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Abstract
Wolffia arrhiza (L.) Horkel ex Wimm. is an aquatic plant belonging to the Lemnaceae family. It does not have leaves, stems, 
and roots, flowers rarely occur, while body size can reach 1 mm of width and 1.3 mm of length. The present study demon-
strates the endogenous level of isoprenoid-derived phytohormones and their changes under the influence of different cad-
mium (Cd) concentrations (0.1, 1, 10, and 100 µM). A liquid chromatography quadrupole-time-of-flight mass spectrometry 
analysis indicated the presence of abscisic acid, eight brassinosteroids (6-deoxocastasterone, 6-deoxotyphasterol, cathaster-
one, typhasterol, castasterone, 24-epicastasterone, brassinolide, and 28-homobrassinolide), seven free bases of cytokinins 
[trans-zeatin (tZ), cis-zeatin (cZ), dihydrozeatin (DHZ), N6-isopentenyladenine, N6-isopentenyladenosine, ortho-topolin, 
and meta-topolin], eight conjugates of cytokinins (tZ riboside, tZ-9-glucoside, tZ-7-glucoside, tZ-O-glucoside riboside, 
cZ-9-glucoside, DHZ riboside, DHZ-O-glucoside, and N6-isopentenyladenosine-7-glucoside) and gibberellic acid (GA3) in 
this duckweed. The level of phytohormones in plants treated with Cd has changed, e.g., the ABA level increased while GA3 
decreased. Whereas the amount of BRs and CKs was different in Cd dose-dependent manner. Besides, it is worth noting that 
the distribution of 25 various phytohormones in the Wolffia arrhiza is reported for the first time.
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Abbreviations
EBL	� 24-Epibrassinolide
ECS	� 24-Epicastasterone
HBL	� 28-Homobrassinolide
6dCS	� 6-Deoxocastasterone
6dTY	� 6-Deoxytyphasterol
ABA	� Abscisic acid
BL	� Brassinolide
BR	� Brassinosteroid
CS	� Castasterone
CT	� Cathasterone
CK	� Cytokinin
cZ	� cis-Zeatin
DHZ	� Dihydrozeatin

DHZOG	� Dihydrozeatin-O-glucoside
DHZR	� Dihydrozeatin riboside
GA	� Gibberellin
GA3	� Gibberellin A3
iP	� N6-Isopentenyladenine
iPR	� N6-Isopentenyladenosine
iPR7G	� N6-Isopentenyladenosine-7-glucoside
tZ	� trans-Zeatin
tZ7G	� trans-Zeatin-7-glucoside
tZ9G	� trans-Zeatin-9-glucoside
tZROG	� trans-Zeatin-O-glucoside riboside
tZR	� trans-Zeatin-riboside
TY	� Typhasterol

Introduction

The Lemnaceae (duckweed) comprises an aquatic mono-
cotyledon family, including only 37 species arranging 
within five genera and in majority widely distributing in the 
world. They are the smallest angiosperms, some of which 
may attain a width of only 0.3 mm at maturity (Les et al. 
2002; Sree et al. 2016). Among Lemnaceae and other higher 
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plants, Wolffia arrhiza (L.) Horkel ex Wimm. has signifi-
cantly reduced organs, it does not have a stem, leaves, and 
root system. Body size can reach 1 mm of width and 1.3 mm 
of length, while flowering occurs extremely rarely (Schmitz 
and Kelm 2017; Khvatkov et al. 2018). Despite simplified 
body structure, these plants play crucial roles in the pro-
tection of the aquatic environment. In organic-rich water, 
they change the feeding from photoautotrophic into either 
mixotrophic or heterotrophic. Furthermore, duckweeds can 
bioaccumulate heavy metals and xenobiotics from polluted 
waters (Les et al. 1997; Vermaat and Hanif 1998; Samardak-
iewicz and Woźny 2000; Piotrowska et al. 2010; Soda et al. 
2013). Duckweeds are applicable in aquaculture as food for 
waterfowl and fish. The simplified morphology of the plant 
enables it to be a good model for laboratory studies (Skil-
licorn et al. 1993; Piotrowska and Bajguz 2012).

Abscisic acid (ABA), brassinosteroids (BRs), cytokinins 
(CKs), and gibberellins (GAs) are classes of naturally occur-
ring isoprenoid-derived phytohormones, which regulate 
plant growth and development, ranging from differentiation, 
through the transport of nutrients to responses on abiotic 
and biotic stresses (Weyers and Paterson 2001; Verma et al. 
2016; Ku et al. 2018; Sytar et al. 2019). ABA is an isopre-
noid sesquiterpenoid (C15) synthesized from carotenoids, in 
most cases, from xanthophylls. The intracellular level of this 
compound increases when plants are exposed to biotic and 
abiotic stresses because ABA is a stress signaling molecule 
(Cutler and Krochko 1999; Li et al. 2017; Olds et al. 2018). 
Natural plant CKs are derivatives of adenine purine base 
with isoprenoid or aromatic side chain that are substituted 
in N6 position. The main forms of CKs are isoprenoid free 
bases, including trans-zeatin (tZ) and cis-zeatin (cZ), which 
are the most commonly CKs occurring in many higher 
plants. The most abundant representatives of the aromatic 
side chain of CKs are para-, meta-, ortho-topolin (p-, m-, 
oT). CKs also create conjugates, most frequently with ribose 
or/and glucose, which are attached to the purine ring (Kieber 
and Schaller 2014; Hönig et al. 2018). GAs are a group of 
tetracyclic, diterpenoid carboxylic acids; their structure is 
based on ent-gibberellane (C20) or 20-nor-ent-gibberellane 
(C19) carbon skeleton (Hedden and Thomas 2012). Among 
more than 130 currently known GAs, just a few indicate 
biological activity, e.g., gibberellic acid (GA3). Its chemi-
cal structure is a carboxylic acid skeleton with a hydroxyl 
group in C-3 position and a carboxyl group in C-6 posi-
tion (Davière and Achard 2013). BRs are comparatively 
less researched class of phytohormones relative to ABA, 
CKs, and GAs. So far, more than 70 different BRs have been 
identified as free molecules or conjugates with fatty acids 
or glucose, and their differentiation results from the type 
and position of functional groups within the cyclic A and B 
rings and the side chain. The base of the chemical structure 
is the four-ring skeleton of 5α-cholestane containing ring A 

with hydroxyl group generally at C-2 and C-3 position, then 
7-oxalactone, 6-ketone, or non-oxidized ring B and the side 
chain with hydroxyl group usually at C-22 and C-23. The 
most frequent and active types of BRs are brassinolide (BL) 
and castasterone (CS) (Bajguz and Tretyn 2003; Kanwar 
et al. 2017; Tarkowska and Strnad 2018; Zullo and Bajguz 
2019).

Biological activity of phytohormones varies and depends 
on biosynthesis rates, cellular localization, transport, and 
signal perception or exposure to the biotic and abiotic 
stresses (Cao et al. 2016; Smith et al. 2017; Šimura et al. 
2018). In recent decades, a significant increase in environ-
mental contamination by heavy metals was observed, which 
causes one of the most harmful abiotic stress in the plant. 
Cadmium (Cd), belonging to the group of heavy metals, has 
a strongly toxic action for all living organisms, moreover 
many of aquatic, air, and soil environments are contaminated 
by this metal (Sytar et al. 2019). After getting inside plant 
cells, even a low concentration causes a toxic effect mani-
festing to impair life activities. Cd can form covalent and 
ionic bonds with biologically essential functional groups, 
such as sulfhydryl, amine, disulfide, carboxy, and imidazole 
of micro and macroelements, such as sulfur, hydrogen, oxy-
gen, magnesium, calcium, zinc, iron, copper, and selenium 
(Bertin and Averbeck 2006). In plants, Cd poisoning nega-
tively affects both physiological and biochemical cellular 
processes, such as photosynthesis, transpiration, and cellular 
respiration. In addition, Cd inhibits cell division and overall 
organism growth. Moreover, Cd ions present in plant cells 
block the activity of antioxidant enzymes located in chlo-
roplasts and mitochondria. This causes oxidative stress and 
accumulation of reactive oxygen species (Liu et al. 2017).

Plant organs are a rich source of phytohormones that 
occur in a range of ng-fg per g of fresh weight. Thus, liquid 
chromatographic separation coupled with mass spectrometry 
(LC–MS) is the most precise method for the identification 
and quantification of plant hormones due to high sensitiv-
ity, accuracy, and reproducibility. A liquid chromatography 
quadrupole-time-of-flight mass spectrometry (LC-QToF-
MS), applied in our studies, is characterized by high mass 
accuracy and well resolution, so it is an excellent tool for 
hormones profiling (Pan and Wang 2009; Bai et al. 2010; 
Pan et al. 2010; Xin et al. 2013; Cao et al. 2016; Chu et al. 
2017; Kanwar et al. 2017; Li et al. 2019). Isolation of new 
or known hormones in plant species remains as a research 
target of many scientists. Therefore, the present study aimed 
to determine the endogenous level of ABA, BRs, CKs, and 
GAs in W. arrhiza using the LC-QToF-MS quantitative 
analysis. Moreover, the effect of different Cd concentrations 
(0.1–100 μM, increase by one order of magnitude) on phy-
tohormones content was studied. Additionally, the relations 
between phytohormones, primarily linear, were statistically 
analyzed.
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Materials and Methods

Growth Condition

One gram of the wild type of W. arrhiza was grown in 
sterile, glass vessels containing 200 mL of 1/30 dilu-
tion of Hunter’s medium (Hutner 1953) with Cd addi-
tion in the range of concentration 0.1–100 µM except 
for control group. The varied solutions of metal were 
prepared through the diluting of CdCl2 in 1/30 Hutner’s 
medium. The breeding was grown under controlled con-
ditions at 22.0 ± 0.5 °C, 16-h photoperiod (photon flux 
of 100 μmol m−2 s−1), and 65 ± 1% humidity for 7 days. 
Fresh weight was harvested and filtered using a vacuum 
pump (KNF Laboport, Germany). Then, the sample was 
homogenized in liquid nitrogen using a mortar and pestle. 
The resulting powder was used in further analysis.

Chemicals

The standard of abscisic acid (ABA); eleven standards 
of BRs: 6-deoxotyphasterol (6dTY), cathasterone (CT), 
6-deoxocathasterone (6dCT), typhasterone (TY), castas-
terone (CS), 6-deoxocastasterone (6dCS), 24-epicastas-
terone (ECS), brassinolide (BL), 28-norbrassinolide 
(28-norBL), 24-epibrassinolide (EBL) and 28-homo-
brassinolide (HBL) twenty-six standards of CKs: trans-
zeatin (tZ), trans-zeatin riboside (tZR), trans-zeatin-
9-glucoside (tZ9G), trans-zeatin-7-glucoside (tZ7G), 
trans-zeatin-O-glucoside (tZOG), trans-zeatin ribo-
side-O-glucoside (tZROG), trans-zeatin-9-glucoside-
O-glucoside(tZ9GOG), trans-zeatin-9-glucoside ribo-
side (tZ9GR), cis-zeatin (cZ), cis-zeatin-riboside (cZR), 
cis-zeatin O-glucoside (cZOG), cis-zeatin9-glucoside 
(cZ9G), cis-zeatin-O-glucoside-riboside (cZROG), dihy-
drozeatin (DHZ), dihydrozeatin riboside (DHZR), dihy-
drozeatin-9-glucoside (DHZ9G), dihydrozeatin-7-gluco-
side (DHZ7G), dihydrozeatin-O-glucoside (DHZOG), 
dihydrozeatin riboside-O-glucoside (DHZROG), N6-iso-
pentenyladenine (iP), N6-isopentenyladenosine (iPR), 
N6-isopentenyladenosine-7-glucoside (iPR7G), para-
topolin (pT), meta-topolin (mT), ortho-topolin (oT), 
6-benzylaminopurine (6-BAP) and standard of GA3 were 
purchased from OlChemIm (Olomouc, Czech Republic). 
Chemicals used to prepare Hunter’s medium were pur-
chased from Sigma-Aldrich (St. Louis, USA). 4-(Dimeth-
ylamino)phenylboronic acid (DMAPBA), methanol 
(MeOH), acetonitrile (ACN), water (LC–MS purity), 
formic acid (FA) and potassium hydroxide (KOH) were 
purchased from Merck KGaA (Darmstadt, Germany).

Quantification of ABA, Cytokinins, and GA3

For the measurement of phytohormones, 200 mg of plant 
powders were placed into the 2 mL Eppendorf tubes, sus-
pended in 1 mL (v/v) 50% ACN and homogenized in a bead 
mill (50 Hz, 5 min; TissueLyser LT, Qiagen, Germany) 
using two 5 mm tungsten balls. Then, samples were homog-
enized using the ultrasound processor VCX 130 (max. power 
130 W, max. frequency 20 kHz, 5 min) equipped with tita-
nium probe (Sonics & Materials Inc., USA) and mixed in 
laboratory shaker (90 rpm, dark, 5 °C, 30 min; LC-350, Pol-
Eko-Aparatura, Poland). Samples were centrifuged (9000×g, 
5 min; MPW-55 Med. Instruments, Poland) and collected 
in a glass tube. For quantification of ABA, CKs, and GA3, 
[2H6](+)-cis, trans-ABA (50 ng), [2H6] iP (50 ng), [2H5] tZ 
(30 ng), [2H5]-tZOG (30 ng), [2H3]-DHZR (30 ng), and [2H2] 
GA3(30 ng) were added to samples as internal standards.

Prepared extracts were purged using Waters SPE Oasis® 
HLB cartridge, previously activated and equilibrated using 
1 mL 100% MeOH, 1 mL H2O, and 1 mL (v/v) 50% ACN 
(Šimura et al. 2018). Then, extracts were loaded and col-
lected to the Eppendorf tubes and eluted with 1 mL 30% 
ACN (v/v). Samples were evaporated to dryness by cen-
trifugal vacuum concentrator (Eppendorf Concentrator 
Plus, Germany), dissolved in 50 µL (v/v) 30% ACN, and 
transferred into the insert vials. Detection of analyzed phy-
tohormones was performed using an Agilent 1260 Infinity 
series HPLC system (Agilent Technologies, USA) contains 
QToF LC/MS mass spectrometer with Dual AJS ESI source, 
10 μL of each sample was injected on the Waters XSelect 
C18 column (250 mm × 3.0 mm, 5 μm), heated up to 50 °C. 
Mobile phase A was 0.01% (v/v) FA in ACN and phase B 
0.01% (v/v) FA in H2O; flow was 0.5 mL min−1. Separation 
of the above hormones was done in ESI positive mode with 
the following gradient: 0–8 min flowing increased linearly 
from 5 to 30% A, 8–25 min 80% A, 25–28 min 100% A, 
28–30 min 5% A.

Quantification of Brassinosteroids

Preparation and quantification of BRs were performed as 
described in detail by Bajguz et al. (2019). Briefly, 200 mg 
of plant powders were placed into the 2 mL Eppendorf 
tubes, suspended in 1 mL MeOH, and homogenized using 
two 5 mm tungsten balls. Then, the homogenates were cen-
trifuged, and the resulting supernatants were transferred to 
the flat bottom flask and mixed in laboratory shaker (90 rpm, 
dark, 5 °C, 90 min). For quantification of BRs, [2H3] BL 
(2 ng) and [2H3] CS (2 ng) were added into the mixture, 
followed by extraction with MeOH as internal standards. 
For screening of BRs, no internal standards were added. 
The samples were purified from pigments and other pollu-
tions using Waters SPE MAX cartridge, which was activated 
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and equilibrated with 99.9% MeOH, H2O, 1 M KOH, 10% 
(v/v) MeOH and 95% (v/v) MeOH, respectively. Purified 
extracts were dried up using a centrifugal vacuum concentra-
tor, reconstructed in 10% (v/v) MeOH and passed through 
Waters SPE MCX cartridge for removing ion pollutions. 
Cartridges were previously activated and equilibrated with 
5% (v/v) FA in 5% (v/v) MeOH, 5% (v/v) MeOH, 5% (v/v) 
NH4OH in 5% (v/v) MeOH and 5% (v/v) MeOH, respec-
tively. Then samples were eluted using 80% (v/v) MeOH. 
Eluents were dried up using a centrifugal vacuum con-
centrator, suspended in 96% (v/v) EtOH, and derivatized 
using DMAPBA reagent. Quantification of BR-DMAPBA 
was performed using the Agilent LC-QToF-MS system. 
Samples were injected on the Waters XBridge C18 column 
(250 mm × 4.6 mm, 1.7 μm); mobile phase A was 0.1% (v/v) 
FA in H2O, mobile phase B was 0.1% (v/v) FA in ACN.

Optimization of MS/MS Conditions

For the optimization of MS/MS conditions, the chemical 
standards of analyzed phytohormones were directly injected 
to the MS in positive ([M + H]+) ion scan modes, then areas 
of detected standards peaks were calculated. [M + H]+ was 
chosen because of significantly better signal to noise ratios 
compared to the negative ion scan modes.

Statistical Analysis

The R software was used to perform statistical analyses R 
Core Team (2019). Data, grouped by phytohormone and 
treatment (n = 4–5), were subjected to the one-way ANOVA 
(‘stats’ package) followed by Tukey’s post hoc test [‘laer-
cio’ package (da Silva 2010)]. The Shapiro–Wilk and Lev-
ene’s tests [‘stats’ and ‘car’ packages] were used to verify 
ANOVA assumptions of Gaussian distributed data with 
homogenous variances (α = 0.05). Pearson’s correlations 
[‘Hmisc’ package (Harrell 2019)] were calculated to check 
the linear relationship between each phytohormone (n = 25), 
except BL, HBL, TY, 6dCS, 6dTY, cZ9G, tZ, tZ9G, DHZ, 
DHZR, DHZOG, iPR, oT, and mT, which were not nor-
mally distributed (Table 1S). Thus, all phytohormones were 
also assessed for a monotonic relationship using Spearman’s 
rank correlations. Resulting correlation matrices were visu-
alized as heatmaps using the ‘corrplot’ package (Wei and 
Simko 2017) and network plots, using the ‘corrr’ package 
(Kuhn et al. 2020), to simplify, further explore and visual-
ize strong correlations. The projection of data on network 
plots was handled by multidimensional scaling of the matrix 
of correlations coefficients absolute values. Correlations 
were considered significant for p < 0.05. Linear regression 
analyses were also performed to model the linear relation-
ship between pairs of phytohormones with |r| ≥ 0.8 (‘stats’ 
package).

Results and Discussion

Overall Phytohormones Occurrence

The presence of phytohormones has been evidenced in 
lower and higher plants, both in gymnosperms and angio-
sperms species. The most widely contributed hormone is 
ABA, which also occurs in cyanobacteria (Gayathri et al. 
2017), marine sponges (Zocchi et al. 2001), lichens, fungi 
(Hirai et al. 2000; Hartung 2010), mammals (Sturla et al. 
2009), and even in human blood cell (Bruzzone et  al. 
2007; Magnone et al. 2009) and plasma (Bruzzone et al. 
2012). Other phytohormones are also commonly spread 
in plants. Regarding the CKs, most scientific reports pre-
sent its identification and abundance within Brassicaceae 
family, particularly in Arabidopsis thaliana and Brassica 
napus (Luo et al. 2017; Šimura et al. 2018). The presence 
of GAs is evidenced in algae (Stirk et al. 2013a), vascular 
plants (MacMillan 2001; Pan et al. 2010), and fungi (Hed-
den and Thomas 2012). Furthermore, the distribution of 
the above phytohormones is reported in many genera of 
cyanobacteria and a few species of diatoms (Stirk et al. 
2013b; Lu and Xu 2015). BRs have been identified so far 
in over twenty species of algae (mainly in Chlorophyceae) 
(Bajguz 2009; Stirk et al. 2013a; Bajguz 2019), one spe-
cies of bryophyte (Equisetum arvanse), one pteridophyte 
(Marchantia polymorpha), two lycophytes (Selaginella 
moellendorffii and S. uncinata), thirteen fern species 
(Yokota et al. 2017), gymnosperms with genus of Cupres-
sus and Pinus, and in angiosperms belonging to the family 
of Fagaceae, Apiaceae, Brassicaceae, Fabaceae, Poaceae, 
Solanaceae, and others (Bajguz et  al. 2019; Janeczko 
2019; Zullo and Bajguz 2019). Furthermore, the presence 
of BRs has been confirmed in all plant organs (Bajguz and 
Tretyn 2003; Tarkowská et al. 2016; Kanwar et al. 2017; 
Tarkowska and Strnad 2018). However, there are no data 
on the occurrence of phytohormones in the Lemnaceae 
family.

Endogenous Content of Phytohormones in W. 
arrhiza and Effect of Cadmium on Their Content

Quantification of phytohormones under the influence of 
Cd in W. arrhiza is presented in Table 1. Obtained results 
are based on the previously prepared standard curves of 
phytohormone content, and each value has been calcu-
lated on 1 g of fresh weight (FW). Regarding the control 
group, phytohormones occur in a wide range from 0.016 
to 55.541 ng g−1 FW. Thus, the LC-QToF-MS analysis 
indicated the presence of ABA, eight BRs (CT, TY, 6dTY, 
CS, 6dCS, ECS, BL, and HBL), five isoprenoid free bases 



1522	 Journal of Plant Growth Regulation (2020) 39:1518–1530

1 3

of CKs (tZ, cZ, DHZ, iP, and iPR), two aromatic free bases 
of CKs (oT and mT), eight conjugates of CKs (tZR, tZ9G, 
tZ7G, tZROG, cZ9G, DHZR, DHZOG, and iPR7G), and 
GA3. The total number of detected compounds is 25. This 
is the first report about the presence of plant hormones 
not only in W. arrhiza but also in Lemnaceae plants. This 
study showed that the most widely contributed phytohor-
mones are CKs, which are represented by 15 compounds. 
Among all detected phytohormones, the highest content 
of GA3 and tZ was noted (55.541 and 23.235 ng g−1 FW, 
respectively). The total level of hormone groups in duck-
weed exposed to Cd is presented in Fig. 1. Therefore, 
the total content of ABA and BRs increased while GA3 
amount decreased in the presence of Cd. While the level of 
CKs in plant exposed to 0.1, 1, and 10 µM Cd was higher 
than control, but in plant treated of 100 µM Cd was lower.

The correlation analysis of phytohormones in W. arrhiza 
revealed very strong, negative linear relations between 
ABA vs. GA3, ECS, and cZ; GA3 vs. iPR; and ECS vs. 
iPR [according to Evans (1996)] (Fig. 2a, b), while posi-
tive was found between GA3 vs. ECS and cZ; ECS vs. cZ; 
CT vs. tZROG; and tZR vs. iPR7G. Ten linear regressions 

models and equations were calculated and presented for 
those pairs of phytohormones (Fig. 2a), e.g., ABA ≈ 1.404 
− 0.019 × GA3. Thus, the precise relationship was identi-
fied in this research. Furthermore, strong, negative mono-
tonic relations were found between, e.g., cZ vs. oT, mT, iPR, 
6dCS, IAA, BL, and HBL; HBL vs. GA3 and ECS; IAA 
vs. GA3; ECS vs. 6dCS. Positive ones were noted between, 
e.g., BL vs. iPR, oT, mT, IAA, ABA, 6dCS, and HBL; TY 
vs. iPR, mT, IAA, 6dCS, and HBL; DHZR vs. cZ9G, DHZ, 
DHZOG, iPR7G, tZR, IPA, and CS (Fig. 3a, b). 

ABA, as an essential hormone during heavy metal stress, 
is synthesized through the methylerythritol phosphate (MEP) 
or methylerythritol phosphate (MVA) pathway. Their precur-
sor is isopentenyl pyrophosphate (IPP), which is synthesized 
in higher plants through MEP in the cytosol and MVA in 
the plastid, whereas in algae exclusively through MEP in 
the cytosol. Transformations of IPP led to the origin of xan-
thophyll, which are direct precursors of ABA (Maršálek and 
Šimek 1992; Cutler and Krochko 1999; Li et al. 2017; Olds 
et al. 2018). Biosynthesis of ABA significantly increases 
under stress conditions, e.g., salinity, drought, cold tem-
perature, or heavy metals (Khan et al. 2020), therefore the 

Table 1   The phytohormones 
level (ng g−1 fresh weight) in 
Wolffia arrhiza treated with Cd

Data, grouped by treatment for each phytohormone, represent the mean (n = 4–5) ± standard deviation. The 
same letters indicate statistically nonsignificant differences, according to Tukey’s post hoc test (p ≥ 0.05)

Control 0.1 µM Cd 1 µM Cd 10 µM Cd 100 µM Cd

ABA 0.348 ± 0.128c 0.448 ± 0.071c 0.532 ± 0.075bc 0.7 ± 0.05b 1.011 ± 0.141a

GA3 55.541 ± 4.028a 47.951 ± 2.011b 43.464 ± 3.28b 32.443 ± 2.322c 25.136 ± 2.247c

6dTY 0.897 ± 0.081b 1.061 ± 0.141b 0.998 ± 0.086b 1.559 ± 0.159a 0.774 ± 0.114b

CT 1.709 ± 0.437c 3.55 ± 0.293c 7.006 ± 0.73a 6.621 ± 0.47a 5.062 ± 0.4b

TY 0.351 ± 0.033b 0.348 ± 0.027b 0.531 ± 0.027b 0.913 ± 0.156a 0.514 ± 0.077b

6dCS 0.106 ± 0.032c 0.135 ± 0.006c 0.177 ± 0.016c 0.343 ± 0.037b 0.807 ± 0.037a

CS 3.821 ± 0.184abc 4.004 ± 0.201ab 4.568 ± 0.27a 3.698 ± 0.241bc 3.133 ± 0.606c

ECS 1.067 ± 0.086a 1.024 ± 0.11a 0.72 ± 0.124b 0.524 ± 0.095b 0.52 ± 0.043b

BL 0.179 ± 0.027b 0.174 ± 0.017b 0.264 ± 0.132b 0.464 ± 0.109b 1.697 ± 0.19a

HBL 1.401 ± 0.315c 1.356 ± 0.093c 1.744 ± 0.227bc 2.342 ± 0.048b 3.656 ± 0.348a

tZ 23.235 ± 1.7b 22.614 ± 1.931b 33.619 ± 3.194a 24.577 ± 1.283b 5.261 ± 0.751c

tZR 7.332 ± 1.588c 17.285 ± 2.684b 27.36 ± 2.94a 13.876 ± 1.92b 2.775 ± 0.776c

tZ9G 0.185 ± 0.091a 0.232 ± 0.045a 0.102 ± 0.015a 0.341 ± 0.491a 0.068 ± 0.013a

tZ7G 0.03 ± 0.006bc 0.032 ± 0.002bc 0.038 ± 0.009ab 0.046 ± 0.003a 0.02 ± 0.005c

tZROG 0.205 ± 0.035c 0.283 ± 0.096bc 0.52 ± 0.088a 0.432 ± 0.108ab 0.449 ± 0.046a

cZ 20.52 ± 1.769a 15.918 ± 1.839b 11.306 ± 0.843c 9.357 ± 0.635c 2.236 ± 0.178c

cZ9G 0.027 ± 0.004c 0.605 ± 0.116a 0.692 ± 0.118a 0.549 ± 0.088ab 0.386 ± 0.071b

DHZ 0.071 ± 0.009c 0.338 ± 0.013b 0.479 ± 0.089a 0.27 ± 0.01b 0.049 ± 0.013c

DHZR 2.518 ± 0.395c 5.682 ± 0.667b 7.469 ± 0.852a 4.077 ± 0.762c 3.036 ± 0.817 cc

DHZOG 4.683 ± 0.838c 15.429 ± 0.919a 12.726 ± 1.264b 8.28 ± 0.777c 4.479 ± 1.073c

iP 0.375 ± 0.105a 0.292 ± 0.075a 0.434 ± 0.1a 0.33 ± 0.046a 0.048 ± 0.01b

iPR 0.083 ± 0.017c 0.222 ± 0.057c 0.405 ± 0.035c 1.064 ± 0.166a 0.722 ± 0.104b

iPR7G 0.383 ± 0.109c 2.662 ± 0.442b 3.474 ± 0.362a 2.038 ± 0.634bc 1.393 ± 0.227c

oT 0.287 ± 0.041c 0.509 ± 0.072c 0.586 ± 0.038bc 0.71 ± 0.044b 1.563 ± 0.104a

mT 0.016 ± 0.002c 0.078 ± 0.014bc 0.142 ± 0.012bc 0.187 ± 0.017b 0.81 ± 0.139a



1523Journal of Plant Growth Regulation (2020) 39:1518–1530	

1 3

endogenous level of ABA enhanced under the influence of 
Cd, reached the highest value for 100 µM Cd (1.011 ng g−1 
FW, Table 1, Fig. 1) in W. arrhiza. Thus, this is almost a 
threefold increase comparing to untreated duckweed.

Biosynthesis of BRs is a multistep process, including 
three independent pathways for creating C27, C28, and C29 
types of BRs. During this research, compounds belonging 
to the C28 type were identified, except HBL, which has 29 
atoms of carbon. Synthesis of C28 BRs can occur in both 
early and late oxidation pathway from campestanol (CN), 
which is a direct precursor of this BRs biosynthesis type. 
During the early C6 oxidation pathway, CN is hydroxylated 
in C-6 position to 6α-hydroxycampesterol, which is oxidized 
to 6-oxocampestanol (6-oxoCN). It is hydroxylated in C-22 
position to the first of BR – CT. Next, CT is hydroxylated in 
C-23 position to TE, which is converted in 3-dehydroteast-
erone, and this BR is reduced in C-3 position to TY. Then, 
TY is hydroxylated in C-2 position to CS, which is oxidized 
in C-7 position to BL. Whereas in the late C6 oxidation path-
way, CN is converted to 6dCT, which is hydroxylated to 
6dTE, the next 6dTE is reduced to 3-dehydro-6dTE and this 
compound is hydroxylated to 6dTY which is hydroxylated 
in C-2 position to 6dCS. Next, 6dCS after a hydroxylation 
to 6-hydroxyCS is oxidized in C-6 position to CS, which 
is oxidized to BL (Wang et al. 2017; Ohnishi 2018). In the 
present study, the presence of hydroxylated and no hydroxy-
lated forms of BRs was reported. The occurrence of TY (a 
direct precursor of CS biosynthesis in the early C6 pathway) 
and 6dCS (a precursor of CS during the late C6 pathway) 
shows that the biosynthesis of BRs in W. arrhiza can occur 

in both pathways. The previous study of Bajguz and Asami 
(2005) indicates that the addition of brassinazole (a specific 
BR biosynthesis inhibitor) to W. arrhiza cultures inhib-
its their growth, which was reversed by exogenous EBL. 
Brassinazole blocks the conversion of CN to 6dCT, 6dCT to 
6dTE, 6-oxoCN to CT, and CT to TE (Asami and Yoshida 
1999; Rozhon et al. 2019). It confirms that BRs are essential 
to the normal growth of W. arrhiza. In this study, among 
untreated with Cd plants, the largest content of CS and CT 
was noted (3.821 and 1.709 ng g−1 FW, respectively). Sitos-
terol, as a precursor of C29 biosynthesis, is transformed into 
28-homoTY, which then is converted to 28-homoCS and 
HBL (Roh et al. 2017). The presence of HBL in W. arrhiza 
suggests the occurrences of the C29 biosynthesis pathway 
in this duckweed. Whereas C27 type of BR, i.e., 28-norBL 
has not been detected. However, many C27 compounds, 
e.g., 28-norCT, 28-norTE, 28-norTY, 28-norCS, have not 
been noted. Thus, the presence of the C27 pathway cannot 
be excluded. Differences between amount and distribution 
of various types of BRs are related with family, e.g., Bras-
sicaceae, Poaceae, or Solanaceae (Bajguz and Tretyn 2003; 
Verhoef et al. 2013; Xin et al. 2013; Tarkowská et al. 2016; 
Kanwar et al. 2017; Tarkowska and Strnad 2018; Bajguz 
et al. 2019; Janeczko 2019; Li et al. 2019). Exposure of W. 
arrhiza culture on Cd caused an increase of the endogenous 
level of BRs in relation to control (Table 1), except ECS, 
whose amount decreased. The level of 6dCS, BL, and HBL 
increased proportionally to the rising of Cd concentration. In 
the case of 6dTY and TY the largest value noticed in plant 
treated with 10 µM Cd, while the level of CT and CS was 

Fig. 1   The total content of 
phytohormones (ng g−1 fresh 
weight) in W. arrhiza treated 
with cadmium
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the highest in 1 µM Cd. Bali et al. (2019) show the positive 
effect of exogenously applied BRs on Cd treated plant, e.g., 
HBL increases the activity of antioxidants and overcomes 
the inhibition of plant growth, but there are no data about the 
endogenous level of BRs in plants exposed to Cd. However, 
increased biosynthesis of BRs in duckweed exposed to Cd 
(Fig. 1) confirmed the role of BRs in the response of plants 
to the heavy metal stress.

In lower plants (mosses, green algae, ferns, horsetails), 
CKs have been only identified as free bases of cZ and iPR; 
and their riboside conjugates, whereas in higher plants 
occurrence of all currently known free bases types and con-
jugates of CKs was reported (Stirk and van Staden 2003; 
Bajguz and Piotrowska 2009; Aremu et  al. 2012). Bio-
synthesis of CK isoprenoid occurs through the transfer of 
C5 isoprenoid unit to adenine molecule that may be a free 

Fig. 2   a Correlation heatmap for phytohormones (n = 22) in Wolffia 
arrhiza with equations obtained from linear regression. The colored 
and labeled scale codes for the value of Pearson’s correlation coef-
ficient r. Positive correlations are blue, while negative correlations 

are red. White squares show nonsignificant correlations (p ≥ 0.05). 
b Multidimensional scaling network plot of the absolute values of 
r ≥ 0.8 (Color figure online)
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nucleotide (AMP, ADP, or ATP) or bound with tRNA. There 
are two donors of C5 isoprenoid, first of them is dimethylal-
lyl pyrophosphate that is synthesized during a MEP or MVA 
pathway, second of them is 4-hydroxy-3-methyl-2-(E)-bute-
nyl diphosphate that is formed only by MEP. These reactions 
are catalyzed by adenylate isopentenyl transferases. Then, 
obtained compounds are hydroxylated to tZ by cytochrome 

P450 monooxygenase. CKs are also produced by the degra-
dation of tRNA, and this is the main source of CKs isopre-
noids forms in cis configuration (Frébort et al. 2011; Kieber 
and Schaller 2014; Feng et al. 2017; Tarkowska and Strnad 
2018). Our results indicate the presence of fifteen forms of 
CKs and show the effect of Cd application on their content 
(Table 1, Fig. 1). Regarding the control, the results include 

Fig. 3   a Correlation heatmap 
for phytohormones (n = 22) in 
Wolffia arrhiza. The colored 
and labeled scale codes for the 
value of the Spearman’s rank 
correlation coefficient rs. Posi-
tive correlations are blue, while 
negative correlations are red. 
White squares show nonsignifi-
cant correlations (p ≥ 0.05). b 
Multidimensional scaling net-
work plot of the absolute values 
of rs ≥ 0.8 (Color figure online)
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44.284 ng g−1 FW of isoprenoid free bases, 0.303 ng g−1 FW 
of aromatic free bases, and 15.363 ng g−1 FW conjugates of 
CKs in W. arrhiza. Furthermore, the presence of CKs either 
in cis or trans orientations was reported. Among all detected 
CKs, the highest content of tZ, and cZ was noted (23.235 
and 20.52 ng g−1 FW, respectively). While due to the chemi-
cal form of CKs; tZ, cZ-types are the predominant (30.987 
and 20.547 ng g−1 FW, respectively), DHZ-type occurs in 
less amount (7.272 ng g−1 FW) and iP-type of CKs presents 
in low amount, i.e., 0.841 ng g−1 FW. Generally, the endog-
enous level of CKs after application of Cd was higher than in 
control; however, a concentration of 100 µM Cd for several 
compounds caused inhibition of their synthesis. For exam-
ple, the amount of tZ under the influence of 0.1 and 10 µM 
Cd was similar to the control, in the plant treated 1 µM Cd 
significantly increased, while in 100 µM of Cd decreased. 
Merely content of cZ was reduced in all concentrations of 
Cd compared to the control. However, the overall content of 
CKs in duckweed exposed to the 0.1–10 µM Cd was larger 
to untreated plant, but the application of 100 µM Cd caused 
a considerable decline of CKs level (Fig. 1, Table 1). Zhou 
et al. (2019) also demonstrated a slight increase of total CKs 
concentration in Kosteletzkya pentacarpos seedlings in the 
presence of 10 µM Cd to control. Interestingly, they indi-
cated a positive effect of exogenously applied tZR on plant 
treated with 10 µM Cd, which can explain the enhanced 
biosynthesis of tZR in present results. The application of 
100 µM Cd also caused a decrease of Z and ZR levels in 

soybean (Hashem 2014) and W. arrhiza (Table 1). The per-
centage content of types of CKs in duckweed with the addi-
tion of Cd is presented in Fig. 4. Free bases of CKs are the 
most widespread in W. arrhiza, but in a group with Cd their 
predominance over conjugates is lower comparing to the 
control group. Consequently, an increased proportion of all 
CKs conjugates to free bases in plants treated with Cd was 
noted. The percentage of O-glucoside forms increased from 
16.57% in control up to about 30% in exposure to Cd plant. 
The contribution of riboside and N-glucosides conjugates 
also was enhanced. Despite the conviction that tZ and iP 
forms are the dominant types of CKs; there are reports about 
the dominance of cZ in many plants, e.g., in potatoes, rice, 
maize, and legumes (Gajdošová et al. 2011; Murai 2014; 
Schäfer et al. 2015). In the current research, tZ is a basic 
and most common form of CKs; however, the occurrence 
of iP form is limited. The primary function of CKs is the 
stimulation of cell division and the prevention of cells aging 
(Sosnowski et al. 2019). Moreover, Kurepa et al. (2018) 
reported the positive correlation between exogenous applied 
of 6-benzyladenine and increases of cell size and division in 
two species of duckweeds (Spirodela polyrhiza and Lemna 
gibba). It confirms the importance of CKs in both grown and 
development of Lemnaceae plants.

In higher plants, the most frequently active forms of GAs 
are GA1, GA3, and GA4. The first step of GAs biosynthesis 
is a transformation of geranylgeranyl diphosphate to the ent-
kaurene in the plastid, then conversion of ent-kaurene to the 

Fig. 4   The percentage share of 
different types of cytokinins: 
free bases (tZ, cZ, DHZ, iP, oT, 
mT) and conjugates: N-gluco-
sides (tZ9G, tZ7G, iPR7G), 
O-glucosides (tZROG, cZ9G, 
DHZOG), ribosides (tZR, 
DHZR, iPR) in Wolffia arrhiza 
treated with cadmium
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various intermediates until the synthesis of GA12 aldehyde in 
the endoplasmic reticulum, finally a synthesis of GA3 from 
GA12 in the cytosol. Several ent-kaurene oxidation steps lead 
to the formation of GA12 aldehyde, whereas the formation 
of GA12 occurs through oxidation of their aldehyde group 
to the carboxyl group. Further, the conversions of GA12 led 
to the active synthesis form of GAs, i.e., GA3 (Kasahara 
et al. 2002; Hedden and Thomas 2012; Gao et al. 2017). 
The largest content of GA3 (55.541 ng g−1 FW) among all 
identified phytohormones in W. arrhiza was noted (Table 1). 
It confirms the finding of Pieterse (1974) that the absence 
of flowers in duckweed relates to the high level of endog-
enous GA3. In this study, the flowering of W. arrhiza has 
not been observed because it is a tropical and subtropical 
flowering plant. It is thus surprising that the flowering of W. 
arrhiza was discovered for the first time in Central Europe 
in Germany (Schmitz and Kelm 2017). Therefore, future 
studies should address the induction of flowering by creat-
ing optimal conditions in plant growth cabinets. It is com-
monly known that phytohormones contribute to the flower-
ing process (Conti 2017); hence, the level of hormones will 
be examined in W. arrhiza. While in the present analysis, 
the decline of GA3 level proportionally to the increase of Cd 
concentration (Fig. 1) was reported. Moreover, recent stud-
ies of Zhou et al. (2019) indicated that 10 µM Cd treatment 
reduced GAs content in Kosteletzkya pentacarpos seedlings. 
Obtained results suggest the negative effect of Cd stress on 
GAs. Atici et al. (2005) showed a decrease of GA3 content in 
chickpea seeds treated with lead. All the mentioned results 
suggest the negative effect of Cd or other heavy metals stress 
on biosynthesis and endogenous level of GAs.

Conclusion

In this work, the presence of endogenous isoprenoid-derived 
phytohormones, and the effect of Cd on their content is 
reported for the first time in W. arrhiza. The total number of 
detected compounds is 25, and they belong to four groups 
of phytohormones, i.e., ABA, BRs (eight compounds), CKs 
(15 compounds), and GAs (one compound). The content of 
phytohormones, especially BRs, was changed in Cd dose-
dependent manner. Treatment with Cd causes an increase 
in the content of ABA, BRs, and CKs (except 100 μM Cd). 
Simultaneously, the content of GA3 was inversely propor-
tional to the increasing Cd concentration. Overall, the dis-
tribution of ungrouped data showed linear and monotonic 
dependencies between phytohormones.
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