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Abstract
Tumour-infiltrating immune cells are a source of important prognostic information for patients with resectable colon cancer. 
We developed a novel immune model based on systematic assessments of the immune landscape inferred from bulk tumor 
transcriptomes of stage I–III colon cancer patients. The “Cell type Identification By Estimating Relative Subsets Of RNA 
Transcripts (CIBERSORT)” algorithm was used to estimate the fraction of 22 immune cell types from six microarray public 
datasets. The random forest method and least absolute shrinkage and selection operator model were then used to establish 
immunoscores for diagnosis and prognosis. By comparing immune cell compositions in samples of 870 colon cancer patients 
and 70 normal controls, we constructed a diagnostic model, designated the diagnostic immune risk score (dIRS), that showed 
high specificity and sensitivity in both the training [area under the curve (AUC) = 0.98, p < 0.001] and validation (AUC 0.96, 
p < 0.001) sets. We also established a prognostic immune risk score (pIRS) that was found to be an independent prognostic 
factor for relapse-free survival in every series (training: HR 2.23; validation: HR 1.65; entire: HR 2.01; p < 0.001 for all), 
which showed better prognostic value than TNM stage. In addition, integration of the pIRS with clinical characteristics 
in a composite nomogram showed improved accuracy of relapse risk prediction, providing a higher net benefit than TNM 
stage, with well-fitted calibration curves. The proposed dIRS and pIRS models represent promising novel signatures for the 
diagnosis and prognosis prediction of colon cancer.

Keywords  Immune risk score · Colon cancer · Diagnosis · Prognosis · CIBERSORT

Abbreviations
AUC​	� Area under the curve
CIBERSORT	� Cell Type Identification By Estimating 

Relative Subsets Of RNA Transcripts
c-index	� Concordance index
CMS	� Consensus molecular subtypes

dIRS	� Diagnostic immune risk score
EMT	� Epithelial–mesenchymal transition
GEO	� Gene expression omnibus
GSEA	� Gene set enrichment analysis
LASSO	� Least absolute shrinkage and selection 

operator
MSI	� Microsatellite instability
MSS	� Microsatellite stability
pIRS	� Prognostic immune risk score
RFS	� Relapse-free survival
ROC	� Receiver operating characteristic

Introduction

Colon cancer is one of the major human malignancies. 
Although progress in surgical techniques and systemic treat-
ments have improved the overall prognosis of patients with 
colon cancer when diagnosed at an early stage [1, 2], cur-
rent pathophysiological evaluation, treatment decisions, and 
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prognostic predictions for colon cancer mainly rely on factors 
with a cancer cell-centric focus, such as the TNM staging sys-
tem [3], and molecular markers. However, numerous studies 
have recently pointed to the influence of the immune micro-
environment on colon cancer development [4], suggesting that 
infiltration of different types of immune cells might be a prom-
ising source of novel diagnostic and prognostic biomarkers.

Among the various cell types involved in cancer devel-
opment and progression, the prognostic impact of tumor-
infiltrating lymphocytes has been most extensively studied 
to date, including colon cancer. Indeed, assessment of the 
extent of tumor-infiltrating lymphocytes was confirmed to 
be an important supplemental marker to the TNM staging 
system for relapse and mortality prediction [5–7]. Besides 
lymphocytes, tumors also commonly contain diverse non-
lymphocyte immune cells [8, 9], which are considered to 
have a unique impact on prognosis in different cancer types 
and disease stages [4]. However, conventional means of 
measuring the tumor immune infiltrate, such as IHC or flow 
cytometry, are not capable of comprehensively assessing 
the immune effects of different cell types or do not show 
effective discriminating power between closely related cell 
populations, which is largely due to the limitation of the 
number of immune markers that can be simultaneously 
measured with current techniques. As an alternative, con-
tinuously accumulating transcriptomics data can provide 
an ideal resource for large-scale analysis of the immune 
landscape, and multiple computational methods have been 
developed to carry out such analyses [10]. With the goal of 
improving early diagnosis and prognosis prediction in colon 
cancer, in the current study, we employed the algorithm 
“Cell type Identification By Estimating Relative Subsets Of 
RNA Transcripts (CIBERSORT)”, which has been deemed 
to be the most accurate method available. CIBERSORT is 
an algorithm that allows for highly sensitive and specific 
discrimination of 22 human immune cell phenotypes using 
a machine-learning approach called support vector regres-
sion [11] and has already been used for immunoscore model 
construction in several cancer types [12–14]. Here, we used 
CIBERSORT to quantify the proportions of immune cells 
in samples of 870 colon cancer patients and 70 normal con-
trols based on their gene expression profiling available from 
public databases. We also developed two novel immune-
based models to provide more powerful biomarkers for the 
diagnosis and prognosis of colon cancer patients.

Materials and methods

Colon cancer datasets and normal controls

We searched the Gene Expression Omnibus (GEO; http://
www.ncbi.nlm.nih.gov/geo/) for eligible datasets that 

fulfilled the following criteria: included samples were 
hybridized to the HG-U133A (GEO accession number 
GPL96) or Affymetrix HG-U133 Plus 2.0 (GEO acces-
sion number GPL570) platforms; more than 50 patients 
were included in each dataset, and information on the 
TNM stage was available. The raw “CEL” files of the 
microarray data were downloaded and normalized using a 
robust multiarray averaging method [15] with “affy” and 
“simpleaffy” packages. The mRNA expression profiles of 
non-tumoral colon mucosas that were included with the 
eligible colon cancer datasets served as non-malignant 
(normal) controls. They were from the corresponding 
tumor patients of the cohort we analyzed. These mRNA 
data will be called normal controls.

CIBERSORT estimation

The gene expression data with standard annotation were 
uploaded to the CIBERSORT web portal (http://ciber​sort.
stanf​ord.edu/), and the algorithm was run using the LM22 
signature and 1000 permutations [11]. Cases with a CIBER-
SORT output of p < 0.05, indicating that the inferred frac-
tions of immune cell populations produced by CIBERSORT 
are accurate [16], were considered to be eligible for further 
analysis. For each sample, the final CIBERSORT output 
estimates were normalized to sum up to one and thus can be 
interpreted directly as cell fractions for comparison across 
different immune cell types and datasets. The optimal cut-off 
values for a fraction of each immune cell type were defined 
as the point with the most significant (log-rank test) split, 
and calculated using the web-based tool “cutoff Finder” 
(http://molpa​th.chari​te.de/cutof​f/) [17] for the entire cohort.

Study population and clinicopathological variables

The samples were randomly separated into training and 
validation (7:3) sets for diagnostic and prognostic analyses 
based on cohorts for identifying and evaluating the models 
using the “caret” package. The following clinical informa-
tion was collected from the databases: patients’ age, sex, 
TNM stage, and primary tumor site. Data on the microsatel-
lite instability (MSI) status, chromosome instability status, 
genetic mutations (KRAS, BRAF, and P53), and consensus 
molecular subtypes (CMS) [18], specifically microsatellite 
instability immune (CMS1), canonical (CMS2), metabolic 
(CMS3), and mesenchymal (CMS4), were also retrieved 
where available. To maintain consistency among the dataset, 
the TNM stage of all patients was converted to that defined 
by the 6th edition [19]. The endpoint analyzed in this study 
was relapse-free survival (RFS), defined as the interval 
between the date of diagnosis and date of tumor relapse.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
http://molpath.charite.de/cutoff/
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Gene set enrichment analysis

Gene set enrichment analysis (GSEA) [20] was used to 
investigate the potential mechanisms in the “Molecular 
Signatures Database” of c2 (c2.cp.kegg.v6.1.symbols and 
c2.cp.biocarta.v6.1.symbols) and c5 (c5.bp.v6.1.symbols) 
using the JAVA program (http://softw​are.broad​insti​tute.
org/gsea/index​.jsp). The number of random sample per-
mutations was set at 1000, and the significance threshold 
was set at p < 0.05.

Statistical analysis

All statistical analyses were conducted using R software 
(version 3.4.0) and SPSS software (version 25.0). Miss-
ing values were handled by multiple imputation analyses 
[21]. Group comparisons were performed for continu-
ous variables using the independent t test for normally 
distributed variables and Mann–Whitney U test for vari-
ables showing an abnormal distribution. The correlations 
between the immunoscore value and mRNA expression 
level of corresponding genes were analyzed using Spear-
man’s correlation test. Random forest analysis and least 
absolute shrinkage and selection operator (LASSO) 
analysis were both applied to identify the most important 
immune cells that could be used to differentiate tumor and 
normal tissues. The overlapping markers between these 
two methods were finally selected to build the diagnos-
tic prediction model using a logistic regression method 
[22]. Survival rates were calculated by the Kaplan–Meier 
method, and significance of differences between survival 
curves was determined using the log-rank test. Uni- and 
multivariate analyses were performed using Cox pro-
portional hazard models. The LASSO–Cox method was 
implemented to reduce the dimensionality and to select 
the most significantly relapse-associated immune cells to 
build a prognostic model using the Cox regression method 
[23]. Nomogram construction and validation were per-
formed according to Iasonos’ guide [24]. The sensitivity 
and specificity of the diagnostic and prognostic prediction 
models were analyzed by receiver operating characteristic 
(ROC) curve and time-dependent ROC [25] curve, respec-
tively, and quantified by the area under the ROC curve 
(AUC). The discrimination of the prognostic models was 
measured and compared by Harrell’s concordance index 
(c-index). All statistical tests were two sided and p values 
less than 0.05 were considered statistically significant. 
This study was conducted and reported in line with the 
Transparent Reporting of a Multivariate Prediction Model 
for Individual Prediction or Diagnosis guidelines [26].

Results

Patient characteristics

Data of a total of 870 patients diagnosed with stage I–III 
colon cancer from six GEO datasets (GSE17536, GSE33113, 
GSE37892, GSE38832, GSE41258, and GSE39582) were 
retrospectively analyzed in this study. The median age at 
diagnosis was 68.0 years (range 22.0–96.0 years) and 420 
(48.3%) of the patients were male. Detailed patient char-
acteristics are listed in Supplemental Table 1. The patient 
selection scheme and workflow chart are shown in Supple-
mental Fig. 1.

Composition of immune cells in tumor and normal 
tissue

We first analyzed the composition of immune cells in colon 
cancer tissues versus normal colon tissues. As shown in 
Fig. 1a, the fractions of activated CD4+ memory T cells, 
M0 and M1 macrophages, activated mast cells, and neu-
trophils were consistently higher in the colon cancer tissue 
than those of the normal tissue, whereas only the fraction of 
resting mast cells was significantly lower in all series in the 
colon cancer tissue. A summary of the immune cell compo-
sition within and across clinical subgroups of colon cancer 
tissues further showed that plasma cells, M2 macrophages, 
CD4+ resting memory T cells, M0 macrophages, and acti-
vated mast cells were the five most common immune cell 
fractions, and the sum of their mean proportions was more 
than 60% in all clinical subgroups (Supplemental Fig. 2).

Immune cells for diagnostic prediction of colon 
cancer

We separated patients into training and validation cohorts 
(Supplemental Table 2), and found no significant differ-
ence in baseline characteristics between the two groups (all 
p > 0.05; Supplemental Table 2). The random-forest analysis 
(Fig. 1b) and LASSO analysis (Fig. 1c) revealed eight over-
lapping markers between the two methods. Using a logistic 
regression method, we established a diagnostic immune 
risk score (dIRS) model with these markers (Supplemental 
Table 3). In this model, the fractions of selected immune 
cells were evaluated as continuous variables. The violin 
plot (Fig. 1d) showed that the dIRS value was significantly 
upregulated in colon cancer tissues in each gene expres-
sion series in both the training and validation cohorts, and 
in the entire patient cohort. The dIRS model also showed 
high accuracy in distinguishing colon cancer patients from 
normal controls (Fig. 1e, f). In addition, we evaluated the 

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
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ability of dIRS in differentiating between colon polyps and 
cancer. Similarly, a significant difference in the dIRS value 
was observed between these two diseases (Supplemental 
Fig. 3a). The dIRS model showed over 80% sensitivity and 
specificity for differentiating colon cancer patients from 
those with polyps (Supplemental Fig. 3b, c).

Immune cells for the prognostic prediction of colon 
cancer

Five of the six datasets (GSE17536, GSE33113, GSE37892, 
GSE38832, and GSE39582) evaluated, in which the samples 
were all hybridized to GPL570, were used for prognostic 

model construction and patients were randomly regrouped 
into training and validation cohorts for this purpose (Sup-
plemental Table 2). The cut-off values for each cell type are 
listed in Supplemental Table 4. Through the LASSO algo-
rithm (Fig. 2a), 22 types of immune cells were selected to 
build the prognostic immune risk score (pIRS) model using 
Cox analysis in the training cohort (Supplemental Table 5), 
and the predictive ability of the pIRS at 2, 3, and 5 years 
was represented by AUC values (Supplemental Table 6). 
In this model, the cell fraction was converted into binary 
variables, and was given a value of 1 or 2 to represent a 
value higher or lower than the cut-off value as described 
in our previous study [12]. According to the cut-off value 

Fig. 1   dIRS construction and validation. a Bubble heatmap for com-
parison of the immune cell fraction difference between tumor and 
normal colon tissues. Fractions of each immune cell type were com-
pared by means of a two-sided Mann–Whitney U test for colon can-
cer. A red circle indicates a higher immune cell-type fraction in colon 
cancer as compared with normal colon tissue. A blue circle indicates 
a lower fraction in colon cancer as compared with normal colon tis-
sue. The size of the circle represents the absolute value of the Z sta-
tistics. b Multi-dimensional scaling plot of a proximity matrix gen-
erated from random forest analysis in the training cohort. The blue 
dots represent normal samples and the red dots indicate tumor sam-
ples. Dim dimension. c Misclassification error for different numbers 

of variables revealed by the LASSO regression model. The red dots 
represent the value of misclassification error, the grey lines represent 
the standard error (SE), the two vertical dotted lines on the left and 
right, respectively, represent optimal values by the minimum criteria 
and 1-SE criteria. “Lambda” is the tuning parameter. d Distribution 
of dIRS values in different datasets. The box plots inside the violin 
indicate the median value and interquartile range of dIRS. The white 
points represent mean dIRS values. dIRS diagnostic immune risk 
score; N normal; T tumor. e, f ROC of the dIRS model in the training 
(e) and validation (f) cohorts. AUC​ area under curve; CI confidence 
interval; N normal; T tumor
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obtained in the entire cohort (4.74), we divided the patients 
into high- or low-pIRS groups. The Kaplan–Meier curves 
suggested that the patients in the high-pIRS group had a sig-
nificantly higher risk of relapse in the training set (HR 3.90, 
95% CI 2.70–5.61, p < 0.001), validation set (HR 2.25, 95% 
CI 1.38–3.68, p < 0.001), and entire set (HR 3.22, 95% CI 
2.41–4.31, p < 0.001) by the log-rank test (Fig. 2b–d). The 
pIRS was also found to be a strong independent risk factor 
for survival through multivariate analysis when treated as a 
continuous variable in all patient cohorts (Table 1).

Since the information on MSI status, chromosome insta-
bility status, and genetic mutations could only be retrieved 
from the GSE39582 series, we specifically explored whether 
the pIRS model maintained its survival impact when the 
above variables were simultaneously regarded as concomi-
tant variables (Supplemental Table 7). Similarly, the pIRS 
was still significantly negatively associated with RFS either 
through univariate analysis (p < 0.001) or multivariate analy-
sis (p < 0.001).

We next performed stratification analyses in various sub-
groups for the entire cohorts, where the pIRS was treated as 

a continuous variable. As shown in Supplemental Table 8, 
the pIRS identified patients with different prognoses in all 
subgroups analyzed. In the c-index analysis (Table 2), the 
pIRS model showed better predictive ability than that of the 
TNM stage in the training, validation, and entire cohorts.

Nomogram construction

To provide a quantitative method to predict the probability 
of relapse, we constructed a nomogram that integrated both 
the pIRS and clinicopathological factors using patients from 
the training cohort (Fig. 3a, Supplemental Table 9). The cali-
bration plots depicted in Fig. 3b and Supplemental Fig. 4a, 
b showed that the derived nomogram performed well when 
compared to the performance of an ideal model using the 
training cohort, validation cohort, and entire cohort. Simi-
larly, using the decision curve (Fig. 3c and Supplemental 
Fig. 4c, d) and c-index analysis (Table 2), the nomogram 
also showed a higher net benefit and better predictive accu-
racy than the TNM staging system.

Fig. 2   pIRS construction and validation. a Partial likelihood deviance 
of different numbers of variables revealed by the LASSO regression 
model. The red dots represent the partial likelihood deviance values, 
the grey lines represent the standard error (SE), the two vertical dot-
ted lines on the left and right, respectively, represent optimal val-

ues by minimum criteria and 1-SE criteria. “Lambda” is the tuning 
parameter. b–d Kaplan–Meier curves of relapse-free survival accord-
ing to pIRS groups in the training cohort (b), validation cohort (c), 
and entire cohort (d). pIRS prognostic immune risk score
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Correlations between pIRS with clinical 
characteristics and molecular subtypes

The correlations between pIRS with clinical character-
istics and molecular subtypes were further investigated 
in the GSE39582 series. As shown in Fig. 4a, apart from 
the lymph node metastatic status, pIRS significantly var-
ied between patients with different tumor invasion levels, 
relapse occurrence status, and MSI status. Additionally, in 
terms of molecular subtypes, patients in CMS3 and CMS4 
exhibited significantly higher pIRS values, whereas CMS1 
was notably linked to a low pIRS.

Biological phenotypes associated with the pIRS 
model

Gene expression data were analyzed to explore the poten-
tial biological phenotypes associated with the pIRS model. 
First, we specially focused on the correlation between 
pIRS and the expression of selected immune-related genes. 
The heatmap depicted in Fig. 4b shows that the pIRS was 

significantly negatively correlated to the expression levels 
of PD-L1 (p < 0.001), LAG3 (p < 0.001), TIGHI (p < 0.001), 
GZMB (p < 0.001), and IFNG (p < 0.001). Interestingly, the 
pIRS was also correlated with markers of epithelial–mes-
enchymal transition (EMT). Finally, we performed GSEA 
to elucidate the biological functions of the pIRS model 
(Fig. 4c–e), which revealed that genes highly expressed 
in the low-pIRS group showed significant enrichment in 
multiple biological processes such as cell cycle regulation, 
DNA repair, cell apoptosis, cell death, and immune acti-
vation pathways, while the high-pIRS-related genes were 
associated with the metabolism-related gene set, including 
retinol metabolism, nitrogen cycle, and amine and amino 
acid transport organization.

Discussion

Although it has long been recognized that the immune con-
text plays an important role in tumor initiation and develop-
ment [4, 27], these insights have not had a major influence 
on routine clinical practice. Moreover, the role of genes that 
are aberrantly expressed in cancer tissue on diagnosis and 
prognosis has attracted substantial interest; however, very 
few of these studies focused on the difference of the com-
position of immune cells between cancer and normal tis-
sues. In the present retrospective study, we first established 
a diagnostic prediction model (dIRS) based on the fractions 
of eight types of immune cells. The significant stepwise 
increase in the dIRS value from a normal colon to polyp 
and to tumor tissue, as well as the high AUC value not only 

Table 1   Univariate and multivariate survival analyses of pIRS and clinical variables

Bold values indicate p < 0.05
pIRS prognostic immune risk score, UVA univariate analysis, MVA multivariate analysis; CMS consensus molecular subtypes
a Continuous variable

UVA MVA

Entire p value Training p value Validation p value Entire p value

Agea 1.00 (0.99–1.01) 0.542 1.00 (0.99–1.02) 0.753 1.00 (0.98–1.02) 0.761 1.00 (0.99–1.01) 0.709
Gender (vs. male) 0.73 (0.55–0.98) 0.036 0.66 (0.45–0.97) 0.032 0.81 (0.48–1.36) 0.419 0.72 (0.53–0.97) 0.031
pIRSa 2.51 (2.11–2.98) < 0.001 2.23 (1.77–2.81) < 0.001 1.65 (1.12–2.45) < 0.001 2.01 (1.75–2.52) < 0.001
Tumor site (vs. proxi-

mal)
0.95 (0.71–1.29) 0.775 1.02 (0.67–1.53) 0.942 1.08 (0.61–1.91) 0.795 1.06 (0.76–1.49) 0.728

Stage (vs. stage I)
 Stage II 7.63 (1.88-31.00) 0.004 6.39 (0.87–46.71) 0.068 3.10 (0.42–23.00) 0.268 5.08 (1.24–20.80) 0.024
 Stage III 13.70 (3.38–55.52) < 0.001 11.63 (1.59–89.84) 0.016 3.65 (0.48–27.69) 0.210 7.91 (1.93–32.44) 0.004

CMS subtype (vs. 
CMS4)

 CMS1 0.60 (0.37–0.98) 0.041 0.84 (0.47–1.52) 0.562 0.78 (0.31–2.00) 0.602 0.83 (0.49–1.41) 0.475
 CMS2 0.49 (0.34–0.70) < 0.001 0.54 (0.33–0.87) 0.011 0.89 (0.44–1.80) 0.740 0.66 (0.45–0.95) 0.027
 CMS3 0.49 (0.28–0.85) 0.011 0.46 (0.21–0.97) 0.042 1.07 (0.40–2.86) 0.885 0.64 (0.36–1.15) 0.137

Table 2   Harrell’s concordance indexes of the pIRS, stage, and nomo-
gram in different cohorts

pIRS prognostic immune risk score

Cohort pIRS Stage 6th Nomogram

Training 0.72 (0.68–0.76) 0.60 (0.54–0.66) 0.71 (0.63–0.77)
Validation 0.67 (0.61–0.74) 0.54 (0.46–0.62) 0.64 (0.55–0.73)
Entire 0.70 (0.66–0.74) 0.59 (0.55–0.64) 0.69 (0.64–0.74)
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demonstrated that the dIRS model could effectively identify 
patients with colon cancer from individuals with colon pol-
yps and healthy controls but also suggested that the immune 
system participates in colonic carcinogenesis. This finding 
opens the door to a new diagnostic strategy from the per-
spective of immune infiltration. Nevertheless, future studies 
are warranted to establish the consistency between immune 
cells in the circulation and their infiltration status in the tis-
sues to determine whether the immune patterns detected in 
peripheral blood could be used as a novel tool for colon 
cancer screening.

Tumor relapse after initial resection is one of the most 
important factors influencing the total survival of colon 
cancer patients. Therefore, accurate assessment of patient 
relapse risk is essential for improving personalized cancer 
care. To date, studies on the prognostic role of the density 
of CD3+ and CD8+ lymphocytes in the central- and peri-
tumoral areas represented by intensity of IHC staining have 
gained increased attention [4, 27, 28], and this method has 
been validated through both a single-centre cohort study 
[5] and international multi-centre validation in localized 
colon cancer [6]. However, the assessment of only CD3+ 
and CD8+ lymphocytes cannot comprehensively reflect the 
local immune status. Technically, IHC suffers from limita-
tions in available phenotypic markers and can, therefore, 
be challenging to practically implement and standardize. 

Instead, the use of transcriptomics data to describe the tumor 
microenvironment computationally is a promising approach 
that overcomes the technical limitations of IHC, and can fur-
ther characterize diverse immune populations with multiple 
functional phenotypes in a large patient cohort much more 
readily than possible with IHC. Therefore, by applying the 
newly developed algorithm “CIBERSORT”, our pIRS model 
differs from previously reported immune models that consist 
of features of the lymphocytes and myeloid cells simultane-
ously. Subsequent c-index analyses and subgroup analyses 
further confirmed the prognostic ability and excellent repro-
ducibility of pIRS for colon cancer. However, according to 
the guidelines established by Altman et al. [29], only sig-
natures validated in independent cohorts of patients with 
full clinical annotation available could be applied clinically. 
Therefore, we will first validate the prognostic value of pIRS 
model at our centre and compare the prognostic value of the 
pIRS and IHC-based immunoscore model in a same cohort 
in future studies. Since the current high-throughput gene 
expression measurement technology has been well devel-
oped, we believe that our pIRS classifier has strong potential 
to be translated into clinical practice.

We also uncovered a significant difference in the pIRS 
value among CMS subtypes, with a higher value in the 
CMS3 and CMS4 subtypes than in the CMS1 and CMS2 
subtypes. Profound biological differences were demonstrated 

Fig. 3   Nomogram construction and validation. a Nomogram for pre-
dicting 2-, 3-, and 5-year RFS for colon cancer patients in the train-
ing cohort based on pIRS and clinicopathological parameters. pIRS 
prognostic immune risk score; CMS consensus molecular subtypes. 
b Calibration curves of nomograms in terms of agreement between 

predicted and observed 2-, 3-, and 5-year outcomes in the training 
cohort. The dashed line of 45° represents perfect prediction, and the 
actual performances of our nomogram are shown by green, red, and 
blue lines. c Decision curve analyses of the nomogram and TNM 
stage for 2-, 3-, and 5-year risk in the training cohort
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among distinct CMS groups. Among them, CMS3 showed 
enrichment for multiple metabolism signatures. This is con-
sistent with the GSEA result showing that a high pIRS value 
was correlated with biological processes related to metabo-
lism. Moreover, the enrichment of EMT-related genes in 
CMS4 was also supported by the correlation between the 
pIRS value and EMT marker genes. By contrast, the pIRS 
value was the lowest in the CMS1 subtype, which is char-
acterized by increased expression of genes involved in the 
immune response, along with an emerging feature of MSI. 
Notably, MSI status has been proposed as a promising pre-
dictor for the treatment efficacy of immunotherapy such as 
anti-PD-1 treatment [30]. Since our study also revealed sig-
nificant variation of the pIRS value between patients with 

different MSI status, as well as obvious enrichment of mul-
tiple immune checkpoint markers, inflammatory factors, 
and immune activation pathways in the low-pIRS group, it 
is reasonable to speculate that immunotherapy might also 
be a preferable choice for patients in this group. Further 
studies are warranted to explore whether the pIRS model 
can predict the response of patients with colon cancer to 
immunotherapy.

There are inevitably several limitations of our study that 
should be acknowledged. First, the amount of data released 
in publicly available datasets is limited, so that the clin-
icopathological parameters analyzed in this study are not 
comprehensive, which might lead to potential error or bias. 
Second, we have not considered the heterogeneity of the 

Fig. 4   Clinical significance and biological function of pIRS. a pIRS 
values in different clinical subgroups. pIRS prognostic immune risk 
score; CMS consensus molecular subtypes; MSI microsatellite insta-
bility; MSS microsatellite stable. b Correlation matrix of pIRS val-
ues and the expression levels of certain genes. The shade of colour 
reflects the value of corresponding correlation coefficients. pIRS 
prognostic immune risk score; EMT epithelial–mesenchymal tran-
sition. c–e Gene set enrichment analysis delineates biological path-

ways and processes correlated with pIRS values using gene sets of 
“c5.bp.v6.1.symbols” (c), “c2.cp.kegg.v6.1.symbols” (d), and “c2.
cp.biocarta.v6.1.symbols” (e) downloaded from the MSigDB data-
base. Samples were classified into high- and low-pIRS groups. Each 
run was performed with 1000 permutations. Enrichment results with 
significant associations between high- and low-pIRS groups are 
shown. pIRS prognostic immune risk score
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immune microenvironment related to the location of immune 
infiltration. Third, all data series downloaded for establish-
ment of the dIRS and pIRS models were from Western coun-
tries and all transcriptome profiling was produced by the 
GPL96 or GPL570 platform; thus, caution should be exerted 
when applying the conclusion of this study to patients from 
Asian countries and samples tested using platforms other 
than GPL96 or GPL570. Finally, microarray data are gener-
ally considered to not be clinically practical. Thus, reducing 
the dIRS and pIRS to assays that are appropriate for clini-
cal application will be another important task in our future 
work.

In conclusion, our study demonstrates the utility of con-
sideration of immune cells in the diagnosis, treatment evalu-
ation, and prognosis of stage I–III colon cancer. The pro-
posed dIRS and pIRS models might provide much needed 
comprehensive clinical information for improving the per-
sonalized management of colon cancer patients.

Acknowledgements  We thank the members of W. Liao’s laboratory for 
advice and discussion, and thank the GEO database for providing their 
platforms and contributors for their valuable datasets.

Author contributions  WL takes responsibility for the integrity of the 
work as a whole. RZ, JZ, and WL contributed to planning the study and 
drafted the manuscript. RZ, JZ, DZ, and HS prepared all the figures 
and tables. XR, MS, JB, and YL contributed to data interpretation and 
review of the manuscript. All the authors reviewed and approved the 
final manuscript.

Funding  This work was supported by the National Natural Science 
Foundation of China (No. 81602705 to Xiaoxiang Rong and No. 
81772580 to Wangjun Liao).

Compliance with ethical standards 

Conflict of interest  The authors declare no conflicts of interest.

Informed consent  The gene expression data used in our research were 
collected from the Gene Expression Omnibus (GEO; http://www.ncbi.
nlm.nih.gov/geo/) public database; therefore, informed consent was not 
required for this analysis.

Ethical approval  Since this was a retrospective study and the gene 
expression data were collected from a public database (GEO, http://
www.ncbi.nlm.nih.gov/geo/), ethical approval was not required.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

	 1.	 Wilkinson NW, Yothers G, Lopa S, Costantino JP, Petrelli NJ, 
Wolmark N (2010) Long-term survival results of surgery alone 
versus surgery plus 5-fluorouracil and leucovorin for stage II and 
stage III colon cancer: pooled analysis of NSABP C-01 through 
C-05. A baseline from which to compare modern adjuvant tri-
als. Ann Surg Oncol 17:959–966. https​://doi.org/10.1245/s1043​
4-009-0881-y

	 2.	 Yothers G, O’Connell MJ, Lee M et al (2013) Validation of the 
12-gene colon cancer recurrence score in NSABP C-07 as a pre-
dictor of recurrence in patients with stage II and III colon cancer 
treated with fluorouracil and leucovorin (FU/LV) and FU/LV plus 
oxaliplatin. J Clin Oncol 31:4512–4519. https​://doi.org/10.1200/
JCO.2012.47.3116

	 3.	 Hu H, Krasinskas A, Willis J (2011) Perspectives on current 
tumor-node-metastasis (TNM) staging of cancers of the colon 
and rectum. Semin Oncol 38:500–510. https​://doi.org/10.1053/j.
semin​oncol​.2011.05.004

	 4.	 Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The 
immune contexture in human tumours: impact on clinical out-
come. Nat Rev Cancer 12:298–306. https​://doi.org/10.1038/nrc32​
45

	 5.	 Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, 
and location of immune cells within human colorectal tumors 
predict clinical outcome. Science 313:1960–1964. https​://doi.
org/10.1126/scien​ce.11291​39

	 6.	 Pages F, Mlecnik B, Marliot F et al (2018) International valida-
tion of the consensus Immunoscore for the classification of colon 
cancer: a prognostic and accuracy study. Lancet 391:2128–2139. 
https​://doi.org/10.1016/S0140​-6736(18)30789​-X

	 7.	 Wang Y, Lin HC, Huang MY et al (2018) The Immunoscore sys-
tem predicts prognosis after liver metastasectomy in colorectal 
cancer liver metastases. Cancer Immunol Immunother 67:435–
444. https​://doi.org/10.1007/s0026​2-017-2094-8

	 8.	 Jang JE, Hajdu CH, Liot C, Miller G, Dustin ML, Bar-Sagi D 
(2017) Crosstalk between regulatory T cells and tumor-associ-
ated dendritic cells negates anti-tumor immunity in pancreatic 
cancer. Cell Rep 20:558–571. https​://doi.org/10.1016/j.celre​
p.2017.06.062

	 9.	 Wang TT, Zhao YL, Peng LS et al (2017) Tumour-activated neu-
trophils in gastric cancer foster immune suppression and disease 
progression through GM-CSF-PD-L1 pathway. Gut 66:1900–
1911. https​://doi.org/10.1136/gutjn​l-2016-31307​5

	10.	 Finotello F, Trajanoski Z (2018) Quantifying tumor-infiltrating 
immune cells from transcriptomics data. Cancer Immunol Immu-
nother 67:1031–1040. https​://doi.org/10.1007/s0026​2-018-2150-z

	11.	 Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, 
Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of 
cell subsets from tissue expression profiles. Nat Methods 12:453–
457. https​://doi.org/10.1038/nmeth​.3337

	12.	 Zeng D, Zhou R, Yu Y et al (2018) Gene expression profiles for a 
prognostic immunoscore in gastric cancer. Br J Surg. https​://doi.
org/10.1002/bjs.10871​

	13.	 Fu H, Zhu Y, Wang Y et al (2018) Identification and validation of 
stromal immunotype predict survival and benefit from adjuvant 
chemotherapy in patients with muscle-invasive bladder cancer. 
Clin Cancer Res 24:3069–3078. https​://doi.org/10.1158/1078-
0432.CCR-17-2687

	14.	 Zhou L, Xu L, Chen L, Fu Q, Liu Z, Chang Y, Lin Z, Xu J (2017) 
Tumor-infiltrating neutrophils predict benefit from adjuvant 
chemotherapy in patients with muscle invasive bladder cancer. 
Oncoimmunology 6:e1293211. https​://doi.org/10.1080/21624​
02X.2017.12932​11

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1245/s10434-009-0881-y
https://doi.org/10.1245/s10434-009-0881-y
https://doi.org/10.1200/JCO.2012.47.3116
https://doi.org/10.1200/JCO.2012.47.3116
https://doi.org/10.1053/j.seminoncol.2011.05.004
https://doi.org/10.1053/j.seminoncol.2011.05.004
https://doi.org/10.1038/nrc3245
https://doi.org/10.1038/nrc3245
https://doi.org/10.1126/science.1129139
https://doi.org/10.1126/science.1129139
https://doi.org/10.1016/S0140-6736(18)30789-X
https://doi.org/10.1007/s00262-017-2094-8
https://doi.org/10.1016/j.celrep.2017.06.062
https://doi.org/10.1016/j.celrep.2017.06.062
https://doi.org/10.1136/gutjnl-2016-313075
https://doi.org/10.1007/s00262-018-2150-z
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1002/bjs.10871
https://doi.org/10.1002/bjs.10871
https://doi.org/10.1158/1078-0432.CCR-17-2687
https://doi.org/10.1158/1078-0432.CCR-17-2687
https://doi.org/10.1080/2162402X.2017.1293211
https://doi.org/10.1080/2162402X.2017.1293211


442	 Cancer Immunology, Immunotherapy (2019) 68:433–442

1 3

	15.	 Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonel-
lis KJ, Scherf U, Speed TP (2003) Exploration, normalization, 
and summaries of high density oligonucleotide array probe level 
data. Biostatistics 4:249–264. https​://doi.org/10.1093/biost​atist​
ics/4.2.249

	16.	 Ali HR, Chlon L, Pharoah PD, Markowetz F, Caldas C (2016) 
Patterns of immune infiltration in breast cancer and their clinical 
implications: a gene-expression-based retrospective study. PLoS 
Med 13:e1002194. https​://doi.org/10.1371/journ​al.pmed.10021​94

	17.	 Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-
Esfahani S, Denkert C (2012) Cutoff Finder: a comprehensive and 
straightforward web application enabling rapid biomarker cutoff 
optimization. PLoS One 7:e51862. https​://doi.org/10.1371/journ​
al.pone.00518​62

	18.	 Guinney J, Dienstmann R, Wang X et al (2015) The consensus 
molecular subtypes of colorectal cancer. Nat Med 21:1350–1356. 
https​://doi.org/10.1038/nm.3967

	19.	 Greene FLPD, Fleming ID et al (2002) AJCC cancer staging hand-
book: TNM classification of malignant tumors, 6th edn. Springer, 
New York

	20.	 Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set 
enrichment analysis: a knowledge-based approach for interpret-
ing genome-wide expression profiles. Proc Natl Acad Sci USA 
102:15545–15550. https​://doi.org/10.1073/pnas.05065​80102​

	21.	 Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward 
MG, Wood AM, Carpenter JR (2009) Multiple imputation for 
missing data in epidemiological and clinical research: potential 
and pitfalls. BMJ 338:b2393. https​://doi.org/10.1136/bmj.b2393​

	22.	 Xu RH, Wei W, Krawczyk M et al (2017) Circulating tumour 
DNA methylation markers for diagnosis and prognosis of 

hepatocellular carcinoma. Nat Mater 16:1155–1161. https​://doi.
org/10.1038/nmat4​997

	23.	 Goeman JJ (2010) L1 penalized estimation in the Cox propor-
tional hazards model. Biom J 52:70–84. https​://doi.org/10.1002/
bimj.20090​0028

	24.	 Iasonos A, Schrag D, Raj GV, Panageas KS (2008) How to build 
and interpret a nomogram for cancer prognosis. J Clin Oncol 
26:1364–1370. https​://doi.org/10.1200/JCO.2007.12.9791

	25.	 Kamarudin AN, Cox T, Kolamunnage-Dona R (2017) Time-
dependent ROC curve analysis in medical research: current meth-
ods and applications. BMC Med Res Methodol 17:53. https​://doi.
org/10.1186/s1287​4-017-0332-6

	26.	 Collins GS, Reitsma JB, Altman DG, Moons KG (2015) Transpar-
ent reporting of a multivariable prediction model for individual 
prognosis or diagnosis (TRIPOD): the TRIPOD statement. Br J 
Surg 102:148–158. https​://doi.org/10.1002/bjs.9736

	27.	 Galon J, Mlecnik B, Bindea G et al (2014) Towards the intro-
duction of the ‘Immunoscore’ in the classification of malignant 
tumours. J Pathol 232:199–209. https​://doi.org/10.1002/path.4287

	28.	 Angell H, Galon J (2013) From the immune contexture to the 
Immunoscore: the role of prognostic and predictive immune 
markers in cancer. Curr Opin Immunol 25:261–267. https​://doi.
org/10.1016/j.coi.2013.03.004

	29.	 Altman DG, McShane LM, Sauerbrei W, Taube SE (2012) 
Reporting recommendations for tumor marker prognostic studies 
(REMARK): explanation and elaboration. PLoS Med 9:e1001216. 
https​://doi.org/10.1371/journ​al.pmed.10012​16

	30.	 Le DT, Durham JN, Smith KN et al (2017) Mismatch repair defi-
ciency predicts response of solid tumors to PD-1 blockade. Sci-
ence 357:409–413. https​://doi.org/10.1126/scien​ce.aan67​33

https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1371/journal.pmed.1002194
https://doi.org/10.1371/journal.pone.0051862
https://doi.org/10.1371/journal.pone.0051862
https://doi.org/10.1038/nm.3967
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1136/bmj.b2393
https://doi.org/10.1038/nmat4997
https://doi.org/10.1038/nmat4997
https://doi.org/10.1002/bimj.200900028
https://doi.org/10.1002/bimj.200900028
https://doi.org/10.1200/JCO.2007.12.9791
https://doi.org/10.1186/s12874-017-0332-6
https://doi.org/10.1186/s12874-017-0332-6
https://doi.org/10.1002/bjs.9736
https://doi.org/10.1002/path.4287
https://doi.org/10.1016/j.coi.2013.03.004
https://doi.org/10.1016/j.coi.2013.03.004
https://doi.org/10.1371/journal.pmed.1001216
https://doi.org/10.1126/science.aan6733

	Immune cell infiltration as a biomarker for the diagnosis and prognosis of stage I–III colon cancer
	Abstract
	Introduction
	Materials and methods
	Colon cancer datasets and normal controls
	CIBERSORT estimation
	Study population and clinicopathological variables
	Gene set enrichment analysis
	Statistical analysis

	Results
	Patient characteristics
	Composition of immune cells in tumor and normal tissue
	Immune cells for diagnostic prediction of colon cancer
	Immune cells for the prognostic prediction of colon cancer
	Nomogram construction
	Correlations between pIRS with clinical characteristics and molecular subtypes
	Biological phenotypes associated with the pIRS model

	Discussion
	Acknowledgements 
	References


