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in dynamic imaging: evaluation in FDG PET as a prognostic
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Abstract
Purpose Probe-based dynamic (4-D) imaging modalities capture breast intratumor heterogeneity both spatially and kinetically.
Characterizing heterogeneity through tumor sub-populations with distinct functional behavior may elucidate tumor biology to
improve targeted therapy specificity and enable precision clinical decision making.
Methods We propose an unsupervised clustering algorithm for 4-D imaging that integrates Markov-Random Field (MRF) image
segmentation with time-series analysis to characterize kinetic intratumor heterogeneity.We applied this to dynamic FDGPET scans by
identifying distinct time-activity curve (TAC) profiles with spatial proximity constraints. We first evaluated algorithm performance
using simulated dynamic data.We then applied our algorithm to a dataset of 50 womenwith locally advanced breast cancer imaged by
dynamic FDG PET prior to treatment and followed to monitor for disease recurrence. A functional tumor heterogeneity (FTH)
signature was then extracted from functionally distinct sub-regions within each tumor. Cross-validated time-to-event analysis was
performed to assess the prognostic value of FTH signatures compared to established histopathological and kinetic prognostic markers.
Results Adding FTH signatures to a baseline model of known predictors of disease recurrence and established FDG PET uptake
and kinetic markers improved the concordance statistic (C-statistic) from 0.59 to 0.74 (p = 0.005). Unsupervised hierarchical
clustering of the FTH signatures identified two significant (p < 0.001) phenotypes of tumor heterogeneity corresponding to high
and low FTH. Distributions of FDG flux, or Ki, were significantly different (p = 0.04) across the two phenotypes.
Conclusions Our findings suggest that imaging markers of FTH add independent value beyond standard PET imaging metrics in
predicting recurrence-free survival in breast cancer and thus merit further study.
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Introduction

Cancer heterogeneity is well-established, with inter- and
intratumor manifestations recognized as key prognostic and

predictive factors [1–5]. Increased intratumor heterogeneity is
associated with adverse outcomes [6]. Tumor progression
driven by aggressive cell subpopulations has been shown to
be a mechanism for recurrence and therapy resistance [5].
Quantitative characterization of intratumor heterogeneity
could allow for novel precision prognostic and predictive
indicators.

Molecular and functional imaging modalities permit 4-D
sampling of disease burden, capturing both spatial and tempo-
ral information that could illuminate various physiologic be-
haviors. Dynamic positron emission tomography (PET) imag-
ing can quantify specific facets of tumor molecular biology [4,
7, 8] and can provide information beyond that of static imag-
ing [9, 10]. Dynamic PET imaging of the glucose analog, 18F-
fluorodeoxyglucose (FDG), can provide simultaneous infor-
mation on substrate delivery and metabolism [9]. Current
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clinical characterization of malignant lesions using PET im-
aging largely utilizes qualitative descriptors [5] and quantita-
tive measures based on static radiotracer uptake (e.g.,
SUVmax) [11].

The emerging field of radiomics has introduced multi-
parametric imaging features extracted with high-throughput
computational analysis [12–15]. Previous work by Eary
et al. quantified spatial heterogeneity of radiotracer uptake in
static PET imaging and demonstrated improved prognostic
performance over established clinical markers [16].
Stoyanova et al. identified sub-regions within pre-clinical dy-
namic contrast enhanced (DCE)-MRI images of prostate tu-
mors [17]. Similarly, Cherezov et al. identified tumor habitats
using established radiomic texture features [18]. While such
studies demonstrate the prognostic potential of characterizing
3-D spatial heterogeneity, and are in line with studies showing
differential physiologic functionality across the whole tumor
[19, 20], these studies do not fully utilize the combined spatial
and kinetic (e.g., 4-D) heterogeneity information available
using imaging probe kinetics from modalities with high tem-
poral imaging resolution.

The advantages of utilizing kinetic information from dy-
namic PET imaging have been demonstrated in breast cancer.
Previous studies have demonstrated predictive improvement
when FDG delivery (K1) and FDG flux (Ki), in combination
with [15O]-water imaging, were utilized with static SUV mea-
sures as markers for neoadjuvant chemotherapy response in
patients with locally advanced breast cancer [9, 21, 22].
However, these conventional kinetic parameters derived from
FDG PET imaging at baseline alone were unable to show
association to disease-free survival, likely limited by being
derived from the most metabolically active portion of the tu-
mor, and therefore not fully capturing intratumor heterogene-
ity [9].

We have developed a method to characterize 4-D func-
tional tumor heterogeneity (FTH) by capturing aspects of
both spatial and kinetic tumor heterogeneity seen in dy-
namic imaging. The improved dynamic sampling and mo-
lecular specificity available in dynamic PET as compared
to other imaging modalities may allow for non-invasive,
novel prognostic, and predictive markers to characterize
tumor molecular biology. The developed method is ag-
nostic to the specific radiotracer utilized and does not
depend on complex kinetic modeling assumptions.
Instead, the approach is data driven in terms of identifying
intrinsic 4-D patterns of molecular tumor heterogeneity.
We present proof-of-principle by applying our algorithm
on dynamic FDG PET imaging scans of primary locally
advanced breast cancer. We also investigate the role of
imaging signatures as a prognostic biomarker for locally
advanced breast cancer and the improved predictive value
of FTH characterization compared to standard dynamic
and static analytic methods for FDG PET.

Materials and methods

Radiomic functional intratumor (Rad-FIT) clustering:
development and validation

Dynamic PET simulated image phantoms

Algorithm development and training were carried out using
simulated 4-D PET data. With the goal of developing a meth-
od with broad applicability, we chose to perform these algo-
rithm trainings using a different tracer and tumor type than
FDG and breast cancer, but with broadly similar tracer kinet-
ics. Simulated dynamic PET images based on data from
fluorothymidine (18F-FLT) (FLT) PET [23] were utilized for
method development and validation. FLT was chosen as a
representative tracer with kinetics similar to other trapped
cancer-relevant radiotracers to assess the generalizability of
our method. All simulations were done using Geant4
Application for Tomographic Emission (GATE) [24]. The
scanner simulations were based on the PennPET Explorer
[25] with 70-cm axial field of view. Based on prior human
studies of FLT data from patients with lung cancer [23], ki-
netic parameters were selected to emulate low, medium, and
high KFLT lesions (ml/cm3/s), and the blood input curve was
derived from an FLT PET patient dataset and fit to a tri-
exponential model. Details on simulated image generation
have been previously described [26]. The simulated images
were cropped to a region-of-interest (ROI) comprising the
simulated regions and surround background area to a total size
of 64 × 69 × 9 voxels × 45 frames. The simulated images
consisted of two regions modeling low tracer uptake (10-
mm and 13-mm sphere diameter), two regions modeling me-
dium tracer uptake (10-mm and 13-mm sphere diameter), two
regions modeling high tracer uptake (10-mm and 13-mm
sphere diameter), a blood curve region, and a background
region (Fig. 1).

Radiomic functional intratumor (Rad-FIT) clustering
algorithm

To accurately assess both the spatial and temporal behavior
seen in breast tumors, radiomic functional intratumor (Rad-
FIT) clustering was developed as a 4-D-segmentation method
to account for voxel similarity in the time domain as well as
weight spatial contiguity. The temporal signal of an ROI over
dynamic PET scans is first summarized using functional prin-
cipal component analysis (FPCA), with each voxel represent-
ed using functional principal components (FPC) capturing
greater than 85% of the variance seen in its dynamic behavior.
Use of FPCA allows for the dimensionality reduction of time
series data for each voxel while retaining the variance of its
temporal information.
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A Markov Random Field [27] (MRF) segmentation para-
digm is then applied to the voxel data for a learning-based
method which incorporates spatial interactions between
voxels allowing for a 3 × 3 × 3 voxel neighborhood surround-
ing each voxel to influence segmentation. Initialization of
mean and standard deviation values for each label k is per-
formed using K-means clustering with a predetermined num-
ber of k labels. The final segmentations are then determined
using the expectation maximization algorithm [28]. Details
regarding this methodology can be found in the
Supplementary materials (Supplementary information,
Supplemental Fig. 1, Supplemental Table 1).

Rad- FIT evaluation and comparison to existing unsupervised
clustering methods

To evaluate the performance of segmenting spatially contigu-
ous regions of heterogeneous tracer activity with Rad-FIT, the
following segmentation assessments were performed.

First, the improved value of summarizing temporal infor-
mation from dynamic voxel behavior using FPCs was evalu-
ated. The segmentation performance of Rad-FIT when simu-
lation voxels were represented by their original time activity

curves was compared to the performance when simulation
voxels were represented by their FPC scores.

The segmentation performance of Rad-FIT was then
evaluated for its ability to segment the high, medium,
and low uptake 13-mm spheres from each sphere’s sur-
rounding background region, respectively. All segmenta-
tion performances were compared against the perfor-
mance of established unsupervised segmentation algo-
rithms including K-means clustering, hierarchical clus-
tering, and spectral clustering [29]. Lastly, Rad-FIT seg-
mentation performance was compared to the highest
performing unsupervised clustering algorithm as
outlined above when segmenting the simulated image
into five distinct regions: background, blood, and low,
medium, and high sphere regions. All segmentation per-
formances were evaluated using the Dice score [30] and
Jaccard index, averaged over ten replicates. Both the
Dice score and Jaccard index are established statistical
metrics used to determine the degree of overlap between
the true regions and resulting regions from the segmen-
tation algorithm. Both Dice scores and Jaccard indices
include values ranging from 0 to 1, with a value of 1
indicating perfect similarity between true and segmented
regions.

Fig. 1 Dynamic FLT-PET simulation images used for method develop-
ment and validation. a Input data used to generate dynamic simulations. b
Labels for all regions in simulated image. c Center slice images from

representative simulation frames. d Average TACs for simulation sphere
and blood curve regions
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Functional tumor heterogeneity signature as a
prognostic biomarker for dynamic FDG PET imaging
of breast cancer

Study cohort

To investigate the role of intratumor segmentation when char-
acterizing functional heterogeneity; the prognostic value of
functional tumor heterogeneity imaging signatures was ex-
plored on a previously published data set where serial dynam-
ic FDG PET was shown to be predictive of response and
recurrence using standard static uptake and kinetic analysis
[9, 21, 22]. The goal was to test functional tumor heterogene-
ity imaging signatures extracted from dynamic FDG PET
scans of women with locally advanced breast cancer imaging
prior to treatment and compare their predictive value to stan-
dard approaches.

We used an anonymized data set consisting of women pre-
senting at the University of Washington Breast Cancer
Specialty Center with histologically confirmed breast carcino-
ma who underwent dynamic FDG PET imaging prior to neo-
adjuvant chemotherapy and were followed for disease recur-
rence. The research protocol was approved by the institutional
review board and patients studied provided informed consent
prior to imaging and follow-up. The data set for this analysis
was taken from a study first reported for 35 patients [21]. An
additional 30 patients were later studied and added to a follow-
up report of the data [9, 22]. From this pooled data set of 65
women with complete baseline dynamic FDG PET scans who
also completed neo-adjuvant chemotherapy and post-therapy
surgery, two women were excluded for electing not to receive
chemotherapy, three women were excluded for electing for
medical care elsewhere, four patients were excluded for being
unwilling to undergo mid-therapy imaging, two patients were
excluded due to distant disease, and one patient was excluded
due to little or no tracer uptake upon pre-therapy examination
resulting in a total of 53 women. Of these, two women were
excluded due to image artifacts and one woman was excluded
due to incomplete survival information, resulting in a total of
50 women included in this study. Dynamic FDG PET images
from these 50 women comprised our study sample reported
here. Details of the patient population have been previously
described [22].

Each woman had undergone 60-min dynamic FDG PET
centered over the breast prior to neoadjuvant chemotherapy
and breast surgery. All women were imaged in the supine
position and no positioning devices for immobilization were
utilized. Women were infused with 218–396 MBq of FDG
over 2 min in a 7–10 mL volume, with an intended injected
dose of 370 MBq. Images for all women were acquired on an
Advanced Tomograph (General Electric Medical Systems,
Waukesha, WI) using the same image acquisition protocol.
Dynamic images were acquired (25 image frames: 1-min

pre-injection frame, 4 × 20 s, 4 × 40 s, 4 × 40 s, 4 × 1 min,
4 × 3 min, 8 × 5 min). Images were reconstructed into 35 ×
128 × 128 voxel matrices with a spatial resolution of 10–
12mm [21]. Clinical information collected as part of the study
included hormone receptor (HR) status consisting of estrogen
receptor (ER) and progesterone receptor (PR), human epider-
mal growth factor receptor 2 (HER2), clinical stage, tumor
size, proliferation (Ki67), pathologic complete response
(pCR), axillary lymph node (ALN) positivity, and age at di-
agnosis (Supplemental Table 2). In the study, recurrence free
survival (RFS) was tracked for each patient, defined as date of
known recurrence, date of death, date of most recent clinical
follow-up with no evidence of disease, following the patient’s
date of surgery. Patients received standard of care follow-up
including routine period imaging of CT scans, blood marker
analysis (CA2729), and follow-up visits to check for
symptoms.

Established ROI-based measures of uptake and kinetics for
dynamic FDG PET—summed imaged standardized uptake
value (SUV), and the kinetic parameters of FDG blood-to-
tissue transport (K1) and FDG trapping flux (Ki)—were cal-
culated based on kinetic modeling of dynamic data for each
woman and have been previously reported [9, 21]. These ki-
netic parameters were measured for each tumor from a 1.5-
cm-diameter circle VOI surrounding the area of maximal tu-
mor FDG uptake seen on the 30–60-m summed image.

Functional tumor heterogeneity (FTH) signature extraction

A 3-D bounding region surrounding each unifocal lesion was
manually identified by a radiologist blinded to the outcome of
each patient using the final of the summed FDG images for the
25 imaging frames (30–60 min post-injection) and guided by
ROIs previously used for extraction of SUV, K1, and Ki for
consistency. An established segmentation approach was ap-
plied to the TACs generated from the 25 imaging frames of
each voxel within the bounding region to segment the tumor
from its surrounding background [31].

Within the segmented 3-D tumor region, Rad-FIT cluster-
ing was applied to segment each tumor region into three, spa-
tially constrained sub-regions with distinct functional behav-
ior. Three sub-regions were selected based on the rationale
that there are currently three major subtypes of breast tumors
broadly recognized: hormone receptor positive, HER2 posi-
tive, and triple negative [2]. The three sub-regions within each
tumor were ranked in the order of descending mean value of
the first FPC to allow for consistent comparisons across
tumors.

The resulting Rad-FIT clustering within each tumor was
summarized using metrics describing sub-region compactness
and separation. These metrics were chosen to summarize how
well the functional behavior of each tumor will cluster into
three groups and to allow for comparisons of intratumor
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heterogeneity across women. Compactness was measured
using the between cluster sum of squares (BCSS) scaled by
the total sum of squares (TSS).:

∑K
k¼1 xk−X

� �2

∑N
i¼1 xi−X

� �2 ð1Þ

whereK represents the 3 sub-regions andN is the total number of
voxels within each tumor. The separation between sub-regions
was determined using the Bhattacharya distance [32] to calculate
the distance between FPC distributions of two sub-regions (ϕ).
Use of this distance allows for a similarity measure between the
distributions of FPC values within two sub-regions.

Based on the definitions above, a total of four features
summarizing intratumor heterogeneity from Rad-FIT cluster-
ing results were extracted to form an FTH signature (Fig. 2):
(1) BCSS/TSS, (2) distance between sub-region 1 and 2
(ϕ(1,2)), (3) distance between sub-region 2 and 3 (ϕ(2,3)),
and (4) distance between sub-region 1 and 3 (ϕ(1,3)).

BCSS/TSS provides a measure of how compact the
resulting clusters are; the more compact each cluster is, the
greater heterogeneity between the identified sub-regions.
Calculating the distance between the distributions of FPC
values of two sub-regions provides a metric for how separated
the clusters are; a greater distance between sub-regions indi-
cates greater heterogeneity within the whole tumor region.
This FTH signature can be used to interpret how distinct the
three identified sub-regions are within each tumor. As such,
the average value of the FTH signature, or FTH signature
index, can provide a metric for intratumor heterogeneity
across tumors.

Statistical analysis: evaluation of FTH signatures
as a prognostic biomarker

Our goals in this proof of principal study were to test the
prognostic value of FTH signatures from dynamic breast

cancer FDG PET and to assess for incremental value com-
pared to standard clinical parameters and conventional FDG
PET static and dynamic analysis measures used in prior pub-
lished analyses. FTH signatures were first z score normalized
across all women. Time-to-event analysis was then used to
assess the prognostic value of the FTH signatures in predicting
recurrence-free survival (RFS). To this end, a threefold cross
validated (CV) Cox proportional hazards model was used to
compare improved prognostic discriminatory capacity over
baseline models of established prognostic factors consisting
of ER status, PR status, tumor size, pCR, and ALN positivity
and kinetic parameters consisting of the SUV, K1, and Ki.
These prognostic factors were chosen based on the available
data as well as the intent to compare analysis results to prior
published data [9, 21, 22].

Model performance was evaluated using an averaged C-
statistic over the test sets for all three folds and the log-
likelihood statistical test.

The prognostic value of the FTH signature was evaluated via
Kaplan-Meier survival analysis using each patient’s risk core,
dichotomizing patients into high- and low-risk groups. The risk
score for each patient was defined as the patient’s FTH signature
weighted by the corresponding coefficients from each of the
three test sets from a threefold cross validated model for each
covariate in the FTH signature [12, 33]. Risk scores generated
from baseline features of ER status, PR status, tumor size, pCR,
and ALN positivity and from baseline and kinetic features were
also assessed. Statistical significance of Kaplan-Meier stratifica-
tion was evaluated using the Log Rank Test.

Lastly, an exploratory unsupervised hierarchical clustering
was performed on the extracted FTH signatures from each
woman. The resulting c clusters obtained from the hierarchical
clustering algorithm were interpreted as c intrinsic FTH phe-
notypes seen in this study population. The optimal number of
stable FTH phenotypes was determined using consensus clus-
tering [34]. Statistical significance of the identified, stable
FTH phenotypes was evaluated using the SigClust method
[35]. The distribution of histopathologic and kinetic

Fig. 2 FTH signature extraction. a 3-D tumor region identified by a
radiologist shown in green. b Automated 3-D segmentation of tumor
from background with pixels represented using time activity curves. c
Rad-FIT clustering performed, identifying three, spatially contiguous

sub-regions. d Cluster compactness and cluster separation distances are
calculated to form features in FTH signature. e Intratumor heterogeneity
summarized using the FTH signature
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prognostic covariate values across women assigned to each of
the FTH phenotypes was assessed using chi-square tests for
categorical biomarkers and one-way analysis of variance test
for continuous biomarkers.

Results

Rad-FIT evaluation and comparison to existing
unsupervised clustering methods

Average signal to background ratios for the low, medium, and
high uptake spheres were 1.78, 6.95, and 11.89, respectively.
The segmentation performance of Rad-FIT clustering was
compared against existing unsupervised segmentation
methods, K-means clustering, hierarchical clustering, and
spectral clustering, when applied to the simulated images with
varying regions of known uptake value and location.

When segmenting low, medium, and high uptake spheres
from its surrounding background region, segmentation perfor-
mance for all segmentation methods improved when simula-
tion voxels were represented by the FPCs capturing greater
than 85% of TAC variability as opposed to using the TACs.
Additionally, Rad-FIT clustering demonstrated the highest
segmentation performance when segmenting low, medium,
and high uptake sphere regions from its surrounding back-
grounds when evaluated using the Dice score (Table 1) and
Jaccard index (Supplemental Table 3).

The K-means clustering algorithm had the second highest
segmentation performance across the evaluated unsupervised
clustering algorithms. This algorithm was subsequently used
to compare performance against the Rad-FIT clustering algo-
rithm to segment the simulated image into five regions: back-
ground, blood, low uptake spheres, medium uptake spheres,
and high uptake spheres. The Rad-FIT clustering algorithm
was able to segment the low uptake spheres from its surround-
ing background region and identify the five regions of distinct
tracer uptake (Fig. 3). In comparison, the K-means clustering
algorithm was unable to identify and segment the low uptake

spheres as a distinct region from its surrounding background.
Overall, the Rad-FIT clustering algorithm demonstrated im-
proved segmentation over the K-means clustering algorithm
as demonstrated by decreased mean percent error and in-
creased Dice score and Jaccard index for each individual re-
gion’s segmentation as well as segmenting the overall simu-
lated image. Due to this improved segmentation performance,
the Rad-FIT clustering algorithm was utilized as the unsuper-
vised clustering method towards characterizing functional tu-
mor heterogeneity as a prognostic biomarker for women di-
agnosed with locally advanced breast cancer.

Evaluation of the FTH signature as a prognostic
biomarker

Of the 50 women included in the data set selected from prior
studies for evaluation of FTH signatures as a prognostic bio-
marker, 17 women (34%) had recurrence events. A total of 47
(94%) women were diagnosed with infiltrating ductal carci-
noma, and 3 (6%) women were diagnosed with infiltrating
lobular carcinoma.

Of the non-recurrent cases, 58% were ER positive, 52%
were PR positive, and 18% were HER2 positive. Of the recur-
rent cases, 59% were ER positive, 59% were PR positive, and
35% were HER2 positive (Supplemental Table 2).

Representative tumor images after Rad-FIT clustering
demonstrate intratumor heterogeneity within breast tumors
(Fig. 4). Tumors with increased intratumor heterogeneity can
be identified as having sub-regions with distinct time activity
curve behaviors, while tumors with decreased intratumor het-
erogeneity display little distinction between the time activity
curve behavior of the identified sub-regions.

As expected, in a full multivariate Cox proportional haz-
ards model after adjusting for ER status, PR status, tumor size,
pCR, and ALN positivity (Supplemental Table 4), ϕ(1,2) and
ϕ(2,3) were associated with disease-free survival
(Supplemental Table 5). A baseline, threefold CV Cox pro-
portional hazards model consisting of ER status, PR status,
tumor size, pCR, and ALN positivity resulted in a mean C-

Table 1 Average segmentation performance over ten replicates evaluated using the Dice scores when segmenting low, medium, and high uptake
simulated sphere regions from surrounding backgrounds. Standard deviation in parentheses

Dice scores

Segmentation region Voxel representation Hierarchical clustering Spectral clustering K-means clustering Rad-FIT clustering

Low uptake sphere Time activity curves 0.15 (0) 0.04 (0.001) 0.13 (0.06) 0.24 (0.07)

FPC 0.67 (0) 0.16 (0.03) 0.65 (0.02) 0.70 (0.01)

Medium uptake sphere Time activity curves 0.77 (< 0.001) 0.06 (0.01) 0.44 (0.4) 0.73 (< .001)

FPC 0.78 (0) 0.20 (0.18) 0.84 (0.03) 0.85 (0)

High uptake sphere Time activity curves 0.72 (0) 0.18 (0.07) 0.52 (0.40) 0.66 (0)

FPC 0.83 (0) 0.17 (0.03) 0.84 (0) 0.86 (0)
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statistic of 0.51 when predicting RFS. Adding SUV, K1, and
Ki parameters to the baseline model resulted in a mean CV C-
statistic of 0.54. Adding the FTH signature to the baseline
model improved the mean CV C-statistic to 0.74 (p < 0.01)
(Fig. 5a).

Dichotomizing patients into low- and high-risk groups
based on the baseline model risk scores (Fig. 5b) and baseline
plus the kinetic model risk scores (Fig. 5c) demonstrated no
statistically significant separation between Kaplan-Meier
curves. Patient dichotomization into low- and high-risk
groups based on the baseline plus FTH signature risk scores
(Fig. 5d) resulted in a statistically significant separation be-
tween Kaplan- Meier curves (p < 0.05) for RFS probability.

Unsupervised hierarchical clustering of women based on
the extracted FTH signatures from each tumor identified two
clusters which were interpreted as FTH phenotypes seen in the
study population and found to be statistically significant via
the SigClust method (p = 0.04) (Fig. 6a).

As a higher FTH signature index suggests greater separa-
tion between the three sub-regions’ FPC values and can there-
fore be interpreted as greater intratumor heterogeneity, the
identified FTH phenotypes were ranked based on the mean

FTH signature index found across all women assigned to each
phenotype. The resulting FTH phenotypes 1 and 2 were
interpreted as a low FTH versus high FTH phenotypes, re-
spectively, with tumors in phenotype 1 having lower mean
FTH signature indices (blue color in Fig. 6a), versus tumors
in phenotype 2 which had on average higher FTH signature
indices (red color in Fig. 6a).

Tumor PR status was found to be statistically signifi-
cantly different across the two FTH phenotypes (p < 0.05),
with tumors in the low FTH phenotype having a higher
proportion of PR-positive tumors. Other clinical covariates
including ER status, HER2 status, Ki67 status, pCR, ALN
positivity, and tumor grade were not statistically signifi-
cant across identified phenotypes. From the FDG PET
covariates, Ki was found to be statistically significantly
different across the two phenotypes (p < 0.05), with tumors
in the high FTH phenotype having a greater interquartile
range (0.025) and greater variance (0.0003) than tumors in
the low FTH phenotype (interquartile range: 0.004, vari-
ance: 3.27e-5) (Fig. 6b). K1 and SUV values were not
found to be statistically significant across the identified
phenotypes.

Fig. 3 a Representative center
slice image of true segmentation
labels (left), segmentation results
using K-means clustering
(middle), and segmentation
results using Rad-FIT clustering
(right) when segmenting simula-
tion images into five classes:
background, blood, and low, me-
dium, and high uptake spheres. b
Average time activity curves for
true simulation regions (left), K-
means clustering identified re-
gions (middle), and Rad-FIT
clustering (right) identified re-
gions. c Mean percent error, gen-
eralized dice score, and Jaccard
indices for segmentation results.
TheK-means clustering algorithm
fails to segment the low uptake
spheres from the background re-
gion, and instead segments the
blood region to two separate
classes
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Fig. 4 Representative images for the primary tumor of two women
diagnosed with locally advanced breast cancer with future tumor
recurrence (top) or tumor non-recurrence (bottom). a Representative slice
from an early frame at less than 5 min after tracer injection, (b) represen-
tative slice from middle frame at 15 min after tracer injection, and c
representative slice from final frame taken at 60 min after tracer injection
of a 57-year old, post-menopausal woman with a high grade-, ER−, PR+,
HER2− tumor who had disease recurrence upon follow-up (top). d Three
sub-regions identified using Rad-FIT clustering labeled as region 1 (red),

2 (blue), and 3 (green), and e average TACs for each identified sub-
region. f A representative slice from an early frame at less than 5 min
after tracer injection, g slice from middle frame at 15 min after tracer
injection, and h representative slice from final frame taken at 60 min after
tracer injection of a 36-year old, pre-menopausal woman with a high-
grade, ER+, PR−, HER2− tumor with no disease recurrence (bottom). i
Three sub-regions with distinct 4-D behavior identified using Rad-FIT
clustering labeled as region 1 (red), 2 (blue), and 3 (green), and j average
time activity curves for each identified sub-region

Fig. 5 a Cross-validated c scores and Kaplan-Meier survival curves for
baseline (ER status, PR status, tumor size at baseline, pCR, and ALN
positivity), baseline plus kinetic (ER status, PR status, tumor size at base-
line, pCR, ALN positivity, SUV, K1, Ki), and baseline plus FTH

signature models. Kaplan-Meier curves generated when patients are strat-
ified by risk scores generated from b the baseline model, c baseline plus
kinetic features model, and d baseline plus FTH signature model
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Discussion

Our results suggest that incorporation of both spatial and ki-
netic information in a 4-D dynamic activity curve clustering
paradigm allows for improved segmentation of dynamic PET
imaging data over established unsupervised clustering tech-
niques utilizing kinetic information alone. Established unsu-
pervised voxel parcellation techniques largely assume voxel
independence [5], and as such, may be inadequate for identi-
fying spatially constrained, functionally similar sub-regions
under the hypothesis that subclonal populations can occupy
spatially contiguous regions with common biologic properties
[36]. Along these lines, partial volume effects seen in imaging
modalities suggest that neighboring voxels may share infor-
mation regarding underlying tissue structure due to the spatial
limitations of the imaging device [37]. Therefore, analyzing

imaging presentations of intratumor heterogeneity requires a
fully 4-D approach.

Use of simulation images of distinct regions with known spa-
tial locations and tracer kinetics allowed formethod development
and evaluation and allowed for the comparison across established
techniques in this exploratory analysis. Comparing the segmen-
tation performance of Rad-FIT clustering against established un-
supervised segmentation algorithms demonstrated improved
Dice scores of 0.70, 0.85, and 0.86 across low, medium, and
high uptake sphere segmentation, respectively, when using sim-
ulated data with pre-defined ground truth. K-means clustering
performed the second highest when all segmentation algorithms
were evaluated, resulting in Dice scores of 0.65, 0.84, and 0.84
across low, medium, and high uptake sphere segmentation, re-
spectively (Table 1). Additionally, when segmenting the simu-
lated image into five regions of distinct tracer uptake, the Rad-

Fig. 6 a Unsupervised hierarchical clustering of FTH signatures
identifies 2 significant phenotypes of FTH, with clinical covariate
distribution across identified phenotypes displayed in the bottom
legend. The resulting cluster dendrogram can be seen above a heatmap

inwhich each row represents a feature within the FTH signature, and each
column represents a tumor. b Distributions of Ki across the identified
phenotypes were found to be statistically significant (p < 0.05)
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FIT clustering algorithm outperformed K-means clustering as
demonstrated by mean percent error in average TACs from each
region as well as the corresponding Dice scores and Jaccard
indices. The better segmentation performance of Rad-FIT clus-
tering emphasizes the added benefit of incorporating both spatial
and kinetic information to allow for more accurate identification
of functionally distinct sub-regions. As the Rad-FIT clustering
algorithm outperformed the established unsupervised clustering
algorithms in the simulation analysis, we chose to use this algo-
rithm to characterize FTH as a prognostic biomarker.

We had the goal of developing methodology broadly appli-
cable to PET tracers with similar kinetic features. With this in
mind, dynamic simulations utilized for Rad-FIT development
and validation were based on FLT simulated data and used to
select an approach which was then applied to a previously col-
lected FDG patient dataset to examine the role of FTH as a
prognostic biomarker. The rationale was that while simulation
curves were generated using kinetic parameters specific to FLT
(flux between 0.03 and 0.1mL/min/g), these kinetics curves have
parameters similar to FDG PET curves (flux between 0.02 and
0.09 mL/min/g), and they can be generalized to all tracers fit to a
two-compartment model, including FDG, as long as the model
and range of parameters has overlap with these tracers.
Additionally, and as our algorithm is in principle agnostic to
the type of tracer used or any related kinetic modeling parame-
ters, utilizing simulated images of a different two-compartment
radiotracer during Rad-FIT development allowed for a more
generalizable algorithm that was not biased towards a single
specific tracer in subsequent analyses.

Extending the Rad-FIT clustering algorithm to characterize
intratumor heterogeneity has the potential to identify
intratumor sub-regions with discrete functional behavior.
This is supported by the average TACs from the identified
sub-regions in representative tumors (Fig. 4), where the tumor
with disease recurrence clustered into three sub-regions with
distinct curve patterns. The tumor with no disease recurrence
and characterized as ER+, demonstrated mostly low uptake
and non-rising curves in the identified sub-regions.

Quantifying intratumor heterogeneity using the FTH imaging
signature demonstrates prognostic value when predicting RFS.
Cox-regression models incorporating FTH signatures added to a
baseline model demonstrated a statistically significant improve-
ment in C-statistic. While the dichotomization of baseline risk
scores based on known prognostic features did not demonstrate
significant Kaplan-Meier curve separation in this relatively small
sample size, consistent with previous analyses of this study co-
hort [9, 22], improvement over models combining baseline and
kinetic features emphasizes the added prognostic value of utiliz-
ing quantitative features summarizing dynamic tumor behavior
over the entire volume. Additionally, risk scores generated using
the baseline features and FTH signature resulted in statistically
significant patient dichotomization into low- and high-risk
groups for RFS using Kaplan-Meier survival analysis as

compared to risk signatures generated from the baseline model
and baseline plus kinetic model.

While prior studies have shown prognostic value for mea-
sures obtained from serial dynamic FDG PET using standard
kinetic analysis methods (10), pre-therapy FDG dynamic data
were not significantly predictive. Similarly, prior studies dem-
onstrated predictive value pre-therapy measures of FDG flux
and tumor blood flow obtained from combined 15O-water PET
and FDG PET studies [21, 22], but pre-therapy FDG kinetic
measures alone were not significantly predictive of RFS. In this
preliminary analysis, use of the Rad-FIT clustering algorithm
extracted significantly prognostic 4-D signatures from pre-
therapy dynamic FDG PET data that did predict RFS, a notable
incremental improvement on standard approaches to dynamic
PET analysis of considerable potential significance.

Additionally, our results suggest that intrinsic imaging phe-
notypes may exist within locally advanced breast tumors cor-
responding to FTH. In particular, statistically significant dif-
ferences in the FDG flux constant, Ki, were seen across the
two phenotypes with tumors corresponding to higher degrees
of FTH having higher values of Ki. This finding suggests that
the tumor characteristic of increased metabolic rate may be
captured within the FTH imaging signature generated from
the 4-D clustering performed using Rad-FIT and may have
prognostic significance when expanded to a larger study co-
hort. Interestingly, compared to tumor clinical and histopath-
ologic features, we found significant differences across the
FTH phenotypes in PR expression, a marker shown to be an
indicator of tumor ER functionality and a more differentiated
breast cancer biologic phenotype [38].

Limitations of our study should be noted. First the Rad-FIT
clustering algorithm utilizes K-means clustering as an initializa-
tion to the method, which can allow for sensitivity to cluster
initialization due to K-means clustering identifying local optima.
Future studies will be conducted to evaluate segmentation per-
formance when random cluster initializations are selected.
Additionally, our study utilized a relatively small sample size
of patients. To account for potential model overfitting, we uti-
lized threefold CV in our time-to-event analysis, to ensure model
robustness. The identification of FTH phenotypes within the
study population is limited by a lack of independent validation
and instead was conducted as an exploratory analysis. Future
work will include expanding this initial, exploratory analysis to
a larger cohort as well as validating the identified FTH pheno-
types. While the Rad-FIT clustering paradigm identified three
clusters within each tumor, the optimal number of functionally
discrete sub-regions may vary across tumors. In this exploratory
study, the selection of three for the number of subtypes was
chosen empirically, guided by the three major subtypes of breast
cancer (ER+/PR+,Her2+, Triple negative). Futureworkwill also
include optimization of the Rad-FIT clustering algorithm such
that an optimal number of clusters is identified within each tu-
mor. In addition, we have evaluated only the pre-therapy time

3999Eur J Nucl Med Mol Imaging  (2021) 48:3990–4001

123456789)1 3



point in this initial analysis. All women included in our study
underwent neoadjuvant chemotherapy and repeat mid-
therapy imaging. To account for the effect of treatment
on intratumor heterogeneity and corresponding FTH sig-
natures, we plan to expand our analysis to dynamic FDG
PET images taken also during the midpoint of each
woman’s therapy in a future study. Lastly, alternative
approaches exploring a linear analysis of 4-D dynamic
PET using a mixture-based approach have been previous-
ly reported [39, 40]. Future work will include expanding
our analysis to compare methodologies and potentially
include a mixture-based component. Lastly, we devel-
oped and applied this method on simulated dynamic im-
ages and clinical dynamic scans of breast cancer patients,
with a larger goal of extending this method towards an-
alyzing other solid tumors and different PET tracers in
future work.

Conclusion

In conclusion, we have developed a 4-D clustering and
segmentation algorithm to identify functionally discrete,
spatially constrained sub-regions within breast tumors
that was able to generate prognostic measures from pre-
therapy dynamic FDG PET of locally advanced breast
cancer not previously identified by ROI-based kinetic
analysis. Our results demonstrate that quantifying func-
tional tumor heterogeneity can provide independent and
additional prognostic value and may provide a non-
invasive- 4-D characterization of breast tumors towards
personalized decision making.
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