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Abstract For various cell types and for lamellipodial fragments on flat surfaces, exter-
nally induced and spontaneous transitions between symmetric nonmoving states and
polarized migration have been observed. This behavior is indicative of bistability of
the cytoskeleton dynamics. In this work, the Filament Based Lamellipodium Model
(FBLM), a two-dimensional, anisotropic, two-phase continuummodel for the dynam-
ics of the actin filament network in lamellipodia, is extended by a new description
of actin–myosin interaction. For appropriately chosen parameter values, the result-
ing model has bistable dynamics with stable states showing the qualitative features
observed in experiments. This is demonstrated by numerical simulations and by an
analysis of a strongly simplified version of the FBLM with rigid filaments and planar
lamellipodia at the cell front and rear.
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2 S. Hirsch et al.

1 Introduction

In a variety of physiological processes such as wound healing, immune response,
or embryonic development, crawling cells play a vital role (Ananthakrishnan and
Ehrlicher 2007). Cell motility is the result of an interplay between protrusion at the
’front’ edge of the cell (w.r.t. the direction of movement), retraction at the rear, as well
as translocation of the cell body (Small and Resch 2005). It only occurs when the cell
is polarized with a front and a differently shaped rear (Kozlov and Mogilner 2007).

Both protrusion and retraction involve the so-called lamellipodium, a thin, sheet-like
structure along the perimeter of a cell, consisting of a meshwork of actin filaments.
F-actin is a polar dimer that forms inextensible filaments with a fast-growing plus
(barbed) end and a slow-growing minus (pointed) end (Holmes et al. 1990).

The barbed ends abut on the membrane at the leading edge (Mogilner 2009) and
have a high probability of polymerization (i.e. elongation of the filament by insertion of
new actin monomers), whereas at the pointed ends mostly depolymerization (removal
of one monomer) or disassembly of larger parts through severing of the filament
occurs. Once a balance between polymerization and depolymerization is reached,
each incorporated monomer is being pushed back by newly added monomers. Using
the filament itself as a frame of reference, this can be described as movement of
monomers from the barbed end towards the pointed end, a process called treadmilling
(see Manhart et al. 2015a and the references therein for an overview of the involved
processes and proteins). New filaments are nucleated predominantely by branching
off existing filaments. The resulting meshwork is an (almost) two-dimensional array
of (almost) diagonally arranged actin filaments with decreasing density towards the
cell body (Small et al. 1995; Vinzenz 2012).

The lamellipodium is stabilized by the cell membrane (surrounding the entire cell
Mitchison and Cramer 1996; Vallotton et al. 2005), adhesions to the substrate (Li et al.
2003; Pierini et al. 2000), cross-linking proteins (Nakamura et al. 2007; Schwaiger
et al. 2004) and myosin II filaments (Svitkina et al. 1997), the latter two binding to
pairs of filaments. Some of the long filaments from the lamellipodium extend into the
region behind, where (through the contractile effect of myosin II) forces are generated
which pull the lamellipodium backwards (Small and Resch 2005).

Fish epidermal keratocytes are fast-moving cells with a relatively simple shape
(circular, when stationary and crescent-moon-shaped, when moving Lee et al. 1993),
which makes them ideal subjects for analysis. Furthermore, they exhibit a lamel-
lipodium with a smooth edge and a fairly uniform distribution of filaments (Lacayo
et al. 2007; Small and Resch 2005; Theriot and Mitchison 1991). During the transi-
tion from the stationary to the moving state, the lamellipodium in the rear of the cell
collapses and the rear bundle is formed, where myosin II generates a contractile force
(Svitkina et al. 1997; Tojkander et al. 2012; Verkhovsky et al. 1997).

Treatment with staurosporine (a protein kinase inhibitor) results in the formation of
completely detached lamellipodial fragments, lacking a cell body, microtubules and
most other cell organelles. Remarkably, these fragments can either remain stationary
while adopting a circular shape, or can move on their own, adapting their appearance
to the same crescent-moon shape as the keratocyte itself (Kozlov and Mogilner 2007;
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Fig. 1 aAmoving keratocyte (right) and a moving cytoplast (left), actin is labelled in green, the nucleus in
blue. b, c Amoving and a stationary cytoplast (fragment), respectively. The actin network is labelled in red,
myosin in green. a, b, cAre reproduced from (Manhart 2011). e Idealization with protruding lamellipodium
at the top and lamellipodium collapsed by actin–myosin interaction at the bottom.dModel ingredients of the
simplified FBLM (clockwise, starting top left) cross-link stretching, cross-link twisting, filament-substrate
adhesion, connection between front and rear by stress fibres, membrane stretching, actin–myosin interaction
(color figure online)

Verkhovsky et al. 1999) (see Fig. 1a–c). This suggests that the necessary ingredients
for movement are all present in the lamellipodium (until it runs out of energy).

Various approaches to continuum mechanical modeling of the lamellipodium exist
(see e.g. Kruse et al. 2006; Rubinstein et al. 2005). Bistability results similar to this
work have been obtained in Ziebert et al. (2012), where a phase-field approach is
used to describe the interplay between the cell shape, the mean orientation of the
filaments within the network and the actin–myosin interaction. A strongly simplified
model is developed inKozlov andMogilner (2007),where bistability has beenobtained
analytically as the consequence of the properties of a free energy functional containing
contributions from the lamellipodium and a possible rear bundle.

This work is based on the FBLM (Manhart et al. 2015a; Ölz and Schmeiser
2010a, b), a two-dimensional, anisotropic, two-phase model derived from a micro-
scopic (i.e. individual filament based) description, accounting for most of the

123



4 S. Hirsch et al.

phenomenamentioned above. It describes the actin network in terms of two transversal
families of locally parallel filaments, stabilized by transient cross-links and substrate
adhesions. In Sect. 2 the FBLM is presented and extended by amodel for actin–myosin
interaction between the two families. We assume that myosin filaments can connect
only when the families are anti-parallel enough and they are described as transient,
similar to cross-links. They tend to slide the two families relative to each other, and they
are assumed to have a turning effect, making the two families more anti-parallel. The
derivation of the additional myosin terms is presented in detail. Readers not consulting
(Manhart et al. 2015a; Ölz and Schmeiser 2010a, b) may take this as representative
also for the derivation of the adhesion and cross-link models.

The properties of the actin–myosin model are expected to produce the desired
bistable behavior. This is demonstrated by numerical simulations in Sect. 8, which
indicate the existence of two stable states, a rotationally symmetric nonmoving state
and a polarized state, where the cell moves. The moving state is characterized by a
more anti-parallel network in the rear of the cell, where actin–myosin interaction is
active. Complete collapse of the network and consequential generation of a rear bundle
are avoided, since the FBLM is (so far) unable to deal with such topological changes.

The occurrence of bistability is also proven analytically for a strongly simplified
model. In Sect. 3 the complexity of the model is reduced in a first step by assuming
rigid filaments. Then a planar, translationally invariant lamellipodium is considered in
Sect. 4, which reduces the model to a system of three ordinary differential equations.
Here we also neglect the effects of branching and capping, assumed to be in equi-
librium, as well as filament severing within the modelled part of the lamellipodium,
implying a constant actin density there. Bistability is obtained for this model in Sect.
5. Finally, in Sect. 6 a cell (fragment) is replaced by a pair of connected back-to-
back planar lamellipodia, and the existence of stable stationary (symmetric) as well
as moving (polarized) states is proven. The same bistable behavior is observed in the
simulations of the full model in Sect. 8.

Figure 1 depicts the main components of the simplified version of the FBLM (D
and E) together with one keratocyte and three fragments (A–C). The crescent-moon
shaped cells and cell fragments are moving, whereas the circularly shaped fragment
remains stationary. One can also observe that in moving fragments myosin can pre-
dominantely be found at the cell rear. In Fig. 1e, the idealized model obtained in Sects.
3, 4, 5, 6 is illustrated. It can be interpreted as description of lamellipodial sections at
the front and at the rear of the cell. The main model ingredients are depicted in Fig. 1d:
(e) diagonally arranged filaments (red) together with the membrane (dark green) and
arrows indicating inward pulling forces due to stress fibers in the interior of the cell
(dashed green line), (d) the cell membrane (green, with arrows indicating the force
acting on the barbed ends due to membrane tension), (a) cross-links [blue, producing
friction between the filament families and a turning force trying to establish an equi-
librium angle—arrows show the forces acting on the cross links due to resistance to
stretching and bending above or below a certain angle (visualized by the black dashed
line)], (b) myosin filaments (pink, trying to slide the filament families and to make
them anti-parallel—straight arrows indicate that myosin moves towards the plus ends
along both filaments while curved arrows illustrate the tendency to establish an angle
of 180◦ between the filaments, analogously to the cross-links), (c) adhesions (yellow,
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Mathematical modeling of Myosin induced bistability. . . 5

connecting a filament through themembrane with the substrate thus producing friction
relative to the substrate).

2 Adding actin–myosin interaction to the Filament Based
Lamellipodium Model (FBLM)

Our starting point is the FBLM as introduced in Ölz and Schmeiser (2010a) (see also
Manhart et al. 2015a):

0 = μB∂2s

(
η∂2s F

)
+ μAηDt F − ∂s (ηλinext∂s F)

+ μ̂Sηη∗(Dt F − D∗
t F

∗) ± ∂s

(
μ̂T ηη∗(ϕ − ϕ0)∂s F

⊥)
, (1)

where F = F(α, s, t) ∈ R
2 describes the position and deformation of actin filaments

in the plane at time t . More precisely, the variable α ∈ A ⊂ R, for some interval A, is a
filament label, and s ∈ [−L(α, t), 0] denotes an arclength parameter along filaments,
which means that the constraint

|∂s F | = 1 (2)

has to be satisfied. Here L(α, t) is the maximal length of filaments in an infinites-
imal region dα around α. The filament length density with respect to α and s is
given by η(α, s, t), which will be assumed as given (see Manhart et al. 2015a for
a dynamic model incorporating polymerization, depolymerization, nucleation, and
branching effects). The value s = 0 corresponds to the so called barbed ends of the
polar filaments, abutting the leading edge of the lamellipodium. The rear boundary
s = −L(α, t) is introduced somewhat artificially since the rear end of the lamel-
lipodium is typically not well defined. By polymerization with speed v(α, t) (also
assumed as given in this work), monomers move along filaments in the negative s-
direction. Their speed relative to the nonmoving substrate is therefore given by Dt F
with the material derivative Dt = ∂t − v∂s .

The terms in the first line of (1) correspond to the filaments’ resistance against
bending with stiffness parameter μB , to friction relative to the substrate as a conse-
quence of adhesion dynamics with adhesion coefficient μA, and to the constraint (2)
with the Lagrange multiplier λinext.

The FBLM is actually a two phase model, and F may stand for either of the two
families F+ or F−. The terms in the second line of (1) describe the interaction between
the two families, with the other family indicated by the superscript ∗. The interaction
is the consequence of dynamic cross-linking and leads to a friction term proportional
to the relative velocity between the two families and to a turning force trying to
push the angle ϕ (cosϕ = ∂s F · ∂s F∗) between crossing filaments to its equilibrium
value ϕ0, corresponding to the equilibrium conformation of the cross-linker molecule
(F⊥ = (−Fy, Fx )). The ∗-quantities corresponding to the other family have to be
evaluated at (α∗, s∗), determined by the requirement F(α, s, t) = F∗(α∗, s∗, t). It is
a basic geometric modeling assumption that the coordinate change (α, s) ↔ (α∗, s∗)
is one-to-one, wherever the two families overlap. It requires that filaments of the same
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6 S. Hirsch et al.

family do not cross each other and that pairs of filaments of different families cross
each other at most once. Finally, the coefficients are given by

μ̂S = μS
∣∣∣∣
∂α∗

∂s

∣∣∣∣ , μ̂T = μT
∣∣∣∣
∂α∗

∂s

∣∣∣∣ , (3)

with constants μS,T , wherever F crosses another filament, and zero elsewhere. The
partial derivative refers to the coordinate transformation introduced above.

The FBLMwill be extended by the effects of myosin polymers. The basic assump-
tion is that pairs of crossing actin filaments, which lie antiparallel enough, may be
connected by a bipolar myosin filament. The modeling is similar to that of cross-links
and we will give details of the derivation of the myosin related term (originally pre-
sented inManhart 2011) as an example of the general modeling strategy of the FBLM.
We assume the following about myosin molecules:

• Myosin filaments connect pairs of crossing actin filaments.
• Due to the motor activity of the myosin heads they “walk” towards the barbed ends
of actin filaments with a fixed speed vM .

• The rates of creation and breakage of the myosin connections depend on the forces
acting on them (see below).

• The connections exert twisting forces on the connected actin filaments towards
the equilibrium angle π , i.e. the antiparallel state. These forces are caused by the
stiffness of myosin filaments.

• The connections can be stretched against an elastic restoring force.

The key to the bistability results presented in the next sections is the assumption that
the myosin activity (specified below) depends on the angle between crossing actin
filaments. This is supported by data reported in Reymann (2012), where it has been
shown that myosin can act much more efficiently on antiparallel actin networks as
opposed to branched networks. In the originalmodel of themyosin dynamics presented
in Manhart (2011), the growth of myosin filaments was also included. Here, we omit
myosin size effects for the sake of simplicity. The derivation is done in five steps.

Step 1:Energy contributions Let a filamentwith labelα have a crossingwith a filament
from the other family with label α∗. By s(α, α∗, t) we denote the s-position along the
α-filament where this crossing occurs. If at time t − a a myosin filament has been
attached at this crossing (i.e. the connection has age a at time t), the s-value of the
binding site will change due to the aforementioned treadmilling effect (caused by
actin polymerization) and the myosin motor activity. Therefore at time t the myosin
filament binds to the actin filament at

sa(α, α∗, t) = s(α, α∗, t − a) −
∫ t

t−a

(
v(α, t̃) − vM

)
dt̃ . (4)

Analogously, the position s∗
a (α, α∗, t) at time t of the binding site on the α∗-filament

is computed. With the aid of sa and s∗
a we can now determine the deviations from the

unstretched and untwisted equilibrium state of the myosin filament:
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SMa (α, α∗, t) = F
(
α, sa(α, α∗, t), t

) − F∗ (
α∗, s∗

a (α, α∗, t), t
)
,

T M
a (α, α∗, t) = ϕa(α, α∗, t) − π, where

cos(ϕa(α, α∗, t)) = ∂s F
(
α, sa(α, α∗, t), t

) · ∂s F
∗ (

α∗, s∗
a (α, α∗, t), t

)
.

Note that SM0 = 0 and T M
0 = ϕ − π , i.e. the myosin filament is unstretchted but

possibly bent at the time a connection is created.
Now let ρM (α, α∗, a, t) denote the probability density with respect to age a of

an active myosin connection between the filaments with label α and α∗ at time t .
Following classical modeling for age-structured populations we assume ρM to satisfy

∂tρ
M + ∂aρ

M = −ζ(SMa , T M
a )ρM ,

ρM (a = 0) = β(T M
0 )

(
1 −

∫ ∞

0
ρMdã

)
.

The rate of breakage ζ may depend on the stretching and twisting forces acting on
the myosin filament. We also allow for the possibility that the rate of creation β is
affected by how favorable the angle between the actin filaments is. The interpretation
of the last factor is that a new connection can only connect a so far unconnected pair
of actin filaments.

The main Eq. (1) of the FBLM is the result of a variational approach applied to the
problem ofminimizing a sum of potential energies. Each energy contribution produces
forces acting on the actin filament (i.e. bending stiffness, adhesions, etc.). To include
new terms, it is therefore necessary to formulate the corresponding energy. For the
elastic stretching and twisting of the myosin filaments, we choose the form

UM
stretching

[
F, F∗] =

∫ ∞

0

∫

C(t−a)

κ SM

2

∣∣∣SMa
∣∣∣
2
ρMηη∗d(α, α∗)da,

UM
twisting

[
F, F∗] =

∫ ∞

0

∫

C(t−a)

κT M

2
(T M

a )2ρMηη∗d(α, α∗)da.

The integration domain C(t − a) includes all pairs of filaments (α, α∗), which had a
crossing at time t − a. The constants κ SM and κT M are elasticity coefficients.

Step 2: Scaling The key scaling assumption of the original FBLM is that the average
lifetime of a cross-link or adhesion is small compared to the average time a monomer
spends inside a filament, a ratio denoted by ε. In the limit ε → 0 the non-locality in
time is removed from the problem. Furthermore this reduces the effect of adhesions to
friction with the substrate and that of the cross-linkers to friction between the filament
families (compare Eq. (1)).

This raises the question of what to assume about the average lifetime of a myosin
filament. In Svitkina et al. (1997) it was observed that in stationary cytoplasts myosin
spots stay small and disappear after some time, indicating their transient nature. The
situation is quite different for moving cytoplasts, where the myosin spots grow in size
over time. Since the aim of this paper is to describe the onset of movement, we use

123



8 S. Hirsch et al.

here the same scaling assumption as for cross-links, i.e. that the lifetime of a myosin
filament is relatively short.Without going into further detail about the precise reference
values for all variables and parameters, we state the resulting energy contributions and
equations after scaling: The density equations take the form

ε∂tρ
M
ε + ∂aρ

M
ε = −ζ(SMεa , T

M
εa )ρM

ε ,

ρM
ε (a = 0) = β(T M

0 )

(
1 −

∫ ∞

0
ρM

ε dã

)
.

Since SMεa → 0 and T M
εa → T M

0 = ϕ − π as ε → 0, we can explicitly calculate the
solution to the limiting equation. In the following we will replace dependencies on
T M
0 by dependencies on ϕ. Ignoring a possible initial time layer, the limiting solution

is given by

ρM
0 = β(ϕ)ζ(0, ϕ)

β(ϕ) + ζ(0, ϕ)
e−ζ(0,ϕ)a . (5)

Note thatρM
0 depends on t and the indicesα andα∗ via the angle between the filaments.

The scaled energy contributions take the form

UM
stretching

[
F, F∗] = 1

ε

∫ ∞

0

∫

C(t−εa)

κ SM

2

∣∣∣SMaε

∣∣∣
2
ρM

ε ηη∗d(α, α∗)da,

UM
twisting

[
F, F∗] =

∫ ∞

0

∫

C(t−εa)

κT M

2
(T M

εa )2ρM
ε ηη∗d(α, α∗)da.

The factor 1/ε in front of the stretching contribution is the result of a scaling assump-
tion. It ensures that the effect of myosin filament stretching does not vanish in the
limit, although the energy contribution itself does.

Step 3: Variation and macroscopic limit The next step in the derivation is to calculate
the variations δU [F, F∗]δF of the energy contributions, considering ρM

ε given at this
stage. After passing to the limit ε → 0, we obtain

δUM
stretching

[
F, F∗] δF =

∫

C(t)
μSM

(
DM
t F − DM∗

t F∗) · δF ηη∗d(α, α∗),

δUM
twisting

[
F, F∗] δF =

∫

C(t)
μT M

(
∂s F

⊥ · ∂sδF
)

(ϕ − π)ηη∗d(α, α∗),

where DM
t F denotes the velocity of amyosin binding site on the actin filament relative

to the substrate, with

DM
t := ∂t − (v − vM )∂s .

The stiffness parameters μSM and μT M result from using the representation of ρM
0

given in (5) to evaluate the integrals with respect to the myosin age a. They take the
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Mathematical modeling of Myosin induced bistability. . . 9

form

μSM (ϕ) = β(ϕ)κ SM

ζ(0, ϕ) (β(ϕ) + ζ(0, ϕ))
, μT M (ϕ) = β(ϕ)κT M

β(ϕ) + ζ(0, ϕ)
.

Motivated by the findings in Reymann (2012), we assume that there exists a cutoff
angle ϕ < π such that

μSM (ϕ) = μT M (ϕ) = 0 for ϕ < ϕ < π.

Step 4: Euler–Lagrange Equations The final step in the derivation is to formulate the
corresponding Euler-Lange equations. Together with the original terms given in (1),
the modified model takes the form

0 = μB∂2s

(
η∂2s F

)
+ μAηDt F − ∂s (ηλinext∂s F)

+ μ̂Sηη∗(Dt F − D∗
t F

∗) ± ∂s

(
μ̂T ηη∗(ϕ − ϕ0)∂s F

⊥)

+ μ̂SMηη∗(DM
t F − DM∗

t F∗) ± ∂s

(
μ̂T Mηη∗(ϕ − π)∂s F

⊥)
, (6)

with

μ̂SM = μSM (ϕ)

∣∣∣∣
∂α∗

∂s

∣∣∣∣ , μ̂T M = μT M (ϕ)

∣∣∣∣
∂α∗

∂s

∣∣∣∣ , (7)

The introduction of μ̂SM and μ̂T M is a consequence of the mapping between C
and {(α, s) : α ∈ A, s ∈ [−L(α, t), 0]}. Further details of the model derivation can
be found in Manhart (2011).

Step 5: Boundary conditions describe the forces acting on the filaments at their barbed
ends and at the artificially introduced ends at the boundary of the modeling domain:

μB∂s

(
η∂2s F

)
− ηλinext∂s F ± μ̂T ηη∗(ϕ − ϕ0)∂s F

⊥ ± μ̂T Mηη∗(ϕ − π)∂s F
⊥

= − f0, ∂
2
s F = 0, for s = 0.

μB∂s

(
η∂2s F

)
− ηλinext∂s F ± μ̂T ηη∗(ϕ − ϕ0)∂s F

⊥ ± μ̂T Mηη∗(ϕ − π)∂s F
⊥

= fL , ∂2s F = 0, for s = −L . (8)

Thus, there are no torques applied at the ends. The choice of the linear forces f0
and fL along the leading edge and, respectively, along the artificial boundary will be
discussed later.
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3 Rigid actin filaments in the limit of large bending stiffness

We want to derive a simplified model with rigid actin filaments. This is motivated on
the one hand by the observation that filaments within the lamellipodium are typically
rather straight (Vinzenz 2012). On the other hand stiff filaments can be interpreted as
a description of only the outermost part of the lamellipodial region, where filaments
are (locally) straight. The resulting model is mathematically much simpler and can be
derived by assuming a relatively large bending stiffness μB . The limit μB → ∞ will
be carried out formally in this section.

The solutions of the formal limit

0 = ∂2s

(
η∂2s F

)

of (6), together with the boundary conditions

∂2s F = 0, for s = 0,−L ,

and with the constraint (2), can be written as

F(α, s, t) = F0(α, t) + (s − s0(α, t))d(ω(α, t)), with d(ω) =
(
cosω

sinω

)
, (9)

where s0 is determined by

∫ 0

−L
η(α, s, t)(s − s0(α, t))ds = 0.

In other words, F0 is the center of mass of the filament, and d(ω) its direction. The
components of F0 and the angle ω are still to be determined. The total force balance
obtained by integration of (6) with respect to s and using the boundary conditions (8)
reads

f0 + fL =
∫ 0

−L

(
μAηDt F + μ̂Sηη∗(Dt F − D∗

t F
∗)

+ μ̂SMηη∗(Dt F − D∗
t F

∗ + vM (∂s F − ∂s F
∗))

)
ds. (10)

Note that it does not contain μB and therefore remains valid in the limit. Similarly,
the total torque balance is obtained by integration of (6) against (F − F0)⊥:

(F − F0)
⊥(s = 0) · f0 + (F − F0)

⊥(s = −L) · fL

= ∓
∫ 0

−L
μ̂T ηη∗(ϕ − ϕ0)ds ∓

∫ 0

−L
μ̂T Mηη∗(ϕ − π)ds

+
∫ 0

−L
(F − F0)

⊥ ·
(
μAηDt F + μ̂Sηη∗(Dt F − D∗

t F
∗)
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+ μ̂SMηη∗(Dt F − D∗
t F

∗ + vM (∂s F − ∂s F
∗))

)
ds. (11)

This completes the formulation of the rigid filament version of the FBLM. Substitution
of (9) into (10) and (11) gives a system of ordinary differential equations for F0 and
ω. Note that coupling with respect to α happens only indirectly through the interaction
between the two filament families.

4 A geometric simplification: the planar lamellipodium

Since in keratocytes the leading edge is rather smooth, we approximate a piece of
lamellipodium by an infinite strip, parallel to the x-axis, and invariant to translations
and to reflection. For the given data this means that the maximal filament length L
and the polymerization speed v are constants. As a further simplification, we assume
no filament ends inside the modeled part of the lamellipodium with the consequence
η = 1 (and s0 = −L/2).

We assume two families of rigid filaments (9) with

F+
0 (α+, t) =

(
x(t) + α+

y(t)

)
, α+ ∈ R, ω+(α+, t) = ω(t) ∈ [0, π/2],

F−
0 (α−, t) =

(−x(t) + α−

y(t)

)
, α− ∈ R, ω−(α−, t) = π − ω(t) ∈ [π/2, π ],

giving

F±(α±, s±, t) =
(±x(t) + α± ± (s± + L/2) cosω(t)

y(t) + (s± + L/2) sinω(t)

)
, α± ∈ R, s± ∈ [−L , 0].

The angle between two crossing filaments and the coordinate change between the two
families mentioned in Sect. 2 are easily computed:

ϕ = π − 2ω, α− = α+ + 2x(t) + (2s+ + L) cosω(t), s− = s+.

It provides the geometric quantity needed in (3) and (7):

∣∣∣∣
∂α−

∂s+

∣∣∣∣ = 2 cosω.

This quantity can be interpreted as a measure of the density of crossings, with a
maximum at ω = 0 (fully collapsed lamellipodium) and a minimum at ω = π/2 (all
filaments are parallel, no crossings).

With the planar lamellipodium ansatz, the Eqs. (10) and (11) become independent
of α and constitute a system of three ordinary differential equations for the unknowns
(x(t), y(t), ω(t)):
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ẋ
[
μA + 4(μS + μSM (π − 2ω)) cosω

]

= f0,x + fL ,x

L
+ μAv cosω + 4μSv cos2 ω

+ 4μSM (π − 2ω)(v − vM ) cos2 ω, (12)

ẏμA = f0,y + fL ,y

L
+ μAv sinω, (13)

ω̇
[
μA + 4 sin2 ω cosω(μS + μSM (π − 2ω))

]

= 6

L2 d(ω)⊥ · ( f0 − fL) + 24

L2μT (π − 2ω − ϕ0) cosω

− 48

L2μT M (π − 2ω)ω cosω. (14)

5 Forces at the filament ends-steady protrusion

The membrane stretched around the lamellipodium exerts a force on the polymerizing
barbed ends. On the other hand, we assume that the filaments at the rear of the lamel-
lipodium are connected to stress fibres pulling them backwards, another consequence
of actin–myosin interaction. Both the membrane force and the stress fibre force will
be described as acting in the negative y-direction orthogonal to the leading edge, i.e.

f0,x = fL ,x = 0, f0,y = − fmem, fL ,y = − fstress . (15)

If these forces are modeled as constant, the Eq. (14) for the angle is decoupled from
the remaining system. For an analysis of its dynamic behavior, we choose a model for
the stiffness coefficients of the actin–myosin connection:

μSM (ϕ) = μSM (ϕ − ϕ)+, μT M (ϕ) = μT M (ϕ − ϕ)+, (16)

with μSM , μT M > 0, ϕ0 < ϕ < π , and with the notation (.)+ for the positive part.
Bistability can now be obtained with appropriate assumptions on the parameters.

The right hand side of (14) can be written as

24

L2 cosω

(
fstress − fmem

4
+ h(ω)

)
with

h(ω) = μT (π − 2ω − ϕ0) − 2ωμT M (π − 2ω − ϕ)+.

It is a simple exercise to prove:

Lemma 1 If

μT M

μT
>

ϕ + π − 2ϕ0 + 2
√

(π − ϕ0)(ϕ − ϕ0)

(π − ϕ)2
, (17)
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then h(ω) as defined above has three simple zeroes ω10, ω20, ω30, satisfying

π

2
> ω10 = π − ϕ0

2
>

π − ϕ

2
> ω20 > ω30 > 0.

Theorem 2 Under the assumptions of Lemma 1 and for | fstress− fmem | small enough,
the ordinary differential Eq. (14)with the forces given by (15) possesses four stationary
solutions ω j , j = 0, . . . , 3 with

ω0 = π/2 > ω1 = π − ϕ0

2
+ fstress − fmem

8μT
>

π − ϕ

2
> ω2 > ω3 > 0,

where ω0 and ω2 are unstable, and ω1 and ω3 are asymptotically stable.

Again the proof is straightforward. For the stable steady states, the lamellipodium
has the constant protrusion speeds

ẏ = v sinω1,3 − fstress + fmem

μAL
.

For the equilibrium angle ω1, we typically expect the speed to be positive. It is not
affected by actin–myosin interaction. The smaller speed corresponding to ω3 might
actually be negative due to membrane tension and stress fibres, i.e. the second stable
state, where the lamellipodium is collapsed by actin–myosin interaction, might be
retractive.

Finally, the steady states also produce lateral flow with constant speeds

ẋ = v cosω1 and ẋ =
(

v − vM 4μSM cosω3

μA + 4μS cosω3 + 4μSM cosω3

)
cosω3,

respectively, where in the collapsed state the lateral flow speed produced by polymer-
ization is reduced by actin–myosin interaction.

6 Coupling of two opposing lamellipodia–bistability

As a caricature of a cell fragment, we consider two back-to-back planar lamellipodia
(see Fig. 1e). For notational convenience, the bottom lamellipodium is rotated by 180◦
in the mathematical description. Therefore we consider two versions of the system
(12)–(14) with unknowns (x, y, ω) and (x̂, ŷ, ω̂). The assumption that the total forces
exerted on the fragment by membrane tension and by stress fibres vanish, imply that
(15) is used in both systems with the same values for fmem and fstress . However, we
allow the option that these forces are not constant but regulate the size of the fragment,
measured by y+ ŷ. We first consider the case of a constant given membrane force and
a size dependent force by stress fibres:

Case A : fmem = const, fstress = fstress(y + ŷ).
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Typically fstress will be an increasing function, but the details are not important for
our considerations.

Adding the Eq. (13) for y and ŷ leads to a closed system of three equations for
y + ŷ, ω, and ω̂:

(ẏ + ˙̂y)μA = − 2

L
( fmem + fstress(y + ŷ)) + μAv(sinω + sin ω̂), (18)

ω̇ g(ω) = cosω

(
fstress(y + ŷ) − fmem

4
+ h(ω)

)
, (19)

˙̂ω g(ω̂) = cos ω̂

(
fstress(y + ŷ) − fmem

4
+ h(ω̂)

)
, (20)

with

g(ω) = L2

24

[
μA + 4 sin2 ω cosω(μS + μSM (π − 2ω))

]
.

We shall prove that with appropriate assumptions on the data, the problem has 4 stable
steady states.

Theorem 3 Let the assumptions of Lemma 1 hold, let the function fstress be con-
tinuously differentiable with bounded positive derivative, and let fmem, μAvL, and
the Lipschitz constant of fstress be small enough. Then the system (18)–(20) has four
stable steady states, satisfying

ω = ω̂ = ωCL, (21)

ω = ω̂ = ωMY, (22)

ω = ωCL, ω̂ = ωMY, (23)

ω = ωMY, ω̂ = ωCL, (24)

where the purely cross-link dominated state ωCL and the myosin-influenced state ωMY

are given by:

ωCL := ω10 + O( fmem + μAvL) ,

ωMY := ω30 + O( fmem + μAvL) .

Proof From (18) we obtain that steady states have to satisfy

fstress(y + ŷ) = − fmem + μALv

2
(sinω + sin ω̂). (25)

This implies, again for stable steady states, h(ω) = h(ω̂) = O( fmem + μAvL).
The existence of the four steady states is then a consequence of a straightforward
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perturbation argument. The coefficient matrix in the linearization of (18)–(20) can be
written as

⎛
⎝

−2κ/(μAL) v cosω v cos ω̂

Aκ Ah′(ω) 0
Âκ 0 Âh′(ω̂)

⎞
⎠ ,

with positive constants A and Â, and with 0 < κ = f ′
stress(y+ ŷ) 
 1. A perturbation

analysis of the eigenvalue problem for small κ (i.e. formal expansion of eigenvalues
in terms of powers of κ and subsequent justification by a contraction argument) gives
the eigenvalues

λ1 = Ah′(ω) + O(κ), λ2 = Âh′(ω̂) + O(κ),

λ3 = κ

(
− 2

μAL
+ v cosω

h′(ω)
+ v cos ω̂

h′(ω̂)

)
+ O(κ2),

which are all negative at the four steady states for small enough κ , because of
h′(ω10), h′(ω30) < 0. ��

For the steady states the protrusion speed of the fragment is constant and given by

ẏ = − ˙̂y = v

2
(sinω − sin ω̂). (26)

For the symmetric steady states (21), (22), the protrusion speeds vanish, hence they
describe stationary cells (or fragments). The equilibrium angles in the lamellipodia
in this case are either both affected by myosin, (22), or both result only from cross-
link activity (21). The asymmetric steady states (23) and (24) describe a protruding,
polarized cell. In both cases it consists of a collapsed cell rear, in which myosin is
active (ω = ωMY), and a cell front with a steeper equilibrium angle caused only by
cross-link activity (ω = ωCL).

Finally, we alsomention the case of a constant stress fibre force and a size dependent
membrane force:

Case B : fstress = const, fmem = fmem(y + ŷ).

Without going through the details, we note that the qualitative results are the same and
a theorem analogous to Theorem 3 can be proven.

7 Parameter dependencies

The simplifications of the two preceding sections lead to several (testable) statements.
This section can be seen as a discussion of the results so far.
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Protrusion speed versus adhesion strength For the coupled lamellipodium of Sect. 6
the protrusion speed is given by (26). For a moving fragment, i.e. situation (23) or
(24), we compute

d(sinωCL − sinωMY)

dμA
=

(
cosωCL − dωMY

dωCL
cosωMY

)
dωCL

dμA
.

Substitution of (25) into the stationary version of (19) (resp. (20)) shows that
dωCL/dμA > 0. On the other hand, the difference of the stationary versions of (19)
and (20) gives dωMY/dωCL < 0. Thus, the protrusion speed increases with adhesion
strength. Since the results of Theorem 3 are restricted to relatively small adhesive-
ness, this is in agreement with experimental results (Barnhart et al. 2011) showing
two regimes: for smaller adhesion strengths the cell speed is positively correlated with
the adhesiveness of the ground. After reaching a maximum speed, the correlation is
reversed for larger adhesion strengths.

It is not clear if the FBLM in its present form is able to describe the second regime,
which might be caused by long-lived focal adhesions, contradicting the assumption
of rapid adhesion turnover. It should also be noted that it has been hypothesized (see
Barnhart et al. 2011) that the reduction of cell speed on strongly adhesive ground is
mainly due to biochemical reasons as opposed to purely mechanical effects. Figure 2
illustrates these considerations.

Onset of myosin activity The inequality (17) gives a criterion for the existence of a
myosin influenced stable steady state. Myosin has to be strong enough compared to
forces maintaining the branched actin network structure (e.g. Arp2/3, filamin, etc.).
Only then is it able—either spontaneously or aided by a pushing force—to initiate the
collapse of the network, which precedes bundle formation. Data like those presented in

Fig. 2 Influence on cell speed in different adhesive regimes
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Reymann (2012) show that myosin activitiy is influenced by actin network structure.
Themodel formyosin activity (16), used for the analyis in this work, can be interpreted
as a limiting case, in which the activity is set to zero for unfavorable angles. From the
approximation

μT M (π − ϕ)2 > 4μT (π − ϕ0)

of (17) for ϕ close to π , it is easily seen that if the interval for the myosin angle is
small, this needs to be compensated by a large stiffness of the myosin filament in
order to initiate symmetry breaking. In our model myosin is necessary for the onset
of movement, i.e. polarization of originally symmetric fragments. In Yam (2007) the
number of stationary cells spontaneously initiatingmotilitywithin a given time interval
was reduced from 45 to 10% by inhibiting myosin using blebbistatin, which supports
our findings.

Protrusion speed versus myosin strength In the presented model two parameters char-
acterize myosin strength, the elasticity coefficients of myosin filament stretchingμSM

and bendingμT M . WhereasμSM has no influence on the equilibrium angle and there-
fore also not on the protrusion speed, larger values of μT M lead to faster cells (easily
seen in the expression for h(ω)). This is consistent with experimental results found in
Barnhart et al. (2011) wheremyosin contractionwas either inhibited using blebbistatin
(leading to slower cells at least for low to medium adhesion strengths) or enhanced
using calyculin A (leading to faster cells in all adhesive regimes).

8 Simulations with the full model

In this section we demonstrate that with the additional term describing myosin within
the lamellipodium, the model is able to produce cells/cell fragments that, depending
on the initial conditions, will either remain stationary or start moving. In contrast to
the simulations presented in Manhart et al. (2015a, b), here the movement is achieved
without a continuing external signal and without varying the polymerization speed.
In the simulation, we work with the full model (6)–(8) and not with the simplifica-
tions introduced in Sects. 3 and 4. However, the qualitative results of Sect. 6 will be
reproduced.

Parameter values Parameter values are chosen as in Manhart et al. (2015a) with the
following exceptions and additions: we work with a constant filament density η = 1
in parameter space, which means that the filament number remains constant with
branching and capping always in equilibrium. No pointed ends appear within the
simulation region, which corresponds to a fixed filament length of L = 8µm. The
polymerization speed is fixed at the constant value v = 3µmmin−1. In Svitkina et al.
(1997) it has been observed that myosin speckles that are formed in the lamellipodium
drift inwards with time. This indicates that the myosin velocity has to be smaller
than the polymerization speed. We therefore chose vM = 1µmmin−1. Motivated
by Reymann (2012) we assume that myosin can only act on actin filaments if the
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angle between the filaments is larger than ϕ = 100◦. For the stiffness parameters of
stretching and twisting the cross-links and myosin good estimates are hard to obtain,
since their exact concentration in the lamellipodium is difficult to determine.Motivated
by Lemma 1 we chose the myosin twisting force larger than the cross-link twisting
force (see Table 1), but of the same order of magnitude. Additionally we increased the
bending stiffness by a factor 10 in order to get closer to the analytical case examined
in Sect. 3. Here we concentrated on the case of size control via stress fiber forces from
the inside, i.e. the membrane force was set to zero. The stress fiber force was chosen to
be fstress = μI P (A− A0)+, where A is the current size of the area surrounded by the
lamellipodium, A0 is the equilibrium inner area and μI P is the corresponding (inner
pulling) force constant. In order not to distort the direction of the filaments, we let the

Table 1 Parameter values

Var. Meaning Value Comment

L Filament length 8µm Order of magnitude as in
Verkhovsky et al. (1999)

A0 Equilibrium inner area 300µm2 Order of magnitude as in
Verkhovsky et al. (1999)

N Total filament number 9000 Order of magnitude as in
Koestler et al. (2008)

μB Bending elasticity 0.7 pNµm2 10 times higher than in Gittes
et al. (1993)

μA Macroscopic friction
caused by adhesions

0.14 pN minµm−2 Measurements in Li et al.
(2003), Oberhauser et al.
(2002), estimation and
calculations in Ölz et al.
(2008), Ölz and Schmeiser
(2010a, b)

v Polymerization speed 3µmmin−1 In biological range

ϕ0 Equilibrium
cross-link angle

70◦ Equal to the branching angle

μS Cross-link stretching
constant

4.2 × 10−3 pNmin µm−1

μT Cross-link twisting
constant

4.2 × 10−3 pN µm

vM Myosin velocity 1µmmin−1 Order of magnitudes as in
Svitkina et al. (1997)

ϕ Myosin cut-off 100◦

μSM Myosin stretching
constant

4.2 × 10−3 pN min µm−1

μT M Myosin twisting
constant

1.4 × 10−2 pNµm Motivated by Lemma 1,
Simulation 1

1.8 × 10−2 pNµm Motivated by Lemma 1,
Simulation 2

μstress Stress fiber force 5 × 10−2 pNµm−1
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stress fibers pull only tangentially on the pointed ends. The numerical parameters are
chosen as in Manhart et al. (2015a), i.e. 36 discretization nodes in α direction and 9
nodes in s-direction. The timestep used is 2 × 10−3 min.

Simulation results Figure 3 shows the evolution of the cell in two different numerical
experiments over a timespan of 15 min. In both cases identical initial conditions were
used, in which the left side of the cell is deformed. This could be caused either by
internal fluctuations or by a pushing force from the left, two situations known to
lead to symmetry breaking in fragments (Verkhovsky et al. 1999). Both simulations
use the same set of parameters, with the exception of the value of the myosin twisting
constant,μT M , which is smaller in the left column than in the right column. In Fig. 3a–
d it can be observed that even though the filaments on the left initially lie anti-parallel
enough for myosin to act on them, myosin does not establish itself there permanently.
Lemma 1 gives a possible explanation for this: If myosin is too weak compared to the
cross-links, there is no myosin/cross-link-equilibrium, hence the cell reverts back to a
purely cross-link dominated state. This situation corresponds to the steady state (21)
in Theorem 3.

The case of a larger myosin twisting constant is depicted in Fig. 3e–h. In situation
case a bundle-precursor is formed on the left, whereas the right stays myosin free. This
allows the cell to change to amoving steady state (see the SupplementaryMaterial for a
movie) with a collapsed lamellipodium at the back and a non-collapsed lamellipodium
at the front, a situation described by the steady states (23) and (24) in Theorem 3.
One can also observe the contraction of the rear bundle leading to a more half-moon
shaped cell. Clearly if the initial deformations are so small that no myosin can attach,
the cell always reverts back to the stationary state. This refers to a situation where the
fluctuations or pushing force are too small to cause symmetry breaking.

9 Discussion and outlook

In this work, we extended the FBLM introduced in Manhart et al. (2015a), Ölz and
Schmeiser (2010a) by a description of actin–myosin interaction. The limit of large
bending stiffness led to a simplified model for rigid filaments. The additional simpli-
fication of a planar lamellipodium reduces the model to a small ODE system for the
center ofmass of a reference filament and the anglewith themembrane. A caricature of
a cell fragment has been described by considering two versions of the model coupled
by membrane and stress fiber forces. Bistability has been shown in the asymptotic
regime of relatively small coupling forces and adhesion strength. Since these results
are almost explicit, various parameter dependencies could be obtained. Furthermore,
we carried out numerical simulations based on the full FBLM supporting the main
analytical result of bistable behaviour.

Our model is able to qualitatively reproduce the observed bistability of cells and
cell fragments (Verkhovsky et al. 1999). Since myosin has been shown to be effective
only if the angle between the filaments is large enough (Reymann 2012), our specific
modeling of the myosin effect to be angle-dependent seems to be a reasonable choice.

In the numerical simulations we have shown that for an initially slightly asymmetric
cell, one of two stable steady states is attained, depending on the parameters formyosin
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Fig. 3 Cell view with clockwise filaments in blue and anti-clockwise filaments in red. Green stars in the
lamellipodiummark the area where myosin is active. The black dot marks the origin, the black star the cell’s
center of mass. The insets show the angles between the filaments of the different families, averaged along
each filament, parametrized along the membrane with 0 being at the very right and going counterclockwise.
Blue (dashed) lines refer to the clockwise filament family, red (solid) lines to the anti-clockwise filament
family. The horizontal green line at 100◦ marks the myosin cut-off value ϕ. a–d Time series with μT M =
1.4 × 10−2 pNµm. Myosin is initially active in the left part of the cell, but is not strong enough to stay
there. Eventually the cell goes back to the stationary cross-link dominated equilibrium. e–h Time series with
μT M = 1.8× 10−2 pNµm. Myosin is initially active in the left part of the cell, where a myosin/cross-link
equilibrium emerges. Since the right of the cell is unaffected by this, the cell moves to the right. Parameters
as in Table 1 (color figure online)
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and cross-links. If myosin is too weak to exert considerable twisting forces, the effects
from cross-links on the local angles between the filaments dominate and the cell reverts
back to a symmetric nonmoving shape. On the other hand, if myosin forces are strong
enough, a bundle precursor forms at the ’rear’ (the location of initial asymmetry), and
the cell starts moving. What is apparent in these simulations is that myosin tends to
locate at the back of the lamellipodium (away from the membrane). This is also in
good agreementwith experimental findings. It is remarkable that both for the analytical
setting aswell as in the numerical simulations,movement is an self-organized behavior,
once an initial asymmetry has been established. It is known that keratocytes exhibit
little if any chemotaxis, i.e. directed movement to outward cues.

An important issue remains to be addressed: The analytical model, dealing only
with pieces of lamellipodium at the front and at the rear of the cell, avoids the transition
zone separating the two parts of the lamellipodium with an intact network on the one
hand and, on the other hand, compression to a rear bundle. It can be expected that due
to lateral flow, actin filaments are drawn into the bundle in these transition regions.
However, we expect that this happenswith the pointed ends first entering the bundle, as
opposed to the simulations presented here. A model supporting the necessary change
of orientation in the transition zone is not available so far, and its derivation is the
subject of ongoing work.
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