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Abstract
An important characteristic of influenzaA is its ability to escape host immunity through
antigenic drift. A novel influenzaA strain that causes a pandemic confers full immunity
to infected individuals. Yet when the pandemic strain drifts, these individuals will
have decreased immunity to drifted strains in the following seasonal epidemics. We
compute the required decrease in immunity so that a recurrence is possible. Models
for influenza A must make assumptions on the contact structure on which the disease
spreads. By considering local stability of the disease free equilibrium via computation
of the reproduction number, we show that the classical random mixing assumption
predicts an unrealistically large decrease of immunity before a recurrence is possible.
We improve over the classical random mixing assumption by incorporating a contact
network structure. A complication of contact networks is correlations induced by
the initial pandemic. We provide a novel analytic derivation of such correlations and
show that contact networksmay require a dramatically smaller loss of immunity before
recurrence. Hence, the key new insight in our paper is that on contact networks the
establishment of a new strain is possible formuch higher immunity levels of previously
infected individuals than predicted by the commonly used randommixing assumption.
This suggests that stable contacts like classmates, coworkers and family members are
a crucial path for the spread of influenza in human populations.
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1 Introduction

Seasonal influenza is an acute viral infection that is transmitted easily from person
to person and circulates worldwide. It is commonly referred to as ‘the flu’. There
are three main types (A, B, C) of seasonal influenza viruses, however, types A and
B are the causes of most outbreaks and epidemics. Influenza A viruses are further
classified by subtypes according to the combination of two surface proteins, haemag-
glutinin (HA) and neuraminidase (NA). The subtypes of influenza A virus currently
in circulation are A(H3N2) and A(H1N1)pdm09 (WHO 2016). Influenza spreads eas-
ily from person to person via infectious droplets dispersed by sneezing, coughing
or talking (Cox and Subbarao 2000). The social and economic burden of seasonal
influenza is significant; an estimated 5–15% are infected every year resulting in suf-
fering and a high loss of economic productivity due to worker absenteeism (WHO
2016).

In this paper, we focus on influenza A. In general, a major challenge with influenza
A is its fast scaled evolution. Significant evolution is thought to occur on the timescale
of 1year (Earn et al. 2002). This evolution allows the evolving strain(s) to modify
antigenic surface HA and NA proteins (Both et al. 1983); allowing the virus to re-
infect a host who had been previously infected and had recovered with full immunity
to the infecting strain (Carrat and Flahault 2007; Perez et al. 2010). The processes that
result in genetic modification to surface proteins are referred to as antigenic drift and
antigenic shift. Antigenic shift is a sudden, dramatic variation of antigenic genes often
caused by a re-assortment among distinct strains, and effectively results in a novel
strain unrecognizable to host immunity (Earn et al. 2002). These shifts are believed to
be random, andmay give rise to large scale pandemics (Carrat andFlahault 2007). Such
examples include the notorious 1918 Spanish flu, and more recently the 2009 H1N1
pandemic (WHO 2016).While antigenic shift results in a dramatic antigenic variation,
antigenic drift is a more subtle mechanism acting by way of frequent, point mutations
at the antigenic sites of the virus; allowing the strain to drift away from recognition
by the host’s immune system (Carrat and Flahault 2007). These two mechanisms are
responsible for an important pattern for influenza A: first, a novel and highly virulent
influenza strain emerges as a result of antigenic shift, causes a pandemic, and through
antigenic driftmay return to cause subsequent epidemics as a seasonal strain. In fact, all
circulating influenza viruses are drift products of previous pandemic influenza strains
(Carrat and Flahault 2007). For example, in April 2009, a novel influenza A(H1N1)
virus emerged and caused the first pandemic of the twenty-first century. Referred to
as A(H1N1)pdm09, it remains as one of the currently circulating influenza A strains
(WHO 2016).

Immediately after a pandemic, there is a reduced pool of susceptible individu-
als and thus selective pressure drives the antigenic drift process so that the virus
can re-invade the population (Bush et al. 1999). This leads to the important ques-
tion: How much antigenic drift is necessary to cause a first recurrence of the
pandemic strain? To address this question we formulate a mathematical frame-
work to model the pandemic and invasiveness of a drifted strain in subsequent
seasons.
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2 Framework

Many mathematical models for the ecological and epidemic dynamics of influenza
have been formulated and analyzed. Some models have built on the fundamental SI R
compartmental model of Kermack and McKendrick (1927) to include, for example,
several drifted strains. For a few examples of influenza models; see Andreasen et al.
(1997); Andreasen (2003), Asaduzzaman et al. (2015), Casagrandi et al. (2006), Pease
(1987) and for a review see Earn et al. (2002). A standard tool that we employ is the
basic reproduction number (R0). It is a model-dependent value that determines the
vulnerability of a population to an epidemic. Generally speaking, in infectious disease
models, if R0 > 1, an infection-free population is vulnerable to an epidemic. For
R0 < 1, the introduction of a few infected individuals is not expected to cause an
epidemic.

Most existing models for influenza make the random mixing assumption. Roughly
speaking, this means that any individual interacts randomly with other individuals. On
the other end of this spectrum, individuals interact within a fixed set of contacts, and
that the number of these contacts varies from individual to individual. This is effectively
a social contact network, where individuals are represented by nodes, and adjacent
nodes (two nodes with an edge connecting them) are seen as contacts. It is known that
network models differ in predictions from classical random mixing models; see, for
example, Chatterjee and Durrett (2009), Eames and Keeling (2002), Lindquist et al.
(2011), Miller (2011), Pastor-Satorras and Vespignani (2001). In addition, network
structure changes the fitness of invading strains (Leventhal et al. 2015). Thus, here
we compare results from fixed network models to those of random mixing models.
Biologically, our models separate the time scale for the evolution of the pandemic
strain and that of the pandemic. This is justified since at the introduction of a new
novel influenza A strain to which there is little to no population immunity, evolution
via antigenic selection is small; resulting in lower levels of antigenic drift relative to the
pandemic dynamics. Furthermore the low levels of antigenic drift result in antigenic
homogeneity for circulating strain of influenza A. This was in in fact the case for
the 2009 H1N1 outbreak, and we infer this to be true for pandemic strains in general
(Garten et al. 2009). Note that antigenic homogeneity cannot be generally applied to
seasonal strains because antigenic diversity is present and important within a single
season (Besselaar et al. 2004; Kang et al. 2010; Strelkowa and Lässig 2012). Following
the end of the pandemic wave (also referred to as the “first wave” in this paper) we
look at whether or not challenges by drifted strains are capable of causing an outbreak
in a population affected by the first wave. It should also be noted that although many
drifted strains could be circulating outside of the population in question (Russell et al.
2008), an imported strain is successful in invading if only if the second wave system
has a reproduction number greater than one (R(2) > 1).

Mathematically, this translates into a two-step system where a first wave or pan-
demic is modelled using a standard SIRmodel, and the final state is fed into a modified
(SAIR) model in which recovered individuals in the first wave become partially sus-
ceptible (A) to a drifted strain in the second wave. We refer to the (SAIR) model as
the second wave system. This approach of modelling the pandemic and the season
after the pandemic may be seen as a truncation of Andreasen’s model (Andreasen
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2003). However, here we add a layer of complexity by studying the effects of differing
population structure assumptions. As the fundamental goal is to understand effects of
host population structure, we do not include seasonality and demographic effects.

The general organization of this paper is as follows. In Sects. 3 and 4we demonstrate
the use of the two step process for the pandemic and first return of the strain for ran-
dom mixing models including homogeneous and heterogeneous random mixing. For
random mixing models, we find in general thatR(2) > 1 (i.e., a second wave occurs)
only after large amounts of antigenic drift. This is contrary to reported observations
of subsequent waves that were caused by mutants of the H1N1 pandemic strains that
were antigenically indistinguishable from the (H1N1)pdm09 pandemic strain (Barr
et al. 2010; El Rhaffouli et al. 2014; Hoschler et al. 2012; Russo et al. 2014). Therefore
in Sect. 5, we repeat the process under the random contact network framework and
find that re-invasion is possible at much lower levels of antigenic drift.

3 Fully homogeneous SIRmodel

3.1 First wave dynamics

With no heterogeneity, the first wave is described by the classic Kermack–McKendrick
SIR model (Kermack and McKendrick 1927) that assumes random mixing. Taking
S, I , R as the fraction of individuals who are susceptible, infectious, and recovered
respectively, the dynamics are given by the equations

S′ = − β̃SI

I ′ = β̃SI − γ I

R′ = γ I

Here β̃ is the transmission rate and γ is the recovery rate. Note that by ignoring
demographic effects, S + I + R = 1. The initial conditions are given by S(0) ≈ 1,
I (0) ≈ 0, R(0) = 0.

The first wave basic reproduction number R(1)
0 is given by the ratio β̃

γ
; see for

example, Brauer et al. (2008). IfR(1)
0 > 1, then an epidemic occurs and the final state

is given by the solution to the relation

S∞ = e−R(1)
0 (1−S∞) (1)

along with limiting values I∞ = 0, R∞ = 1 − S∞ (see, for example, Brauer et al.
(2008); Kermack and McKendrick (1927)).

3.2 Second wave dynamics

Throughout this paper we assume that antigenic drift causes an increase in susceptibil-
ity among the recovered individuals, but does not change infectivity or the infectious
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period. Thus, for the remainder of this paper, we refer to antigenic drift, an increase in
susceptibility and drop in immunity interchangeably. For the second wave caused by a
drifted strain, individuals recovered from the first wave become partially susceptible to
this new strain with susceptibility σ ∈ [0, 1]. The fraction of the partially susceptible
individuals is denoted by A. Of course, the values σ = 0 and σ = 1 correspond to
no and full susceptibility, respectively, and the initial conditions are A(0) ≈ 1 − S∞,
S(0) ≈ S∞, I (0) ≈ 0, R(0) = 0. The SAIR dynamics are given by the equations

S′ = − β̃SI

A′ = − σ β̃AI

I ′ = (β̃S + σ β̃A)I − γ I

R′ = γ I

The reproduction number for the second wave is given byR(2) = β̃
γ
(S(0) + σ A(0)),

which may be reformulated using R(1)
0 = β̃

γ
as

R(2) = R(1)
0 S∞ + σR(1)

0 (1 − S∞) (2)

where S∞ is given by (1). This expression forR(2) depends linearly on σ . For example,
ifR(1)

0 = 2, thenR(2) > 1 for σ > 0.373 (i.e., an outbreak). This gives the suscepti-
bility threshold, σT = 0.373. Thus, in order for a recurrence to be possible, the virus
must undergo significant antigenic drift before it may cause another epidemic. This is
larger than the observed value of σT ≈ 0.25 for influenza A(H3N2) (Kucharski et al.
2015); see also Klein et al. (2014). This suggests that our model needs to be refined
to capture this effect.

4 Multi-group SIRmodel

If the underlying population is not homogeneous in the number of contacts, then incor-
porating heterogeneities has been found to be important (Hethcote and Van Ark 1987;
Pastor-Satorras and Vespignani 2001). A first approach in this direction is to incorpo-
rate heterogeneities by classifying individuals by the average number of individuals
they randomly contact on a daily basis, which is effectively a multi-group model;
see, for example, Hethcote and Van Ark (1987). Let Sk, Ik, Rk denote the fraction
of susceptible, infectious, recovered individuals with k contacts per day. We assume
that an individual has contacts with individuals at a rate proportional to their number
of contacts. In the context of classifying individuals by the number of their contacts,
this model is similar to one used as a mean-field approximation to a network (Pastor-
Satorras and Vespignani 2001). As for the homogeneous model in Sect. 2, we ignore
demography. We let pk denote the proportion of individuals with k daily contacts,
and for convenience we use the probability generating function (P.G.F) formalism,
Ψ (x) = ∑

k pkx
k to represent the probability distribution for the number of contacts.

Here the sum is taken to be from k = 0 to the maximum number of contacts, say
m. Note that Ψ ′(1) = ∑

k kpk = 〈k〉, which is the average number of contacts of an
individual per day.
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4.1 First wave dynamics

Let β denote the probability of transmission per infectious contact, and γ be the
recovery rate. The dynamics are given by the equations

S′
k = −βkSk

∑
� �I�

∑
� �p�

I ′
k = βkSk

∑
� �I�

∑
� �p�

− γ Ik

R′
k = γ Ik, for k = 0, 1, 2, . . . ,m

Since this is a closed system the population is constant (i.e.,
∑

k Sk + Ik + Rk = 1).
Furthermore, setting Sk(0) ≈ pk , Ik(0) = pk −Sk(0), Rk = 0, assures Sk + Ik +Rk =
pk holds for all time. A straightforward application of the next generation matrix
approach (van den Driessche and Watmough 2002) gives

R(1)
0 = β

γ

∑
k k

2 pk
〈k〉 = β

γ

(
Var [k]

〈k〉 + 〈k〉
)

= β

γ

〈k2〉
〈k〉

This shows how R(1)
0 is related to the variance for the distribution of the number of

contacts per day, as observed in Diekmann et al. (1990). Biologically, the average
number of contacts for a contact is higher than the average of the population and

is given by 〈k2〉
〈k〉 (Feld 1991). Thus, R(1)

0 may be interpreted as the total number of
infections caused by an initially infectious individual seeded by a randomly made
interaction.

Now as we did before, we wish to derive the final state for the first wave
to input as the initial conditions for the second wave dynamical equations. The
equation for S′

k is linear in Sk and so the solution has the general form Sk(t) =
Sk(0) exp {− ∫ t

0 βk
∑

� �I�∑
� �p�

dt}. Defining

θ(t) := exp

(

−
∫ t

0
β

∑
� �I�

∑
� �p�

dt

)

gives

Sk(t) = Sk(0)θ(t)k

Thus, to obtain the final size of each compartment it is sufficient to calculate
limt→∞θ(t) = θ∞. Integrating the Rk equation gives

∫ ∞

0
Ikdt = 1

γ
Rk(∞) = 1

γ
(pk − Sk(∞)) = 1

γ
pk(1 − θk∞)

Substituting into θ(t) and simplifying gives
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θ∞ = exp

{

−β

γ

(

1 − θ∞Ψ ′(θ∞)

Ψ ′(1)

)}

(3)

4.2 Second wave dynamics

We extend the first wave model in a straightforward manner to include the individuals
who were infected and recovered in the previous year and segregate them by their
number of contacts.We denote the fraction of degree k individuals thatwere previously
infected as Ak , and define σ as in Sect. 3.2. The dynamics are given by

S′
k = −βkSk

∑
� �I�

∑
� �p�

A′
k = − σβk Ak

∑
� �I�

∑
� �p�

I ′
k = βk(σ Ak + Sk)

∑
� �I�

∑
� �p�

− γ Ik

R′
k = γ Ik, for k = 0, 1, 2, . . . ,m

The initial conditions are Sk(0) ≈ pkθk∞, Ak(0) ≈ pk(1−θk∞), Ik(0) ≈ 0, Rk(0) =
0. The next generation matrix approach givesR(2) = β

γ

∑
k ((σ Ak (0)+Sk (0))k2)

〈k〉 . This can
be rewritten in terms of θ∞ as

R(2) = β

γ

∑
k(σ (1 − θk∞) + θk∞)pkk2

〈k〉 (4)

where θ∞ is found by solving (3) Thus, once again, R(2) is linearly dependent on σ .
The threshold value σT for this multi-group model is found numerically for a given
P.G.F. Ψ (x) and fixed R(1)

0 . For Fig. 1, we choose a time scale so that γ = 1, take

R(1)
0 = 2, approximately thevalueofR0 for the 1918Spanishflupandemic (Mills et al.

2004), and let 〈k2〉
〈k〉 range among 4,6,11. For the distributions we considered, namely,

Poisson, discrete exponential (Exponential) and truncated power law (Power law), σT
is less than the homogeneous mixing case; see Fig. 1. In addition, as 〈k2〉

〈k〉 increases,

the multi-group R(2) values approach the homogeneous R(2) values. Furthermore,
since R(1)

0 is in practice only an approximation, we test the sensitivity of our results

by varying the value forR(1)
0 and computing σT ; the results are summarized by Fig. 2.

5 Contact networkmodels

5.1 The framework

Fixed contact networks are graphs in which nodes and edges represent individuals
and contacts among individuals, respectively. Determining exact contact networks for
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Poisson Exponential Power law
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Fig. 1 a R(2) is plotted against σ across various probability distribution families (columns) and <k2>
<k>

(rows). For these numerics, models are parametrized so that R(1)
0 = 2 and a timescale is chosen so that

γ = 1. b The plots are expanded about the thresholdR(2) = 1. For the probability distributions considered

here, the multi-group model only slightly decreases σT , and the spread narrows as <k2>
<k> increases
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Poisson Exponential Power law
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Fig. 2 Plot of σT versus R(1)
0 for fully homogeneous and multi-group models. Multi-group models were

parametrized to follow Poisson, discrete exponential, and truncated power law distributions. Note that the
multi-group models do not exhibit drastic reductions in σT compared to the fully homogeneous model

a large population is not a feasible task, however, network statistics such as size and
degree probability distributions may be determined; see, for example, Pourbohloul
et al. (2005). With the degree probability distribution, networks can be generated
via the Molloy and Reed algorithm (Newman 2002). A very brief description of the
algorithm is as follows. Assign to each node in a collection of edgeless nodes, a degree
drawn from a given degree probability distribution. For the degree drawn, attach this
number of half edges or ‘stubs’ to each node. Then choose two stubs uniformly and
connect them to make an edge. We note that the sum of total degrees may not be even
and/or loops may be possible in this construction; degrees may be re-drawn to fix the
parity and loops are eliminated. Networks produced by this algorithm are generally
referred to as Configuration Model (CM) networks and have the prescribed degree
distribution, negligible clustering and negligible degree correlations. It is important
to note that following a random edge from any given node, the probability of arriving
at a node of a given degree is not only proportional to the density of such nodes in
the network but also to the degree (i.e., densities being equal, it is more likely to
arrive at higher degree nodes than lower degree nodes). This is in fact consistent with
the real-world phenomenon where ‘your friends have more friends than you do’ (Feld
1991). Deterministic models of SIS and SIR type disease spread on CMnetworks have
been developed; see, for example, House and Keeling (2010), Lindquist et al. (2011),
Miller (2011), Newman (2002), Volz (2008). Most of these models were derived from
seemingly different vantage points, differ in complexity, and differ in the physical
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quantities they track during an epidemic, however they are intrinsically related and in
some cases equivalent; see for example, House and Keeling (2010), Miller and Kiss
(2014), Taylor and Kiss (2014). It is important to keep in mind that for all of the
models just discussed, nodes or individuals undergo changes only in labeling, that is,
individuals change in status as it relates to the disease states, however, the underlying
contact network is assumed to stay fixed throughout the entire process. We note that
the multi-group model described in Sect. 4 may be thought of as an extreme limit of
the random network assumption where edges undergo fast rewiring (Kiss et al. 2017).

5.2 First wave dynamics

Even though theVolz–Miller formulation (Miller 2011;Volz 2008) has amuch simpler
form that the full pairwise SIR model (House and Keeling 2010), it is not straight
forward to compute the infection state and degree distributions of susceptible and
infected nodes after an epidemic, which is crucial for the dynamics of the second
wave. We thus employ the pairwise SIR model (House and Keeling 2010) for the first
wave dynamics. Note that this model is a direct extension of a simpler pairwise model
(Keeling 1999), based on the same full pairwise approach developed in Eames and
Keeling (2002). We assume the network is a CM network with degree PGF Ψ (x) =∑

k pkx
k . Here, β is the transmission rate across an edge and γ is the recovery rate for

an infected node. Furthermore, [XkY j ] denotes the fraction of edges connecting an X
node of degree k with a Y node of degree j , where X ,Y ∈ {S, I , R}. The dynamics
of the pairwise model is given by the system

d

dt
[Sk I j ] = −β[Sk I j ] + β[Sk S j I ] − β[I j Sk I ] − γ [Sk I j ]

d

dt
[Sk S j ] = −β([Sk S j I ] + [S j Sk I ])

d

dt
[Sk R j ] = γ [Sk I j ] − β[I Sk R j ]

d

dt
[Rk R j ] = γ ([I j Rk] + [Ik R j ])

d

dt
Sk = −β[Sk I ]

Here, I = ∑
� I�; for example, [Sk S j I ] = ∑

�[Sk S j I�]. Note that this system is not
closed because we require the equation for [X jYk I ], or the number of triples centered
at node of type Yk having a neighbor of type Xk and another infectious neighbor of any

degree. Thus, a triple closure scheme [X jYk I ] ≈ [X jYk ][Yk I ](k−1)
kYk

is applied (House
and Keeling 2010) to arrive at the full system given by:

d

dt
[Sk I j ] = −β[Sk I j ] + β

[Sk S j ][S j I ]( j − 1)

j S j
− β

[I j Sk][Sk I ](k − 1)

kSk
− γ [Sk I j ]

(5)

d

dt
[Sk S j ] = −β

( [Sk S j ][S j I ]( j − 1)

j S j
+ [Sk Sj][Sk I ](k − 1)

kSk

)

(6)
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d

dt
[Sk R j ] = γ [Sk I j ] − β

( [I Sk][Sk R j ](k − 1)

kSk

)

(7)

d

dt
Sk = −β[Sk I ] (8)

Initial conditions are as follows:

[Sk I j ](0) = kSk(0)
I j (0)

ψ ′(1)
= kpk(1 − π)π

j p j

ψ ′(1)
(9)

[Sk S j ](0) = kSk(0)
j S j (0)

ψ ′(1)
= kpk(1 − π)2

j p j

ψ ′(1)
(10)

[Sk R j ](0) = 0 (11)

Sk(0) = pk(1 − π), (12)

where π , 0 < π 	 1, is the probability a given node is infected at time 0. We note
that these initial conditions satisfy a requirement of the CM assumption that the total
number of edges connecting a degree k node with a degree j node or [NkN j ] satisfies

[NkN j ] =
(
kpk jp j

ψ ′(1)

)

(13)

For SIR disease dynamics on a CM random static network with randomly chosen
infectious individuals, the basic reproduction number for the first wave is given by
Lindquist et al. (2011), Miller (2011), Newman (2002), Volz (2008)

R(1)
0 = β

β + γ

(
ψ ′′(1)
ψ ′(1)

)

(14)

The term β
β+γ

is the transmission probability and ψ ′′(1)
ψ ′(1) is referred to as the average

excess degree. i.e., the degree of a node found by following a random edge minus one
for the edge being followed. Thus,R(1)

0 is the average number of infectious individuals
caused by the typical infectious neighbour minus one to account for the contact who

initially caused this infection. Contrast this with the distribution statistic 〈k2〉
〈k〉 used for

multi-group models and note that 〈k2〉
〈k〉 = ψ ′′(1)

ψ ′(1) + 1.

5.3 Final state of first wave system

Here we obtain the final state of the first wave model, and use it as the initial condi-
tions for the second wave of the disease. Existing literature provides the final fraction
for each cohort of nodes; i.e., Sk(∞), Rk(∞) (note that Ik(∞) = 0). This is done
by showing equivalency between the system (5)–(8) with initial conditions (9)–(12)
(Miller and Kiss 2014) and the edge based compartmental model (EBCM) approach
(Miller 2011; Volz 2008). However, existing techniques do not go as far as evaluating
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the final state for each pair type [Sk S j ](∞), [RkS j ](∞) or [Rk R j ](∞). As such, this
is the main goal of this section.

The first step is to define higher order variables from first wave dynamical variables.
For X ,Y ∈ {S, I , R}, we define PXk |Y j as the probability of arriving at a node in X of
degree k, given that the edge originates from a node in Y of degree j , and it is given
by

PXk |Y j := [XkY j ]
jY j

(15)

The dynamical equation for PSk |S j is found using (6) and (8) to give

d

dt
PSk |S j = βPSk |S j PI |S j − β(k − 1)PI |Sk PSk |S j (16)

Note that here, PI |S j = ∑
k PIk |S j . Equation (16) is linear in PSk |S j , and the solution

is given by

PSk |S j = PSk |S j (0)e
−β

∫ t
0

(
(k−1)PI |Sk−PI |S j

)
dt

(17)

which is rewritten as

PSk |S j = PSk |S j (0)
(
e−β

∫ t
0 PI |Sk dt

)k−1
(

eβ
∫ t
0 PI |S j dt

)

(18)

Define

θk(t) := e−β
∫ t
0 PI |Sk dt (19)

to simplify Eq. (18) as

PSk |S j = PSk |S j (0)θk−1
k θ−1

j (20)

Under the initial uniformity assumptions (9)–(11), θk is independent of k (Miller
and Kiss 2014). In effect,

θ(t) = e−β
∫ t
0 PI |Sk dt (21)

for any k and (20) becomes

PSk |S j = PSk |S j (0)θk−2 (22)

Furthermore, in Miller (2011), the limiting value for θ can be expressed by an implicit
equation. Specifically, θ∞ satisfies the implicit equation

θ∞ = lim
t→∞ θ(t) = γ

β + γ
+ β

β + γ

(
Ψ ′(θ∞)

Ψ ′(1)

)

(23)
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A solution for θ∞ ∈ [0, 1) if it exists, is unique and can be computed numerically.
Note that θ∞ = 1 is always a solution; corresponding to the disease free solution.

Solving (8) using (12), (15), and (19), it follows that

Sk(t) = pkθ(t)k (24)

when π ≈ 0. Hence, the limiting value for Sk near the end of the first wave satisfies

Sk(∞) = pkθ
k∞ (25)

as given in Miller (2011). This has an intuitive interpretation since θ(t) may be inter-
preted as the probability that there is no infectious transmission across a randomly
selected edge leading to a susceptible node (Miller 2011). The negligible clustering
assumption in the CM framework allows for the assumption of independence among
edges. Thus, for a given degree k node, the probability that node remains susceptible
by time t is equal to the probability there has been no transmission across any of its
edges by time t , or θ(t)k .

Note that there are no infectious nodes remaining at the end of the first wave, thus

Rk(∞) = pk − Sk(∞) = pk(1 − θk∞)

In addition, (22) along with (10) and (12) and π ≈ 0 gives

PSk |S j (∞) ≈ kpk
ψ ′(1)

θk−2∞ (26)

Finally, using (15)

[Sk S j ](∞) ≈
(
j p j kpk
ψ ′(1)

)

θ
k+ j−2∞ (27)

This quantity has a nice interpretation. At the end of the first wave, pick an arbitrary
edge of type [NkN j ] and note that so long as the disease has not crossed towards
either node from any of their other neighbors, the edge is guaranteed to be of type
[Sk S j ]. The Sk node has k − 1 remaining edges across which the disease has not
crossed: occurring with probability θk−1∞ . Similarly, the degree j node is susceptible

with probability θ
j−1∞ . Finally, recalling (13), (27) follows.

The calculation giving that

[Sk R j ](∞) ≈
(

γ

β + γ

) (
j p j kpk
ψ ′(1)

)

(1 − θ
j−1∞ )θk−1∞ (28)

is shown in the “Appendix”. Here, we restrict the discussion to an intuitive interpre-
tation of this expression. Take a random edge of type [NkN j ] at the end of the first
wave but prior to the start of the second wave. Ignoring transmissions across this edge
(note that if a transmission did occur across the edge, then the final status [Sk R j ](∞)

is not possible) the degree k node remained susceptible with probability θk−1∞ and the
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Table 1 Novel expressions for the final state of the network SIR pairwise model. They are given in terms
of θ∞ and degree distribution parameters

Limiting values How to compute

Sk (∞) pkθ
k∞

Rk (∞) pk (1 − θk∞)

[Sk S j ](∞)
( j p j kpk

ψ ′(1)
)

θ
k+ j−2∞

[Sk R j ](∞)
(

γ
β+γ

) ( j p j kpk
ψ ′(1)

)
(1 − θ

j−1∞ )θk−1∞

[Rk R j ](∞)
( j p j kpk

ψ ′(1)
) (

1 −
(

γ
β+γ

) (
(1 − θ

j−1∞ )θk−1∞ + (1 − θk−1∞ )θ
j−1∞

)
− θ

k+ j−2∞
)

degree j node became infectious with probability 1−θ
j−1∞ . Finally, the degree k node

remained susceptible only if there was no transmission across the edge itself during
the infectious period for the degree j node; this occurs with probability γ

γ+β
.

Calling upon the conservation of mass equation

[NkN j ] = [Sk S j ](t) + [Sk I j ](t) + [Ik S j ](t) + [Ik I j ](t) + [Sk R j ](t)
+ [RkS j ](t) + [Ik R j ](t) + [Rk I j ](t) + [Rk R j ](t) (29)

and noting that there are no edges with an infectious node remaining at the end of the
first wave and prior to the second wave, then (29) simplifies to:

[NkN j ](∞) = [Sk S j ](∞) + [Sk R j ](∞) + [RkS j ](∞) + [Rk R j ](∞) (30)

Here, [RkS j ](∞) is given by applying a symmetric argument to (28). Finally (30)
gives [Rk R j ](∞) as

[Rk R j ](∞) = [NkN j ](∞) − [RkS j ](∞) − [Sk R j ](∞) − [Sk S j ](∞)

where [NkN j ](∞) is given by (13). Thus, the final state for the first wave system is
fully derived and is summarized in Table 1.

5.4 Second wave dynamics

At onset of the second wave, the recovered individuals in Rk are partially susceptible
to re-infection; we label these individuals as Ak . The susceptibility of these individuals
is reduced by a factor σ ∈ [0, 1]. Individuals in Sk remain in Sk . Figure 3 shows the
possible state transitions. From thefinal state of thefirstwave the secondwavevariables
have initial conditions (with no disease present) Sk(0) = pkθk∞, Ak(0) = pk(1−θk∞).

We are now ready to derive the SAIR network model analogously to the model
derived in Miller (2011). The probability that an individual initially in Sk remains
susceptible by time t , is the probability that the disease has not been transmitted
across any of its k edges. We define θSk as the probability that the disease has not
been transmitted across an edge that leads to an Sk node at time t . A random network
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Fig. 3 State transitions for
degree k node in the dynamics
for the second wave. Here Sk
denotes the fraction of degree k
nodes that escaped infection in
the first wave and have not been
infected in the second wave, Ak
is the fraction of degree k nodes
that were infected and recovered
in the first wave but have not
been infected in the second wave

S k

A k

Ik Rk

generated by the CMmodel has negligible clustering, thus edges are independent and
the probability that a node in Sk is susceptible at time t is θkSk

. Define θAk in a similar
fashion and thus the probability an individual in Ak remains susceptible by time t is
θkAk

. We define φSk , φAk as the fraction of edges leading to a Sk , Ak node and also
connected to an infectious node at time t . Note that these edges are also in θSk and
θAk , respectively. Hence,

d

dt
θSk = −βφSk (31)

d

dt
θAk = −σβφAk (32)

The dynamical equations for φSk , φAk are required. We let hSk be the probability the
node reached following a θSk edge (out of the Sk node) has not been infected at time t .
This probability depends on whether or not the node reached by following this edges
was originally an A or S node. At the onset of the second wave, a node reached by
following a θSk edge is in S j with probability

PSj |Sk (0) := [S j Sk](∞)

kSk(∞)
(33)

Note that values [Sk S j ](∞), and [Sk](∞) are read from Table 1, and that PSk |S j (0)
differs from the value used in (17), which refers to the probability of reaching an S j

node prior to the first wave. Furthermore, the neighbor node reached remains in S j if
none of its j−1 other neighbors has transmitted the disease to it. Thus, the probability
the neighbor reached is in S j at time t is PSj |Sk (0)θS j (t) j−1. Correspondingly, the

probability that a node reached at time t is in A j has probability PA j |Sk (0)θ
j−1
A j

. Thus,

hSk =
∑

j

(
PA j |Sk (0)θ

j−1
A j

+ PSj |Sk (0)θ
j−1
S j

)

Furthermore, in an analogous manner, we define

hAk =
∑

j

(
PA j |Ak (0)θ

j−1
A j

+ PSj |Ak (0)θ
j−1
S j

)
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Table 2 Second wave correlations computed using Table 1 and (15)

Correlations How to compute

PS j |Ak (0)
(

γ
β+γ

) j p j (1−θk−1∞ )θ
j−1∞

(1−θk∞)ψ ′(1)

PA j |Sk (0)
(

γ
β+γ

) j p j (1−θ
j−1∞ )

θ∞ψ ′(1)

PA j |Ak (0)
j p j

(1−θk∞)ψ ′(1)

(
1 −

(
γ

β+γ

) (
(1 − θ

j−1∞ )θk−1∞ + (1 − θk−1∞ )θ
j−1∞

)
− θ

k+ j−2∞
)

PS j |Sk (0)
θ
j−2∞ j p j
ψ ′(1)

The rate atwhich edges enterφSk is equal inmagnitude to the rate atwhich neighbors
reached by following a θSk edge become infectious. Thus, φSk is increased at a rate
− d

dt hSk (t). Furthermore, edges in φSk leave when transmission occurs across the edge
or when the infectious node recovers. Since the dynamics for φAk are similar, the
equations for φSk and φAk may now be written as

d

dt
φSk = −(β + γ )φSk − d

dt
hSk

and

d

dt
φAk = −(σβ + γ )φAk − d

dt
hAk

Thus,

d

dt
φSk = −(β + γ )φSk +

∑

j

( j − 1)
(
σβPA j |Sk (0)θ

j−2
A j

φA j + βPSj |Sk (0)θ
j−2
S j

φS j
)
(34)

d

dt
φAk = −(σβ + γ )φAk +

∑

j

( j − 1)
(
σβPA j |Ak (0)θ

j−2
A j

φA j + βPSj |Ak (0)θ
j−2
S j

φS j
)

(35)

with initial conditions:

θSk (0) = θAk (0) = 1 (36)

φSk (0) = φAk (0) ≈ 0 (37)

We remark that these initial conditions may be interpreted as uniformity in the
distribution of initial nodes infected among all network nodes. FromTable 2, PA j |Sk (0)
and PSj |Sk (0) show that these values do not depend on k, therefore, the equations for
φSk are independent of k. In other words, this means that knowing that a node was in S
at the beginning of the second wave tells us as much information about its neighbors
as possible (i.e., knowing its degree is irrelevant). Therefore, we drop the subscript k
from PA j |Sk (0), PSj |Sk (0), and φSk . The reproduction number for this system can be
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computed as the spectral radius of the next generation matrix (van den Driessche and
Watmough 2002). That is

R(2) = ρ(FV−1) (38)

where we order the variables associated with disease states as {φA1, φA2 , . . . φAn , φS}
from (35) and (34). Thus, the F and V−1 matrices are (n + 1) × (n + 1) with

V−1 = diag

(
1

σβ + γ
, . . . ,

1

σβ + γ
,

1

β + γ

)

and

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 σβPA2|A1(0) . . . (n − 1)σβPAn |A1(0) β
∑

j ( j − 1)PSj |A1(0)
0 σβPA2|A2(0) . . . (n − 1)σβPAn |A2(0) β

∑
j ( j − 1)PSj |A2(0)

0 σβPA2|A3(0) . . . (n − 1)σβPAn |A3(0) β
∑

j ( j − 1)PSj |A3(0)
...

...
...

...

0 σβPA2|S(0) . . . (n − 1)σβPAn |S(0) β
∑

j ( j − 1)PSj |S(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Hence FV−1 is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 σβ
σβ+γ

PA2|A1(0) . . . (n − 1) σβ
σβ+γ

PAn |A1(0)
∑

j
β

β+γ
( j − 1)PSj |A1(0)

0 σβ
σβ+γ

PA2|A2(0) . . . (n − 1) σβ
σβ+γ

PAn |A2(0)
∑

j
β

β+γ
( j − 1)PSj |A2(0)

0 σβ
σβ+γ

PA2|A3(0) . . . (n − 1) σβ
σβ+γ

PAn |A3(0)
∑

j
β

β+γ
( j − 1)PSj |A3(0)

...
...

...
...

0 σβ
σβ+γ

PA2|S(0) . . . (n − 1) σβ
σβ+γ

PAn |S(0)
∑

j
β

β+γ
( j − 1)PSj |S(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with the conditional probabilities given in Table 2. Note that from this matrix, R(2)

is a function of σ . Without a simple expression for ρ(FV−1), for Fig. 4 we com-
pute R(2) numerically and compare with Fig. 1 for fixed R(1)

0 = 2. Furthermore,

as done in the previous section, we allow R(1)
0 to vary and numerically compute the

susceptibility threshold σT . Note that the distinct expressions for R
(1)
0 among homo-

geneous, multi-group, and network models means that the transmission rate β has
to differ so that R(1)

0 is constant among all models. For multi-group and network
models, we compare among Poisson, discrete exponential, and power law probability
distributions with varying average excess degree. Figure 4 shows how networks tend
to have a lower susceptibility threshold, σT , than multi-group models parametrized
with identical probability distributions. As discussed earlier, multi-group models in
turn tend to have slightly lower σT than the fully homogeneous model. The order of
reduction in σT for network models is significant relative to the respective σT value
for the multi-group models and this relation holds for a wide interval of possible basic
reproduction numbers for the first wave as shown by Fig. 5. Lastly, numerics suggest
that as the average excess degree is increased, the network curves approach the fully
homogeneous mixing line.
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Fig. 4 a R(2) is plotted against susceptibility (σ ) for network(dashed), multi-group(solid), and homoge-

neous model(solid, thick). Here, R(1)
0 = 2 and a timescale has been chosen so that γ = 1. b The plots

are expanded about the threshold R(2) = 1. For network models and and a degree distribution with a low
average excess degree, R(2) increases non-linearly with σ ; this leads to R0 > 1 at significantly lower
levels of σ when compared to random mixing models. As the average excess degree (Avg. Excess Deg.,

i.e., 〈k2〉
〈k〉 −1) increases (down a column), all models approach the values for the homogeneous SI R model
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Fig. 5 As in Figure 2, we plot the susceptibility threshold (σT ) versus.R
(1)
0 . Here, we include the network

models along with the random mixing models. In general, σT is lower for network models than the random

mixing models for a wide range ofR(1)
0 values. The gap increases with either increasing R

(1)
0 or lowering

the average excess degree (Avg. Excess Deg., i.e., 〈k2〉
〈k〉 − 1)

The choices for distributions and average excess degrees give a good sampling of
distributions and the parameterizations thereof. However, once a population of inter-
est is identified, a probability distribution should be inferred and the numerical work
should be repeated for an accurate estimation for σT . Notwithstanding, the numerics
do seem to suggest that the spread between σT among random mixing and contact
network models tends to be most pronounced asR(1)

0 increases, and on degree distri-
butions with a smaller average excess degree. Figure 4 shows how networks tend to
have a lower susceptibility threshold, σT , than multi-group models parametrized with
identical probability distributions. In turn, multi-group models tend to have slightly
lower σT than the fully homogeneous model. The order of reduction in σT for network
models is significant relative to the respective σT value for the multi-group models
and this relation holds for a wide interval of basic reproduction numbers for the first
wave as shown by Fig. 5.

To test the accuracy of the predictedσT value,we ran stochastic network simulations
on networks with average excess degree set at 3 andR(1)

0 = 2; see Fig. 6. From Fig. 5,
σT for Poisson, discrete exponential and power law is approximately, 0.235, 0.228 and
0.230 respectively. Thus, the simulations suggests that the model accurately predicts
the point where a paradigm shift occurs. This confirms a significant reduction in the
antigenic drift required for a recurrence event in network models relative to any of the
random mixing models where 0.33 < σT < 0.38.
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Fig. 6 Simulated cumulative cases versus time in the second wave epidemic on Configuration-model net-
works (500,000 nodes) with Poisson, discrete exponential and truncated power law distributions and average
excess degree set at 3. Our model predicts σT = 0.235, 0.228, 0.230 for Poisson, discrete exponential and

truncated power law respectively. After simulating a first wave with R
(1)
0 = 2, we ran 250 simulations of

the second wave for each σ value slightly below and above the theoretically predicted σT value. Results
show that above the threshold there is a clear binary outcome: either a single infectious individual does not
cause an epidemic or an outbreak occurs. This shows that our model accurately predicts the point of regime
change

6 Discussion

The 2009 H1N1 pandemic and the subsequent flu seasons presented a somewhat
enigmatic phenomenon. While the dominant 2009 H1N1 strain that was responsible
for a majority of the cases did not undergo significant or detectable antigenic change
(Klein et al. 2014), closely related variants caused outbreaks in subsequent flu seasons;
as experienced in Morocco, England, Argentina, Singapore, and Greece (Barr et al.
2010; El Rhaffouli et al. 2014; Hoschler et al. 2012; Russo et al. 2014). This has
inevitably led to the formulation of biological and molecular hypothesis to explain
this phenomenon. In this paper, a minimalistic theoretical network model offers a
framework in which a post pandemic recurrence in a given geographical location is
possible even after relatively little antigenic drift.

We also point out that the network models studied here make some simplistic
assumptions that must be considered before directly inferring results to influenza A
spreading on a real human contact network. First of all, Configuration Model net-
works provide a tractable handle on contact network structures; however, they do not
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incorporate clustering or degree correlations, which are expected to be a characteristic
of real contact networks. Explorations on how these factors affect the susceptibility
threshold merits its own investigation. Furthermore, the network models presented
here are fixed while real contact network would not be. However, we expect this to be
reasonable assumption due to the difference in timescales between the dynamics of
a real contact network and that of the first and second wave of influenza A. Finally,
we presented results for common degree distributions and various parameterizations,
yet these distributions were chosen for purely demonstrative purposes. For a more
accurate estimation of σT , proper degree distributions should be inferred based on
the population in question. A couple of natural questions and insights also follow
from this work. Following the first wave, disease dynamics induce correlations among
states and degrees. Numerics not presented here seem to suggest that the second wave
is slightly more likely to occur in a network where these correlations are ignored and
the A and S nodes are wired in a CM-type manner. This suggests that as the network
undergoes slow rewiring between the first and second waves, the invasion risk of a
variant pandemic strain grows. Furthermore, it is reasonable to ask the extent to which
different final sizes between networks and random mixing models for a given R(1)

0
contribute to the network susceptibility to the variant strain.We note that CMnetworks
with Poisson degree distribution have final sizes that correspond to that of the homo-
geneous random mixing assumption (Brauer et al. 2008), however they have different
susceptibility thresholds (σT ≈ 0.24 vs. σT ≈ 0.37). Thus, our findings suggest the
susceptibility of contact networks to re-invasion is driven by relatively fixed contacts,
and the fact that each individual’s contacts are different, rather than differences in final
sizes of the first wave given R(1)

0 .

7 Conclusion

Infectious disease modellers are often faced with the challenge of deciding which
features to include and which to exclude. If too many simplifying assumptions are
made, then the model might fail to produce accurate results representing reality. In
this paper we have shown that host population structure is an important feature to
include in influenza models with implications for both control and evolutionary the-
ory of influenza A. Specifically, we have shown that a population modelled by a
random contact CM network may be drastically more vulnerable to the recurrence
of an influenza strain following an initial pandemic relative to populations modelled
under the random mixing assumption. Under the latter assumption, an increase in
susceptibility of previously infected individuals caused by antigenic drift results in a
linear increase of the reproduction number following the pandemic (R(2)).We showed
that this holds true even when heterogeneity in the number of contacts among indi-
viduals is considered while maintaining the random mixing assumption. This linear
dependence between R(2) and susceptibility requires an unrealistically large amount
of antigenic drift for a recurrence of a novel influenza strain to be possible. This is
unrealistic, since for example, from the time of emergence in 2009–2014, it appears
that the A(H1N1)pmd09 pandemic strain has undergone a fairly limited amount of
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antigenic change (Klein et al. 2014). Furthermore, it has been estimated that the value
for the reduction in cross immunity is at the level of around 25%per annum (Kucharski
et al. 2015).

We considered models that incorporate a network structure where individuals inter-
act with a fixed set of contacts and the number of contacts varies from individual to
individual. We extracted correlations induced by the first wave dynamics and formu-
lated a CM random network model for the second wave. We showed numerically
that for realistic parameterizations and common network degree distributions, R(2)

depends non-linearly on σ . We demonstrated that the reduction in the required anti-
genic drift for a recurrence on a network can be dramatically less than models that
make the random mixing assumption.

This suggests that host population contact structure may be an important factor
in the establishment of a novel influenza strain Furthermore, it suggests that stable
contacts, such as family members, classmates, and coworkers may be crucial for the
spread of influenza in human populations.
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Appendix

In this “Appendix” we derive [Sk R j ](∞) as given in (28). Our starting point is the
differential equation for [Sk I j ] given by (5) and initial condition (9). Defining PI |S j :=
[S j I ]
j S j

, and substituting into (5) gives

d

dt
[Sk I j ] = β[Sk S j ]PI |S j ( j − 1) − [Sk I j ](β + γ ) − βPI |Sk [Sk I j ](k − 1)

multiplying by an integrating factor and simplifying yields

d

dt

(
[Sk I j ]e

∫ t
0

(
(β+γ )+βPI |Sk (k−1)

)
dτ

)
= β[Sk S j ]PI |S j ( j − 1)e

∫ t
0

(
(β+γ )+βPI |Sk (k−1)

)
dτ

Recall the definition for θk given in (19) and the result from Miller and Kiss (2014)
that under the assumption of randomly selected initially infectious individuals, θk is
independent of its subscript. Thus, the previous equation after integrating and simpli-
fication yields

[Sk I j ](t) =
(∫ t

0
β[Sk S j ](a)PI |S j (a)( j − 1)θ−(k−1)(a)e(β+γ )ada

)

θk−1e−(β+γ )t

+ [Sk I j ](0)θk−1e−(β+γ )t

=
(
1

c

) (∫ t

0
β(θ(a)k+ j−2PI |S j (a)e(β+γ )aθ(a)−(k−1)da

)

θk−1e−t(β+γ )
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+ [Sk I j ](0)θk−1e−(β+γ )t

=
(
1

c

) (∫ t

0
β( j − 1)PI |S j θ(a) j−1e(β+γ )ada + c[Sk I j ](0)

)

θ(t)k−1e−(β+γ )t

=
(
1

c

) (∫ t

0
− d

da

(
θ(a) j−1

)
e(β+γ )ada + c[Sk I j ](0)

)

θ(t)k−1e−(β+γ )t (39)

We have used (24) and (27) to substitute for [Sk S j ](a) and

c =
(
j p j kpk
ψ ′(1)

)−1

At this point we leave the current expression for [Sk I j ](t) and turn to calculate
[Sk R j ](t). Recall from (7) that

d

dt
[Sk R j ](t) = γ [Sk I j ] − β[Sk R j ]PI |Sk (k − 1)

Multiplying by an integrating factor gives

d

dt

(
[Sk R j ](t)e

∫ t
0 βPI |Sk (k−1)

)
= γ [Sk I j ]e

∫ t
0 βPI |Sk (k−1) = γ [Sk I j ]θ(t)−(k−1)

Integrating and using (11) gives

[Sk R j ](t) = γ

(∫ t

0
[Sk I j ](τ )θ(τ )−(k−1)dτ

)

θ(t)(k−1)

Substituting (39) yields

[Sk R j ](t) = γ

c

(∫ t

0
Fj (τ )e−(β+γ )τdτ

)

θ(t)(k−1) (40)

where

Fj (τ ) :=
∫ τ

0
− d

da

(
θ(a) j−1

)
e(β+γ )ada + c[Sk I j ](0)

=
∫ τ

0
− d

da

(
θ(a) j−1

)
e(β+γ )ada + π(1 − π)

by substituting initial conditions (9). The groundwork has now been set to extract an
expression for [Sk R j ](∞).

Proposition 1 Equation (28), i.e.,

[Sk R j ](∞) =
(

γ

β + γ

)(
j p j kpk
ψ ′(1)

) (
1 − θ

j−1∞
)

θ(k−1)∞
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Proof From the calculations above let

G j = Fje
−(β+γ )t

so that

G ′
j = F ′

j e
−(β+γ )t − (β + γ )Fje

−(β+γ )t

Noting that

F ′
j = − d

dt

(
θ(t) j−1

)
e(β+γ )t

and after integration and substitution

∫ t

0
G ′

j dt =
∫ t

0
− d

dt

(
θ(t) j−1

)
dt −

∫ t

0
(β + γ )Fje

−(β+γ )t dt

Letting t → ∞ gives

G j (∞) − G j (0) = −θ(t) j−1|∞0 − (β + γ )

∫ ∞

0
Fje

−(β+γ )t dt

That is,

1 − θ
j−1∞ − (β + γ )

∫ ∞

0
Fje

−(β+γ )t dt = 0 (41)

To see why the left hand side is essentially zero requires some work. First note that
G j (0) ≈ 0 follows immediately from the fact that Fj (0) ≈ 0 for small enough π .
To see why G j (∞) = 0, we must consider two cases; F ′

j is positive, thus Fj either
converges to some value or diverges to positive infinity. In the first case it easily follows
that

lim
t→∞G j = 0

In the second case, we apply L’Hôpital’s rule, which gives

lim
t→∞G j = lim

t→∞
F ′
j

(β + γ )e(β+γ )t
= lim

t→∞
− d

dt

(
θ(t) j−1

)

(β + γ )
= 0

since d
dt θ(t) → 0 as t → ∞ which is evident from the fact that PI |Sk → 0 and

differentiating θ from (21). From (41),

1 − θ
j−1∞

(β + γ )
=

∫ ∞

0
Fje

−(β+γ )t dt (42)

Finally, substituting (42) into (41) gives the required result. 
�
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