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n the introduction to his book Tame Algebras and
Integral Quadratic Forms, Claus Michael Ringel remarks
that ‘‘some general ideas, which have influenced the

results and the methods presented here, are not available in
official publications, or not even written up.’’ This resonates
with my personal experiences with both Places and People, to
use the terminology of FDLIST [20]. This article is the written
version of conversations I’ve had through the years with
young colleagues on the unofficial history of tilting theory, its
general ideas, unexpected facts, and open problems.

The origin of tilting theory in Italy is one of the best
examples of the complexity of general ideas (and their zigzag
journeys). Menini’s paper [27] describes the role played by
Adalberto Orsatti and his Algebra Team in Padova, and it
contains an account of important public events and official
publications, as well as information on private conversa-
tions, classical letters, and unexpected connections between
distant places and people. The first paper by Italian authors
on tilting theory is by Menini and Orsatti [28]. In the intro-
duction of [28], the authors thank Masahisa Sato, Enrico
Gregorio, and me. I regret that I have never expressed offi-
cially—in a paper—my thanks (and surprise) for this

unexpected reference, as I should have done long ago. One
aim of this article is to fill this gap, at least partially.

In the introduction to the Handbook of Tilting Theory
[2], the authors state the following:

‘‘Tilting theory arises as a universal method for con-
structing equivalences between categories. Originally
introduced in the context of module categories over
finite-dimensional algebras, tilting theory is now
considered an essential tool in the study of many
areas of mathematics, including finite and algebraic
group theory, commutative and noncommutative
algebraic geometry, and algebraic topology.’’

Perhaps it is for this reason that the referee of [15] wrote
‘‘tilting theory is the gift of algebra representation theory to
mathematics.’’ This remark inspired the title of this article.

‘‘Tilting’’ has an immediate visual connotation, and
readers unfamiliar with the history of the field might
wonder. I refer to the Brenner & Butler quote at the top of
the Wikipedia article on tilting theory (https://en.wikipe
dia.org/wiki/Tilting_theory) for the origin of the term.
People care about tilting modules, because it is often useful
to compare the categories of modules over A and that of
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modules over the endomorphism ring B of a tilting A-
module T, which sometimes is a better-behaved ring.

It is likely that only a reader who has at least some
passing acquaintance with homological algebra and the
representation theory of finite-dimensional algebras will
best appreciate the nuances of the mathematics described
here. However, I hope that the story I tell here will offer
some insight into this beautiful subject for most readers.
There will be a lot of pictures, as making pictures has
taught me much about tilting theory. Here are the lessons I
learned by making pictures of tilting-type objects:

(a) ‘‘Simple’’ and combinatorial objects may have unex-
pected concealed topological properties (see ‘‘Do
Finite-Dimensional Bimodules Have a Topology?’’).

(b) ‘‘Nonsimple’’ objects may have unexpected concealed
discrete properties (See ‘‘Do Infinite-Dimensional
Modules Need No Topological Tools?’’).

In the following, K denotes an algebraically closed field,
and we assume that all vector spaces and algebras are
defined over K.

A Letter from Japan and My First Homework on
Tilting Theory
Menini [27, page 11] describes Sato’s contribution to her
joint paper with Orsatti [28]:

‘‘I would like to recall here that it was Masahisa Sato that
pointed out to us that tilting modules might provide
examples ... In factOrsatti explained thisproblem toSato

during aNATOmeetingheld inAntwerpen (Belgium) in
the period July 20–29, 1987. After some time Sato wrote
to Orsatti showing an example of a tilting module.’’

I remember very well what happened next. Orsatti told me to
make a copy of the letter received from Japan. My homework
was to look at Happel and Ringel’s example of a tilting
module described in the last page of [21] and to give a talk
about it. So my unique and small contribution to [28] was just
a talk. And hence my surprise for those unexpected thanks.

Now I realize that I should have thanked Menini and Orsatti
for the opportunity. While preparing for the talk I was pleas-
antly surprised to observe directly that Auslander–Reiten
quivers can help one guess and see possible equivalences
before constructing a proof of their existence. Indeed tilting
equivalences and cotilting dualities also have a combinatorial
nature, inheritedandsuggestedby thatofquivers andmodules.

I was also able to discover the magic power of Auslander’s
formula, which reduces the computation of Ext1–groups to
that of Hom–groups. (For details, see [3, Proposition 4.6 and
Corollary 4.7] or [32, conditions (5) and (6), pages 75–76]).
Consequently we may verify the vanishing of certain Ext1

groups by simply looking at the Auslander–Reiten quiver.
Without this formula, Iwould beunable to check that Happel
and Ringel’s example is Ext1–self-orthogonal.

Picture 1 below (depicting a very combinatorial object
with several symmetries) illustrates the shape of Happel–
Ringel’s bimodule T ¼ ATB, where B ¼ EndAT . It is good to
consider the whole bimodule ATB, and not only the
underlying module AT , in order to visualize equivalences
and dualities.

Picture 1
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When drawing figures representing bimodules, we
adopt the following conventions:

• Every square indicates an element v of a fixed basis
of the underlying vector space of T.

• The index x on the left (resp. y on the right) of a
small square corresponding to the vector v indi-
cates that exv ¼ v ¼ vey, where ei is the path of
length zero around the vertex i.

• Following Ringel’s suggestion during my stay in
Bielefeld, the small squares have a special posi-
tion, so that they also describe in an obvious way
the composition factors of the same module. (See,
for instance, [29, 30] and [31, page 126] for
descriptions and/or pictures of complicated
modules.)

• We recall that the bimodules associated to ‘‘valued’’
arrows in [19] and [18] gave me the idea of adding
two indices (on the left and on the right of the
small squares). In this way we can see the action of
left or right multiplication by the primitive idem-
potents, corresponding to vertices of some quiver.

• Straight lines describe left modules and wavy lines
describe right modules. Recall that a representa-
tion of a quiver consists of vector spaces (one for
each vertex) and of linear maps (one for each
arrow) eventually satisfying suitable relations.

According to [21], the underlying vector space of T has
dimension 23, whereas A is the algebra given by the
Dynkin quiver E6 with ‘‘subspace orientation,’’ that is of the
form

On the other hand, the algebra B ¼ EndAT is isomorphic to
the algebra given by the fully commutative quiver

Now Picture 1 is not as old as my homework. I used
similar pictures to visualize rather small bimodules for the
first time, and more or less by chance. Of course, for big,
complicated bimodules, it would be better to replace a 2-
dimensional ‘‘global’’ visualization (of the main properties
of the left and right underlying modules) by a 3-dimen-
sional one, without or with few self-intersections.
However, even flat pictures such as Picture 1 are powerful

enough to give for free a lot of indirect information in a
compact way.

For example, Picture 1 tells us how the tilting equivalence
represented by the functor Hom ATB;�ð Þ (between the mod-
ules generated by the left A–module T and the modules
cogenerated by the left B–module DðTBÞ ¼ HomK ðTB;KÞ)
acts on some indecomposable modules. For instance, the
indecomposable summands of AT are sent via this functor to
the following indecomposable summands of BB :
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On the other hand, Picture 1 also describes how the
cotilting duality induced by Hom �;A TBð Þ (between the
modules cogenerated by left A-module T and the modules
cogenerated by the right B-module T ) acts on some inde-
composable modules. For instance, the indecomposable
summands of AT are sent via this functor to the following
indecomposable summands of BB:
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What Happened Next: Talk with Big Matrices,
More or Less Abstract Cancellations...
The analysis of Happel–Ringel’s bimodule was both my
first homework on tilting theory, and the subject of my
first talk on this subject. This was not my first talk in
Padova containing some quivers. However, all the quivers
I used earlier were much smaller and so much easier to
describe without pictures. When I tried to do the same
with Happel–Ringel’s example, I realized that even basic
techniques of representation theory of finite-dimensional
algebras can make otherwise invisible things become
visible.

For instance, to give a definition of A and B without
quivers, I distributed some pages with the largest matrices I
ever used, namely 23 � 23 matrices, which I did not want
to draw at the blackboard. After some time I noticed that I
could use more reasonable matrices to describe the K-lin-
ear maps from T to T, corresponding to multiplications by
elements of A or B. Indeed, T has the strong property that
the groups of all morphisms between two indecomposable
summands of AT and TB, respectively, are K-vector spaces
of dimension at most one. Hence, after cancellation of
many ‘‘inessential’’ rows and columns, one can see that A
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and B are isomorphic to subalgebras of the algebra of all
6 � 6 matrices of the form:

K 0 0 0 0 0

K K 0 0 0 0

0 0 K 0 0 0

0 0 K K 0 0

0 0 0 0 K 0

K K K K K K

0
BBBBBBBB@

1
CCCCCCCCA

and

K K K K K K

0 K 0 0 K 0

0 0 K 0 0 K

0 0 0 K K K

0 0 0 0 K 0

0 0 0 0 0 K

0
BBBBBBBB@

1
CCCCCCCCA
:

Endomorphism rings of abelian groups were the subject
of my master’s thesis, ‘‘Abelian Groups Whose Endomor-
phism Ring is Locally Compact in the Finite Topology,’’
written under the direction of Adalberto Orsatti. Moreover,
some of my first papers dealt with endomorphism rings.
However, without using quivers, this previous abstract
experience on (usually large) endomorphism rings
wouldn’t have been useful to verify that B ¼ EndAT actu-
ally had the indicated form.

The cancellation of rows and columns was only the first of
many other (more abstract) cancellations made in the sequel,
concerning modules and complexes (see the sections enti-
tled ‘‘Cancellation of Summands’’ and ‘‘An Example of
Cancellations’’). For more on the theoretical importance of
cancellations in tilting theory, I refer the reader to Ringel’s
lecture [33] on the occasion of the 20th anniversary of the
Department of Mathematics of the University of Padova [see
the section ‘‘Fully Documented Lectures’’ in Ringel’s home
page]. Note that the suggestive title of this lecture is ‘‘Tilting
Theory: the Art of Losing Modules.’’

Short or Long Definitions With or Without Classes
of Modules
Definitions Long and Short. The most compact and elegant
definitions of tilting modules and of partial tilting modules,
natural generalizations of tilting modules, consist of pre-
cisely one rather short property. For instance, any
‘‘classical’’ tilting (resp. cotilting) R–module M (hence also
Happel–Ringel’s module T) has the property that the class
of all modules generated (respectively, cogenerated) by M
coincides with the kernel of Ext1RðM ;�Þ (respectively,
Ext1Rð�;MÞ). This global property is equivalent to a much
longer characterization capturing three discrete properties
of two modules, namely of M and of the regular module R
(respectively, an injective cogenerator Q). For me it was

always easier to deal with more than one (but finitely
many) elementary properties instead of dealing with just
one property on classes of modules.

Let us begin with one such longer definition, for the
classical case.1 We say that a module M is a classical tilting
or cotilting module (more precisely, a 1-tilting or 1-cotilting
module), respectively, if the following conditions hold:

• The projective (respectively, injective) dimension of M is
at most 1.

• Ext1RðM ; � MÞ ¼ 0 (respectively, Ext1RðPM;MÞ ¼ 0Þ,
where � M (respectively, PMÞ is any direct sum
(respectively product) of copies of M.

• There is a short exact sequence of the form

0 �! R �! M 0 �! M 00 �! 0

(respectively, 0 �! M 0 �! M 00 �! Q �! 0), where M 0

and M 00 are direct summands of direct sums (respec-
tively, products) of copies of M.

For finite-dimensional modules over finite-dimensional
algebras, the setting studied by Brenner and Butler [5],
the third condition may be replaced [32, page 167] by a
numerical condition:

The number of isomorphism classes of indecom-
posable summands of M is equal to the rank of the
Grothendieck group of R.

Next consider two short definitions (for the general case).
Given an R-module M and a natural number n[ 0, we
denote by GennðMÞ the class of all modules X such that
there is an exact sequence of the form

Mð1Þ�!. . .�!MðnÞ�!X �! 0;

where the M(i)’s are direct summands of direct sums of
copies of M. Following [4], we say that M is a tilting
(respectively partial tilting) module of projective dimension
at most n if GennðMÞ is equal to (respectively, is contained
in) the orthogonal class

M? ¼
\
i[ 0

Ker ExtiRðM ;�Þ:

As in the classical case, the long definition of such M
consists of two or three conditions on just two modules,
namely on M and a very special projective or injective
module.

Here is one of the reasons that it may be difficult to
check equalities or inclusions of classes of modules that
play a key role in the characterization of ‘‘nonclassical’’
tilting and cotilting-type modules M. Even in dealing with
algebras of finite representation type, in the ‘‘nonclassical’’
case, these modules M have the property that one of these
two classes of modules (namely an orthogonal class) is
closed under direct summands, whereas the other does not
necessarily have this closure property. To see this, it

1See [4, Proposition 3.6 and Lemma 3.12] for the beautiful technical condition (on the relationship between two classes of modules), which characterizes

‘‘nonclassical’’ tilting or cotilting modules and their generalizations.
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suffices to consider the following example. Let R be the
algebra given by the quiver

such that the composition of any two arrows is zero. Then
we deduce from [14, Example B] that the injective module
T 4

5
2 3
4

1
3

1
2 is a partial tilting module (of

projective dimension 3) such that Gen3ðT Þ contains the
module 1 � 1 but not its summand 1. Moreover both
Gen3ðT Þ and the class AddðT Þ, formed by all injective R-
modules without simple summands, have the same inde-
composable modules, namely the 4 indecomposable
summands of T. This means that we cannot determine the
class Gen3ðT Þ by just looking at the Auslander–Reiten
quiver. In other words, the operation of making direct sums
(the ‘‘only really well-understood construction’’ [36, page
476]) is not enough to investigate an important class of
modules generated by a maximal direct summand of a
tilting module of projective dimension 3. Note that T is an
example of a faithful module that is not tilting.

Cancellation of Summands. Let us next consider the can-
cellation of an injective nonprojective summand (to obtain
a ‘‘large’’ partial tilting module). We obtain the faithful
module T constructed above from the minimal injective
cogenerator DðRRÞ ¼ HomK ðRR;KÞ by means of cancella-
tion of its injective summand 1 (of projective dimension 3).
On the other hand, Ext2RðT ; 5Þ 6¼ 0 and 5 is the unique
indecomposable module X such that HomRðT ;XÞ ¼ 0.
Consequently, we have

ð�Þ Ker HomRðT ;�Þ
\

T? ¼ 0:

In other words, T is a large partial tilting module in the
sense of [13].

Large partial tilting modules are partial tilting modules
satisfying ð�Þ. Any tilting module is a large partial tilting
module [4, page 371]. Any finitely-generated large partial
tilting module of projective dimension at most 1 is a tilting
module [6, Theorem 1]. Now Property (�) and [13, Lemma
11.2] imply that any large partial tilting module over a
semiperfect ring, say again T, is sincere [24], that is, it has the
property that HomðP; T Þ 6¼ 0 for every projective module
P 6¼ 0. Consequently, a module T of finite length is sincere if
every simple module is a composition factor of T [3, 32].

Now let us look at the cancellation of a projective-
injective summand of a tilting module with minimal
orthogonal class (to obtain a ‘‘large’’ partial tilting mod-
ule). Let R be a finite-dimensional algebra or, more
generally, a noetherian and semiperfect ring such that
every indecomposable injective module has a simple
socle. Let M be an injective tilting R–module (of projective
dimension [ 1) such that the orthogonal class M? ¼

T
n[ 0 Ker ExtnRðM ;�Þ is the class of all injective modules.

Let T be a sincere summand of M, obtained from M after
cancellation of a projective summand P. Then we deduce
from [13, Theorem 11.4] that T is a large partial tilting
module. [We will soon give a ‘‘minimal’’ example of this
result, where T is

(1) the unique indecomposable injective module that is not
projective;

(2) a uniserial module such that every simple module has
multiplicity one as a composition factor of T, that is a
sincere module of minimal dimension.

Cancellations have both theoretical and practical impor-
tance in tilting theory. It turns out that various types of
cancellations can help us deal with more abstract partial
tilting objects. For instance, this often happens with partial
tilting complexes, say T �, in the sense of Rickard [34] with
the following property:

(a) T � is the projective resolution of a large partial tilting
module T, which is not a tilting module.

By [34], this hypothesis guarantees the existence of a
nonzero right bounded complex (of projective mod-
ules) X� with the following property:

(b) X� is not the projective resolution of a module and
every morphism from T � to any shift of X� is
homotopic to zero.

The examples constructed in [15, 16, 17] suggest
that there is no canonical way to obtain X� from
T �. Moreover, the same holds by confining our-
selves to complexes T � and X� satisfying (a) and
(b), respectively, and with the following additional
‘‘very combinatorial’’ property (in the words of
[35]):

(c) Any nonzero component of the indecomposable sum-
mands of T � and X� is an indecomposable module.

Indeed, up to shift, the choices of the indecomposable
complexes X� satisfying both (b) and (c) may be quite
different. For instance, there may be either zero [15,
ExampleC (iii) and (iv)], or one [17, Remark after Example
1], or infinitely but countably many [17, Remark after
Example 3], or uncountablymany [17, Example 4] choices.
The following example shows that by deleting some
components of an indecomposable complex T �, with
properties (a) and (c), we may obtain all the shortest
complexes X� with properties (b) and (c), that is, the
‘‘elementary’’ complexes in the sense of [35] of the form

(d) 0 �! P �! Q �! 0 with P and Q indecomposable
projective modules.

An Example of Cancellations. For every even integer
m[ 2, there is a uniserial nonfaithful injective module T
(of projective dimension m) such that we obtain all the
indecomposable complexes X� with the above proper-
ties (b) and (d) by means of various types of
cancellations of some components of T �, that is, left
cancellations, right cancellations, and, sometimes, central
cancellations also.

� 2017 The Author(s), Volume 39, Number 3, 2017 81



Indeed, let A be the Nakayama algebra [26] given by the
quiver

with relation an � � � � � a1 ¼ 0, where 2n ¼ mþ 2. Next, let
T denote the injective module of the form

2

3

..

.

n

1

:

We obtain T from the minimal injective cogenerator
DðAAÞ ¼ HomK ðAA;KÞ after cancellation of its n� 1 inde-
composable projective summands. Thus we deduce from
the ‘‘Cancellation of Summands’’ section (or from [13,
Example 11.6]) that T? is the class of all injective modules
and T is a large partial tilting module of projective dimen-
sion m. (The letter n in condition (c) of [13, Example 11.6]
is a misprint; it should be m.) Moreover the projective
resolution T � of T satisfies (a) and (c), and the complexes
X� satisfying (b) and (d) are of the form

0 �! IðiÞ �! IðjÞ �! 0;

where Ið�Þ denotes the indecomposable injective module
corresponding to the vertex � and i[ j[ 1 [16, Proposition
1]. Hence they are exactly the complexes with two
nonisomorphic injective components different from zero,
obtained from T � after suitable cancellations.

Do Finite-Dimensional Bimodules Have a
Topology?
Visualizingbimodules as in the ‘‘A Letter fromJapanandMyFirst
Homework on Tilting Theory’’ section, I could first ‘‘see’’ and
then prove that even rather small bimodules behave badly with
respect to somequite natural constructions such as embeddings
into bimodules with an underlying left (or right) injective
module. Indeed, according to certain results on the socle of
E(C)/C [25, Lemma 2.2] and on the modules cogenerated by
E(C)/C [25, Propositions 1.7 and 2.1 and Theorem 1.17], it is
natural to measure the gap between a cotilting moduleC and its
injective envelope E(C), at least for modules that are finite-di-
mensional vector spaces. However, in this special situation
where the discrete topology seems to be the most natural
topology, two radically different situations show up.

Bad Case. It is not always possible to embed a finite-di-
mensional cotilting bimodule C in another bimodule D with
the property that D, as a left (respectively, right) module is
the injective envelope of C [12, Example B (c), (d)]. More-
over, no left-right symmetry exists, because only one of the
constructions may be possible [12, Example A (c), (d)].

Good Case. When such an embedding exists, the structure
of D as a right (respectively, left) module seems to be the
most obvious one. Multiplications on the opposite side, that

is, right (respectively, left) multiplications, are described by
nice matrices with many entries equal to zero; they seem to
be ‘‘continuous’’ extensions of their restriction to C. How-
ever, as the following toy example shows, the property of
being an indecomposable bimodule is neither hereditary
nor left-right symmetric.

Toy Example of a Finite-Dimensional Cotilting Bimodule

[12, Example D] . Let S (respectively, R) be the algebra
given by the quiver

4 5 6

(respectively, 2 1 3), and let SCR be an inde-
composable cotilting bimodule with

SC
4
5
6

5
6 5

respectively, CR
1

2 3
1
2 2

of the form

Picture 2 4 2

5 1

5 2 5 3

6 1

6 2

Then C has codimension 2 in its left (respectively, right)
injective envelope

E C
4
5
6

4
5
6

4
5

respectively, E C 1
2

1
2

1
2

1
3 .

Moreover E(C) is the support of an indecomposable (re-
spectively, a decomposable) bimodule D, containing C as a
bimodule, of the form

Picture 3 4 1

4 2 4 3

5 1

5 2 5 3

6 1

6 2
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Remarks on the Action of Primitive Idempotents and

Nilpotent Elements in the Good Case. In all the examples
constructed in [12], where SCR is a cotilting bimodule such
that EðSCÞ admits a structure of S�R bimodule, containing
the cotilting bimodule SCR, we see that the ring R is
hereditary. Furthermore, if X is an indecomposable sum-
mand of SC and e is a primitive idempotent of R such that
xe ¼ x for every element x 2 X , then we also have x0e ¼ x0

for every element x0 2 EðSXÞ. Finally the nilpotent ele-
ments of S and R corresponding to arrows act on the
elements of EðCÞ n C in the easiest possible way, by a kind
of shift. Indeed, if s 2 S, r 2 R and u, v, w (resp.
u, w, w, x) are linearly independent elements of C (resp.
of E(C)) such that x 2 EðCÞ n C , sx ¼ v, sw ¼ u, vr ¼ u,
then we have xr ¼ w, as illustrated in Picture 5:

Picture 5 x

w

v

u

Roughly speaking, the above picture says that the vectors x
and v have similar neighborhoods, and so the whole
bimodule looks like a topological object.

Remarks on the Action of New Concealed Rings in the Bad

Case. In all the examples constructed in [12], where SCR is a
cotilting bimodule such that EðSCÞ does not admit a
structure of S–R bimodule containing the cotilting bimodule

SCR, we can show that

(i) The ring R is not hereditary.
(ii) We can find a ring R�, a ring epimorphism F : R� �! R,

and a bimodule SUR� containing SCR� , such that
EðSCÞ ¼ S U .

An Example (of the Bad Case) with Hereditary R�. As in [12,
Example A], let R (respectively, S) be the algebra given by
the quiver

Let SCR be the cotilting bimodule such that

and Next, let R�

be the hereditary algebra given by the Dynkin diagram

Finally, let F : R� �! R be the obvious ring epimorphism.
Then dim ker F ¼ 1 and C, regarded as a S–R� bimodule, is
contained in the S–R� bimodule U, satisfying (i) and (ii),
described in Picture 6.

Picture 6 4 3

4 2

5 3 4 1

5 2

6 3

6 2

An Example (of the Bad Case) with Nonhereditary R�. As in
[12, Example C], let R (respectively, S) be the algebra given

by the quiver with relation ab ¼ 0 (respectively,

with relation cd ¼ 0). Next, let SCR be the

respectively, Picture 4

4 1

4 2

5 1

5 2

6 1

6 2

5 1

5 3 .

� 2017 The Author(s), Volume 39, Number 3, 2017 83



cotilting bimodule such that and

Next, let R� denote the algebra given by the

quiver with relation aba ¼ 0. Finally, let F :

R� �! R be the obvious ring epimorphism. Then
dim Ker F ¼ 2 and C regarded as an S–R� bimodule is
contained in the S–R� bimodule U, satisfying (i) and (ii),
described in Picture 7.

Let us wrap this section up with two open problems on
bimodules.

Problem 1. Are the conditions of the ‘‘Remarks on the
Action of Primitive Idempotents and Nilpotent Elements in
the Good Case’’ section satisfied by any bimodule as in the
good case described in the section preamble?

Problem 2. Are conditions (i) and (ii) of the section entitled
‘‘Remarks on the Action of New Concealed Rings in the Bad
Case’’ satisfied by any bimodule as in the bad case descri-
bed in the section preamble?

Do Infinite-Dimensional Modules Need No
Topological Tools?
Another reason for surprise at the presence of the kind of
topology described in the section entitled ‘‘Do Finite-Di-
mensional Bimodules Have a Topology?’’ (see the remark
after Picture 5) is the absence of topological arguments in
the proof of a result concerning dualities induced by
cotilting bimodules of infinite dimension. Before we dis-
cuss this, we note that a left S-module (respectively, a right
R-module) M is reflexive with respect to the bimodule SUR

(or just U-reflexive or reflexive, for short) if M is canonically
isomorphic to its double dual with respect to U, that is, to
the module DðDðMÞÞ, where D denotes both the con-
travariant functors Hom?ð�;S URÞ for ? ¼ R; S, and the
group DðXÞ is equipped with its module structure (see [1,
Proposition 4.4] or [23, Propositions 3.4 and 3.5]) for any
left S-module and any right R-module X.

Obvious and Nonobvious Reflexive Modules. Even in
special cases, for instance, given a faithfully balanced
bimodule U, there is a big gap between the well-known
indecomposable reflexive modules, which are either

projective or summands of U [1, Propositions 20.13 and
20.14 and Corollary 20.16] and the rest of the world, that is,
the nonobvious indecomposable reflexive modules.

The cotilting bimodule described in the section entitled
‘‘Toy Example of a Finite-Dimensional Cotilting Bimodule’’
admits four indecomposable reflexive left (respectively,
right) modules. Moreover, comparing Auslander-Reiten
quivers (and looking at Picture 2), we see that all of them are
obvious reflexive modules and the duality D acts as follows:

4
5
6

2 , 5
6

1
2 3 , 5 3 , 6 1

2 .

A similar situation holds for the cotilting module described in
the ‘‘An Example (of the Bad Case) with Hereditary R�’’
section (respectively, the ‘‘An Example (of the Bad Case)
with Nonhereditary R�’’ section, where the cotilting dualityD
acts as follows:

6 3
2 ,

4
5
6

2
1 , 4 1 , 5

6 2

respectively
3
4
3

1
2
1
,, 3 2

1 , 4
3 1 .

On the other hand, Happel–Ringel’s cotilting (and tilting)
bimoduleTdescribed in the ‘‘A Letter from Japan andMyFirst
Homework on Tilting Theory’’ section easily gives us an
example of a cotilting bimodule admitting nonobvious
reflexive modules. Indeed, by comparing Auslander–Reiten
quivers (and by looking at Picture 1), it is easy to see that T
admits fourteen indecomposable reflexive left and right

modules, respectively. But
5
6 is the unique indecomposable

projective summand of the left A–module T. Therefore T
admits eleven obvious and three nonobvious indecompos-
able reflexive left and right modules, respectively. We
already described (at the end of the ‘‘A Letter from Japan and
My First Homework on Tilting Theory’’ section) how the
cotilting duality D acts on the indecomposable summands of

AT . Now D acts on the remaining obvious left A-modules,
that is, the five indecomposable projective modules that are
not summands of AT , via:

1
2
6

d
e
, 2

6
b d
e

,
3
4
6

d
f
,

4
6

d c
f

, 6
a

b d d c
e f

.

Finally, D acts on the three indecomposable nonobvious
reflexive left A–modules via:

2 5 4
6 6

b d c
e f

,
3

2 5 4
6 6

b d
e f

,
1
2 5 4
6 6

d c
e f

.

Several important results about nonobvious modules can
be obtained by means of rather technical topological tools
(see [8, Sections 2 and 3], [7, 9, 10], and the papers cited in
[8]). That’s why it was a pleasant surprise to see that a
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discrete bimodule was enough to answer Colpi’s question:
‘‘Are reflexive modules closed under submodules?’’ His
additional hint was ‘‘You cannot use finite-dimensional
algebras and modules!’’ (See [9, Theorem 1] for the nice
behavior of submodules of reflexive modules over Artin
algebras.)

Proposition [11, Lemma 2.4 and Theorem 2.5 (ii)]. Reflexive
modules with respect to a cotilting bimodule are not nec-
essarily closed under submodules. Moreover, even the
well-known reflexive modules with respect to a faithfully
balanced bimodule SUR, that is, the indecomposable sum-
mands of both the left (respectively, right) regular module S
(respectively, R) and of the module U are not necessarily
closed under submodules.

The next example—more precisely, the next picture—
shows that the above result has a purely combinatorial
motivation coming from basic linear algebra. Indeed, the
result follows from the same reason that an infinite-di-
mensional K-vector space cannot be isomorphic to its
double dual, and so it cannot be reflexive with respect to
the regular bimodule KKK . (See [8, Proposition 1.8] for a
general result on direct sums of infinitely many nonzero
reflexive modules with respect to a cotilting bimodule.)

Toy Example of a Finite-Dimensional Cotilting Bimodule as

in the previous Proposition [11, Lemma 2.4 and Theorem 2.5
(ii)] . With terminology suggested by [22], assume R ¼ S is
the ‘‘generalized’’ Kronecker algebra given by the quiver

Then the indecomposable projective nonsimple left (re-
spectively, right) module is a reflexive module with respect
to the cotilting bimodule RRR. However, its maximal sub-
module, that is, the Jacobson radical of R, generated by the
infinitely many arrows from 1 to 2, is not reflexive with
respect to R:

Final Observations
In the world of tilting and cotilting, indecomposable pro-
jective and injective modules play a big role, as well as

indecomposable projective-injective modules. This justifies
the thinking that tilting objects exist in nature and are not
artificial. The examples considered in this article (con-
cerning tilting modules of projective dimension at most one
and cotilting modules of injective dimension at most one)
also suggest that classical tilting and cotilting modules are
complicated enough to solve interesting questions, as the
question on reflexive modules presented previously.

I should confess that I always try to use these mod-
ules (and in particular the pictures describing them) to
visualize more-or-less mysterious equivalences and dual-
ities. However I always prefer to use the long and
combinatorial definitions of tilting and cotilting-type
objects, that is, the definitions where classes of modules
do not appear directly. I view the existence of com-
pletely different definitions as a proof of the depth of
these objects. Indeed they have both combinatorial and
functorial properties and it is possible to define them by
means of either set of properties separately.

Through the years, tilting objects became more and
more abstract and were defined over Grothendieck cat-
egories and triangulated categories. However I believe
that the original notion of a tilting module is still very
significant. I finally recall that a word coming from
physics—reflection—appeared in the title of the first
paper [5] by Brenner and Butler on tilting theory. Sheila
Brenner told me they extensively discussed options for a
suggestive name; I believe they succeeded in finding
one.
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