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Abstract
Objectives To assess observer variability of different reference tissues used for relative CBV (rCBV)measurements in DSC-MRI
of glioma patients.
Methods In this retrospective study, three observers measured rCBV in DSC-MR images of 44 glioma patients on two occasions.
rCBVis calculated by the CBVin the tumour hotspot/the CBVof a reference tissue at the contralateral side for normalization. One
observer annotated the tumour hotspot that was kept constant for all measurements. All observers annotated eight reference
tissues of normal white and grey matter. Observer variability was evaluated using the intraclass correlation coefficient (ICC),
coefficient of variation (CV) and Bland-Altman analyses.
Results For intra-observer, the ICC ranged from 0.50–0.97 (fair–excellent) for all reference tissues. The CV ranged from 5.1–
22.1 % for all reference tissues and observers. For inter-observer, the ICC for all pairwise observer combinations ranged from
0.44–0.92 (poor–excellent). The CV ranged from 8.1–31.1 %. Centrum semiovale was the only reference tissue that showed
excellent intra- and inter-observer agreement (ICC>0.85) and lowest CVs (<12.5 %). Bland-Altman analyses showed that mean
differences for centrum semiovale were close to zero.
Conclusion Selecting contralateral centrum semiovale as reference tissue for rCBV provides the lowest observer variability.
Key Points
• Reference tissue selection for rCBV measurements adds variability to rCBV measurements.
• rCBV measurements vary depending on the choice of reference tissue.
• Observer variability of reference tissue selection varies between poor and excellent.
• Centrum semiovale as reference tissue for rCBV provides the lowest observer variability.
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Abbreviations
(NA)GM (Normal-appearing) grey matter
(NA)WM (Normal-appearing) white matter
(r)CBV (relative) Cerebral blood volume

CV Coefficient of variation
DSC-MRI T2*-weighted dynamic susceptibility

contrast-enhanced MR imaging
GE-EPI Gradient echo-echo planar imaging
ICC Intraclass correlation coefficient
ROI Region of interest
T1w/T2w T1-weighted/T2-weighted

Introduction

T2*-weighted dynamic susceptibility contrast-enhanced MR
imaging (DSC-MRI) has been shown to be useful in evaluat-
ing brain neoplasms. With DSC-MRI, T2*-weighted echo
planar images are acquired that measure the signal intensity
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change over time after the injection of a bolus of a paramag-
netic contrast agent. The change in relaxation rate (ΔR2*) can
be calculated from the signal intensity and is proportional to
the contrast agent in the tissue. Cerebral blood volume (CBV)
is a parameter that can be measured with DSC-MRI, and is
proportional to the area under the curve of ΔR2*(t). Studies
have used CBV to differentiate between low- and high-grade
gliomas [1, 2], to differentiate tumour progression from
pseudo-progression [3], and to assess treatment response to
anti-angiogenic drug therapy [4–6].

CBV measurements may show high variability. Values
vary due to different image acquisition protocols and post-
processing methods and also due to physiological differences
in the patients such as cardiac output and haematocrit values.
This makes it difficult to compare CBV among patients and
studies. Therefore, CBV is typically normalized to a reference
tissue. The relative CBV (rCBV) is calculated by the CBV in
the region of interest (e.g. tumour hotspot) divided by the
CBVof an internal reference tissue for normalization. A typ-
ical reference tissue is the contralateral normal-appearing
white matter (NAWM) or the normal-appearing grey matter
(NAGM).

Different reference tissues are used in the literature, includ-
ing normal-appearing white or grey matter (contralateral or
ipsilateral) [7], the contralateral NAWM [2, 8], the contralat-
eral NAGM [9], contralateral thalamus [10] or contralateral
centrum semiovale [11]. Most studies do not describe their
exact location or give an exact definition, but it is known for
instance that CBV values of grey matter are higher than CBV
values of white matter [12].

The rCBV is subject to observer variability when the re-
gions of interests (ROIs) are manually annotated. Variability
can be reduced by the use of (semi-)automated methods
[13–15], but despite their existence, they are not commonly
available, and manual annotations of the reference tissue by an
experienced radiologist is still common practice [16, 17] for
which a reliable and reproducible reference ROI is necessary.
Wetzel et al. [18] investigated the observer variability of an-
notating the tumour hotspot while keeping the internal refer-
ence tissue constant. The authors did not study the observer
variability of annotating the reference tissue.

Thus, the purpose of this study was to assess the observer
variability of rCBVmeasurements depending on the choice of
the reference tissue that is used for normalization in DSC-MRI
of glioma patients.

Materials and methods

Patient selection

For this retrospective study informed consent was waived.
Between 2006 and 2008 our institution participated in a

European project called eTumour. Patients presenting with
symptoms suggestive of brain tumour, newly diagnosed and
untreated brain tumours were prospectively included. One day
before surgery they underwent conventional MR, MR spec-
troscopy and MR perfusion (DSC-MRI) imaging. Our institu-
tion included 98 subjects with brain tumours. Further details
of the eTumour project can be found in Julia-Sape et al. [19].

The patient selection criteria to select patients from the
eTumour database were as follows: (1) Subjects with a histo-
pathologically confirmed diagnosis of glioma was available;
(2) subjects did not have surgical resection, biopsy or radiation
therapy before DSC-MR imaging was performed; and (3)
subjects were 18 years or older. Subjects were excluded if
the DSC-MRI was technically inadequate due to motion and
susceptibility artifacts.

In total 44 consecutive patients (17 female; 27 male; medi-
an age, 58 years; range, 21–79 years) were included. The
patients were diagnosed with pathologically proven gliomas
(one subependymal giantcell astrocytoma, five low-grade as-
trocytomas, two low-grade oligoastrocytomas, one anaplastic
astrocytoma, five anaplastic oligodendrogliomas and 30 glio-
blastoma multiforme).

All tumours were located supratentorially.

MR imaging

MR sequences were acquired on a 3T system (MAGNETOM
Trio; Siemens, Erlangen, Germany). The acquisition protocol
included an axial T2-weighted (T2w) sequence (repetition
time and echo time TR/TE = 4,040/102 ms) or an axial trans-
verse fluid-attenuated inversion recovery (FLAIR) sequence
(TR/TE 13,050/103 ms) and an axial T1-weighted (T1w)
spin-echo sequence (TR/TE 2,300/4.7 ms) performed before
and after intravenous administration of gadoteratemeglumine
(Dotarem; Guerbet, Paris, France). The axial contrast-
enhanced T1w spin-echo sequence was performed after acqui-
sition of DSC-MRI.

DSC-MRI was performed with a gradient-echo echo-
planar imaging sequence (GE-EPI) during the first pass of
a (0.1 mmol/kg) bolus of gadoteratemeglumine at a rate of
2.5 ml/s. Imaging parameters were as follows: TR/TE
1,670/45 ms; FOV 230×230 mm; matrix 128×128; voxel size
1.8×1.8×5.0 mm3; intersection gap 30 %; flip angle 90°; sig-
nal bandwidth 1,346 Hz/x. Fifteen axial sections were obtain-
ed through the brain.

Observers

One observer (MTHO, with 3 years of experience) annotated
the tumour hotspot according to the method described by
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Wetzel et al. [18] and did not participate in annotating the
reference tissues.

Three observers (FJAM and BMG, certified neuroradiolo-
gists with 10 and 30 years of experience, respectively, and
EJS, a resident radiology) independently performed all mea-
surements for the reference tissues. The observers were
blinded to patient history and diagnosis. The observers
underwent a training session with five training cases, which
were excluded in the final evaluation in order to limit perfor-
mance bias.

Image analysis

The DSC-MR images were processed on a dedicated in-house
developed workstation (Cirrus Brain MR, version 7335,
Radboudumc, Nijmegen, The Netherlands). Processing
consisted of image registration of DSC-MRI to the T1w im-
age, followed by calculation of the CBV perfusion map [20].
The Weisskoff correction method was used to correct for T1
leakage effects [21, 22]. The DSC-MR image, corresponding
CBVmap and conventionalMR images (T1w before and after
contrast, T2w or FLAIR) were made available in the worksta-
tion to the observers.

One observer (MTHO) defined the tumour hotspot follow-
ingWetzel et al. [18] by annotating four to six circular ROIs of
25 mm2 in the area of the tumour hotspot and selecting the
ROI with the highest CBV value. This region was then kept
constant for all observers in the subsequent normalization
step. Defining the tumour hotspot was done in a separate ses-
sion and care was taken to avoid areas of necrosis, cysts, or
non-tumour macro-vessels.

To evaluate the influence normalization for calculating
rCBV, all observers were asked to place a reference ROI in a
homogenous region at the contralateral side of approximately
25 mm2 in the:

& NAWM on the axial section deemed most appropriate by
the observers

& NAGM on the axial section deemed most appropriate by
the observers

& NAWM on the same axial section as the tumour ROI
& NAGM in the putamen
& frontal NAWM
& parietal NAWM
& NAGM in the thalamus
& centrum semiovale.

Large vessels and tumour-suspicious regions were avoided.
rCBV was calculated by dividing the tumour CBV by the
CBV of the reference tissue. Figure 1 shows an example of
ROI placement in the regions listed above.

Statistical analysis

Statistical analyses were performed with IBM SPSS Statistics
version 20 (SPSS Inc., Chicago, IL, USA). The mean and
standard deviation of the rCBV measurements were deter-
mined per reference tissue, evaluation session and observer.
Normal distribution was tested using the Shapiro-Wilk test. A
paired t-test was used to compare the rCBV measurements
between the two evaluations for every observer and all refer-
ence tissues, with p<0.05 considered statistically significant.

For the statistical analyses of the observer variability, the
coefficient of variation (CV), intraclass correlation coefficient
(ICC) and Bland-Altman analyses were used. The CV was
calculated for the rCBV for every reference tissue, and every
observer. The ICC is reported with a 95 % confidence interval
where ICC <0.4 was considered poor agreement, ICC 0.40–
0.59 was considered fair agreement, ICC 0.60–0.74 was con-
sidered good agreement, and ICC >0.74 was considered ex-
cellent agreement [23]. Bland-Altman analyses were
expressed as the mean difference, standard deviation and 95
% limits of agreement.

Intra-observer variability

The observers repeated the rCBVmeasurements after 2 weeks
or longer (up to a month) to assess the intra-observer variabil-
ity. The measurements were made on the same dataset but in a
different random order of presentation to limit recall bias. The
statistical analyses were calculated for rCBV measurements
between the two evaluations of an observer, for each reference
tissue. A two-way mixed ICC model, with absolute agree-
ment, single measures and a 95 % confidence interval was
used.

Inter-observer variability

The statistical analyses were calculated for every pairwise
combination of observers to assess the inter-observer variabil-
ity. Only the rCBV measurements of the first evaluation for
every reference tissue and observer were used. A two-way
random ICCmodel, with absolute agreement, single measures
and a 95 % confidence interval was used.

Results

The mean and standard deviation of the rCBV measurements
for all observers are shown in Table 1. There was no statisti-
cally significant difference between the rCBV measurements
of the two evaluations of all tissues, except for observer 1 in
NAWM tumour.
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Intra-observer variability

The ICC, CVand Bland-Altman analysis for intra-observer var-
iability are summarized in Table 2. The ICC ranged from 0.50 to
0.97 for all tissues, indicating fair to excellent agreement. The
averaged CV for a reference tissue ranged from 5.1 % to 22.1 %
for all reference tissues and observers. Centrum semiovale (range
ICC 0.88–0.97) was the only reference tissue that showed excel-
lent agreement (ICC>0.74) for all observers. Centrum semiovale
showed the lowest averaged CVs for all observers (range 5.1–9.0

%). Results of the Bland-Altman analysis showed that the mean
differences for centrum semiovale and putamen were close to
zero. Bland-Altman plots of centrum semiovale and putamen
for intra-observer variability are shown in Fig. 2. Figure 3 illus-
trates the effect of ROI placement and the rCBV between cen-
trum semiovale, the frontal NAWM and parietal NAWM. The
effects for this example are shown in Table 3. The difference in
rCBV values between two ROIs for frontal NAWM is 21%, and
for parietal NAWM 30 % compared to 3 % for centrum
semiovale.

Table 1 rCBV measurements with different reference tissues by three observers on two occasions

Intra-observer Observer 1 Observer 2 Observer 3

reference tissue 1st evaluation 2nd evaluation p 1st evaluation 2nd evaluation p 1st evaluation 2nd evaluation p

NAWM by choice 6.1 ± 2.7 6.1 ± 2.9 0.95 8.2 ± 4.3 8.3 ± 3.3 0.90 8.5 ± 3.3 9.2 ± 3.8 0.14

NAGM by choice 2.7 ± 1.3 2.7 ± 1.3 0.61 3.0 ± 1.7 2.6 ± 1.1 0.06 2.8 ± 1.2 2.6 ± 1.1 0.17

NAWM tumor 5.8 ± 2.8 5.1 ± 2.4 0.02* 7.5 ± 4.2 7.9 ± 3.9 0.22 7.4 ± 4.3 7.8 ± 3.7 0.28

Putamen 3.3 ± 1.4 3.4 ± 1.7 0.26 3.3 ± 1.8 2.9 ± 1.3 0.07 3.1 ± 1.5 2.9 ± 1.3 0.16

Frontal NAWM 6.6 ± 2.8 6.2 ± 2.6 0.33 6.4 ± 3.0 6.7 ± 3.1 0.39 7.6 ± 3.1 7.6 ± 3.1 0.89

Parietal NAWM 7.7 ± 3.8 7.4 ± 4.1 0.71 7.6 ± 3.7 8.5 ± 4.2 0.12 9.0 ± 3.8 8.8 ± 4.0 0.68

Thalamus 3.9 ± 1.9 3.7 ± 1.7 0.49 2.9 ± 1.9 3.1 ± 1.4 0.50 2.7 ± 1.1 2.5 ± 1.2 0.23

Centrum semiovale 9.8 ± 3.9 9.7 ± 3.7 0.62 10.0 ± 4.1 10.7 ± 4.9 0.07 10.0 ± 3.9 10.1 ± 4.0 0.55

*p<0.05 was considered statistically significant.

Fig. 1 Examples of region of
interest (ROI) placement in a
patient with a glioblastoma
multiforme in the temporal lobe in
the right hemisphere. ROI
placement in the contralateral
hemisphere (left) in the eight
regions: (A) Normal-appearing
white matter (NAWM) by choice
and grey matter (GM) by choice.
(B) NAWM in a slice of tumour
hotspot. (C) Putamen. (D) frontal
and parietal NAWM. (E)
Thalamus. (F) Centrum
semiovale

Eur Radiol (2018) 28:3902–3911 3905



Inter-observer variability

The ICC, CVand Bland-Altman analysis for inter-observer var-
iability are summarized in Table 4. The ICC for al pairwise
observer combinations ranged from 0.44 to 0.92 for all tissues,
indicating poor to excellent agreement. The averaged CV for a
reference tissue ranged from 8.1 % to 31.1 % for all reference
tissues and the pairwise combination of observers. Centrum
semiovale (range ICC 0.88–0.97) was the only reference tissue
that showed excellent agreement (ICC >0.74) for all pairwise
combination of observers. Centrum semiovale (range 8.1–12.5
%) showed the lowest averaged CVs. Results of the Bland-
Altman analysis showed that the mean differences for centrum
semiovale and putamen were close to zero. Bland-Altman plots
of centrum semiovale and putamen for interbserver variability
are shown in Fig. 4.

Discussion

Several factors may influence rCBV values [24], including con-
trast agent characteristics, acquisition technique and data pre- and
post-processing. A low variability of rCBV measurements is not
only important for accurate tumour grading and treatment mon-
itoring, it also enables comparisons of values across studies and
patient populations.

In this study we have shown that selecting the contralateral
centrum semiovale as reference tissue for rCBV measurements
in DSC-MRI of glioma patients provides the lowest intra- and
inter-observer variability. We assessed the observers’ variability
of reference tissue selection. In total eight regions of interest were
depicted as reference tissue in NAWM and NAGM. Overall, a
wide variability in observer agreement of the rCBV measure-
ments was reported in our study.

The centrum semiovale is easier to annotate compared to the
frontal or parietal NAWM, areas which are hindered by partial
volume effects of WM and GM, pronounced T2-shortening ef-
fects of the cortical vessels (mainly GM) and distortion artifacts
due to the frontal sinus. The centrum semiovale is a large ho-
mogenous area of WM that is mostly visible in only one or two
axial slices, and suffer less from the problems described for the
frontal or parietal NAWM. This explains the excellent intraclass
correlation coefficient and the low coefficient of variation.

The putamen is a well-defined homogenous area of subcorti-
cal GM and could potentially also be a good reference tissue.
Thalamus is less suited as a reference tissue because it is more
heterogeneous with nuclei and suffers from pronounced T2-
shortening effects from vessels in the near vicinity. Putamen
showed good to excellent intra- and inter-observer agreement,
and showed the lowest averaged CVs for all observers of the
GM reference tissues. However, centrum semiovale ICC and
CV for intra- and inter-observer agreement were slightly better
compared to putamen.Ta
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Fig. 3 The region of interest
(ROI) placement on the rCBV for
selecting the reference tissue of
centrum semiovale (A), the fron-
tal white matter (WM) (B), and
parietal WM (B). The effects of
the ROI placement are shown in
Table 3

Table 3 Example of effects of
two ROI placements in white
matter

Location Evaluation time CBV rCBV % rCBVt1-t2

Centrum semiovale 1. purple 0.34 ± 0.050 6.96 100 %

2. white 0.33 ± 0.012 7.17 103 %

Frontal WM 1. purple 0.49 ± 0.057 4.88 100 %

2. white 0.62 ± 0.158 3.85 79 %

Parietal WM 1. purple 0.46 ± 0.057 5.18 100 %

2. white 0.66 ± 0.068 3.62 70 %

Table 3 shows the effects of region of interest (ROI) placement in white matter (WM) for the example in Fig. 2.
The difference in rCBV values between two ROIs for frontal WM is 21 %, and for parietal WM 30 % difference
compared to 3 % for centrum semiovale
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Our data showed distortion artifacts due to the GE-EPI se-
quence, which is common near brain-bone-air interfaces, mainly
in the frontal lobe and in the area of the putamen [24]. Despite
these distortions, rCBV in putamen could still be calculated (see
Fig. 5). Distortions in these areas can be decreased by changing
the phase encoding order from posterior to anterior instead of
anterior to posterior. Further research on the reproducibility of
the DSC-MR images over time is needed to investigate the dis-
tortion artifacts near the putamen and to investigate the effect of
distortions on the calculation of rCBV.

Besides artifacts (like distortion artifacts and pronounced T2-
shortening effects), insufficient Z-coverage can be a problem in
DSC-MRI (which was not the case in our study) and centrum
semiovale can be excluded from the scan. If centrum semiovale
and putamen are not available for assessment then normal-
appearing white matter in the slice of the tumour also showed
good ICC for intra- and inter-observer variability. However, it
also showed an average CVof >20 % for inter-observer variabil-
ity, which is not preferable. Since artifacts are the most common
occurrences to hinder normalization we advise selecting normal-
appearing white matter far away from the sinuses and mastoid to
avoid distortion artifacts and to stay away from vessels to avoid
pronounced T2-shortening effects.

Only one related work was found that assessed the observer
agreement of selecting reference tissues. Wetzel et al. [18] inves-
tigated the observer agreement of the tumour ROI and used one
pixel in NAWM as reference tissue of which the exact location
was not described. To analyse the precision of measurements of
NAWM they selected ten ROIs close to the initial reference ROI
in NAWM and showed a CVof 20 % of repeated measurements
in NAWM. In our study, if NAWM is selected as reference tissue
then the results showed a higher overall CV, from 23.9 % for
NAWMin the slice of the tumour, 26.4% for parietal NAWMup
to 27.7 % for NAWM by choice, except for the centrum
semiovale, which showed the lowest CV (range 8.1–12.5 %).
Another explanation for the differences in CV (besides partial
volume effects of WM and GM, pronounced T2-shortening ef-
fects or distortion artifacts) could be the size of the ROI. The use
of only one pixel as reference tissue by Wetzel et al. [18] is a
limitation and can explain the higher CV in their study compared
to our CV for centrum semiovale since centrum semiovale is an
easy to annotate homogenous area and not hindered by the prob-
lems described above. The size of the ROI is still a matter of
debate, and ranges in the literature from 3.2 mm2 [18] to 50mm2

[3], and even up to 432mm2 [1]. That is, size ranged from 1 pixel
[18] up to 100 pixels [1]. We decided to use 25 mm2 ROIs since
these ROIs can be easily placed in cortical GM, but also in
thalamus and putamen without partial volume averaging within
the NAWM.

We chose to use circular ROIswith a fixed diameter instead of
freehand ROIs for the reference tissue. In a previous preliminary
study [25], we showed that the freehand ROIs were larger than
the ROIs used in the current study and therefore showed lowerTa
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CV. However, freehand ROIs showed lower agreement (lower
ICC), because it is difficult to draw the same freehand ROI twice
or by different observers. We therefore recommended using
ROIs with fixed diameters.

Our goal was to only assess the observer agreement when
selecting the reference tissue, and therefore the tumour hotspot
was a fixed tumour throughout the experiments. Based on our
studywe cannot assess the overall influence if the observers were
allowed to choose both the tumour hotspot and the reference
tissue. Wetzel et al. [18] showed that the inter-observer CV for
determining the tumour hotspot ROI with a fixed reference tissue
ROI is 30 %. Our study showed that the CV for the reference
tissue with a fixed tumour hotspot ROI ranged from 8.3 % to
31.1 %. A study should be performed to assess the overall influ-
ence if both can freely be selected. An accepted target for mea-
surement error in multicentre studies is a CV that is less than 20

%, according to the Quantitative Imaging Biomarkers Alliance
(QIBA) [26]. Our study showed a lower overall inter-observer
agreement than intra-observer agreement in the rCBV measure-
ments, which is in concordance to other studies [27–32].
However, these variabilities are difficult to compare to our results
because different tumours, body parts, modalities, methods of
dynamic acquisitions and pharmacokinetic models are used.

Limitations

One limitation of our study is that we did not use vessel seg-
mentation in the analyses. It is known that GE-EPI sequences
are more weighted towards the macrovasculature. Large ves-
sels are pronounced due to T2 shortening outside the vessel
lumen, which results in an overestimation of rCBV in cortical

Fig. 5 Example of distortion artifacts in the putamen in a patient with a
glioblastoma in the left hemisphere (A contrast-enhanced T1-weighted
MR image, B cerebral blood volume (CBV) map from dynamic
susceptibility contrast-enhanced MRI (DSC-MRI), C source DSC-MR

images). Note that the CBV map is calculated, also in the putamen area.
However, DSC-MR source images show distortion artifacts in the puta-
men area. Despite these distortions rCBV could be calculated in the
putamen area
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gray matter and nearby white matter [12]. To minimize these
macrovessel signals in gradient echo images vessel segmen-
tation techniques can be used during post-processing [33].

Another limitation is that our results only apply to rCBV.
Care must be taken to extrapolate the results to other perfusion
parameters like cerebral blood flow, spin-echo acquisitions or
other perfusion methods (like arterial spin labeling or T1-
dynamic contrast-enhanced MR perfusion).

Conclusion

Our findings show that the observer variability of rCBV mea-
surements can vary between poor and excellent, depending on
the chosen reference tissue in NAWM or NAGM.
Contralateral centrum semiovale as the internal reference stan-
dard for rCBV showed the lowest observer variability.
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