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Abstract
Two strains of Pseudomonas putida, Psp-LUP and Psp-SPAR, capable of growth on the quinolizidine alkaloids, lupanine 
and sparteine respectively, were studied here. We report the isolation of Psp-SPAR and the complete genome sequencing of 
both bacteria. Both were confirmed to belong to P. putida, Psp-LUP close to the type isolate of the species (NBRC14164T) 
and Psp-SPAR close to strains KT2440 and F1. Psp-SPAR did not grow on lupanine but did contain a gene encoding a puta-
tive quinolizidine-17-hydroxylase peptide which exhibited high similarity (76%identity) to the lupanine-17-hydroxylase 
characterised from Psp-LUP.

Introduction

Removal of the neurotoxic alkaloid lupanine, present in the 
beans of many (“bitter”) varieties of cultivated lupin (Lupi-
nus albus), is required before consumption by humans or 
livestock. Whilst this can be achieved by prolonged soaking 
in water, more rapid removal can be mediated via microbial 
fermentation [1, 2]. A strain of Pseudomonas (Psp-LUP 
[= DH2001]), capable of growth on lupanine as sole source 
of carbon and nitrogen, was isolated from soil in Poland by 
Reifer et al. [3], and its use for the removal of lupin alkaloids 
was suggested. Reifer et al. [3] referred to this organism as 
“Pseudomonas lupanini” but it was not formally described. 
Later examination of this isolate by Hopper et al. [4] found it 
to form a green-yellow fluorescent pigment when cultivated 
on King’s B agar, and to exhibit other cytological and bio-
chemical similarities to Pseudomonas putida.

Investigation of the mechanism of lupanine degradation 
by Psp-LUP showed that the initial step in degradation of the 
fused heterocyclic ring structure containing tertiary nitro-
gen atoms (Fig. 1) is hydroxylation in the 17- position to 
give 17-hydroxylupanine [5]. This step is catalysed by an 

inducible enzyme [6] which has been fully characterized as 
PQQ (Pyrroloquinoline quinone)-containing haemoprotein 
[4]. The enzyme is not an oxygenase but acts as a dehy-
drogenase to give a double bond which is then hydrated to 
introduce the hydroxyl group. The gene for the enzyme has 
been sequenced and active enzyme characterised following 
its heterologous expression [7, 8].

The dominant alkaloid in the South American lupin (L. 
mutabilis) is sparteine, also a quinolizidine alkaloid, which 
differs from lupanine in lacking an oxygen on carbon 2 
(Fig. 1). Unlike lupanine which must be purified from lupin 
beans, sparteine is commercially available and is used by 
chemists as a chiral ligand in organic syntheses [9].

It is likely that similar pathways are used for the degra-
dation of these two compounds and to pursue further the 
bacterial catabolism of these, a second strain Pseudomonas 
(Psp-SPAR) was isolated. As the sequence of the gene for 
lupanine hydroxylase is known (AJ318095; [7]), it was 
decided to sequence the genomes of both organisms to see 
if a similar gene was present in the sparteine-degrading 
bacterium.

Materials and Methods

Isolation of Pseudomonas putida (Psp‑SPAR)

The organism was isolated from a garden compost heap 
in Aberystwyth, Wales (52.4156,-4.0591) in 2010 by 
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selective culture on mineral medium containing 50 mM K+/
Na + phosphate buffer (pH 7.0) containing 4 ml/L of salts 
solution [10], with 2 mM sparteine as the sole carbon and 
nitrogen source at 30 °C. It was capable of growth aerobi-
cally in liquid medium with sparteine (0.05%, w/v) as sole 
carbon and nitrogen sources with a generation time of just 
over an hour. Under these conditions there was no growth 
on the related compound lupanine.

Extracts of cells were prepared as previously described 
[4]. Sparteine oxidation was measured using a Clark-type 
oxygen electrode in a stirred vessel at 30 °C. Reaction mix-
tures contained in 3.0 mM of 50 mM phosphate buffer (pH 
7.0), 1 mg phenazine methosulphate, 1 μmol sparteine and 
0.2 ml of crude cell extract. Products were extracted with 
dichloromethane and examined by GCMS on an HP-5 MS 
column (25 m x 0.2 mm x 0.33 µm film) with helium as the 
carrier gas and ionization by electron impact.

DNA Preparation and Genome Sequencing

For DNA extraction, cultures were grown on Nutrient Agar 
(Oxoid Ltd.). A single colony was resuspended in phos-
phate-buffered saline (pH7.0) and genomic DNA was puri-
fied using an equal volume of SPRI beads and resuspended 
in EB buffer. The beads were washed with extraction buffer 
containing lysozyme and RNase A, incubated for 25 min at 
37 °C. Proteinase K and RNaseA were added and incubated 
for 5 min at 65 °C.

DNA was quantified using the Quantit dsDNA HS assay 
in an Eppendorf AF2200 plate reader (triplicate samples). 
Genomic DNA libraries were prepared using Nextera XT 
Library Prep Kit (Illumina, San Diego, USA) following the 
manufacturer’s protocol with the following modifications: 
2 ng DNA instead of 1 ng were used as input, and PCR 
elongation time was increased to 1 min from 30 s. DNA 
quantification and library preparation were carried out on a 

Hamilton Microlab STAR automated liquid handling system 
(Hamilton Robotics, Reno, NV, USA). Pooled libraries were 
quantified using the Kapa Biosystems Library Quantifica-
tion Kit for Illumina (Roche, Pleasanton, CA, USA) on a 
Roche light cycler 96 qPCR machine (Roche, Pleasanton, 
CA, USA). Libraries were sequenced on the Illumina HiSeq 
using a 250 bp paired end protocol.

Reads were adapter trimmed using Trimmomatic 0.30 
(http://www.usade​llab.org/) with a sliding window quality 
cut-off of Q15 [11]. De novo assembly was performed on 
samples using SPAdes version 3.7 [12] (http://cab.spbu.ru/
softw​are/spade​s/), and contigs were annotated using Prokka 
1.11 [13] (http://www.vicbi​oinfo​rmati​cs.com/softw​are.prokk​
a.shtml​).

Genome Analyses

The genomic average nucleotide identity (ANI) [14] was cal-
culated via in silico DNA–DNA hybridization using Kostas 
Lab web server (http://enve-omics​.ce.gatec​h.edu/g-matri​x/) 
[15]. This estimates the average nucleotide identity using 
both best hits (one-way ANI) and reciprocal best hits (two-
way ANI) between two genomic datasets [16].

Results

Genome Assembly

The draft genome of Psp-LUP comprised 6,457,467 bp with 
average GC content of 62.3% spread over 88 contigs, with 
an L50 value of 13 (i.e. The longest 13 contigs together 
constituted half of the total sequence length, with the 13th 
largest contig having a size of 156,935 bp [= N50]). The 
draft genome of Psp-SPAR comprised 6,038,563 bp with 
average GC content of 61.5%spread over 187 contigs, with 

Fig. 1   Reactions catalysed by 
(A) sparteine 17-hydroxylase 
and (B) lupanine 17-hydroxy-
lase

A

B
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an L50 of 28 and N50 of 62,376 bp. Details of sequence and 
strain deposition are given below.

Identity of Strains

Sequence data from the 16S rRNA locus placed the sam-
ples clearly within Pseudomonas putida but with only low 
resolution (data not shown). Therefore, comparison of the 
genome sequence data for isolates Psp-LUP and Psp-SPAR 
alongside a range of other genome sequenced P. putida 
strains was undertaken using whole genome analysis. Yon-
ezuka et al. [17] recently used whole genome comparisons 
to re-evaluate the intraspecific taxonomy of P. putida and 

identified nine sub-groups within the species, in addition 
to the type isolate. Representatives of these nine groups 
alongside and the type species confirmed the identity of 
both organisms as Pseudomonas putida.

Psp-LUP is closely related (ANI similarity value of 
95%; Fig. 2) to the type isolate of P. putida NBRC14164 
(= Stanier strain 90 [biotype A] = A.3.12 = ATCC 
12,633 = IAM 1236 [18, 19]) which was isolated from soil 
[20, 21] whilst Psp-SPAR fell clearly within group1 clos-
est to strain F1 (also isolated from soil; [22]). Psp-LUP 
was closely related to clinical isolates (found in groups 
2,3 and 5; Fig. 2) whereas Psp-SPAR clustered with strains 
isolated from non-clinical sources [23].

Fig. 2   Phylogenetic tree 
(Neighbour-joining) derived 
from ANI (Average Nuclotide 
Identity) analysis of 15 P. putida 
genomes using the group-
ing designated by Yonezuka 
et al. (2017). ANI analysis 
was performed using Kostas 
Lab web server. Psp-SPAR 
was clearly placed in group 1, 
whilst Psp-LUP was closest to 
NBRC14164T, the type speci-
men for this species (but which 
was not assigned to any group 
by Yonezuka et al.). The tree is 
rooted using the most distant 
member of the genus (in group 
9). Scalebar indicates percent-
age sequence divergence
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Presence of the 17‑Hydroxylase Gene in Ps Putida 
(SPAR)

A gene was located in the genome of Psp-LUP with a 
sequence identical to that for lupanine 17-hydroxylase 
thus confirming the published data for this enzyme [7, 8]. 
Examination of the genome of Psp-SPAR revealed a very 
similar gene coding for a protein of 692 amino acid (c.f. 695 
for the lupanine 17-hydroxylase in Psp-LUP). Alignment 
of the two peptides showed them to be very similar (76% 
identical residues and 86% conserved/identical). Lupanine 
17-hydroxylase has a signal sequence of 26 amino acids 
for transport of the protein into the periplasm. Analysis 
of the translated gene from Psp-SPAR using SignalP 4.0 
[24] also predicted a signal sequence with a cleavage site 
in this case between residues 27 and 28. Within the protein 
sequence was the sequence CSGCH at residues 614–618 
(c.f. CGACH, 613–617 for lupanine hydroxylase [GenBank 
Q934G0.1]), corresponding to the haem-binding consensus 
sequence of CXXCH. Also conserved within the sequence 
are eight tryptophan-docking motifs that have been shown to 
be important in the tertiary structure of a number of PQQ-
containing proteins [25, 26], including the quinohaemopro-
tein dehydrogenase from the bacterium Comamonas testos-
teroni [27], and are also found in lupanine 17-hydroxylase.

Sparteine Degradation by Psp‑SPAR

Extracts of cells of Psp-SPAR, grown on sparteine, con-
tained enzymic activity towards sparteine when incubated 
with phenazine methosulphate as an electron acceptor. This 
compound, when reduced, is auto-oxidizable and this results 
in oxygen uptake as measured in an oxygen monitor. Prod-
ucts were identified by GCMS as 17-hydroxysparteine and 
17-oxosparteine from their retention times and mass spectra 
compared with authentic compounds and the NIST library of 
spectra. 17-hydoxysparteine was prepared by the cold oxi-
dation of sparteine by acid permanganate. 17-Oxosparteine 
was prepared by the oxidation of sparteine using alkaline 
ferricyanide as described by Golebiewski and Spenser [28]. 
No activity was detected in extracts from succinate-grown 
cells. Psp-LUP was unable to grow on the medium contain-
ing sparteine as sole carbon source.

Taxonomic Distribution of Lupanine 17 Hydroxylase 
Genes

BLASTp searches with putative peptide sequences from 
Psp-LUP and Psp-SPAR followed by alignment and phy-
logenetic reconstruction with the most closely related 
sequences found on GenBank showed these two sequences 
to form a distinct cluster along with a putative LUH gene 
(70% identity to the Psp-LUP peptide) from Pseudomonas 

jesennii, strain GO3 [29], with the next most closely 
related sequences (from Paraburkholderia sprentiae strain 
WSM5005, plasmid pl2WSM5005 [438 kb]; [30, 31]) being 
only 62% identical (Fig. 3). These three putative peptides all 
contained the haem-binding consensus (CXXCH) and the 
tryptophan docking motifs. BLASTn searches also did not 
reveal any more closely related sequences. It is noteworthy 
that the Paraburkholderia sprentiae containing the putative 
LUH sequence was isolated from nodules on the roots of the 
legume Lebeckia ambigua [32]. Like Lupinus spp. Lebeckia 
spp. contain high levels of both lupanine and sparteine [33].

There are over 50 sequenced genomes of P. putida [17] 
but the LUH gene is not found in any other strains of this 
species. This and the fact that the LUH genes within Psp-
LUH, Psp-SPAR and P. jesennii GO3 are significantly less 
GC-rich (56.9%, 50.4% and 51.4% respectively) than the 
genomes in which they occur (all 60-62.3%) suggests that 
they were acquired by horizontal gene transfer.

Discussion

Thus, as with lupanine metabolism, the first step in sparteine 
degradation appears to be its hydroxylation on carbon 17 
by a dehydrogenase type of enzyme. The 17-oxosparteine 
product could be produced by a second dehydrogenase reac-
tion catalysed by the same enzyme. This would be analo-
gous to the oxidation of the methyl group of p-cresol first to 
p-hydroxybenzylalcohol and then to p-hydroxybenzaldehyde 
by another dehydrogenase-type hydroxylase, the flavocy-
tochrome p-cresol methylhydroxylase [34]. This first step 
is consistent with the identification of the possible gene for 
a sparteine 17-hydroxylase from the genome sequencing. 
These results showing attack on the 17-carbon are also con-
sistent with the finding by Parmaki et al. [1] of 17-oxolupa-
nine as one of the products of bioconversion of lupanine by 
Pseudomonas putida LPK411.

Accession Numbers

The complete genome sequences were deposited in the Euro-
pean Nucelotide Archive (https​://www.ebi.ac.uk/ena) with 
the accession number for Pseudomonas putida (LUP) of 
ERX2741807 (PRJEB28091) and for Pseudomonas putida 
(SPAR) of ERX2741806 (PRJEB28090). Genome sequenc-
ing was provided by MicrobesNG (http://www.micro​besng​
.uk), which is supported by the BBSRC (grant number BB/
L024209/1).Both cultures are deposited at the National Col-
lection of Industrial, Food and Marine Bacteria (NCIMB 
Ltd., Aberdeen) with accession numbers 15126 (Psp-LUP) 

https://www.ebi.ac.uk/ena
http://www.microbesng.uk
http://www.microbesng.uk
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and 15127  (Psp-SPAR) (strains deposited but awaiting 
accession numbers).
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