two 

approaches for the correction of determined critical N-fac-
tors, based on the spectral level of total pressure fluctuations 
(Sect. 6.3.1), and the incidence angle dependent receptivity 
of acoustic disturbances (Sect. 6.3.2) are summarized and 
discussed.

6.2.1 � Mach number influence on compressible 
and incompressible critical N‑factors

Local linear stability analysis was used to determine 
critical N-factors with compressible and incompressible 
theory for all available data points. An average compress-
ible critical N-factor of Ncomp = 8.50 , with a standard 
deviation of �comp = 1.14 , and an average incompressible 
critical N-factor of Ninc = 8.99 , with a standard deviation 
of �inc = 0.95 , were found for PaLASTra in DNW-KRG. 
When all data points are compared, the maximal variations 
( ΔN = Nmax − Nmin ) show the same trends as the standard 
deviations: the determined compressible critical N-factor 
exhibit larger variations ( ΔNcomp = 4.90 ) as compared to 
the incompressible critical N-factor ( ΔNcomp = 4.29 ). The 
same trends have been found by Schrauf (1994, 2000) and 
Schrauf et al. (1998), who report that critical N-factors 
calculated with incompressible theory exhibit a better cor-
relation than critical N-factors calculated with compress-
ible theory. The larger fluctuations of compressible criti-
cal N-factors are due to their Mach number dependence, 
as shown in Fig. 23: the compressible critical N-factors 
decrease with increasing Mach number, which agrees with 
findings by Schrauf (2000).

At first sight, the observed decrease of compressible crit-
ical N-factors with M appears to be contradictory to what 
one would expect physically: as the compressible N-factor 
analysis also captures the stabilizing effect of compress-
ibility on the boundary layer, a smaller variation with 
Mach number would be expected (Arnal and Vermeersch 
2011; Schrauf et al. 1996). However, it is very likely that 
the stabilizing effect of compressibility is compensated by 
a destabilizing effect of increasing flow disturbances with 
Mach number (Arnal 1989), which may explain the bet-
ter correlation of the determined incompressible critical 
N-factors. Therefore, the influence of pressure fluctuations 
on the determined critical N-factor is discussed in more 
detail below (Sect. 6.3).

It is also interesting to note that, if critical N-factors 
of different Mach numbers are compared separately, as 
done in Sect. 4, compressible critical N-factors exhibit a 
smaller standard deviation and a smaller maximal variation 
than the incompressible critical N-factors (Table 7). This 
observation is in line with the Mach number dependence as 
discussed above. Furthermore, it shows that, it is not valid 
to assume, in general, a better correlation of the incom-
pressible critical N-factor as compared to the compressible 
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critical N-factor. Instead, the influence of the external dis-
turbance spectrum has to be considered and corrected. 
However, in case the influence of the external disturbance 
spectrum on the critical N-factor is not corrected, actually 
incompressible critical N-factors were found to show a bet-
ter correlation.

6.2.2 � Influence of unit Reynolds number on critical 
N‑factors

In a wind tunnel test, as reported by Schrauf (2000), it has 
been found that compressible and incompressible critical 
N-factors depend on unit Reynolds number. However, the 
trends Schrauf (2000) found in the wind tunnel, contradict 
the trends that were found in flight tests. This observation 
was explained by an increasing disturbance amplitude of 
the wind tunnel tests with unit Reynolds number (Schrauf 
2000). In the current investigation a slight increase (with 
a maximum of ΔN ≈ 1 ) of the critical N-factor with unit 
Reynolds number at small H12 was found (see also Figs. 28, 
29, 30, 31, 32 and 33 in "Appendix"). However, when all 
data points were compared (Figs. 20, 21) the trend was not 
found to be stringent and lies within the measurement accu-
racy, as discussed below (see Sect. 5.3). This observation 
can be explained by the fact that the disturbance amplitude 
of pressure fluctuations in DNW-KRG is independent of 
unit Reynolds number in the relevant frequency range (see 
Sect. 3.1).

6.3 � Correction of the determined critical N‑factors

In Sect. 4 two steps were made to correct the influence of 
pressure fluctuations on the determined critical N-factors. 
The first step, which was described in Sect. 4.1, aims to 
correct the critical N-factor values taking into account the 
Mach number dependence of the amplitude of freestream 
total pressure fluctuations whose frequency corresponds to 
the T–S wave responsible for transition and will be discussed 
in Sect. 6.3.1. The second step, which was described in 
Sect. 4.2, focuses on the receptivity dependency of acoustic 
disturbances, which varies with incidence angle and will be 
discussed in Sect. 6.3.2.

6.3.1 � Correction of total pressure fluctuations

As explained above, it is likely that the found Mach number 
dependency of the compressible critical N-factors is caused 
by an increasing spectral level of total pressure fluctuations 
with Mach number (analyzed in Sect. 3.1). Furthermore, the 
frequency dependency of the spectral level of total pressure 
fluctuations is likely to be at least partially responsible for 
the described influence of unit Reynolds number and shape 
factor on the determined critical N-factors.

To correct the influence of an increasing level of total 
pressure fluctuations with Mach number, the compress-
ible and incompressible critical N-factors were cor-
rected by relating the spectral level of total pressure fluc-
tuations to the initial amplitude of the T–S waves linearly 
(Sect. 4.1). By this correction, the standard deviations and 
maximal variations were reduced for the incompressible 
( Ninc,p⋆ = 9.60 ± 0.84 (4.06)) and compressible critical 
N-factors ( Ncomp,p⋆ = 9.11 ± 0.87 (4.02)).15 The improve-
ment in � and ΔN is significantly larger in the compress-
ible case (an average improvement of about 21% ) than in 
the incompressible case (an average improvement of about 
8% ), when all data points are compared. By comparing the 
p⋆-corrected critical N-factors, shown in the middle of 
Figs. 20 and 21, it can be seen that the variation is signifi-
cantly reduced, compared to Ninc and Ncomp , shown at the 
top of Figs. 20 and 21.

Furthermore, it should be noted that the correction 
of the incompressible critical N-factor ( Ninc,p⋆ ) produces 
new outliers. This observation is also resembled by the 
(slightly) smaller maximal variation of the compressible 
case ( ΔNcomp,p⋆ = 4.02 ) compared to the incompressible 
case ( ΔNinc,p⋆ = 4.06 ), which is even more significant 
when Mach numbers are compared individually (Table 7). 
Therefore, it can be conjectured that the p⋆-corrected com-
pressible critical N-factors ( Ncomp,p⋆ ) capture more of the 
relevant physical processes leading to transition. In con-
trast, it can also be conjectured that the incompressible 
critical N-factors capture in general less physical processes 
and are, therefore, less suitable for transition prediction 
when the spectral level of total pressure fluctuations are 
incorporated.

6.3.2 � Correction of the dependence on incidence angle 
of receptivity of acoustic disturbances

Apart from total pressure fluctuations, also acoustic distur-
bances have a significant influence on T–S induced transi-
tion, as discussed in Sect. 4.2. Since receptivity of acous-
tic disturbances depends strongly on the incidence angle 
(which was assumed to correspond to the angle-of-attack), 
a linear approximation based on calculations of Heinrich 
et al. (1988) was used to correct the determined critical 
N-factors.

It was found that the determined critical N-factors, Np⋆,C , 
with corrected influence of total pressure fluctuations ( p⋆ ) 
and receptivity of acoustic disturbances (C), exhibit the 
smallest standard deviations ( � ) and the smallest maximal 

15  Notation: The critical N-factor (N), its standard deviation ( � ) and 
maximal variation ( ΔN = Nmax − Nmin ) are summarized here, as in 
Table 7, with: N ± � ( ΔN).
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variations ( ΔN  ) of all cases. The values of ΔN  and � are 
smaller for Ncomp,p⋆,C compared to Ninc,p⋆,C (except for a 
slightly smaller standard deviation of Ninc,p⋆,C , when all 
data points are compared). It can, therefore, be conjectured 
that the C- and p⋆-corrected compressible critical N-factors 
( Ncomp,p⋆,C ) capture the most relevant physical processes in 
this study.

Furthermore, it is interesting to note that the dependence 
of the C-corrected critical N-factors ( Np⋆,C ) on H12 could 
be reduced by the employed corrections, but it could not be 
removed completely. A better cancellation would be possi-
ble if a significantly larger dependence of receptivity on the 
angle-of-attack would be assumed. The slope c in Eq. (11) 
would be required to be about twenty times larger, which 
appears to be too large to be reasonable at first sight. However, 
the assumption that the angle-of-attack is identical with the 
angle of incidence (assumption 3 of Sect. 4.2) might not be 
fully valid, since acoustic waves may not be aligned with the 
flow direction. Furthermore, the receptivity process is still not 
completely understood and the receptivity coefficients deter-
mined in past work have been found to vary by an order of 
magnitude (Heinrich et al. 1988; Shahriari et al. 2016). Addi-
tionally, it must be considered that the freestream disturbances 
in the experiment might not enter the boundary layer only 
at the leading edge, but also at discontinuities of the model 
surface, such as model part junctions (see also Sect. 2.2). Also 
non-parallel effects, non-linear mechanisms and influences 
of nose bluntness would need to be considered (Arnal et al. 
1997). The knowledge of this missing information would 
probably further improve the prediction of transition.

In this context it should be emphasized that the concept 
of a universal critical N-factor is based on the assumption 
of linear growth of Tollmien–Schlichting waves. However, 
the transition from laminar to turbulent flow is a non-linear 
process (Würz et al. 2012a, b). Therefore, the existence of a 
universal N-factor, which is completely independent of M, 
Re1 and � cannot be expected.

7 � Conclusion

The described improvements in the spatial and temporal 
transition detection method of TSP and the quantitative 
surface temperature measurement allowed the determina-
tion of the transition Reynolds number with a high accu-
racy. Since the measured surface temperature distribution 
was also incorporated into boundary layer calculations, it 
was also possible to account for temperature effects on the 
N-factor calculation. These advances in the measurement 
technique allowed the systematic investigation of unit Reyn-
olds number, Mach number and pressure gradient effects on 
laminar–turbulent transition in two-dimensional boundary 
layers.

The modified PaLASTra model has shown its capabil-
ity to study laminar–turbulent transition in two-dimen-
sional flows systematically for various Mach numbers, 
unit Reynolds numbers and pressure gradients in DNW-
KRG. The modifications of the PaLASTra model proved 
to be useful to reduce the magnitude of pressure fluctua-
tions caused by flow separation at the trailing edge of the 
original model below the minimum observable quantity. It 
was found that the model exhibits a quasi-uniform stream-
wise pressure gradient, characterized by the incompress-
ible shape factor, H12 . A linear dependence between H12 
and the transition Reynolds number was found for each 
combination of Mach and unit Reynolds number, which 
was approximated by linear functions with the intercepts, 
hII,0 , and slopes, hII,1.

It was, therefore, possible to show in this study that 
not the RMS turbulence level alone is meaningful for T–S 
induced transition, but instead the spectral level in the rel-
evant frequency range has to be considered, as conjectured 
by Meier et al. (1987). The relation between the spectral 
level and the frequency range relevant for T–S induced 
transition was used to explain and quantify the observed 
unit Reynolds number effect on the transition Reynolds 
number. To this end, an analytic function was derived 
which approximates the transition Reynolds number as a 
function of unit Reynolds number. A power law relation 
between unit Reynolds number and transition Reynolds 
number was used, with Retr ∼ Re

�III

1
 . The exponent �III was 

found to range between 0.1 and 0.6 for accelerated flows, 
which agrees well with measurements in hypersonic wind 
tunnels (Arnal 1989).

The unique feature of DNW-KRG to vary Mach number 
by adjusting the cross section of the sonic throat downstream 
of the test section and unit Reynolds number by adjusting the 
pressure of the working gas (Rosemann 1997), was also used 
to conduct a systematic study of the Mach number effect (or 
‘compressibility effect’) on the location of laminar–turbulent 
transition. Therefore, the systematic variation of M, Re⋆

1
 and 

H12 was combined with a detailed analysis of the freestream 
turbulence spectrum in the wind tunnel, which allowed the 
experimental quantification of the Mach number effect. 
Hence, the presented analysis gives the first systematic and 
quantitative description of the unit Reynolds number and 
Mach number effect in a subsonic flow.

A compressible and incompressible linear stability analy-
sis was carried out and the critical N-factors were deter-
mined. It was shown, in agreement with earlier findings 
(Schrauf 1994, 2000, 2005; Schrauf et al. 1996, 1998), that 
the exclusive incorporation of compressibility into linear sta-
bility analysis leads to a larger deviation in the determined 
critical N-factors as compared to incompressible stability 
analysis. However, when not only compressibility but also 
the varying influence of the spectral level of total pressure 
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fluctuations on the initial T–S wave amplitude is incorpo-
rated in the N-factor analysis, the correlation of compress-
ible critical N-factors is equally good or even better than in 
the incompressible case.

The approach to develop a correction of the eN-method 
is in line with earlier attempts of other researchers (e.g., 
Mack 1977; van Ingen 2008), who used the RMS turbu-
lence level to correct the critical N-factor. However, the 
correction presented here is not only based on the RMS tur-
bulence level, but on the level of external disturbances in 
the frequency range relevant for T–S waves leading to tran-
sition. In contrast to earlier approaches (Mack 1977; van 
Ingen 2008), the presented correction method leads to good 
results in the investigated low-turbulence environment.

The determined critical N-factors were also found to 
show a dependency on H12 , which agrees with findings in 
Arnal et al. (1997). These effects have been accounted to 
shortcomings of the eN-method as, for instance, nonparal-
lel effects, the receptivity process or non-linear mecha-
nisms (Arnal et al. 1997). As an attempt to correct the 
influences of receptivity process, a correction method 
was developed in this study: the receptivity dependency 
of acoustic disturbances on incidence angles was incor-
porated in the correction of the determined critical N-fac-
tors. It was found that, even though the chosen parameters 
[based on investigations by Heinrich et al. (1988)] were 
not large enough to remove the complete dependency of 
the determined critical N-factors on H12 , this dependency 
could be reduced. The correlation of the determined criti-
cal N-factors was thus further improved when the recep-
tivity of acoustic disturbances was also corrected by the 
suggested method.

The average critical N-factors of Ncomp,p⋆,C = 9.36 with 
a standard deviation of 𝜎comp,p⋆,C = 0.78 and Ninc,p⋆,C = 9.85 
with 𝜎inc,p⋆,C = 0.76 proved that the modified PaLASTra 
model in DNW-KRG provides a well suited experimental 
setup for laminar flow investigations. It can be concluded 
that the modified PaLASTra model can be a useful tool 
to study laminar–turbulent transition in two-dimensional 
flows systematically.
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Appendix

The first part of the Appendix shows the results of the transi-
tion Reynolds number analysis obtained for the Mach num-
bers M = 0.50 and M = 0.65 (Figs. 24, 25, 26 and 27). The 
second part shows incompressible and compressible critical 
N-factors of the first wind tunnel entry for each Mach num-
ber separately (Figs. 28, 29, 30, 31, 32 and 33).

2.52 2.54 2.56 2.58 2.6 2.62 2.64 2.66 2.68
1

2

3

4

5

6

7

8

9

10

11

2.52 2.54 2.56 2.58 2.6 2.62 2.64 2.66 2.68
1

2

3

4

5

6

7

8

9

10

11
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M = 0.50 (top) and M = 0.65 (bottom). The vertical and horizontal 
error bars are RMS values of the transition location variation along 
the span (Fig.  3) and the chordwise shape factor approximation 
(Fig.  5), respectively. Black circles mark the calculated transition 
Reynolds numbers with the help of Eq. (III)
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Fig. 28   Incompressible critical N-factors, Ninc , Ninc,p⋆ and Ninc,p⋆ ,C 
(from top to bottom) as a function of H12 at M = 0.35
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Fig. 29   Compressible critical N-factors, Ncomp , Ncomp,p⋆ and Ncomp,p⋆ ,C 
(from top to bottom) as a function of H12 at M = 0.35
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Fig. 30   Incompressible critical N-factors, Ninc , Ninc,p⋆ and Ninc,p⋆ ,C 
(from top to bottom) as a function of H12 at M = 0.50
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Fig. 31   Compressible critical N-factors, Ncomp , Ncomp,p⋆ and Ncomp,p⋆ ,C 
(from top to bottom) as a function of H12 at M = 0.50
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Fig. 32   Incompressible critical N-factors, Ninc , Ninc,p⋆ and Ninc,p⋆ ,C 
(from top to bottom) as a function of H12 at M = 0.65
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