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Abstract
In phylogenetic studies, biologists often wish to estimate the ancestral discrete char-
acter state at an interior vertex v of an evolutionary tree T from the states that are
observed at the leaves of the tree. A simple and fast estimation method—maximum
parsimony—takes the ancestral state at v to be any state that minimises the number
of state changes in T required to explain its evolution on T . In this paper, we inves-
tigate the reconstruction accuracy of this estimation method further, under a simple
symmetric model of state change, and obtain a number of new results, both for 2-state
characters, and r -state characters (r > 2). Our results rely on establishing new identi-
ties and inequalities, based on a coupling argument that involves a simpler ‘coin toss’
approach to ancestral state reconstruction.

Keywords Phylogenetic tree · Markov process · Maximum parsimony · Coupling

Mathematics Subject Classification 05C05 · 92D15

1 Introduction

Phylogenetic trees play a central role in evolutionary biology and in other related areas
of classification (e.g. language evolution, stemmatology, ecology, epidemiology and
medicine). Typically, these trees represent a set of sampled ‘taxa’ (e.g. species, genera,
populations, individuals) as the leaves of the tree, with the vertices and edges of the tree
providing a historical description of how these taxa evolved from a common ancestor
(Felsenstein 2004). Biologists often use discrete characteristics of the species at the
leaves of a tree to try to infer (or predict) an ancestral state deep within the tree. For
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example, in epidemiology, HIV sequences from sampled individuals have been used to
estimate an ancestral form of the virus (e.g. for vaccine development) (Gaschen 2002);
in another study, ancestral state reconstruction played a key role in investigating the
evolution of complex traits involved in animal vision, which varies across different
species (Plachetzki et al. 2010).

Assuming that the characteristic in question has also evolved with the species, var-
ious methods have been devised to infer the ancestral state of that characteristic inside
the tree and, in particular, at the last common ancestor of the species under study (i.e.
the root of the tree). Amethod that can predict this root state allows any other ancestral
vertex in the tree to also be studied, since one can re-root that tree on that vertex. Thus,
in this paper, we will assume that the root vertex is the one we wish to estimate an
ancestral state for.

A variety of methods have been proposed for ancestral state reconstruction from the
states at the leaves of a tree. An early method that is still used for certain types of data
(e.g. morphological characters on a known tree) is maximum parsimony. This method
minimizes the number of state changes required to fit the discrete data observed at
the leaves to the rest of the vertices of the tree (including the root vertex). Other
methods, now widely used, have also been developed within the maximum likelihood
and Bayesian framework including Yang et al. (1995) and Koshi and Goldstein (1996)
and leading to more efficient and refined techniques (see for example Pupko et al.
2000; Huelsenbeck and Bollback 2001).

Our reason for focussing on maximum parsimony in this paper is twofold: firstly,
it is a classical method that has been used extensively over many decades, is fast,
and is reliant only on the tree and the states at the leaves, and not the transition rates
and branch lengths for the particular character under study (which may not be closely
connected with parameters estimated from DNA sequence data). Recent examples
of studies that used parsimony (and other methods) to estimate ancestral states on a
tree include Göpel and Wirkner (2018), Sauquet et al. (2017), Hsiang et al. (2015)
and Duchemin et al. (2017). The second reason is that we are able to derive new and
exact mathematical results in this paper for ancestral state estimation using maximum
parsimony for which comparable results for likelihood or Bayesian methods have yet
to be formally established.

We stress, however, that our focus onmaximumparsimony should not be interpreted
as trying to suggest that it has some properties superior to other existing methods;
indeed, it is well known that maximum parsimony is a problematic method for a dif-
ferent phylogenetic task—inferring evolutionary trees from a sequence of characters
(such as DNA sequence sites) that follow some common stochastic model—since the
method in that setting is known to be statistically inconsistent (see e.g. Felsenstein
2004).

The structure of this paper is as follows. First, we present some definitions concern-
ing phylogenetic trees and a simple r -state Markovian model of character change on
the tree, together with methods for predicting ancestral states, particularly maximum
parsimony (MP). In Sect. 2, we concentrate on the 2-state model. We describe an exact
relationship between the reconstruction accuracies of MP on any binary tree T , and
the accuracy on two trees derived from T by deleting one and two leaves respectively.
We show how this allows inequalities to be established easily by induction.
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Next, in Sect. 3, we describe a simpler ancestral prediction method that is easier
to analyse mathematically and yet is close enough to MP that it allows for inequality
results forMP tobe established. In particular, in Sect. 4,we show that the reconstruction
accuracy for this simplemethod is always a lower bound toMPunder the 2-statemodel,
thereby improving on existing known lower bounds. In Sect. 5, we investigate the
reconstruction accuracy for MP further in the more delicate setting when the number
of states is greater than 2 and obtain some new inequality results. In Sect. 6, we present
a novel combinatorial result that provides a sufficient condition for MP to infer the
state at the root of a tree correctly, assuming only that the state changes in the tree are
sufficiently well-spaced. In the final section, we present a conjecture for future work.

1.1 Definitions

In this paper, we consider rooted binary phylogenetic trees, which are trees in which
every edge is directed away from a root vertex ρ that has in-degree 0 and out-degree
1 or 2, and in which every non-root vertex has in-degree 1 and out-degree 0 or 2. The
vertices of out-degree 0 are the leaves of the tree. In the case where ρ has out-degree 2,
we use T to denote the tree, but if ρ has out-degree 1, we will indicate this by writing
Ṫ instead of T and we will refer to the edge incident with this root as the stem edge.
We will let X denote the set of leaves of T , and n = |X | the number of leaves of T .

Suppose that the root vertex ρ has an associated state F(ρ) that lies in some finite
state space A of size r ≥ 2, and that the root state evolves along the edges of the tree
to the leaves according to a Markov process in which each edge e has an associated
probability pe of a change of state (called a substitution) between the endpoints of e.
We refer to pe as the substitution probability for edge e. In this paper, we will assume
that the underlying Markov process is the simple symmetric model on r states, often
referred to as the Neyman r -state model, denoted Nr , which includes the (earlier)
Jukes–Cantor model (Jukes and Cantor 1969) in the special case when r = 4. In this
model, when a state change occurs on an edge e = (u, v), each one of the r − 1 states
that are different from the state at u is assigned uniformly at random to the vertex v. In
this way, each vertex v of the tree is assigned a random state, which we will denote as
F(v). We will denote the values of F on the leaves of T by the function f : X → A.
This function f = F |X (the restriction of F to the leaves of T ) is called a character in
phylogenetics. Each such character has a well-defined probability under this stochastic
model, and these probabilities sum to 1 over all the rn possible choices for f .

Given f , consider the set FS( f , T ) of possible states that can be assigned to the
root vertex of T so as to minimise the total number of state changes required on the
edges of T to generate f at the leaves. The set FS( f , T ) can be found in linear time
(in n and in r ) by the first pass of the ‘Fitch algorithm’ (Fitch 1971; Hartigan 1973).
More precisely, to find FS( f , T ), we assign a subset FS(v) of A to each vertex v of
T in recursive fashion, starting from the leaves of T and working towards the root
vertex ρ (we call FS(v) the Fitch set assigned to v). First, each leaf x is assigned the
singleton set { f (x)} as its Fitch set. Then for each vertex v for which its two children
v1 and v2 have been assigned Fitch sets FS(v1) and FS(v2), respectively, the Fitch set
FS(v) is determined as follows:
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FS(v) =
{
FS(v1) ∩ FS(v2), ifFS(v1) ∩ FS(v2) �= ∅;
FS(v1) ∪ FS(v2), ifFS(v1) ∩ FS(v2) = ∅.

In this way, each vertex is eventually assigned a non-empty subset of A as its Fitch
set, and FS( f , T ) is the Fitch set FS(ρ) that is assigned to the root vertex ρ.

When FS( f , T ) consists of a single state, then the method of maximum parsimony
uses this state as the estimate of the unknown ancestral state α at the root. When
FS( f , T ) has more than one state, we will select one of the states in this set uniformly
at random as an estimate of the root state (Fischer and Thatte 2009; Li et al. 2008;
Zhang et al. 2010). We will let MP( f , T ) be the state selected uniformly at random
from FS( f , T ).

In this paper, we investigate the probability that this procedure correctly identifies
the true root state α [note that by the symmetry in the model there is nothing special
about the choice of the root state F(ρ)]. We call this probability the reconstruction
accuracy for maximum parsimony, denoted RAMP(T ). It is defined formally by:

RAMP(T ) := P(MP( f , T ) = F(ρ)).

Equivalently, RAMP(T ) = 1
|A|

∑
α∈A P(MP( f , T ) = α|F(ρ) = α). However, it is

more useful in this paper to express RAMP(T ) as a weighted sum of probabilities
involving Fitch sets as follows:

RAMP(T ) =
∑

R:R⊆A
and α∈R

1

|R| · P(FS( f , T ) = R|F(ρ) = α). (1)

This expression holds because MP selects one of the states in the Fitch set uniformly
at random as the estimate of the root state, and so the probability that the actual root
state (i.e. α) is correctly selected by MP is 0 if α is not in the Fitch set for the root,
otherwise it is 1 divided by the size of the Fitch set of the root (Fig. 1).

Because it is normally assumed that state changes occur according to an underlying
continuous-time Markov process, one has:

pe ≤ (r − 1)/r .

We usually will assume that this inequality is strict, since pe = (r − 1)/r would
correspond to an infinite rate of change (or an infinite temporal length) on the
edge e for a continuous-time Markov process. Given the substitution probability
pe for an edge e, we can formally associate a ‘length’ for this edge as the quan-
tity �e = − r−1

r ln
(
1 − r

r−1 pe
)
. This ‘length’ corresponds to the expected number

of state changes under a continuous-time Markov-process realization of the sub-
stitution process (see e.g. Felsenstein 2004; Steel 2016). Notice that we can write

pe = r−1
r

(
1 − exp

( − r
r−1�e

))
. If we let p(v) be the probability that vertex v is in

a different state from the root ρ then p(v) = r−1
r

(
1 − exp(− r

r−1 L)
)
, where L is the

sum of the �-lengths of the edges on the path from ρ to v.
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Fig. 1 i A rooted binary tree on leaf set X = {1, 2, 3, . . . , 8}. If we consider the character f : X → A =
{α, β, γ, δ} defined by f (1) = f (2) = f (5) = α, f (3) = f (4) = f (7) = β, f (6) = γ, f (8) = δ, then
the associated Fitch sets at the interior vertices are shown in (ii). Notice that the root Fitch set FS( f , T )

consists of three equally most-parsimonious root states, namely {α, β, δ} and so MP( f , T ) would be one of
these states chosen with equal probability

( 1
3
)
. An interesting feature of this example is that if the state of

the leaf labelled 1 is changed from α to δ, then although δ was initially one of the most parsimonious states
for the root, it ceases to be so (instead, β becomes the unique most parsimonious root state)

A special condition that is sometimes further imposed on these edge lengths is
that the edge lengths satisfy an ultrametric condition (called a ‘molecular clock’ in
biology), which states that the sum of the lengths of the edges from the root to each
leaf is the same. Under that assumption, the probability p(x) that leaf x is in a different
state from the root takes the same value for all values of x . In this paper, our main
results do not require this ultrametric assumption; however, we also point out how
these results lead to particular conclusions in the ultrametric case.

Note that RAMP(T ) depends on T , the assignment of state-change probabilities (the
pe values) for the edges of T , and r (the size of the state space A). The aim of this
paper is to provide new relationships (equations and inequalities) for reconstruction
accuracy, extending earlier work by others (Herbst and Fischer 2018; Li et al. 2008;
Zhang et al. 2010; Fischer andThatte 2009).Note that twoothermethods for estimating
the ancestral root state are majority rule (MR), which estimates the root state by the
most frequently occurring state at the leaves (ties are broken uniformly at random), and
maximum likelihood estimation (MLE), which estimates the root state by the state(s)
that maximise the probability of generating the given character observed at the leaves.
MR does not even require knowledge of the tree for estimating the root state, whereas
MLE requires knowing not only the tree but also the edges lengths. Comparisons of
these three methods were studied by Gascuel and Steel (2010, 2014).

Note that if the edge lengths particular to a single character under study in MLE
are not known, and are therefore treated as ‘nuisance parameters’ to be estimated (in
addition to the root state) then the resulting MLE estimate for the root state for that
character can be shown to be precisely the MP estimate under the Nr model (Tuffley
and Steel 1997, Theorem 6). However, if a collection of characters is used to estimate
common branch lengths for the tree (under the assumption that the characters have
all evolved under the same branch lengths, as with certain models of DNA sequence
evolution Felsenstein 2004) then the MLE estimate of the ancestral root state is no
longer directly given by MP.
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We end this section by collating some notation used throughout this paper.

– T (resp. Ṫ )—a rooted binary tree, with a root of out-degree 2 (resp. out-degree 1),
– pe (resp. pρ)—the substitution probability on edge e, (resp. the stem edge of Ṫ )
under the Nr model,

– p(x) [resp. p(w)]—the probability that leaf x (resp. vertex w) is in a different
state from the root under the Nr model,

– pmax—the maximal value of p(x) over all leaves,
– RAMP(T )—the root-state reconstruction accuracy of maximum parsimony on T
(with its pe values) for a character generated under the Nr model.

2 A fundamental identity for reconstruction accuracy in the case
where r = 2

For Theorem 1 (below) we consider a rooted binary phylogenetic tree T with a leaf
set X of size at least 3, together with two associated trees T ′

π and T ′′ as indicated in
Fig. 2, which are determined by selecting a pair of leaves y, z that are adjacent to a
common vertex of T [such a pair of leaves, called a ‘cherry’, always exists in any
binary tree with 3 or more leaves (Steel 2016)]. The rooted binary phylogenetic tree
T ′

π is obtained from T by deleting the leaves y and z; in addition, we lengthen the
edge leading to w slightly by putting an extra edge from w to a new leaf w′ with
substitution probability π . In order to keep T ′

π binary, the vertex w is suppressed. An
additional tree T ′′ is obtained from T ′

π by deleting the edge leading to w and edge
(w,w′). Again, we suppress the resulting vertex of degree 2 in order to keep the tree
binary.

We now state the main result of this section. Given T , T ′
π and T ′′ as described

we have the following fundamental equation for MP as ancestral state reconstruction

(a) (b) (c)

Fig. 2 a A rooted binary phylogenetic tree T with leaf set X where p(w) is the probability that w is in a
different state from the root ρ, and py and pz are the probabilities that leaves y and z are in a different state
from w. The pendant subtrees adjacent to the path from w up to ρ are denoted t1, . . . , tk with leaf sets
X1, . . . , Xk , respectively, b a rooted binary phylogenetic tree T ′

π derived from T by deleting leaves y and
z and attaching a new leaf w′ to w (which is then suppressed). The value π is the probability of a change of
state from w to the new leaf w′, c the rooted binary tree T ′′ obtained from T by deleting the leaves y and z,
their incident edges and the other edge incident with w, then suppressing the resulting vertex of degree 2
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method under the N2 model. This result is particular to the N2 model (i.e. it does
not hold for Nr when r > 2). The reason is that when r = 2 and two leaves in a
cherry have different states then we can essentially prune these two leaves from the
tree without affecting the Fitch set recursion as it works towards the root. However
for r > 2 this no longer holds.

Theorem 1 Let T be a rooted binary phylogenetic tree with a leaf set X of size at least
3. For the reconstruction accuracy of maximum parsimony under the N2 model we
then have:

RAMP(T ) = θ · RAMP(T
′
π ) + (1 − θ) · RAMP(T

′′),

where θ is the probability that the leaves y and z are in the same state, and π =
py pz/θ ≤ min{py, pz} (where py and pz are the substitution probabilities for edges
(w, y) and (w, z), respectively).

Proof Let T be a rooted binary phylogenetic tree with root ρ. By the symmetry in the
model, we assume, without loss of generality, that the root is in state α. Let F denote
the event that MP( f , T ) = α (recall that in the case of two equally-most-parsimonious
states, one is selected uniformly at random). Let E1 be the event that leaf y and leaf z
are in the same state (i.e. f (y) = f (z)), and let E2 be the complementary event (i.e.
f (y) �= f (z)). Thus θ = P(E1) and 1 − θ = P(E2). By the law of total probability
we have:

RAMP(T ) = P(F) = P(F |E1)P(E1) + P(F |E2)P(E2)
= P(F |E1)θ + P(F |E2)(1 − θ).

We use this to establish Theorem 1 by establishing the following two claims:

Claim (i): RAMP(T ′
π ) equals P(F |E1);

Claim (ii): RAMP(T ′′) equals P(F |E2).
To establish Claim (i), we show that by an appropriate choice of π , the probability

that the leaves y and z are in state α, conditional on the event E1, is exactly equal to
the probability that w′ is in state α; that is:

P( f (y) = f (z) = α|E1) = P(F(w′) = α). (2)

A similar equalitywill then hold forβ (i.e.P( f (y) = f (z) = β|E1) = P(F(w′) = β),

since both probabilities sum up to 1). These two identities then ensure that RAMP(T ′
π )

equals P(F |E1), which is Claim (i). Thus for Claim (i), it suffices to establish Eq. (2)
for a suitable choice of π .

Recall that 1− p(w) is the probability thatw is in state α, since the root is assumed
to be in state α. Then, the probability that y and z are in state α is

P( f (y) = f (z) = α) = (1 − p(w))(1 − py)(1 − pz) + p(w)py pz,
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where py and pz are the probabilities of change on edge (w, y) and on edge (w, z).
Similarly, the probability that y and z are both in state β is:

P( f (y) = f (z) = β) = p(w)(1 − py)(1 − pz) + (1 − p(w))py pz .

Adding these together, the probability of E1 is given by:

P(E1) = (1 − p(w))(1 − py)(1 − pz) + p(w)py pz
+ p(w)(1 − py)(1 − pz) + (1 − p(w))py pz,

and so

P(E1) = (1 − py)(1 − pz) + py pz, (3)

which is independent of p(w).
Now,

P( f (y) = f (z) = α|E1) = (1 − p(w))(1 − py)(1 − pz) + p(w)py pz
θ

, (4)

[recall that θ = P(E1)]. We can write (4) as

P( f (y) = f (z) = α|E1) = (1 − p(w))U + p(w)V , (5)

whereU = (1−py)(1−pz)
θ

and V = py pz
θ

(note thatU +V = 1). Now, with substitution
probability π on edge (w,w′), the probability that w′ is in state α is

P(F(w′) = α) = (1 − p(w))(1 − π) + p(w)π. (6)

Comparing (6) with (5), we see that if we take π = V = py pz
θ

, then Eq. (2) [and hence
Claim (i)] holds.

Notice also that with this choice, π is less or equal to py and to pz . For example,
π ≤ py is equivalent to:

π = py pz
(1 − py)(1 − pz) + py pz

≤ py

⇔ py pz ≤ py((1 − py)(1 − pz) + py pz)

⇔ pz ≤ 1 − pz,

which holds, since pz ≤ 1
2 .

To show thatRAMP(T ′′) = P(F |E2), first notice that the probability of event E2 does
not depend on the state at w [i.e. P(E2|F(w) = α) = P(E2|F(w) = β)], because:

P(E2) = 1 − P(E1) = (1 − py)pz + py(1 − pz),
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by Eq. (3). Moreover, notice that when the leaves y and z take the states α, β (or β, α)
then the Fitch set for w is {α, β}, so the state that is chosen as the ancestral state for
ρ is completely determined by the subtree T ′′.
Together with the argument above, this gives RAMP(T ′′) = P(F |E2), as required. 
�

Theorem 1 leads to the following corollary, which extends earlier results by Fischer
and Thatte (2009) and by Zhang et al. (2010) in which the ultrametric constraint on
the edge lengths was imposed (here this assumption is lifted).

Corollary 1 Let T be a rooted binary phylogenetic tree with leaf set X. Under the N2
model:

RAMP(T ) ≥ 1 − pmax,

where pmax = max{p(x): x ∈ X}, and p(x) is the probability that leaf x has a different
state from the root.

Proof We use induction on the number of leaves n. For n = 1, pmax = px and thus
the reconstruction accuracy is given by RAMP(T ) = 1 − pmax. For n = 2, and a tree
with leaves x, y:

RAMP(T ) = (1 − px )(1 − py) + 1

2

(
px (1 − py) + (1 − px )py

)
= 1 − px − py + px py + 1

2

(
px − px py + py − px py

)
= 1 − 1

2
px − 1

2
py ≥ 1 − pmax.

This completes the base case of the induction.
Now, assume that the claim holds for all rooted binary phylogenetic trees with less

than n leaves, where n ≥ 3, and consider a tree with n leaves represented as shown
in Fig. 2. Let p′ := max{p(x): x ∈ (X \{y, z}) ∪ {w}} and let p′′ := max{p(x): x ∈
X\{y, z}}. Thus, p′, p′′ ≤ pmax (the inequality for p′′ is clear; for p′ we use π ≤
py, pz from the last part of Theorem 1). Now, from Theorem 1, we have:

RAMP(T ) = θ · RAMP(T
′
π ) + (1 − θ) · RAMP(T

′′),

where RAMP(T ′
π ) ≥ 1 − p′ and RAMP(T ′′) ≥ 1 − p′′ by the induction hypothesis.

Thus:

RAMP(T ) ≥ θ(1 − p′) + (1 − θ)(1 − p′′)
≥ θ(1 − pmax) + (1 − θ)(1 − pmax)

since p ≥ p′ and p ≥ p′′

= (θ + 1 − θ)(1 − pmax) = 1 − pmax,

which completes the proof. 
�
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3 A ‘coin-toss’ reconstructionmethod (')

We now consider a method for estimating the ancestral state that is similar to the Fitch
algorithm for MP, but which uses coin tosses to simplify the process. Note that the
motivation for introducing this method is for purely formal reasons: It allows us to
prove results concerning MP by a coupling argument that relates MP to this simpler
method that is easier to analyse mathematically. In particular, we are not advocating
this method as one to use on real data.

The coin-toss method works as follows: given a rooted binary phylogenetic tree T
and a character f at the leaves of T , the method proceeds from the leaves to the root,
just like the Fitch algorithm described earlier. However, rather than assigning sets of
states to each vertex, the coin toss method assigns a single state to each vertex.

More precisely, the coin-toss method starts (similarly to the Fitch algorithm) by
assigning each leaf the state given by the character f . For a vertex v for which both
direct descendants have been assigned states, if both these states are the same, then this
state is also assigned to v. On the other hand, if the direct descendants have different
states, then a fair coin is tossed to decide which of the two states to assign to v. This
procedure is continued upwards along the tree until the root is assigned a state. We let
ϕ denote this coin-toss method for ancestral state reconstruction, and denote the state
selected by this method as ϕ(T , f ). Let RAϕ(T ) denote its reconstruction accuracy
[i.e. the probability that it predicts the true root state in the r -state model, which equals
P(ϕ(T , f ) = F(ρ))].

Theorem 2 Let T be a rooted binary phylogenetic tree with leaf set X. For x ∈ X, let
d(x) denote the number of edges between the root ρ of T and leaf x. For the Nr model
(for any r ≥ 2) we have:

(i) RAϕ(T ) = 1 − ∑
x∈X

(
1
2

)d(x)
p(x);

(ii) RAϕ(T ) ≥ 1 − pmax, and,
(iii) in the ultrametric setting, RAϕ(T ) = 1 − pmax,

where pmax = max{p(x): x ∈ X}, and p(x) is the probability that leaf x has a different
state from the root.

Proof Part (i) Let T be a rooted binary phylogenetic tree with root ρ and leaf set X .
Start at the root of T and apply the following ‘reverse’ process: toss a fair coin and,
depending on the outcome, select one of the two children of ρ with equal probability.
We keep going away from the root in this way until a leaf is reached. The root state is
then estimated as the state at that leaf. Note that the reverse procedure (which proceeds
from the root to the leaves) is stochastically identical in its estimated root state as the
original coin-toss procedure ϕ. Therefore, we have:

RAϕ(T ) =
∑
x∈X

(1
2

)d(x)
(1 − p(x)) = 1 −

∑
x∈X

(1
2

)d(x)
p(x), (7)

as claimed. This establishes Part (i).
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For Part (ii), with pmax = max{p(x) : x ∈ X}, we have:

RAϕ(T ) = 1 − ∑
x∈X

(
1
2

)d(x)
p(x) by (7)

≥ 1 − pmax
∑
x∈X

(
1
2

)d(x)
because pmax ≥ p(x) for all x,

= 1 − pmax, because
∑
x∈X

(
1
2

)d(x) = 1,

which gives Part (ii).
For Part (iii), we again observe that the reverse procedure for ϕ is stochastically
identical in its estimated root state to the coin toss procedure ϕ. Thus the reconstruction
accuracy of ϕ is just the probability that the leaf that is sampled has the same state as
the root, and this is clearly just 1 − pmax in case of an ultrametric tree and gives us
Part (iii) of the theorem. 
�

Note that the reverse description of ϕ should not be confused with the following
even simpler estimation method: select a leaf x uniformly at random and estimate
the ancestral root state by the state at x . This method is stochastically equivalent to
ϕ only when T is a complete balanced binary tree with n = 2k leaves. In general,
however, different leaves will have different probabilities of being chosen by the
‘reverse’ description of ϕ, depending on the shape of the tree.

3.1 Trees with a stem edge

Shortly, we will need to consider the reconstruction accuracy of a rooted binary tree
Ṫ that has a root ρ of out-degree 1, and so we pause to describe how this is related
to the reconstruction accuracy of the tree T adjacent to ρ. Consider the stem edge
leading from this degree-1 root ρ to its child ρ′ and let T be the tree obtained by
removing this edge. We can extend the definition of RAMP and RAϕ to Ṫ by simply
assigning the predicted root state for ρ′ (for T ) to the root ρ of Ṫ . The following
lemma describes a linear identity between the reconstruction accuracy of Ṫ and T for
MP and the coin-toss method ϕ.

Lemma 1 Under the Nr model, suppose that the substitution probability for the stem
edge (ρ, ρ′) of Ṫ is pρ . If M denotes either the method MP or ϕ, we then have:

RAM (Ṫ ) =
(
1 − r

r − 1
pρ

)
RAM (T ) + pρ

r − 1
.

Proof By considering the two possible cases (no substitution on the stem edge, and a
substitution to one of the r − 1 non-root states), the law of total probability gives:

RAM (Ṫ ) = (1 − pρ) · RAM (T ) + pρ · P(M( f , T ) = α|F(ρ′) = β). (8)

for any state β �= α (the choice does not matter because of the symmetry in themodel).
Now:
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∑
γ∈A

P(M( f , T ) = γ |F(ρ′) = β) = 1. (9)

The term on the left of this last equation can also be written as:

P(M( f , T ) = β|F(ρ′) = β) +
∑
γ �=β

P(M( f , T ) = γ |F(ρ′) = β).

Moreover, the r − 1 probabilities in the summation term on the right of this last
equation are all equal (again by the symmetries in the model). In particular, each of
these r − 1 probabilities is P(M( f , T ) = α|F(ρ′) = β). Combining this observation
with Eq. (9) gives:

1 = RAM (T ) + (r − 1)P(M( f , T ) = α|F(ρ′) = β),

which rearranges to become:

P(M( f , T ) = α|F(ρ′) = β) = 1 − RAM (T )

r − 1
.

Finally, substituting this expression into Eq. (8) gives the expression in the lemma. 
�

3.2 Recursive equations for RA'

We now consider a rooted binary phylogenetic tree T with a root ρ of out-degree
2, along with its two maximal pendant subtrees T1 and T2 with roots ρ1 and ρ2,
respectively. Let Ṫ1 be the tree obtained from T by deleting T2 and its incident edge e
and associated pe value (thus Ṫ1 is T1 with the additional stem edge joining ρ1 to ρ).
Define Ṫ2 similarly, as indicated in Fig. 3, and let pi be the substitution probability
for the edge (ρ, ρi ).

Fig. 3 Left: The tree T with its
two maximal subtrees T1 and
T2. Right: The trees Ṫ1 and Ṫ2
obtained by attaching a stem
edge to T1 and T2, with the same
substitution probability pi as in
T
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Theorem 3 Let T be a rooted binary phylogenetic tree with leaf set X. Under the Nr

model, the following identity for RAϕ(T ) holds:

RAϕ(T ) = 1

2

(
RAϕ(Ṫ1) + RAϕ(Ṫ2)

)
.

Proof Let X1 and X2 be the leaf sets of the trees Ṫ1 and Ṫ2. For the reconstruction
accuracy of the coin-toss method under the Nr model, we then have:

RAϕ(T ) = 1 −
∑
x∈X

(1
2

)d(x)
p(x) by (7)

= 1 −
∑
x∈X1

(1
2

)d(x)
p(x) −

∑
x∈X2

(1
2

)d(x)
p(x)

= 1

2
−

∑
x∈X1

(1
2

)d(x)
p(x) + 1

2
−

∑
x∈X2

(1
2

)d(x)
p(x)

= 1

2

(
1 −

∑
x∈X1

(1
2

)d(x)−1
p(x)

) + 1

2

⎛
⎝1 −

∑
x∈X2

(1
2

)d(x)−1
p(x)

⎞
⎠

= 1

2
RAϕ(Ṫ1)+ 1

2
RAϕ(Ṫ2) by (7)

= 1

2

(
RAϕ(Ṫ1) + RAϕ(Ṫ2)

)
,

which completes the proof. 
�

4 The relationship between the two ancestral reconstruction
methods

The aim of this section is to establish the following result.

Theorem 4 Let T be a rooted binary phylogenetic tree with leaf set X. Under the
N2 model, the reconstruction accuracy of MP is at least equal to the reconstruction
accuracy of the coin-toss method; that is:

RAMP(T ) ≥ RAϕ(T ).

In order to establish this result, we first derive an analogue of the fundamental
equation for MP (Theorem 1) for the coin-toss method, as given in Lemma 2. For
this equation, we consider T ′

0.5 as depicted in Fig. 2, which is obtained from T as in
Fig. 2 in the following way: again, we delete the leaves y and z. We then make the
edge leading to w infinitely long by putting an extra edge from w to a new leaf w0.5
with the substitution probability π = 1

2 on this edge. Setting π = 1
2 simply means

that both states are equally likely. Again, in order to keep the tree binary, vertex w is
suppressed.
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Under the N2 model, we have the following fundamental equation for the coin-toss
method given T , T ′

π and T ′
0.5 as described in Fig. 2 (note that T ′

0.5 is just T ′
π with

π = 0.5).

Lemma 2 Let T be a rooted binary phylogenetic tree with leaf set X. Then, for the
reconstruction accuracy of the coin-toss method under the N2 model, we have:

RAϕ(T ) = θ · RAϕ(T ′
π ) + (1 − θ) · RAϕ(T ′

0.5),

where θ and π are as defined as in Theorem 1.

Proof Let T be a rooted binary phylogenetic tree with root ρ, and assume without
loss of generality that the root is in state α. We define Fϕ to be the event that α is the
state chosen for ρ by the coin-toss method, and, as before, let E1 be the probability
that leaves y and z have the same state. By the law of total probability:

RAϕ(T ) = P(Fϕ) = P(Fϕ |E1)P(E1) + P(Fϕ |E2)P(E2)
= P(Fϕ |E1)θ + P(Fϕ |E2)(1 − θ).

In order to prove Lemma 2, it remains to showRAϕ(T ′
π ) = P(Fϕ |E1) andRAϕ(T ′

0.5) =
P(Fϕ |E2) respectively. Now, RAϕ(T ′

π ) = P(Fϕ |E1) since, conditional on E1, the state
chosen by ϕ at w in T has the same probability distribution as the state chosen by ϕ

at w′ in T ′
π , and the remainder of application of ϕ to T and T ′

π is identical.
We haveRAϕ(T ′

0.5) = P(Fϕ |E2), because by having the substitution probabilityπ = 1
2

for the edge leading tow0.5 both states α and β are equally probable. So the probability
of choosing α for w is 1

2 . Moreover, on T the probability of choosing α for w from
the states at the leaves y and z conditional on event E2 (i.e. y and z are in different
states), is 1

2 as well. 
�
Proof of Theorem 4 The proof is by induction on the number of leaves. For n = 2 and
a tree with leaves x, y, we have:

RAMP(T ) = (1 − px )(1 − py) + 1

2
(px (1 − py) + (1 − px )py)

= 1

2

(
(1 − px ) + (1 − py)

)
.

By Theorem 3, the reconstruction accuracy of the coin-toss method is exactly the
average of the reconstruction accuracy of both subtrees. Therefore, RAϕ(T ) = 1

2

(
(1−

px ) + (1 − py)
)
, which is equal to RAMP(T ), and establishes the base case of the

induction.
Now assume that the induction hypothesis holds for all rooted binary phylogenetic
trees with fewer than n leaves, where n ≥ 3. By Theorem 1, we have:

RAMP(T ) = θ · RAMP(T
′
π ) + (1 − θ) · RAMP(T

′′),
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with T ′
π and T ′′ as in Fig. 2, and θ as described above. Additionally, by Lemma 2 we

have that

RAϕ(T ) = θ · RAϕ(T ′
π ) + (1 − θ) · RAϕ(T ′

0.5),

with T ′
π and T ′

0.5 as in Fig. 2. By the induction hypothesis, RAMP(T ′
π ) ≥ RAϕ(T ′

π )

and RAMP(T ′′) ≥ RAϕ(T ′′) both hold, so in order to complete the proof, it remains to
show that RAϕ(T ′′) ≥ RAϕ(T ′

0.5). The intuition behind this inequality is that when the
leaf at the end of a pendant edge is completely random (i.e. no more likely to match the
root state than not match it) then pruning this edge cannot reduce the reconstruction
accuracy of ϕ. Note that T ′′ has one leaf fewer than T ′

0.5. In the following we consider
both trees as shown in Fig. 2. As before, all vertices of degree 2 are suppressed to keep
the tree binary. In order to calculate RAϕ(T ′′) and RAϕ(T ′

0.5), consider the subtrees
t1, . . . , tk of T and their corresponding leaf sets X1, . . . , Xk , that are adjacent to the
path from w up to ρ. These leaf sets partition the leaf set of T ′′, and if we add in the
additional set {w0.5}, then this collection of k + 1 sets partitions the leaves of T ′

π and
T ′
0.5. By Theorem 2(i) we have:

RAϕ(T ′′) = 1 −
∑

x∈X1∪···∪Xk

(1
2

)d ′′(x)
p(x),

where d ′′(x) is the number of edges between the root and a leaf x in T ′′, and:

RAϕ(T ′
0.5) = 1 −

∑
x∈X1∪···∪Xk∪{w0.5}

(1
2

)d ′(x)
p(x),

where d ′(x) is the number of edges between the root and leaf x in T ′
0.5. Moreover,

note that for i = 2, . . . , k:

∑
x∈Xi

(1
2

)d ′′(x)
p(x) =

∑
x∈Xi

(1
2

)d ′(x)
p(x).

Thus, RAϕ(T ′′) − RAϕ(T ′
0.5) becomes:

RAϕ(T ′′) − RAϕ(T ′
0.5)

= 1 −
∑
x∈X1

(1
2

)d ′′(x)
p(x) −

⎛
⎝1 −

∑
x∈X1

(1
2

)d ′(x)
p(x) −

(1
2

)k
p(w0.5)

⎞
⎠

=
∑
x∈X1

(1
2

)d ′(x)
p(x) −

∑
x∈X1

(1
2

)d ′′(x)
p(x) +

(1
2

)k
p(w0.5).

Wehaveπ = 1
2 , which gives us p(w0.5) = p(w)+π−2p(w) 12 = p(w)+ 1

2− p(w) =
1
2 . Again, note that the vertex w is suppressed in T ′

0.5 in order to keep the tree binary,
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and thus k edges separate the root and the leaf w0.5. Similarly, the vertex leading to
subtree t1 is suppressed in T ′′ to keep the tree binary. This gives us that k − 1 edges
separate the root of T ′′ and the root of t1, whereas k edges separate the root of T ′

0.5
and the root of the subtree t1. Let d1(x) denote the number of edges between the root
of subtree t1 and leaf x in T , then we have

d ′(x) = k + d1(x) and d ′′(x) = k − 1 + d1(x).

If we now rearrange the above expression for RAϕ(T ′′) − RAϕ(T ′
0.5), noting that

p(w0.5) = 1
2 we obtain:

RAϕ(T ′′) − RAϕ(T ′
0.5)

=
∑
x∈X1

(1
2

)k+d1(x)
p(x) −

∑
x∈X1

(1
2

)k−1+d1(x)
p(x) +

(1
2

)k+1
,

=
(1
2

)k ∑
x∈X1

(1
2

)d1(x)
p(x) −

(1
2

)k−1 ∑
x∈X1

(1
2

)d1(x)
p(x) +

(1
2

)k+1

= −
(1
2

)k ∑
x∈X1

(1
2

)d1(x)
p(x) +

(1
2

)k+1

=
(1
2

)k+1(
1 − 2

∑
x∈X1

(1
2

)d1(x)
p(x)

)

≥ 0,

since
∑

x∈X1

(
1
2

)d1(x) = 1 and 0 ≤ p(x) ≤ 1
2 in the N2 model. Therefore, we

have RAϕ(T ′′) ≥ RAϕ(T ′
0.5), which, together with the induction hypothesis, gives

RAMP(T ′′) ≥ RAϕ(T ′′) ≥ RAϕ(T ′
0.5) and thus completes the proof. 
�

Note that combining the statement of Theorem 4 with Theorem 2 gives us an
alternative proof of Corollary 1, since RAMP(T ) ≥ RAϕ(T ) ≥ 1 − pmax (i.e. under
the N2 model, the Fitch algorithm using all terminal taxa is at least as accurate for
ancestral state reconstruction as selecting the state of a taxon x that maximises p(x)).

5 Further results for the r-state setting

In this section, we will indicate the set of states inA by writingA = {α1, α2, . . . , αr },
and, unless stated otherwise, we assume the root is in state α1. For a set R ⊆ A,
α1 ∈ R, |R| = k, let

Pk(T ) := P(FS( f , T ) = R|F(ρ) = α1).

Similarly, for a set R ⊆ A, α1 /∈ R, |R| = k, let

Qk(T ) := P(FS( f , T ) = R|F(ρ) = α1).
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By the symmetry in the model, the values Pk(T ) and Qk(T ) are independent of the
choice of R, subject to the constraints imposed on R in their definition.

Lemma 3 For any rooted binary phylogenetic tree T under the Nr model, the recon-
struction accuracy of MP is given by:

RAMP(T ) = 1

r

(
1 +

r−1∑
k=1

(
r − 1

k

)
(Pk(T ) − Qk(T ))

)
.

Proof LetT be a rootedbinaryphylogenetic tree and let Pk(T ) andQk(T )be as defined
above (so we assume the root to be in state α1). For the reconstruction accuracy of MP
under the Nr model, Eq. (1) and the law of total probability gives:

RAMP(T )

=
∑

R:R⊆A
and α1∈R

1

|R| · P(FS( f , T ) = R|F(ρ) = α1)

=
r∑

k=1

1

k
Pk(T )

(
r − 1

k − 1

)
=

r−1∑
k=1

1

k
Pk(T )

(
r − 1

k − 1

)
+ 1

r
Pr (T )

=
r−1∑
k=1

1

k
Pk(T )

(
r − 1

k − 1

)
+ 1

r

(
1−

r−1∑
k=1

Qk(T )

(
r − 1

k

)
−

r−1∑
k=1

Pk(T )

(
r − 1

k − 1

))
.

Rearranging this last expression gives:

RAMP(T ) = 1

r
+

r−1∑
k=1

(
1

k
− 1

r

)
Pk(T )

(
r − 1

k − 1

)
− 1

r

r−1∑
k=1

Qk(T )

(
r − 1

k

)

= 1

r
+ 1

r

r−1∑
k=1

r − k

k
Pk(T )

(
r − 1

k − 1

)
− Qk(T )

(
r − 1

k

)

= 1

r
+ 1

r

r−1∑
k=1

(
r − 1

k

)
(Pk(T ) − Qk(T ))

= 1

r

(
1 +

r−1∑
k=1

(
r − 1

k

)
(Pk(T ) − Qk(T ))

)
.


�

For the following lemma we consider Ṫ obtained from T by adding an additional
stem edge (ρ, ρ′) and substitution probability pρ on this edge. Let
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Pα1,...,αk (Ṫ ) := P(FS( f , Ṫ ) = {α1 . . . , αk}|F(ρ) = α1) and

Pα2,...,αk+1(Ṫ ) := P(FS( f , Ṫ ) = {α2 . . . , αk+1}|F(ρ) = α1)

Lemma 4 Assume that ρ is in state α1. Under the Nr model and 1 ≤ k ≤ r − 1, we
have:

Pα1,...,αk (Ṫ ) =
(
1 − r − k

r − 1
pρ

)
Pk(T ) + r − k

r − 1
pρQk(T ), and

Pα2,...,αk+1(Ṫ ) =
(
1 − k

r − 1
pρ

)
Qk(T ) + k

r − 1
pρPk(T ),

where Pk(T ) and Qk(T ) are as defined above.

Proof For 1 ≤ k ≤ r − 1, we can write Pα1,...,αk (Ṫ ) as follows:

(1 − pρ)P(FS( f , T ) = {α1, . . . , αk}|F(ρ′) = α1, F(ρ) = α1) + pρ

r − 1
S, (10)

where

S =
r∑

i=2

P(FS( f , T ) = {α1, . . . , αk}|F(ρ′) = αi , F(ρ) = α1).

We can now split S into two sums depending on the range of k. Thus we have S =
S1 + S2, where:

S1 =
k∑

i=2

P(FS( f , T ) = {α1, . . . , αk}|F(ρ′) = αi , F(ρ) = α1), and

S2 =
r∑

i=k+1

P(FS( f , T ) = {α1, . . . , αk}|F(ρ′) = αi , F(ρ) = α1).

Notice also that, by the symmetry of the model, each of the k − 1 terms in S1 is equal
to

P(FS( f , T ) = {α1, . . . , αk}|F(ρ′) = α1, F(ρ) = α1),

which is Pk(T ). Thus S1 = (k − 1)Pk(T ).
Similarly, each of the r − k terms in S2 is equal to

P(FS( f , T ) = {α2, . . . , αk+1}|F(ρ′) = α1, F(ρ) = α1),

which is just Qk(T ), and thus S2 = (r − k)Qk(T ). Thus, from the expression for
Pα1,...,αk (Ṫ ) given by (10), we have:

Pα1,...,αk (Ṫ ) = (1 − pρ)Pk(T ) + pρ

r − 1
((k − 1)Pk(T ) + (r − k)Qk(T )).
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Rearranging the term on the right gives the expression for Pα1,...,αk (Ṫ ) in Lemma 4.
The second part of Lemma 4 follows by an analogous argument. For 1 ≤ k ≤ r−1,

we can write Pα2,...,αk+1(Ṫ ) as follows:

(1 − pρ)P(FS( f , T ) = {α2, . . . , αk+1}|F(ρ′) = α1, F(ρ) = α1) + pρ

r − 1
S′,

(11)

where

S′ =
r∑

i=2

P(FS( f , T ) = {α2, . . . , αk+1}|F(ρ′) = αi , F(ρ) = α1).

Write S′ = S′
1 + S′

2 where:

S′
1 =

k∑
i=2

P(FS( f , T ) = {α2, . . . , αk+1}|F(ρ′) = αi , F(ρ) = α1), and

S′
2 =

r∑
i=k+1

P(FS( f , T ) = {α2, . . . , αk+1}|F(ρ′) = αi , F(ρ) = α1).

Notice also that, by the symmetry of the model, each of the k terms in S′
1 is equal to

P(FS( f , T ) = {α1, . . . , αk}|F(ρ′) = α1, F(ρ) = α1),

which is Pk(T ). Thus S′
1 = kPk(T ).

Similarly, each of the r − k − 1 terms in S′
2 is equal to

P(FS( f , T ) = {α2, . . . , αk+1}|F(ρ′) = α1, F(ρ) = α1),

which is just Qk(T ), and thus S′
2 = (r − k − 1)Qk(T ). Thus, from the expression for

Pα2,...,αk+1(Ṫ ) given by (11) we have:

Pα2,...,αk+1(Ṫ ) = (1 − pρ)Qk(T ) + pρ

r − 1
(kPk(T ) + (r − k − 1)Qk(T )).

Rearranging the term on the right gives the expression for Pα2,...,αk+1(Ṫ ) in Lemma 4.

�

By the proof of Lemma 4, we have the following corollary.

Corollary 2 Let Ṫ be a rootedbinary phylogenetic treewith stemedge (ρ, ρ′). Consider
the Nr model with state spaceA = {α1, . . . , αr }, assume the root ρ is in state α1, and
let pρ be the substitution probability on the stem edge. Then, for 1 ≤ k ≤ r − 1 we
have:
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(i) Pα1,...,αk (Ṫ ) = Pα2,...,αk+1(Ṫ ) +
(
1 − r

r − 1
pρ

)
(Pk(T ) − Qk(T ))

(ii) If Pk(T ) ≥ Qk(T ), then Pα1,...,αk (Ṫ ) ≥ Pα2,...,αk+1(Ṫ ).

Notice also, that if the substitution probability on every edge is strictly less than r−1
r

(as required by an underlying continuous-timeMarkov realisation of the process), then
the following strict inequality result holds: if Pk(T ) > Qk(T ), then Pα1,...,αk (Ṫ ) >

Pα2,...,αk+1(Ṫ ).
In Theorem 5 we consider a rooted binary tree T as depicted in Fig. 3.

Theorem 5 Let T be a rooted binary phylogenetic tree under the Nr model. For 1 ≤
k ≤ r − 1 we have: Pk(T ) ≥ Qk(T ).

Proof Since the root is assumed to be in state α1 and by the definition of Pk(T ) and
Qk(T ) we have that

Pk(T ) = Pα1,...,αk (T ) and Qk(T ) = Pα2,...,αk+1(T ).

The proof is by induction on the number of leaves n. The inequality holds trivially for
n = 1; for n = 2, let px , py denote the substitution probabilities on the two edges of
the tree. We then have:

Pα1(T ) = (1 − px )(1 − py); Pα2(T ) = px
r − 1

py
r − 1

,

Pα1α2(T ) = (1 − px )
py

r − 1
+ px

r − 1
(1 − py); Pα2α3(T ) = 2

px
r − 1

py
r − 1

.

Moreover, we have:

Pα1(T ) − Pα2(T )

= (1 − px )(1 − py) − px
r − 1

py
r − 1

= 1 − px − py + px py − px
r − 1

py
r − 1

=
(
1 − r

r − 1
px

)(
1 − r

r − 1
py

)
+ px

r − 1

(
1 − r

r − 1
py

)

+ py
r − 1

(
1 − r

r − 1
px

)
,

and

Pα1α2(T ) − Pα2α3(T ) = (1 − px )
py

r − 1
+ px

r − 1
(1 − py) − 2

px
r − 1

py
r − 1

= px
r − 1

(
1 − rpy

r − 1

)
+ py

r − 1

(
1 − rpx

r − 1

)
,

which are both non-negative, since px , py ≤ r−1
r . This gives the base case of the

induction. We now assume that the induction hypothesis holds for all trees with fewer
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than n leaves and show that it also holds for a tree T with n leaves. Consider the
decomposition of T into its two maximal pending subtrees T1 and T2 and the asso-
ciated trees Ṫ1 and Ṫ2 with a stem edge (as in Fig. 3). By the induction hypothesis,
Pα1,...,αk (Ti ) ≥ Pα2,...,αk+1(Ti ) holds for i ∈ {1, 2}. By combining thiswithCorollary 2
(ii), we obtain:

Pα1,...,αk (Ṫi ) ≥ Pα2,...,αk+1(Ṫi ) (12)

for i ∈ {1, 2}. Moreover, Pk(T ) and Qk(T ) are given as follows. Let ωα :=
{α1, . . . , αk} and ωβ := {α2, . . . , αk+1}, and in the following equations, ω1 and ω2
vary over all the nonempty subsets of A that satisfy the stated constraints under the
summation signs of the following two equations:

Pk(T ) = Pα1, . . . , αk︸ ︷︷ ︸
:=ωα

(T ) =
∑

ω1∩ω2=ωα

Pω1(Ṫ1)Pω2(Ṫ2) +
∑

ω1∩ω2=∅,
ω1∪ω2=ωα

Pω1(Ṫ1)Pω2(Ṫ2)

(13)

and

Qk(T ) = Pα2, . . . , αk+1︸ ︷︷ ︸
:=ωβ

(T ) =
∑

ω1∩ω2=ωβ

Pω1(Ṫ1)Pω2(Ṫ2)

+
∑

ω1∩ω2=∅,
ω1∪ω2=ωβ

Pω1(Ṫ1)Pω2(Ṫ2). (14)

To show that Pk(T ) ≥ Qk(T ), our strategy is to show that the first term (summation)
the right-hand side of Eq. (13) is greater or equal to the first term (summation) on the
right-hand side Eq. (14). We then show that same inequality also holds for the second
summation term.

For any setωα
1 andωα

2 there exist corresponding setsω
β
1 andω

β
2 . The corresponding

set (for i ∈ {1, 2}) is:

ω
β
i =

{
ωα
i \{α1} ∪ {αk+1} ifα1 ∈ ωα

i and αk+1 /∈ ωα
i

ωα
i otherwise.

(15)

For the first half of this argument, take any two setsωα
1 andωα

2 for whichωα
1 ∩ωα

2 =
ωα . Note that α1 is contained in ωα

1 and ωα
2 . Then, the corresponding sets ω

β
1 and ω

β
2

[from (15)] satisfy |ωα
1 | = |ωβ

1 | and |ωα
2 | = |ωβ

2 | and ω
β
1 ∩ ω

β
2 = ωβ . Here, we

consider two cases.

Case (i) α1 /∈ ω
β
1 and α1 /∈ ω

β
2 .

By Eq. (12), we have Pωα
1
(Ṫ1) ≥ P

ω
β
1
(Ṫ1) and Pωα

2
(Ṫ2) ≥ P

ω
β
2
(Ṫ2). Thus,

Pωα
1
(Ṫ1)Pωα

2
(Ṫ2) ≥ P

ω
β
1
(Ṫ1)Pω

β
2
(Ṫ2), which completes the first case.
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Case (ii) α1 is contained in ω
β
1 or in ω

β
2 (not both).

Without loss of generality, we have α1 ∈ ω
β
1 and α1 /∈ ω

β
2 . We know that Pωα

1
(Ṫ1) =

P
ω

β
1
(Ṫ1) and by Eq. (12), we have Pωα

2
(Ṫ2) ≥ P

ω
β
2
(Ṫ2). Thus, Pωα

1
(Ṫ1)Pωα

2
(Ṫ2) ≥

P
ω

β
1
(Ṫ1)Pω

β
2
(Ṫ2) holds.

This completes the first half of the argument.
We now compare the last terms on the right-hand side of the Eqs. (13) and (14)

for Pk(T ) and Qk(T ). Take any two sets ωα
1 and ωα

2 for which ωα
1 ∩ ωα

2 = ∅ and
ωα
1 ∪ ωα

2 = ωα . Without loss of generality, we have α1 ∈ ωα
1 and α1 /∈ ωα

2 . Then, the

corresponding sets ω
β
1 and ω

β
2 [from Eq. (15)] satisfy |ωα

1 | = |ωβ
1 | and |ωα

2 | = |ωβ
2 |

such that ω
β
1 ∩ ω

β
2 = ∅ and ω

β
1 ∪ ω

β
2 = ωβ . Since α1 ∈ ωα

1 and α1 /∈ ωα
2 , we

have Pωα
2
(Ṫ2) = P

ω
β
2
(Ṫ2) and, by Eq. (12), we have Pωα

1
(Ṫ1) ≥ P

ω
β
1
(Ṫ1). Thus,

Pωα
1
(Ṫ1)Pωα

2
(Ṫ2) ≥ P

ω
β
1
(Ṫ1)Pω

β
2
holds.

Therefore, Pk(T ) is greater than or equal to Qk(T ) for tree T by induction from
Ṫ1 and Ṫ2. 
�

Combining Lemma 3 with Theorem 5 gives the following corollary, which states
that the reconstruction accuracy of MP under the Nr model is greater or equal to 1

r .
In addition, note that if we assume the probabilities of change to be strictly less than
r−1
r , we can then show that Pk(T ) > Qk(T ) by induction on n similar to the proof of

Theorem 5. This gives us RAMP(T ) > 1
r .

Corollary 3 For any rooted binary phylogenetic tree T and the Nr model, we have:

RAMP(T ) ≥ 1

r
.

Moreover, this inequality is strict under a continuous-time Nr model where pe < r−1
r .

6 A combinatorial sufficient condition for accurate ancestral state
reconstruction

In this penultimate section, we present a new combinatorial property of ancestral state
reconstruction using parsimony. More precisely, we provide a sufficient condition for
MP to recover the ancestral state at the root vertex ρ correctly from the observed
states at the leaves. Note that this does not make any model assumptions (as in the
previous section) as to how the character f is generated—it simply requires the state
changes to be spread sufficiently thinly in the tree as one moves way from the root.
This result complements a related (but quite different) result from Steel and Penny
(2005) (Theorem 9.4.5).

Let ni (i = 1, 2, . . .) be the number of edges descended from ρ and separated from
ρ by i − 1 other edges on which a substitution occurs. Thus n1 counts the number (0,
1, 2) of edges out of ρ on which substitutions occur. Note that ni is not just a function
of the tree and the character at the leaves; it depends on the actual evolution of this
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character on the tree. We refer to ni as the substitution spectrum of the character on
the tree relative to the root vertex ρ.

The following theorem can be regarded as a type of combinatorial local ‘safety
radius’ for MP to infer the ancestral state at a given vertex correctly (even though the
states at other vertices may not be correctly reconstructed).

Theorem 6 Consider any binary tree T on any number of leaves, and any character
(involving any number of states) that has evolved on this tree with a substitution
spectrum relative to root vertex ρ that satisfies the inequality:

∑
k≥1

nk

(
1√
2

)k

<
1

2
. (16)

The set of most parsimonious state at vertex ρ estimated from the states at the leaves
descending from ρ consists precisely of the true ancestral state at ρ (i.e. FS(ρ) =
{F(ρ)}).
Proof First observe that is sufficient to establish this result for a complete balanced
binary tree Th of arbitrary height h, with ρ being the root of Th . We use induction
on the height h of the tree. Let α denote the state F(ρ) present at the root of Th . For
h ≤ 2 we have nk = 0 for all k > 2. Inequality (16) ensures that n1 = n2 = 0, in
which case all leaves are in state α and so the Fitch set FS(v) for ρ is the set {α}. This
establishes the result for h ≤ 2.

For the induction step, suppose that the result holds for Th−2 and Th−1 and consider
the tree Th together with a character evolved on Th for which Inequality (16) applies
for vertex ρ. As before, this inequality ensures that none of the six edges at distance
1 or 2 descending from ρ have a substitution on them.

If T 1 and T 2 are the two maximal subtrees of Th , then (i) each of these trees is of
the type Th−1, and (ii) the following identity holds for all k:

nk = n1k−1 + n2k−1, (17)

where n1i (resp. n2i ) is substitution spectrum for the character’s evolution on T 1 and
T 2 [note that we are using the fact that no substitution occurs on either of the two
edges outgoing from ρ, by Inequality (16)].

Thus if we let

ph(n, θ) :=
∑
k≥1

nkθ
k,

where n = [nk], then Eq. (17) allows us to write:

ph(n, θ) = θ ·
[
ph−1(n1, θ) + ph−1(n2, θ)

]
.
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Fig. 4 If the Fitch sets at the
roots of three of the four subtrees
at distance 2 from ρ in Th
(h ≥ 3) consist of the singleton
set {α}, then FS(v) = {α} as
well, regardless of the Fitch set ∗
at the root of the fourth subtree

We can extend this argument one level further to obtain the following:

ph(n, θ) = θ2 ·
[
ph−2(n11, θ) + ph−2(n12, θ) + ph−2(n21, θ) + ph−2(n22, θ)

]
,

(18)

where nij refers the substitution spectra on the four subtrees of type Th−2 that are
two edges descending from the vertex ρ in T . Note that in writing Eq. (18) we are
again using the fact that Inequality (16) precludes any substitutions in the six edges
descended from ρ and at distance at most 2 from it.

Now put θ = 1√
2
in Eq. (18) and let xi j := ph−2(nij, 1√

2
). We then obtain:

ph(n,
1√
2
) = 1

2
(x11 + x12 + x21 + x22). (19)

Since we are assuming that ph(n, 1√
2
) < 1

2 [by Inequality (16)], it follows from

Eq. (19) that at least three of the four terms xi j are strictly less than 1
2 , since if two of

them were greater or equal to 1
2 then 1

2 (x11 + x12 + x21 + x22) ≥ 1
2 . By the induction

hypothesis, three (or four) of the corresponding vertices (two edges descending from
ρ) have an FS value of {α}, as shown in Fig. 4.

We now invoke a simple combinatorial observation: if a vertex v in a binary tree
has the property that at least three vertices that are two edges descended from v have
their Fitch set FS equal to {α}, then FS(v) = {α}. This establishes the induction step,
and thereby the theorem. 
�
Remark An interesting question is the following: What is the smallest value of θ for
which there is a constant t so that the condition ph(n, θ) < t implies that FS(v) = {α}
for all values of h and substitution spectra n?We have shown that the value θ = 1√

2
≈

0.7071 (or any larger value) suffices, and it is known (from Theorem 2 of Steel and
Charleston 1995) that θ cannot be smaller than the reciprocal of the golden ratio (i.e.
2/(1 + √

5) ≈ 0.6180).
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7 Concluding comments

Theorem 4 demonstrated that RAMP(T ) ≥ RAϕ(T ) when r = 2. An interesting
question is whether or not this holdsmore generally. This leads us to pose the following
conjecture:

Conjecture 1 Let T be a rooted binary phylogenetic tree. Under the Nr model, the
reconstruction accuracy of MP is at least equal to the reconstruction accuracy of the
coin-toss method:

RAMP(T ) ≥ RAϕ(T ).

This conjecture holds for n = 2 and all values of r ≥ 2, as it is an exact equality in
that case.

By using Theorem 3, and induction on the number of leaves, it can be shown that
Conjecture 1 is equivalent to the following statement:

RAMP(T ) ≥ 1

2

(
RAMP(Ṫ1) + RAMP(Ṫ2)

)
, (20)

where Ṫ1 and Ṫ2 are the two pending subtrees of T as in Fig. 3.
Inequality (20) holds when r = 2 since, as stated, it is equivalent to the above

conjecture, and this holds when r = 2 by Theorem 4. In the Appendix we give a direct
alternative argument to justify Inequality (20) in the case r = 2.
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8 Appendix: Direct proof of inequality (20) when r = 2

Proof For the N2 model, RAMP(T ) = Pα(T ) + 1
2 Pαβ(T ). Thus,

RAMP(T ) = Pα(Ṫ1)Pα(Ṫ2) + Pα(Ṫ1)Pαβ(Ṫ2) + Pαβ(Ṫ1)Pα(Ṫ2)

+ 1

2

(
Pαβ(Ṫ1)Pαβ(Ṫ2) + Pα(Ṫ1)Pβ(Ṫ2) + Pβ(Ṫ1)Pα(Ṫ2)

)
. (21)

Moreover:

1

2

(
RAMP(Ṫ1) + RAMP(Ṫ2)

) = 1

2

(
Pα(Ṫ1) + 1

2
Pαβ(Ṫ1) + Pα(Ṫ2) + 1

2
Pαβ(Ṫ2)

)
= 1

2

(
Pα(Ṫ1) + Pα(Ṫ2)

) + 1

4

(
Pαβ(Ṫ1) + Pαβ(Ṫ2)

)
= 1

2

(
Pα(Ṫ1)(Pα(Ṫ2) + Pβ(Ṫ2) + Pαβ(Ṫ2)) + Pα(Ṫ2)(Pα(Ṫ1) + Pβ(Ṫ1)
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+ Pαβ(Ṫ1))
)

+ 1

4

(
Pαβ(Ṫ1) + Pαβ(Ṫ2)

)
(by the law of total probability)

= 1

2

(
2Pα(Ṫ1)Pα(Ṫ2) + Pα(Ṫ1)Pβ(Ṫ2) + Pα(Ṫ1)Pαβ(Ṫ2) + Pβ(Ṫ1)Pα(Ṫ2)

+ Pαβ(Ṫ1)Pα(Ṫ2)
)

+ 1

4

(
Pαβ(Ṫ1) + Pαβ(Ṫ2)

)
. (22)

In order to show that RAMP(T ) ≥ 1
2

(
RAMP(Ṫ1) + RAMP(Ṫ2)

)
, we establish the fol-

lowing inequality:

RAMP(T ) − 1

2

(
RAMP(Ṫ1) + RAMP(Ṫ2)

) ≥ 0.

By (21) and (22) we have:

RAMP(T ) − 1

2

(
RAMP(Ṫ1) + RAMP(Ṫ2)

)
= Pα(Ṫ1)Pα(Ṫ2) + Pα(Ṫ1)Pαβ(Ṫ2) + Pαβ(Ṫ1)Pα(Ṫ2)

+ 1

2

(
Pαβ(Ṫ1)Pαβ(Ṫ2) + Pα(Ṫ1)Pβ(Ṫ2) + Pβ(Ṫ1)Pα(Ṫ2)

)
− 1

2

(
2Pα(Ṫ1)Pα(Ṫ2) + Pα(Ṫ1)Pβ(Ṫ2) + Pα(Ṫ1)Pαβ(Ṫ2) + Pβ(Ṫ1)Pα(Ṫ2)

+ Pαβ(Ṫ1)Pα(Ṫ2)
)

− 1

4

(
Pαβ(Ṫ1) + Pαβ(Ṫ2)

)
= 1

2
Pα(Ṫ1)Pαβ(Ṫ2) + 1

2
Pαβ(Ṫ1)Pα(Ṫ2) + 1

2
Pαβ(Ṫ1)Pαβ(Ṫ2)

− 1

4

(
Pαβ(Ṫ1) + Pαβ(Ṫ2)

)
= 1

2
Pαβ(Ṫ1)

(
Pα(Ṫ2) + 1

2
Pαβ(Ṫ2) − 1

2

) + 1

2
Pαβ(Ṫ2)

(
Pα(Ṫ1) + 1

2
Pαβ(Ṫ1) − 1

2

)
= 1

2
Pαβ(Ṫ1)

(
RAMP(Ṫ2) − 1

2

) + 1

2
Pαβ(Ṫ2)

(
RAMP(Ṫ1) − 1

2

)
.

This last expression is non-negative because the reconstruction accuracy under the N2
model is greater or equal to 1

2 by Corollary 1, and (by Lemma 1), RAMP(Ṫ ) ≥ 1
2 if

and only if RAMP(T ) ≥ 1
2 . 
�
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