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Abstract

New York State Department of Environmental Conservation (NYSDEC) has developed a robust citizen science
macroinvertebrate sampling method. The metric relies on the presence and not the absence of key macroinvertebrates and
therefore is resistant to collection and sorting errors. It identifies unimpaired streams with high confidence (0.1% type 1
errors) and at a reasonable efficiency compared to NYSDEC’s multimetric index of biological integrity (54%). We rank
remaining stream samples for further investigation using a calculated probability of impairment. This method is valuable as a
tool for large monitoring programs with limited resources for quality assurance checks. The value of this method goes
beyond data collection, however, as data of known quality is an effective communication tool between citizen scientists and
state regulatory agencies and/or local decision makers.

Keywords Citizen Science * Biological assessment metrics * Benthic macroinvertebrates + Water quality * Natural resource

management

Introduction

Benthic macroinvertebrates are well documented biological
indicators in rivers and streams because they are ubiquitous,
abundant, diverse, and sensitive to chemical and physical
environmental impacts (Barbour et al. 1999; Doughty 1994;
Rosenberg and Resh 1993; Roux et al. 1993). Their life cycles
are longer and more sedentary compared to other aquatic
communities so they are able to detect intermittent discharges,
variable concentrations, multiple pollutants, and even those
that are not detectable by direct sampling (Rosenberg and
Resh 1993). Furthermore, sampling methods are simple and
inexpensive compared to water chemistry sampling (Wiede-
mann 2006). For these reasons, macroinvertebrate sampling is
the favored method for most citizen scientist programs
focused on stream ecosystems. For example, the states of
Arkansas, Colorado, Connecticut, Georgia, Indiana,
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Kentucky, Maryland, Missouri, New York, North Carolina,
Ohio, Oregon, Pennsylvania, and Virginia all have established
citizen science programs monitoring water quality using
benthic macroinvertebrate communities (Herron et al. 2022).

One disadvantage of benthic macroinvertebrate sampling is
that the method is vulnerable to human sources of variability
during sample collection, sub-sample sorting, taxonomic
identification and enumeration, and calculating assessment
metrics (Nerbonne and Vondracek 2003). Some programs
have developed approaches to minimize and quantify this
uncertainty in data collection and subsequent results. For
example, field audits are used to document the level of
variability in sample collection to qualify data produced
by citizen groups (Boward et al. 2011; Riggert et al. 2017;
Virginia Citizen Water Quality Monitoring Program 2007).
Other programs limit the role of the citizen scientist to sample
collection and sorting and staff perform taxonomic identifi-
cation and enumeration (Bellucci 2015; Boward et al. 2011).
A third and novel approach from Connecticut, uses a presence
only macroinvertebrate metric — meaning a metric that con-
siders the presence and not the absence of key macro-
invertebrate taxa. A stream sample containing a threshold
number of intolerant organisms indicates the stream is fully
supporting Connecticut’s aquatic life designated use and any
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quantity below that threshold produces no conclusion (Bel-
lucci 2015). The presence only metric reduces Type 2 error
and vulnerability to human error because it doesn’t presume
missing taxa are also missing in the stream system.

The advantage of the presence only metric is that it
requires very little time on the part of agency program staff
to ensure data quality compared to field audits and limiting
the role of citizen scientists. Programs can include more
participants while still producing data with high con-
fidence. Citizen scientists can collect data for their own
local purposes with very little delay necessary for training
and quality assurance. In this way, presence only metrics
can increase the likelihood that citizen science programs
will benefit environmental management both at the state
and local levels.

In this study, we explored the relative value of the presence
only metric approach for detecting water quality conditions in
New York State. We assessed both a metric that uses the
presence of threshold indicator taxa (PTIT) similar to Con-
necticut’s approach and a metric that uses threshold prob-
abilities of impairment (TPI) based on the presence of these
taxa. The New York State Department of Environmental
Conservation (NYSDEC) used these results to design the
Water Assessments by Volunteer Evaluators (WAVE) pro-
gram. Our primary objective was to create a volunteer mon-
itoring program that produced data of known quality to enable
clear communication of stream health in support of state and
local efforts to protect New York’s water resources.

Methods

To develop both metrics, we used the historic NYSDEC
macroinvertebrate data set to (1) identify indicator macro-
invertebrates, (2) generate distribution frequencies for each
indicator organism / water quality condition combination,
and (3) used these indicators and frequencies to calculate
and assess the two metrics. To prevent bias, we separated
the historic data set into a training data set and a test data
set. Steps 1 and 2 were accomplished using the training data
set and step 3 was performed on the test data set.

Working Data Set

The NYSDEC collects water quality data and information in
streams and rivers on a statewide, 5-year cycle. This includes
benthic macroinvertebrate samples to estimate water quality
impacts on aquatic life. For this project, the focus was on
wadeable streams and rivers sampled using a traveling kick
method which consisted of a one-time, 5-m diagonal transect
sample through a riffle area over 5 min. Samplers kick the
bottom substrate and collect the dislodged organisms in a
025mX05m, 900pm mesh net held downstream.

Sampling occurs during the July to September index period.
From each sample, a random 100-organism subsample is
removed and each individual specimen is identified to the
lowest possible taxonomic resolution, typically genus or
species (Bode and Novak 1995; NYSDEC 2021; Riva-
Murray et al. 2002; Smith et al. 2013, 2007).

We compiled all kick samples from 1990 to 2018. To
prevent bias introduced by frequently resampled sites, we
restricted the dataset to the most recent sample from each
location. This resulted in 2842 samples collected from 1990
unique streams and rivers. We divided this data set ran-
domly into a training data set and a test data set, each with
1421 samples.

Condition Categories

NYSDEC uses a multimetric index of biological integrity,
called the Biological Assessment Profile (BAP) score, to
summarize benthic macroinvertebrate data and report water
quality impacts on aquatic life. For the traveling kick method,
individual component metrics of the BAP include species
richness, Hilsenhoff’s biotic index (Hilsenhoff 1988), Ephe-
meroptera— Plecoptera—Trichoptera richness (Lenat 1988),
percent model affinity (Novak and Bode 1992), and the
Nutrient Biotic Index—Phosphorus (Smith et al. 2007). BAP
scores are calculated by normalizing component metrics to a
10 scale and taking the average. The BAP score is assigned
to a four-tiered system of impact category: non (7.5-10),
slight (5.0-7.5), moderate (2.5-5.0), or severe (0-2.5)
impacts (NYSDEC 2021). A final BAP score below 5 is
associated with significant loss of biodiversity, functional
organization, and ability to support a balanced community as
compared to natural conditions (Karr 1991; Davis and Simon
1995) and suggests that the sampled stream is biologically
impaired. A BAP score above 5 indicates that aquatic life in
the sampled stream is unimpaired and reflects that of natural
conditions or only slightly altered from natural.

Identifying Indicator Taxa

We used the training data set to identify indicators of
impaired and unimpaired biological conditions. Taxonomic
resolution was reduced to family level (with five excep-
tions), reflecting the extent a volunteer would likely be able
to visually distinguish taxonomic differences in the field.
This decision was based on our experience identifying
organisms in the field without a microscope as well as
interaction with a broad range of volunteers. Exceptions
included Pelecypoda, Hirudinea, and Turbellaria which were
reduced to class and Amphipoda to order because of diffi-
culty distinguishing these organisms in the field. We kept
Chironomus spp. (Diptera: Chironomidae) at genus because
they are generally identified by their red coloration.
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We selected the indicator taxa from the training data set
by comparing taxa present in each condition category. To
improve our resolution between impaired and unimpaired
categories, we only used non-impacted samples (BAP > 7.5,
n=406) to identify indicators of unimpaired biological
condition. All moderately and severely impacted (n = 287)
macroinvertebrate community samples (BAP <5.0) were
used to represent the impaired condition due to the limited
number of severely impacted samples (BAP <=2.5). We
calculated the Sgrensen index to estimate community
similarity within each category and calculated the relative
contribution of each taxon. The Sgrensen index is the most
commonly used index in community ecology to compare
populations using presence/absence data (Chao et al. 2006).
Selected indicator taxa were more abundant within respec-
tive condition categories and contributed less than 2% to the
Sgrensen index of the opposing category.

Calculating Distribution Frequencies

We also used the training data set to calculate the frequency of
each indicator taxa in each impact category, a necessary step to
calculate the probability of impairment. We calculated these
frequencies for non and slight impact categories separately but
combined the moderate and severe impact categories into one
impaired category because the sample sizes were so small.
Specifically, frequency was the number of samples containing
the indicator taxa divided by the total number of samples in the
impaired, slightly impacted, or non-impacted categories. We
also calculated the frequency of impaired, slightly impacted,
and non-impacted populations overall.

Calculating and Assessing Metrics

We assessed five possible metrics using the presence of
threshold indicator taxa (PTIT) with the test data set. We
calculated the frequency at which 3, 4, 5, 6, and 7 minimum
indicator taxa correctly or incorrectly (type 1 errors) iden-
tified samples collected from unimpaired streams (BAP > 5)
or samples from impaired streams (BAP <5).

We assessed five possible metrics using the TPI also with
the test data set. For each sample in the test data set, we
calculated the probability of biological impairment and the
probability biological condition is unimpaired using a mod-
ified Naive Bayes equation (Egs. 1 and 2, respectively)
(Russell and Norvig 1995). Using the frequencies calculated
from the test data set, we calculated the probability a sample
in the test data set indicated biological impairment as the
frequency of impaired samples multiplied by the frequency
each indicator taxa found in the sample is found in impaired
samples and divided by the frequency of impaired, slightly
impacted, or non-impacted samples overall (Eq. 1). We cal-
culated the probability a sample in the test data set indicated
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unimpaired conditions using the same equation but with non-

impacted frequencies in the numerator (Eq. 2). Finally, we

calculated the frequency at which samples with 50%, 70%,

90%, 95%, and 98% minimum probabilities matched the

correct or incorrect (type 1 errors) condition category.
Probability of biological impairment =

P(IM)P(IT; [IM)P(IT, M) ... etc
P(ND)P(IT, [ND)P(IT,|NI) .. ete+P(SL)P(IT; |SL)P(IT;|SL).. etc-+P(IM)P(IT; [IM)P(IT,|IM) ... etc

(1)

Probability biological condition is unimpaired =
P(NI)P(IT; N)P(IT, |NI)... etc
P(NDP(IT; [N)P(IT,[NI)..... ete+P(SL)P(IT; [SL)P(IT,[SL).. etc+P(IM)P(IT; IM)P(IT;[IM)... etc

(2)

where: NI = non-impacted; SL = slightly impacted; IM =
impaired; IT = indicator taxa.

Results

We identified indicator taxa for both unimpaired and
impaired biological condition categories (Table la and b).
The 32 indicators of unimpaired condition were more fre-
quently found in unimpaired samples (composed of both non
and slightly impacted samples). The median frequencies of
unimpaired indicator organisms in non and slightly impacted
samples were 0.17 (IQR: 0.07-0.34) and 0.09 (IQR:
0.02-0.22) respectively compared to the median frequency in
impaired samples which was 0.02 (IQR: 0-0.06). Similarly,
the 16 indicators of impaired condition were more frequently
found in impaired samples. The median frequency of the
impaired indicator organisms in impaired samples was 0.11
(IQR: 0.05-0.26) compared to median frequencies in non and
slightly impacted samples which were 0.02 (IQR: 0-0.04)
and 0.04 (IQR: 0.02-0.12) respectively.

The PTIT metric was successfully able to match both
impaired and unimpaired biological condition categories
for all five taxa threshold iterations. The percent of sam-
ples with matching condition categories decreased when
we increased the required number of indicator taxa
(Tables 2 and 3). Each additional indicator taxa reduced
the matching percentage by an average of 12 and 14% for
unimpaired and impaired conditions respectively. The
frequency of type 1 errors also decreased when we
increased the required number of indicator taxa (Tables 2
and 3). Each additional indicator taxa reduced type 1
errors by more than half for both condition categories.
For the unimpaired category, there were only 0.1% type 1
errors when we required 6 unique indicator taxa. This was
a negligible frequency corresponding to 2 out of the
1421 samples, and both samples had BAP scores (4.88
and 4.99 BAP scores) very close to the unimpaired
threshold BAP score (BAP > 5).
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Table 1 Macroinvertebrate indicators of unimpaired (BAP>5) and
impaired (BAP<) biological condition and their frequencies in
impaired and unimpaired (including non-impacted and slightly
impacted) samples

Indicator organisms Frequencies in unimpaired Frequencies in

samples impaired
samples
Non-impacted Slightly
samples impacted
samples

a. Macroinvertebrate indicators of unimpaired biological condition (BAP > 5)
and their frequency in impaired and unimpaired (including non-impacted and
slightly impacted) samples.

(Order: Coleoptera)

Family: Psephenidae 0.47 0.5 0.21
(Order: Diptera)

Family: Athericidae 0.35 0.25 0.06
(Order: Ephemeroptera)

Family: Caenidae 0.24 0.18 0.07
Family: Baetiscidae 0 0.01 0
Family: Ephemerellidae 0.63 0.25 0.03
Family: Ephemeridae 0.04 0.02 0.01
Family: Heptageniidae 0.82 0.52 0.21
Family: Isonychiidae 0.55 0.36 0.03
Family: Leptohyphidae 0.16 0.13 0.04
Family: Leptophlebiidae 0.33 0.14 0.02
Family: Polymitarcyidae 0.02 0 0
Family: Potamanthidae 0.03 0.01 0
(Order: Megaloptera)

Family: Corydalidae 0.31 0.26 0.09
(Order: Odonata)

Family: Gomphidae 0.23 0.12 0.01
Family: Capniidae 0.03 0.02 0
Family: Chloroperlidae 0.18 0.06 0
Family: Leuctridae 0.27 0.17 0.05
Family: Nemouridae 0.04 0.01 0.01
Family: Peltoperlidae 0.07 0.02 0
Family: Perlidae 0.73 0.42 0.05
Family: Perlodidae 0.14 0.03 0
Family: Pteronarcidae 0.13 0.02 0
(Order: Trichoptera)

Family: Brachycentridae 0.24 0.08 0
Family: Glossosomatidae 0.18 0.06 0.02
Family: Helicopsychidae 0.07 0.05 0.01
Family: Hydroptilidae 0.15 0.21 0.14
Family: Lepidostomatidae 0.17 0.03 0.01
Family: Odontoceridae 0.11 0.04 0
Family: Philopotamidae 0.8 0.6 0.21
Family: Polycentropodidae  0.14 0.09 0.06
Family: Rhyacophilidae 0.35 0.16 0.03
Family: Uenoidae 0.04 0.02 0

b. Macroinvertebrate indicators of impaired biological condition (BAP <5) and
their frequency in impaired and unimpaired (including non-impacted and
slightly impacted) samples

(Order: Coleoptera)

Family: Haliplidae 0 0 0.03
(Subphylum: Crustacea)
Family: Asellidae 0.02 0.12 0.4

(Subphylum: Crustacea)

Table 1 (continued)

Indicator organisms Frequencies in unimpaired Frequencies in

samples impaired
samples
Non-impacted Slightly
samples impacted
samples

Order: Amphipoda 0.06 0.22 0.57
(Order: Diptera)
Genus: Chironomus 0 0.01 0.13
Family: Simuliidae 0.36 0.4 0.38
Family: Tabanidae 0.03 0.04 0.07
(Order: Hemiptera)
Family: Corixidae 0 0.01 0.02
(Order: Megaloptera)
Family: Sialidae 0.03 0.07 0.05
(Class: Gastropoda)
Family: Lymnaeidae 0 0.03 0.06
Family: Physidae 0.04 0.07 0.19
Class: Pelecypoda 0.11 0.13 0.22
(Order: Odonata)
Family: Cordulegastridae 0.01 0.01 0.01
Family: Coenagrionidae 0.03 0.04 0.1
Family: Calopterygidae 0 0.03 0.04
Subclass: Hirudinae 0.01 0.03 0.18
Class: Turbellaria 0.14 0.21 0.39

The TPI metric was successfully able to match impaired
and unimpaired biological condition categories for all five
probability threshold iterations (Tables 2 and 3). As with the
PTIT metric, the percent of samples with matching condition
categories decreased when we increased the thresholds and
the frequency of type 1 errors improved (Tables 2 and 3).
This change did not occur at the same rate, however. The
PTIT metric matched more unimpaired samples at compar-
able type 1 error rates than the TPI metric. In impaired
samples, the opposite was true with the TPI metric per-
forming better than the PTIT metric.

Both metrics performed better at capturing unimpaired
compared to impaired biological conditions (Fig. 1, Tables 2
and 3). Both metrics correctly identified more unimpaired
samples with fewer type 1 errors compared to impaired
samples. For example, PTIT and TPI metrics with a type 1
error rates of 0.1% correctly identified 54% and 39%
(respectively) of the unimpaired samples but only 2% and
8% (respectively) of the impaired samples.

Discussion

Macroinvertebrate sampling is a common method used by
citizen science programs sampling rivers and streams
(Herron et al. 2022). The data produced can have variable
quality because the sampling is vulnerable to human sour-
ces of variability (Nerbonne and Vondracek 2003). The
presence only metrics developed in this investigation reduce
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Table 2 Frequency at which each metric correctly (matching
assessments) and incorrectly (type 1 errors) identifies samples from
streams with biological conditions that are unimpaired (BAP > 5)

A. Using a threshold number of unique indicator taxa

Minimum # of Matching Type

indicator taxa Assess- 1 errors
ments (percent)
(percent)

3 89 3.6

4 79 1.1

5 69 0.5

6 54 0.1

7 42 0.0

B. Using a threshold probability

Minimum Probability Matching Assessments Type 1 errors

(percent) (percent)
50 80 23
70 70 0.8
90 49 0.4
95 39 0.1
98 28 0

Table 3 Frequency at which each metric correctly (matching
assessments) and incorrectly (type I errors) identifies samples from
streams with a biological impairment (BAP <5)

A. Using a threshold number of unique indicator taxa

Minimum # of Matching Assessments Type 1 errors

indicator taxa (percent) (percent)
3 58 11.0

4 35 4.6

5 16 1.5

6 0.5

7 0.1

B. Using a threshold probability of impairment

Minimum Probability Matching Assessments Type 1 errors

(percent) (percent)
50 54 32
70 44 1.8
90 26 0.7
95 17 0.3
98 8 0.1

this variability because they rely on the presence rather than
the absence of macroinvertebrate taxa. Samples that don’t
contain indicator organisms at the required thresholds pro-
duce no conclusions and samples that do meet thresholds
produce condition assessments with high confidence.

@ Springer
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Fig. 1 The distribution of all sampling sites (black line) by their
defined biological assessment profile scores (BAP) compared to the
distribution of those sites with at least one sample containing 3-7
unimpaired indicator taxa (colored lines). The established Impaired
(BAP < 5) and unimpaired (BAP > 5) thresholds are delineated as are
the more refined slightly impacted (5 <BAP <7.5) and non-impacted
(BAP >7.5) thresholds

Unimpaired stream samples were identified with high
confidence and efficiency by both the PTIT and TPI
metrics. We selected the PTIT metric and specifically the
threshold of 6 or more indicator taxa for the NYSDEC
WAVE Program. This metric identified the greatest number
of unimpaired samples (54%) with negligible type 1 errors
(0.1%, Table 2) compared to the TPI metric or other itera-
tions of the PTIT metric. The 6 or more taxa threshold is
also simpler for external partners to understand than the
probability calculations required for the TPI metrics.

The 6 or more PTIT metric selected for the WAVE
program is more efficient at identifying high quality stream
segments. The metric identified 54% of all unimpaired
samples but captured a larger percentage of non-impacted
compared to slightly impacted stream segments (Fig. 1).
Therefore, studies designed to identify non-impacted waters
will be more likely to produce conclusions with the WAVE
method than studies in slightly impacted waters.

Impaired stream samples were identified with high con-
fidence but not efficiently by both the PTIT and TPI
metrics. Efficiencies were too low (2% and 8% respectively)
at negligible type 1 error rates (0.1%) to be valuable as a
monitoring tool alone (Table 2). This is likely because
abundance, which is a significant driver of genus/species
level metrics in impaired waters (Barbour et al. 1999), is
deliberately excluded from these presence only metrics.
Also, previous research has shown that family level metrics
indicate less pollution in stressed streams compared to
genus/species level metrics (Hilsenhoff 1988; O’Leary et al.
2004; Penrose and Call 1995). Instead of using this method
directly, we use the TPI metric to prioritize WAVE loca-
tions for follow up investigations. The probability of



Environmental Management (2023) 71:432-438

437

impairment is on a continuous scale and therefore is an ideal
tool for ranking sites for potential follow up investigation
by NYSDEC and application of the BAP.

The NYSDEC launched the WAVE program in 2012 and
the program has collected 1343 samples in total, 33% of
which indicated unimpaired biological conditions and 7.5% of
which launched further investigations of possible impairment.
The frequency of unimpaired samples is lower than the 54%
in the test data set and is most likely caused by sampling and
handling errors that result in no conclusion but, importantly,
not erroneous results. WAVE plays an efficient regulatory
role because it requires minimal staff time, and the method is
robust to most errors. NYSDEC included WAVE sample
results in Clean Water Act section 305b reporting.

It is possible to increase the efficiency of WAVE assess-
ments by directing samplers to undisturbed watersheds since
the method is more efficient in less disturbed streams (Fig. 1).
Connecticut’s Riffle Bioassessment by Volunteers Program
began directing participants to less developed, unassessed
watersheds and was able to increase the frequency of
assessments from 30% to 53% (Lally 2019). This is valuable,
especially when a primary goal is to reduce the number of
unassessed waters in the state. In New York State, however,
we also hope to engage citizen scientists in local protection or
restoration efforts. This is particularly important in our state
which protects the autonomy of local governments under
Atrticle IX “Home Rule” more so than other states (Clark and
Cohen 2016). In this way, New York and Connecticut use
the same tool differently to accomplish our respective goals.

Citizen scientists transition from data collection to par-
ticipation in restoration and preservation efforts at multiple
levels. With state monitoring programs, citizen scientists
can highlight waterbodies that they feel deserve attention
and participate in watershed planning efforts supporting
those waterbodies (McKinley et al. 2017). At the local level,
sampling results generated by citizen scientists can serve to
communicate restoration or preservation needs to local town
planning boards, watershed groups and/or environmental
councils (Fischer 2000).

Initial surveys conducted 2012-2017 indicated that at least
25% of WAVE participants sample to highlight waterbodies
of local interest and/or concern to the state monitoring pro-
gram. Volunteers from two major watersheds participated in
state watershed planning efforts. At the local level, watershed
organizations and county level monitoring programs use
WAVE data to work directly with community leaders to
make informed decisions regarding development, tracking of
illicit discharges, and natural resource preservation. For
example, a watershed group collected samples upstream and
downstream of a planned development and presented these
results to the town planning board to successfully argue for
the stream’s protection (Mike Jastremski, personal commu-
nication, January 2015). Several organizations use WAVE as

part of a larger education/stewardship program and appreciate
that the data can serve both educational and state monitoring
objectives. Most WAVE participants, however, indicate that
they are sampling primarily to support NYSDEC efforts.
Therefore, it is important that we are transparent about the
value and application of the data collected to best take
advantage of this opportunity to foster stewardship and edu-
cate the participants about stream ecosystems and the NYS-
DEC efforts to conserve and protect these resources. After
receiving his results, one WAVE participant wrote, “My
family has lived on the banks of Fish Creek since 1866.
Helping to assess its health is very rewarding for me”
(P. Miller, personal communication, January 5, 2016).

Previous research highlights that citizen science has the
potential to improve environmental decision making, but
few studies indicate that the data collected changed man-
agement decisions (Conrad and Hilchey 2011; Gray et al.
2017). We feel that the primary reason the WAVE program
has been effective is because the method produces data of
known quality and therefore the data can be accurately used
as a tool for communication at multiple levels.

Conclusions

Presence only metrics are valuable tools for large volunteer
programs because they are robust to sampling variability and
therefore programs require fewer quality assurance checks to
ensure the integrity of the data produced. The NYSDEC
WAVE program uses a presence only metric that is not vul-
nerable to collection and sorting variability thereby removing
the major sources of uncertainty. This metric identifies sam-
ples from unimpaired streams and we rank the remaining
samples for potential follow up investigations using a calcu-
lated probability of impairment based on presence only
macroinvertebrate types. The benefits of this method go
beyond data collection alone. The data is of known quality
and thresholds for response are clearly defined which enables
clear communication between citizen monitoring groups and
NYSDEC and/or local decision makers.
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