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Abstract
Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-
understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-
driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions
on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into
clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic
features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article
examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological
associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well
as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this
would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation
through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed
after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part
of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated
radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific
biological processes and pathways being targeted within clinical trials.
Key Points
• Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size,
making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious
associations and overfitting.

• Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and
data mining processes.

• Biological correlation may be established after clinical validation but is not mandatory.
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CNN Convolutional neural networks
CT Computerised tomography
DL Deep learning
DR Deep radiomics
EGFR Epidermal growth factor receptor
FDG Fluorodeoxyglucose
IBSI Image biomarker standardisation initiative
MeSH Medical Subject Headings
MRI Magnetic resonance imaging
PET Positron emission tomography
QA Quality assurance
QC Quality control
QIBs Quantitative imaging biomarkers
SPECT Single photon emission computed tomography
SUV Standardised uptake value
VOI Volume of interest

Introduction

Quantitative imaging biomarkers (QIBs) are associated with
tissue characteristics that are altered by disease and its treat-
ment. Necrosis decreases tissue cellularity and increases water
content manifesting as an increase in T2 [1], a reduction in
glucose uptake [2] and an increase in elasticity [3]. Perfusion
imaging detects and characterises hypervascular lesions such
as cancers, or monitors the effect of anti-angiogenic drugs [4,
5]. Implementation of QIBs into clinical trials follows a well-
defined path from discovery, through a process of technical
and biological validation, to implementation and clinical val-
idation. A roadmap defining the process was published as a
consensus statement from multiple stakeholders [6]. Despite
this, QIBs have been slow to be adopted as trial endpoints
because of the relative complexity of imaging protocols and
variability of the quantified output under differing conditions
(e.g. hardware, software, protocol and observer variability)
[7].

Recently, a new approach to derive imaging biomarkers
has been advocated through the concept of radiomics [8, 9].
This data-driven framework ‘discovers’ quantitative informa-
tion within images by extracting high-dimensional data (‘fea-
tures’) beyond that visually perceptible, using computational
statistics (often based on machine learning algorithms) to pre-
dict or establish association with a meaningful clinical end-
point [10, 11]. Technical and clinical performance of the
‘radiomic signature’ (specific combination of mathematically
derived features) determines its appropriateness. If considered
necessary, a link to a biological process is explored a
posteriori [12]. Radiomic signatures have been associated
with outcome or response [13], and may be used together with
clinical, histological and genomic metrics as part of a nomo-
gram of features [14]. The exponential rise in publications
involving data-driven biomarkers has not been accompanied

by a mechanism-based understanding of their nature but fo-
cuses on their ability to classify disease and patient outcome
(Fig. 1). Radiomics has been used for detecting cancer [15],
cancer staging [16], performing classifications [17], assessing
response to chemotherapy [18], radiation therapies [19–22],
immunotherapy [23–26] and predicting/prognosing survival
[27].

A major disadvantage of a non-mechanistic data-driven
approach is that random chance associations may occur.
Most studies look at the associations between a large number
of features extracted from discretised images and prognosis/

Fig. 1 Increase in radiomics related publications over last 6 years (a) by
patient status/outcome and (b) by biological association using data
extracted from PubMed using the indicated MeSH terms. The
exponential increase in radiomics publications relates mainly to usage
as indicated in a, and not to their underlying biological associations as
indicated in b
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response/outcome in an inadequate number of samples. For
biomarker profiles that rely on statistical rather than biological
associations, generalisation and scalability to multicentre trials
requires more than a simple standardisation process. Also,
their validation pathway needs to incorporate measures that
may differ substantially from traditionally accepted methods.
This article prepared by imaging experts from the European
Society of Radiology EIBALL (European Imaging Biomarker
ALLiance) and the EORTC (European Organisation for
Research and Treatment of Cancer) Imaging Group with rep-
resentatives from QIBA (Quantitative Imaging Biomarkers
Alliance) examines how the process of standardising and val-
idating data-driven imaging biomarkers differs from those
based on biological associations, and what measures need to
be considered when implementing them into clinical trials
and, eventually, into clinical routine. Structured discussions
were conducted via teleconferencing and written
communications.

Standardising the radiomics process
for clinical trials

Radiomics analyses rely on image acquisition, image analysis
and computational statistics [28], so standardisation of these
domains is mandatory prior to their validation (Table 1). As
radiomics analyses have been applied to CT [29–31], MRI

[32–36], nuclear medicine using FDG-PET [37–42] and other
tracers [43, 44], and ultrasound [45], image acquisition
standardisation needs to consider modality, scanner and scan
protocol. Standardisation of image analysis needs to consider
software (consistency of technical implementation) and sub-
jectivity (human interaction). Standardisation of computation-
al statistics needs to consider adequacy, performance and re-
quirements for validation of algorithms and models (Fig. 2).

Image acquisition and normalisation An element of diversity
of acquisition protocols or machines is advantageous at the
discovery phase of data-driven biomarkers so that the identi-
fied radiomic signatures used in clinical trials are robust
enough across a range of platforms [46]. Datasets utilised for
radiomic signature development must be representative of the
disease and capture the variability and severity for which they
will be used. Within a clinical trials framework, as with pre-
viously published recommendations and guidelines [6,
47–49], an optimised tightly controlled standardised imaging
protocol ensures image quality (low level of noise, artifact-
free, spatial resolution) and stability over time, with known
intra- and inter-site reproducibility that does not exceed the
expected level of change associated with the trial intervention
[50]. Phantom studies are limited for quality control of high-
dimensionality information [51] because a suitable phantom
would need to exhibit high-dimensionality in a realistic setting
and cover the requirements of each type of feature.

Table 1 Comparison of standardisation steps for biologically driven and data-driven biomarkers (QA, quality assurance; QC, quality Control; VOI,
volume of interest)

Steps Biologically driven quantitative biomarkers Data-driven quantitative biomarkers

Image acquisition • Standardised protocols (single and multicentre)
• QA/QC process across instruments, sites
• Stability of measurement monitored with phantom

studies; may be strengthened by human subject
test-retest

• Non-standardised protocols in discovery phase
followed by standardised protocols within trials

• QA/QC process across instruments, sites
• Stability of measurement requires human

subject test-retest

VOI delineation • Can be manual or semi-automated
• Can be machine-learnt
• Deep learning available but infrequently used

• Can be manual or semi-automated
• Can be machine-learnt
• Can be derived from fully convolutional neural

networks

Data analysis • Commercial or academic software applicable to
datasets
regardless of their source

• Algorithms used are specific to image datasets
and may require adaptation and standardisation
for individual situations or new datasets*

Biomarker extraction • Follows standard formula that describes the
biological feature (e.g. tissue density, perfusion,
diffusion, standardised uptake of radiotracers
related to a biological process/receptor status)

• Algorithm-based mathematical feature extraction
not directly linked to a biological process, followed
by selection of feature combination that best separate
disease from no disease, good from poor outcome
(e.g. shape features such as diameter, sphericity;
histogram-derived
features such as median, skewness,
entropy; texture features such as contrast,
homogeneity, Haralick variance)

Biomarker interpretation • Directly linked to biological process • Indirect associations with biological process assumed

*https://ibsi.readthedocs.io/en/latest/; *https://www.lifexsoft.org/; *http://www.eletel.p.lodz.pl/programy/mazda/; *https://nmmitools.org/2019/01/01/pyradiomics/
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Basic methods of image normalisation include pixel size
resampling by filtering [52] and/or resampling (rescaling)
values with respect to global or local mean and standard de-
viation of reference image/tissue, or by adjusting the histo-
grams [53]. Normalisation methods affect reproducibility of
image features [54, 55]. For second-order statistics features,
reduction of matrix dimension post-normalisation is needed.
This is achieved by discretisation (quantisation, grey-level
resampling, histogram re-binning) and reduces noise from
clustered intensity values. Choice of the absolute (fixed bin
size) or the relative (fixed bin number) method significantly
affects the values of texture features and requires optimisation
depending on the clinical task at hand [56–58]. Shape features
(area, centroid, perimeter, roundness, Feret’s diameter) are
less sensitive to differences in intensity values. Both types of
features remain dependent on the spatial resolution of the im-
age. Numerical harmonisation of features as an alternative to
standardisation of image acquisition and pre-processing is
based on transformation of variable feature distributions to a
common batch-effect free reference space, to deal with vary-
ing imaging conditions [59, 60]

The Image Biomarker Standardization Initiative (IBSI)
[61] offers a common reference of definitions and
benchmarking of radiomic features and provides recommen-
dations for comprehensive reporting of image acquisition pa-
rameters and pre-processing methods.

Image analysis—segmentation As with biologically driven
biomarkers, manual region of interest delineation intro-
duces inter- and intra-observer variability because of varia-
tion in border perception. Observer training and working to
protocol assists in this regard. Semi-automated segmenta-
tion methods, e.g. region-growing or level set active con-
tour models [62] and deep learning methods [63], are more
reproducible [64], but they are dependent on their training
set, which may introduce other errors. Quantitative verifi-
cation metrics [65], such as Dice coefficient, and Hausdorff
distance metrics, help determine segmentation reproduc-
ibility. Images that require alignment for different time se-
ries data, parametric maps and modalities should evaluate
deviations in locations (distance) of pairs of homologous
landmark points, especially important for non-rigid image
registration [66, 67].

Image analysis—feature extraction ‘Hand-crafted’
radiomics extracts predefined human-engineered features
from the volume-of-interest (VOI) [17]. These include
shape characteristics, intensity histogram metrics and tex-
ture parameters (local binary patterns, grey-level co-occur-
rence, run-length, zone-length and neighbourhood different
matrices, auto-regressive model, Markov random fields,
Riesz wavelets, S-transform, fractals) which require specif-
ic assumptions in their computation, so that software

Fig. 2 Pathways comparing processes required for biologically driven
and data-driven biomarkers. Biologically driven biomarkers derived
from known associations with a specific biological process require a
specific predetermined acquisition protocol and image processing
technique and involve technical, biological and clinical validation steps
with recognised requirements (green boxes). Data-driven biomarkers
assume that the statistical features that relate to the biological process or
outcome are unknown so that all possible features are extracted from the

images and steps to determine their technical and clinical performance are
needed (orange boxes). Feature extraction and selection depend on the
data mining process (machine and deep learning algorithms). A training
dataset and validation dataset allow selection of most promising
feature(s), and an independent test dataset allows evaluation of
performance of imaging biomarker. Biological links are explored a
posteriori
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implementations on different platforms (even if all are IBSI
compliant) and between different versions of the same soft-
ware can lead to different results [68]. Recommendations on
calculating and reporting radiomic features have been pro-
posed, and both mathematical equations and pre-processing
applied should be reported. The information and framework
provided through IBSI [61] should also be followed as
much as possible to ensure the quality and relevance of the
post-processing (denoising, resampling, enhancement, spa-
tial alignment correction, segmentation and feature extrac-
tion). Other descriptive (radiologist-scored), functional
(SUV, ADC, Ktrans) or clinical parameters may be added
to the radiomic signature if pertinent.

Computational statistics—feature selection Several tools are
described [69–72]. To identify relevant, non-redundant and
stable features with which to build models, three categories
of technique are employed. Filter methods (ANOVA, correla-
tion, RELIEF [73]) rely on a criterion function, have low
computational cost and are less prone to overfitting, by sepa-
rating selection from model building; however, they are more
unstable to different datasets. Wrapper methods (forward se-
lection, backward elimination, stepwise selection) incorporate
a specific machine learning algorithm to eliminate features but
have increased computational cost and high probability of
overfitting, since model training uses feature combinations
that include common features. Embedded methods (LASSO,
RIDGE regression) embed features successively and penalise
the coefficients of a model that contribute to overfitting at each
iteration. They represent a trade-off between filter and wrap-
per methods.

Computational statistics—classifier/model After dimension
reduction, selected features are investigated for their associa-
tion with clinical outcome using tools such as univariable or
multivariable logistic regression, decision tree, random forest,
support vector machine, neural networks, all described exten-
sively in previous publications [65–68] and used for QIBs and
radiomic analyses [24]. Classifiers are differentiated depend-
ing on the nature of the clinical outcome, i.e. discrete (mainly
binary) or continuous [74, 75]. No tool has proved universally
superior and most require a compromise between complexity
of tuning versus interpretability of results.

Computational statistics—deep radiomics (DR)A recent evo-
lution has been the integration of radiomics with deep learn-
ing (DL) [76–78]. ‘Discovery Radiomics’ automatically ex-
tracts deep features relevant to a given query (e.g. diagnosis,
prognosis) from the data, and the resulting trained model
can be applied to complete datasets, avoiding the error-
prone segmentation step. As DL can include multiple data
types, relevant information in electronic patient records can
be exploited.

Validating the radiomics output

Technical validation Following identification of a radiomics
signature associated with disease/outcome, two fully indepen-
dent datasets are needed, one for training and cross-validation
(internal validation), and at least one other to test the final
model and confirm generalisability and performance (external
validation). Both training and testing datasets should be of
sufficient uniform quality (data balancing) and representative
for the patient population for which the radiomics model is
intended. An adequate sample (size and diversity) is essential
for the training and validation datasets, with respect to the
number and type of features (‘signature’) considered.
Testing the model with a dataset containing a different prev-
alence of cases and/or a high degree of imbalance may result
in overoptimistic conclusions. Feature selection avoids over-
parameterised models, reduces dimensionality of the feature
space (data dimension reduction) and ensures that only a small
and stable subset of original features relevant to the task are
retained. A strategy to cross-validate the structure of themodel
requires careful considerations regarding sample size, accura-
cy estimation and the choice of the validation method (hold-
out, k-fold cross-validation, bootstrap). Grid searches pose the
danger of overfitting, leading to overoptimistic model perfor-
mance that is not reproduced on other datasets or in clinical
practice. Finally, repeatability and reproducibility of the sig-
nature in a multicentre context (affected by imaging apparatus,
acquisition protocols and analysis methods) is a crucial step in
technical validation [79–81]. As with QIBs, radiomics models
should be tested with cross-institutional clinical training and
testing datasets to guarantee generalisability to representative
patient populations.

Biological validation Biological correlation with liquid/tissue
biopsies may be performed after the technical and clinical
validity of a radiomic signature is established but is not man-
datory. A radiomic signature that is related to survival out-
comes may potentially reflect a tissue phenotype associated
with a specific biology. Biological validation reduces the like-
lihood that radiomic features are selected by statistical chance
or may be attributed to the nature of the data sample used for
model development. It also offers the opportunity to reduce
the number of selected features.

Clinical validation The process by which the clinical utility of
a single quantitative feature, or multiple features embedded in
a statistical model is demonstrated, allowing improvement of
health outcomes (improved diagnosis or therapeutic manage-
ment of a disease or individual patient) is being addressed
slowly for radiomics. Following initial ‘discovery’, new and
independent datasets are required to replicate the performance
of the identified model and validate it clinically. Performance
metrics, e.g. sensitivity and specificity, should be evaluated
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ideally in prospective trials, or prospectively in the clinic using
routinely obtained clinical data (real-life conditions) in order
to avoid bias. Table 2 lists some exemplar studies and their
clinical use. Broadly speaking, standard recommendations for
clinical validation and clinical utility assessment of any QIB
should be followed and applied.

Biological correlates of radiomic features

Images provide an averaged macroscopic view (with large
partial volume effects, both in space and time) of the geometry
and/or function of the tissue. Radiomic features are statistical
descriptors characterising the macroscopic visual aspect of
images and only indirectly relate to the microscopic histolog-
ical characteristics of the imaged tissue. Such features are then
used as a statistical/phenomenological description of the out-
come, and not embedded into an actual biological/physical
model of this outcome that would unambiguously establish
causality between features and outcome.

Radiomic information on visually imperceptible pheno-
typic characteristics such as intensity, shape, size and tex-
ture distinguish benign and malignant tumours, likely

reflecting different cellular morphology [101]. In cervix
cancer, radiomic features of low-volume tumours with
radiomic profiles similar to high-volume tumours had a
worse prognosis implying a more aggressive phenotype at
an earlier stage [36]. In a lung cancer study, texture entropy
and cluster features, as well as voxel intensity variance fea-
tures, were associated with the immune system, the p53
pathway, pathways involved in cell cycle regulation [102]
and for predict ing EGFR mutat ion s ta tus [103] .
Nevertheless, why specific features are associated with spe-
cific pathways remains unexplored and the relationship be-
tween radiomic signature and cell morphology, density, dis-
tribution pattern, alignment and organelle composition need
further elucidation.

Although it is possible to extract mathematically hundreds
or thousands of radiomic features from digital images, most
studies to date suggest that less than 20 are indicative of
unfavourable biology, and these largely relate to shape and
textural uniformity. 2D shape features indicate more rapidly
progressive disease with reduced overall survival in glioblas-
toma multiforme [104]. Shape and textural features from CT
scans of lung cancer have been shown to predict unfavourable
biology (nodal and distant metastases respectively) [105]. In

Table 2 Exemplar radiomics signature studies and their clinical use

Radiomic analysis Radiomic feature (process) Modality Tissue types investigated Decision-making role

Second-order statistics Textural (Haralick, Gabor) CT [29–31]
MRI [24–26]
PET/CT

[37–42]

Lung, breast, brain,
liver, prostate,
head and neck,
lymph node, cervix

• Prognostic
• Predictive
• Response
• Survival
• EGFR expression
• p53 mutation status

Higher-order
statistics

Filter grids extract
repetitive or
non-repetitive
patterns

Wavelets CT [82–87]
MRI [88–90]
PET/CT [91,

92]

Lung, oesophagus,
brain, pancreas,
breast, head and
neck

• Diagnostic
• Prognostic
• Predictive
• Response
• Survival
• Surgical resection margins

Laplacian transforms
(bandpass filters)

CT [93, 94]
MRI [95–97]
PET/CT [92]

Brain, lung, rectum, cervix,
kidney

Prognostic
Response

Minkowski functions
(patterns of voxels with
intensity above threshold)

Fractal dimensions
(patterns imposed on
image and number of
grid elements containing
voxels of a specified value is
computed)

Delta radiomics Change in radiomic features PET/CT [98,
99]

Lung Response

Dynamic radiomic
studies

Pharmacokinetic radiomic features PET/CT [100] Lung Response, data highly
correlated to data from static
studies
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prostate cancer, Gabor textural features (defining spatial fre-
quency patterns within the image) were predictive of Gleason
grade on MRI. As gland lumen shape features relate to
Gleason grade, discriminability of Gabor features is a likely
consequence of variations in gland shape and morphology at
the tissue level [106]. In future, prospective selection of a
handful of relevant features should become possible to inter-
rogate specific biological processes and pathways being ma-
nipulated within clinical trials so that it may be possible for the
clinical question to drive the choice of biomarker usage and
analysis. However, understanding the biological basis for a
biomarker to facilitate its acceptance into clinical practice is
not the primary objective of a data-driven process such as
radiomics. It may well be that reliable modelling of the out-
come with a relatively high and clinically acceptable perfor-
mance means that biological validation would not be a prima-
ry concern [107].

Limitations of data-driven processes

When defining training datasets for radiomic feature extrac-
tion and selection in clinical trials, case-control data may be
considered but may underrepresent the disease. Enrichment
of training datasets with normal and abnormal cases of vary-
ing disease severity is mandatory to achieve appropriate
balance. Bias in the training datasets limits generalisability.
For example, a radiomic signature developed on lung nod-
ules detected on chest x-rays in a population with a high
prevalence of tuberculosis and few cancers will overdiag-
nose tuberculosis in a population with a high prevalence of
cancer. Image acquisition bias (cases recognised as disease
acquired with a specific protocol or device) where selected
features are linked to image acquisition rather than to image

content may fail to predict disease when applied to an inde-
pendent population. Manual VOI segmentation and use of
locally developed methodology risks discovery of features
that are not generalisable and may be influenced by hard-
ware or software-related factors rather than the disease it-
self. Diverse but balanced image acquisition conditions in
the training dataset should counteract these effects. Though
balance and diversity are necessary at the discovery stage, it
is crucial to evaluate performance only on populations rep-
resentative of the natural prevalence.

The radiomic process, which tests combinations of hun-
dreds and thousands of parameters, risks false discovery.
Traditional statistical corrections for multiple tests would lead
to p values impossible to reach. Strategies to reduce spurious
correlations and overfitting include artificially increasing the
number of samples by data augmentation (datasets flipped,
rotated and deformed to simulate new patients). Cross-
validation or bootstrapping are alternative strategies, but an
independent dataset to confirm the findings is always
required.

Implementation of radiomics in clinical trials

Although the discovery phase requires image acquisition di-
versity, standardised protocols, pre- and post-processing
methods, tools and algorithms for feature extraction are need-
ed for incorporating into clinical trials and facilitated by
centralised data analyses and publicly available analysis soft-
ware (Table 3). To incorporate radiomics in clinical trials,
three potential scenarios can be considered. Firstly, where
radiomic signature discovery is the objective, a trial should
follow the steps described and illustrated (Fig. 2). Secondly,
a radiomic ‘exploratory end-point’ may form an ancillary

Table 3 Recommended process
for inclusion of data-driven
biomarkers into clinical trials

Step Recommended process for clinical trial inclusion

Image acquisition Standardised protocol agreed with site with vendor-specific amendments
(incl. software version control) to achieve reproducibility of other QIBs
within accepted published standards

Image acquisition—normalisation Raw data saved. Image normalisation predefined

Image analysis—segmentation If manual or semi-automated, done by centralised/core laboratory by > 1
observer to establish reproducibility. If automated, can be done with
CE-marked software with established limits of agreement at local sites

Image analysis—feature extraction Use of validated features with established error margins, adapted for
individual situations. Discard redundant features. Test reproducibility,
repeatability within trial setting

Computational statistics—feature
and model selection

Based on performance by association with trial endpoint (e.g.
response/survival)

Validation Adequate sample size, test data on samples with similar characteristics,
cross-validation strategies, avoid over-fitted models

Biomarker interpretation Association with positive diagnosis, prognosis or outcome
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study within an established trial. Here, a two-phase process
would involve an initial phase utilising more than two-thirds
of the final cohort data (training cohort) to identify the most
promising feature(s) and a subsequent phase using the remain-
ing patients (independent cohort) to evaluate the performance
of the identified radiomic signature. Thirdly, where a previ-
ously validated radiomic signature is used, this could be in-
corporated into a clinical trial as a primary or secondary end-
point. In this last case, the pathway of a data-driven biomarker
does not differ from a QIB.

Summary and future perspective

Data-driven imaging biomarkers provide information beyond
that perceived by human readers. Their benefits may be
exploited if specific standardisation and validation pathways
are defined and the different/additional hurdles compared to
more traditional QIBs are addressed. Effects of different types
of processing on subsequent extracted feature variability and
predictive model performance is an open area of research [13].
Availability of public access patient cohorts with well-
documented image datasets is expected to facilitate consensus
regarding pre- and post-processing methods and determine
utility of radiomics within clinical trials.

While radiomics may eventually encompass all quantitative
image-derived information into a common framework, current
implementations mostly relate to intensity, shape and textural
features within a VOI. In the future, quantitative (or even quali-
tative) functional information, e.g. derived from PET, SPECT,
pharmacokinetic modelling and other parametric imaging modal-
ities, may form part of the radiomic signature, and require a
smaller or biologically more meaningful set of parameters. Deep
radiomics may also be deployed in trials, and recent studies have
already demonstrated the potential of such approaches [108–111].

Regardless of definitive biological correlation, once adopted
and properly deployed, data-driven biomarkers may be com-
bined with clinical data and other biomarkers (biochemical,
genetic, epigenetic, transcription factors, proteins). Such ex-
panded use of radiomics should eventually improve disease
characterisation, prognostic stratification and response predic-
tion in clinical trials, ultimately advancing precision medicine.
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