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Abstract
Dynamic PET (dPET) studies have been used until now primarily within research purposes. Although it is generally accepted that
the information provided by dPET is superior to that of conventional static PET acquisitions acquired usually 60 min post
injection of the radiotracer, the duration of dynamic protocols, the limited axial field of view (FOV) of current generation clinical
PET systems covering a relatively small axial extent of the human body for a dynamic measurement, and the complexity of data
evaluation have hampered its implementation into clinical routine. However, the development of new-generation PET/CT
scanners with an extended FOV as well as of more sophisticated evaluation software packages that offer better segmentation
algorithms, automatic retrieval of the arterial input function, and automatic calculation of parametric imaging, in combination
with dedicated shorter dynamic protocols, will facilitate the wider use of dPET. This is expected to aid in oncological diagnostics
and therapy assessment. The aim of this review is to present some general considerations about dPET analysis in oncology by
means of kinetic modeling, based on compartmental and noncompartmental approaches, and parametric imaging. Moreover, the
current clinical applications and future perspectives of the modality are outlined.
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Introduction

Positron emission tomography (PET) is a tomographic, quan-
titative, imaging method providing information on biochemi-
cal processes in vivo. PET was developed in the late 1970s,
and its first applications were brain studies using the radiotrac-
er 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) [1]. In the late
1980s, PET was introduced into oncological studies based
mostly on 18F-FDG.

The first PET measurements were based on dynamic im-
aging protocols for the evaluation of tracer pharmacokinetics
particularly in the brain. These initial dynamic PET (dPET)

acquisitions were confined to a single-bed position, thus lim-
iting their wide clinical application especially in the field of
oncology where metastatic disease evaluation calls for whole-
body (or at least multibed) PET imaging protocols.
Quantitative imaging evaluation was performed by the calcu-
lation of time activity curves (TACs), areas under the curve
(AUCs), standardized uptake values (SUVs) as well as on
more complex kinetic modeling approaches depending on
the tracer used. In the case of 18F-FDG, the generally accepted
method for accurate analysis of the tracer’s kinetics is a com-
partment model originally proposed by Sokoloff et al., devel-
oped to measure 2-deoxy-D-(14C)glucose in the rat brain tis-
sue by autoradiography [2]. A few years later, Phelps et al.
proposed a modified 3-tissue compartment model for the cal-
culation of the transport rates of 18F-FDG, namely K1 and k2
which represent the transport rate of 18F-FDG into the tissue
and reverse, as well as k3 and k4 that reflect the phosphoryla-
tion and dephosphorylation rate of the tracer. This modified
model is actually an extension of the one originally proposed
by Sokoloff et al. The difference between them lies in the
calculation of k4 in the model by Phelps et al., which is con-
sidered negligible in the Sokoloff model [3]. Since then,
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several assumptions and modifications have been made to the
original mathematical formulations and the model has been
successfully applied for the assessment of 18F-FDG dPET
studies in tumors [4].

Approximately 20 years ago, the conventional PET scan-
ners were replaced by hybrid PET/CT systems, which com-
bine diagnostic information of two modalities. Moreover, the
recent development of the novel PET/MRI technology repre-
sents a very promising candidate in hybrid imaging, although
its role in the clinical setting remains to be determined. The
advent of hybrid imaging technology provides superior infor-
mation due to the combination of structural and functional
tomographic imaging modalities. This new era facilitated the
performance of whole-body PET/CT scans in a relatively
short time—less than 30 min–and with high image quality,
leading to the widespread use of the modality in clinical prac-
tice. In particular in oncology, PET/CT is considered nowa-
days the standard imaging technique for diagnosis, staging,
and monitoring of several different tumor types.

The vast majority of PET/CT studies are based on acquisi-
tion and visual evaluation of static, late, whole-body images
usually 60 min post-injection (p.i.) of the radiotracer, occasion-
ally employing semi-quantitative analysis based on calculation
of SUV values. SUV represents tissue activity within a region
of interest (ROI) corrected for injected activity and body
weight, and is the most widely used method for quantification
of PET data, since its calculation requires only static imaging,
after the tracer is assumed to have reached its equilibrium. SUV
calculation is nowadays available in commercial imaging soft-
ware packages. SUV is, however, dependent on many different
factors such as the time interval between injection and scanning
as well as different image acquisition settings characteristics
(scanner, scatter and attenuation correction, reconstruction al-
gorithm, frame duration), rendering the comparison of SUV
values acquired in different centers problematic, when even
slight differences in the acquisition procedure are present [5].
Moreover, tracer uptake 60 min p.i. is the result of a dynamic
process. One important aspect of PET is the possibility of
performing accurate, noninvasive quantitative measurements
of tracer concentration in patients, which requires the perfor-
mance of a dPET study usually with a duration of 60 min, in
addition to the regular static PET/CT scan.

Although it is generally accepted that the information pro-
vided by dPET is superior to that of conventional static PET
acquisitions, several issues have hampered its implementation
into clinical routine. Apart from the longer duration of dynam-
ic protocols, some major limitations include the limited axial
field of view (FOV) of the current generation clinical PET
systems and the fact that the majority of dPET protocols are
still confined to a single-bed axial FOV. These issues are
beginning to be addressed with the development and introduc-
tion of clinical PET systems with gradually longer—more
than 1 m—axial FOVs, better electronics, and resolution

[6–10]. Moreover, the introduction of clinically feasible dy-
namic whole-body PET imaging protocols in current genera-
tion limited axial FOV PET systems equipped with direct 4D
reconstruction schemes and generalized nonlinear graphical
analysis methods has rendered graphical analysis (Patlak)
whole-body dPET and parametric imaging possible [11–15].

These developments will improve the statistical quality of
PET images and allow whole-body scanning in shorter time,
and may, subsequently, lead to a potential renaissance of dPET
studies with the perspective of even performing whole-body
pharmacokinetic studies. dPET scanning can provide reliable
assessments of dedicated metabolic steps of metabolic active
tracers, such as 18F-FDG, as well as newer receptor-binding
agents such as radiolabeled prostate-specific membrane antigen
(PSMA) or DOTATOC ligandswith potential applications in the
rapidly evolving field of radiothera(g)nostics. Moreover, the
widespread application of dPET would be of great importance
in the evaluation of new (radio)pharmaceutical agents.

The aim of this review is to present the general principles of
dPET data analysis in oncology by means of kinetic modeling,
based on compartmental and noncompartmental approaches, as
well as by parametric imaging. Moreover, the current clinical
applications and future perspectives of dPET will be outlined.

dPET studies: general considerations

Volume of interest–based analysis

Workflow, protocol dPET studies require a dynamic acquisition
for a certain time depending on the pharmaceutical and the
radionuclide used. The target area for dPET should be defined
carefully, usually including the anatomical region with the
known or suspicious tumor lesions. The advent of the new-
generation PET scanners with extended FOV will simplify
the choice of a target area by allowing dynamic acquisition of
almost the whole body. For 18F-FDG, the most common used
PET tracer in oncology, 60 min of dynamic acquisition are
required. Similarly, 60-min dynamic acquisitions are also ap-
plied for receptor-binding tracers, such as DOTATOC and
PSMA radioligands [16, 17]. For transport tracers, like 11C-
labeled amino acids (e.g., C-11-methionine or C-11-choline))
a shorter acquisition protocol, e.g., for 20–30 min, is usually
applied. The dynamic imaging is acquired in a list mode, and
then, frames are defined by the users (Fig. 1). The frame dura-
tion should be short for the first frames and increase during the
progress of the dPET acquisition (e.g., 10 s, followed by 30 s,
60 s, 120 s, and 300 s).

Definition of tumor VOIs The evaluation of the reconstructed
PET images is based on visual analysis of PET and fused PET/
CT or PET/MRI images. Tumor volume of interest (VOI) is
then placed over areas with increased tracer uptake as com-
pared with the surrounding tissue, after correlation with the
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CT/MRI images and using dedicated algorithms, usually
an isocontour. VOIs drawn over reference tissue without
pathologically increased tracer uptake are also recom-
mended for comparison.

Input function: general considerations and problems The ac-
curate assessment of the arterial input function is a topic
broadly investigated in the literature. Manual blood sampling
at different time points p.i. or continuous automatic blood
sampling during the whole dynamic acquisition have been
used in limited number of studies [18]. Phelps et al. first re-
ported on a good agreement between arterial blood sampling
and arterialized venous sampling by using hand heating to
44°C [3]. Although, arterial blood sampling is considered
the gold standard for input function measurements, it is an
invasive procedure and cannot be recommended for routine
clinical purposes. Furthermore, delay in terms of different
appearance time of the radioactivity after a bolus injection
and dispersion affects the time activity curve used for input.
In particular, when using blood sampling, the measured blood
curve is smeared due to inhomogeneous velocity in the vessels
and the catheter and due to sticking of radiotracer in the cath-
eter tubes used. Therefore, dispersion correction is recom-
mended in particular for tracers with very fast kinetics, like
perfusion studies [19, 20].

Double supply of organs like the liver causes special prob-
lems in the estimation of the input function. In particular, the
liver receives blood supply from both the portal vein and the
hepatic artery with the TAC of the portal vein being delayed
and dispersed as compared with the hepatic artery. Keiding
reported on methods of estimating the dual-input TAC with-
out portal vein measurements in particular for measurements
of the regional hepatic blood perfusion [21].

Noninvasive devices have been introduced for the determi-
nation of the arterial input function. Recently, Turgeon et al.
introduced a detector of scintillating fiber coupled to transmis-
s ion f iber-opt ic cables , which are connected to
photomultiplier tubes as a device that can be wrapped around
the wrist of the patient studied with PET [22]. The results are
promising and suggest that scintillating fibers may be used for
the noninvasive measurement of the arterial input function.

However, the most attractive, easy, und user-friendly ap-
proach for input function assessment, which also possesses a
good accuracy, is its image-derived calculation during the
PET scan [23]. Input VOIs can be acquired using the recon-
structed images of the first frame(s) drawn over a large arterial
vessel like the descending aorta (Fig. 2). An input VOI should
include the hottest pixels of the vessel in several sequential
slices. Visual inspection should then be used for a first qual-
itative assessment of the respective TACs: an input VOI
should demonstrate a clear activity peak and not be very noisy.
In case of much noise, for example due to the use of a smaller
vessel, the curve data should be fitted by using a sum of up to
three decaying exponentials to reduce noise [24, 25]. For
smaller vessels (diameter < 8 mm), like the femoral artery, a
partial volume correction may be done using the CT data and
on the basis of phantom measurements of the recovery func-
tion. In recent years, novel approaches for calculation of
image-derived arterial input function using integrated PET/
CT and PET/MRI images have been developed with very
promising results [26, 27].

Another approach is the use of a standardized, population-
based input function, which is a normalized average of mea-
sured arterial blood samples from several subjects [28, 29].
Furthermore, hybrid statistical approaches have been pub-
lished for the noninvasive assessment of the input function.

Fig. 1 Transversal (left) and cor-
onal (right) images of a dPET se-
ries of the thorax following i.v.
18F-FDG injection at 1, 12, 16,
30, and 60 min p.i. in a patient
with metastases (mediastinal,
lung, and liver) from melanoma.
Visualization of the vessels in the
early images and gradually in-
creasing 18F-FDG uptake in the
metastases in the following
frames
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O’Sullivan et al. proposed a penalty formulation in which the
information derived from priori studies is combined in a
Bayesian manner with information contained in the sampled
image data and recommend this method for clinical use [30].

Lumped constant The difference between 18F-FDG and glu-
cose in terms of transport, phosphorylation, and distribution
volume is taken into consideration by using a correction term,
the so-called lumped constant (LCFDG). The accuracy of the
metabolic rate of 18F-FDG depends on the knowledge of the
exact value of LC. Sokoloff et al. measured the LC for 14C-
deoxyglucose in the rat brain and reported a value of 0.46 [1].
Reivich et al. found a value of 0.52 in human brain [31].
Hasselbalch et al. reported on a mean value of 0.81 ± 00.15
in normal healthy volunteers [32]. However, for simplification
reasons, LC is considered to be equal to one.

Compartment modeling

The idea of compartment modeling of PET data has its roots in
pharmacology and biochemistry. By providing information
on the transport or other metabolic steps of the applied radio-
pharmaceutical, compartment modeling aims to estimate bio-
logically relevant parameters. However, in vivo dynamic im-
aging is more complex than in vitro studies partly due to the
fact that the uptake of a radiopharmaceutical depends on the
vessel density of a tissue. The most commonly used compart-
ment models in PET are the 2-tissue and 3-tissue compartment
models (Fig. 3). A simplification of these models consists of
the summation of the interstitial and the cellular space. A 2-
tissue compartment model is suitable for radiopharmaceuti-
cals, which are purely transport markers, like labeled water

or amino acids that do not undergo further metabolic steps.
A 3-tissue compartment model is appropriate for radiophar-
maceuticals, which are transported and then undergo one met-
abolic step, like 18F-FDG. This model involves the plasma
compartment Cp, the exchanging compartment C1 in which
the tracer is considered free and nonspecifically bound tracer
in tissue (nondisplaceable compartment), and the compart-
ment C2 involving the specifically bound tracer. The arterial
plasma Cp exchanges with the first tissue compartment C1,
which in turn exchanges with the second tissue compartment

Fig. 3 Schematic presentation of the 2- and 3-compartment model with
one input function. Cplasma is the tracer concentration in arterial blood. In
the 2-tissue compartment, all tracer is transported in compartment C1. For the

3-tissue compartment, two tracer forms in tissue are considered as C1 and C2.

CompartmentC1 represents the free and nondisplaceable part of the tracer into

the tissue, and compartment C2 represents the specific bound part of the tracer

(in case of 18F-FDG the phosphorylated tracer)

Fig. 2 Patient of Fig. 1. Fused
18F-FDG PET/CT late image
(upper right) approximately
80 min p.i. demonstrating an 18F-
FDG avid mediastinal lymph
node metastasis. Input and tumor
VOIs in the descending aorta and
the mediastinal lesion for evalua-
tion of the kinetic data of the
tracer (left upper and middle row,
respectively). Time activity
curves of both VOIs and results of
kinetic analysis based on a 3-
tissue compartment model (lower
row)
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C2. The application of the 3-tissue compartment model leads
to the extraction of the kinetic parametersK1 and k2, which are
the uptake and clearance rate constants (i.e., between Cp and
C1), as well as of the parameters k3 and k4, which describe the
exchange between the tissue compartments C1 and C2 (Fig. 3)
(http://doc.pmod.com/pkin/pkin.html). The unit for these rate
constants is 1/min.

In the case of 18F-FDG, it is known that the tracer is
transported by different glucose transporters, phosphorylated
by different hexokinases and then trapped intracellularly with-
out undergoing further metabolic steps [33, 34]. According to
the 3-tissue compartment model, four transport rates describe
the exchange of the radiopharmaceutical between the blood
and the tissue compartments. Appropriate algorithms, like
Marquardt-Levenberg, allow an estimation of the fractional
blood volume, also known as vessel density (VB), as well as
the above-described transport rates of 18F-FDG K1, k2, k3, and
k4: K1 is related to the influx of the tracer from the blood
compartment to the tissue compartment, k2 is related to the
efflux, k3 reflects the phosphorylation rate, and k4 reflects the
dephosphorylation rate. VB andK1 are related and are typically
higher than the phosphorylation rate k3. One should keep in
mind that the rates assessed by the compartment modeling are
a compromise between a pure mathematical solution and bio-
logical and practical limitations of the method. It is recom-
mended to use an upper limit of 1 for each transport rate, while
VB values should exceed 0, even if from a mathematical point
of view different values may be occasionally calculated. This
model is different than the one proposed by Sokoloff et al.,
which does not take into consideration k4 and VB. The lack of
k4 and VB leads to different K1 and k3 values, since K1 is
dependent on VB, and k3 dependent on k4. Moreover, the de-
phosphorylation rate (k4) of

18F-FDG may be low, but is not
negligible. Details about the implementation of different com-
partment models and the software requirements for clinical
use are described by Burger and Buck [35] (https://www.
pmod.com/web/?portfolio=11-modeling-pkin). Of note is
that this model may be confounded in kidney evaluations by
urinary excretion.

A limitation of compartment modeling is that the assess-
ment of the transport rates is operator-dependent and should
be performed only by experienced users. The reason is that
these models use an iterative fitting (IF) to calculate the least
squares between measured and model data, which may lead to
overfitting problems and lack of reproducibility. Noise in the
TACs and, in particular, inappropriate input TACs have an
impact on the assessed rates. A solution to overcome these
problems has been published by a group, based on machine
learning approaches and oncological reference databases with
a training set of modeling data. In specific, we have introduced
a machine learning (ML)-based kinetic modeling (KM) meth-
od, that utilizes a historical reference database to build a ki-
netic model directly dealing with noisy data but not trying to

smooth image noise. Based on the plethora of data in the
reference database, this approach can automatically adjust
the models using a multithread grid parameter searching tech-
nique. Moreover, in an attempt to combine the advantages of
ML and IF modeling methods, a candidate competition con-
cept has been developed, which can find a balance between
fitting to history data and to unseen target curve. The ML-
based method provides a robust and reproducible solution that
is user-independent for VOI-based and pixelwise quantitative
analysis of PET data [36].

Other, more complicated models with two input functions
and five compartments have also been proposed for metabol-
ically active tracers, like 11C-thymidine, 11C-acetate, or 18F-
fluorodeoxythymidine (FLT) (Fig. 4) [37]. These tracers pro-
duce labeled circulating metabolites during the dynamic data
acquisition due to biochemical breakdown or conjugation
shortly after injection. The measurement of these circulating
metabolites and the knowledge of their biological behavior in
terms of the metabolic processes in which they may be in-
volved is a challenge. Therefore, model input functions of
not only the injected radiotracer but also its labeled metabo-
lites should be used for more accurate quantitative assessment.
Such a model example is provided for 18F-FLT and its circu-
lating metabolite 18F-FLT-glucuronide by Muzi et al. [38].
However, these approaches are very complicated and, thus,
not recommended for clinical use. In an attempt to address this
issue, more simplified models have been proposed for the
characterization of these agents. For example, Shields et al.
assessed a 3-tissue compartment model for 18F-FLT with an
image-derived input function of the descending aorta and me-
tabolite correction measured in a single sample obtained at
60 min p.i. They reported that at 60 min p.i., 74% of the blood

Fig. 4 Schematic presentation of a 3-compartment model with a double
input function. If a labeled metabolite of the tracer enters tissue, the
additional signal has to be accounted for in the model. This model in-
cludes a second input curve CM(t) of a metabolite entering tissue and
undergoing nonspecific binding. C1 represents the nondisplaceable com-
partment of the authentic ligand, C2 the specific binding of interest, and
C3 metabolized ligand in tissue. CP(t) and CM(t) are the input curves of
authentic ligand and metabolite, respectively. Cp Cplasma, CM Cmetabolite
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activity was unmetabolized. The authors found a good corre-
lation (r2 = 0.82) between the image-derived input function
and the venous blood sampling, while the metabolic rate of
the tracer correlated strongly with average SUV (r2 = 0.85)
[39]. Other modifications have been proposed for a mathemat-
ical metabolite correction of receptor data by Burger and Buck
using a series of 11C-iomazenil patient PET data [40].
Reference tissue compartmental methods have been proposed
for the estimation of the binding potential from reversible
ligand-receptor PET studies. In this case, instead of the use
of an input VOI in a vessel, a reference region with no or very
low specific uptake is used. Details about reference tissue
compartmental modeling have been reported in the literature
[41, 42]. An overview of the different algorithms, which are in
use for compartment modeling is provided elsewhere [43].

Patlak-Gjedde plot

The Patlak plot, also known as Patlak-Gjedde plot, is a graph-
ical analysis technique based on a compartment model that
uses linear regression to analyze the pharmacokinetics of a
tracer. Prerequisite for the use of a Patlak plot is an irreversible
trapping compartment of the tracer, as is assumed to be the
case for 18F-FDG [44]. The model is based on a blood/plasma
compartment, a reversible and a nonreversible compartment,
and can demonstrate whether the major metabolic step fits to a
unidirectional transfer of the tracer, allowing the graphical
calculation of an influx constant (Ki). Importantly, since most
biological reactions do not occur in a completely irreversible
manner, Patlak and Blasberg had allready proposed in 1985
also a generalized version of this model, which could toler-
ate mild degrees of reversibility (k4 > 0) to avoid under-
estimation of the net uptake rate constant Ki as previ-
ously reported for 18F-FDG in certain regions, such as
the normal liver, and tumor types, such as hepatocellu-
lar carcinoma [44]. This generalized version of the
Patlak model was recently successfully applied for
whole-body dPET and parametric imaging [45, 46].

The Patlak plot is calculated according to the formula:

CT tð Þ
CP tð Þ ¼ K

∫
t

0
CP τð Þdτ
CP tð Þ þ V

with CP(t) representing the input curve, CT(t) the measured
tissue TAC, K the slope, and V the intercept.

The interpretation of K and V is based on the underlying
compartment model. Particular in 18F-FDG, K equals
K1 × k3 / (k2 + k3) and represents the metabolic flux of the
tracer, while V equals V0 + VB, where V0 represents the distri-
bution volume of the reversible compartment C1 and VB the
fractional blood volume.

Moreover, the analysis of 18F-FDG data requires the
lumped constant (LC) and the plasma glucose level (PG) of
the patient. The metabolic rate of glucose MRGlu is subse-
quently obtained from the regression slope by

MRGlu ¼ Ki
PG

LC

Noncompartmental models

Fractal dimension Besides compartment analysis, a
noncompartment model based on the fractal dimension (FD)
can be applied. Fractal geometry is used to quantify structures
that are poorly represented by the Euclidean geometry, for
example for quantification of lesions with high structural com-
plexity and irregular borders, andmight therefore be helpful as
an additional classification parameter [47].

FD is a parameter of heterogeneity and can also be used for
temporal series, such as the time-activity data in each individual
voxel of a VOI. The values of FD vary from 0 to 2 showing the
deterministic or chaotic distribution of the tracer activity, with
higher values reflecting more heterogeneous tracer distribution.
Our group has evaluated TAC data derived from 18F-FDG PET
studies in 159 patients with 200 malignant lesions of different
tumor entities as well as in 57 patients with 57 benign lesions for
comparison. We used a box counting procedure as well as a
subdivision of 7 × 7 and amaximal SUVof 20 for the calculation
of FD, and found that FD demonstrated an accuracy of 77% for
all patients, 68% for the untreated, and 83% for the treated group
[48]. A FD cutoff value of 1.13 could reliably discriminate be-
tween malignant and benign lesions.

Fractal analysis has been furthermore used to quantify stat-
ic whole-body images of patients with metastatic melanoma
for immunotherapy monitoring after ipilimumab monothera-
py [49]. In particular, the spreading of tumor cells was
modeled via Monte Carlo simulations to address the evolution
of the metastatic process and to predict the spatial distribution
of metastatic lesions. Interestingly, FD was shown to decrease
consistently with disease progression. Notably, problems
existed in case of inflammatory lesions, like immune-related
adverse events (e.g., colitis, thyroiditis), suggesting that areas
with unspecific, nontumor–related uptake should be excluded
for FD calculations. Overall however, the method is robust
and operator independent and may be used as an additional
tool for a multiparametric, PET-based, oncological
assessment.

Parametric imaging—pixelwise modeling

Parametric imaging is a method of feature extraction allowing
the visualization of an isolated parameter of a tracer’s kinetics
based on dedicated mathematical models and a voxelwise
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calculation, instead of a VOI-based analysis. Parameters,
which can be visualized, are the perfusion-related part of a
tracer (transport), further metabolic steps—such as phosphor-
ylation in the case of 18F-FDG—as well as the global influx.
In case of receptor-specific tracers, parametric images of the
receptor-binding or the internalization of the agent can be
calculated. The advantage of parametric imaging as compared
with the VOI-based image analysis is the calculation of im-
ages instead only of numbers. The most common approach is
the usage of the reconstructed PET images and post-
processing of the data based on different algorithms. The first
results of parametric imaging were published in 1992 by
Messa et al. in patients with liver metastases [50].

Simplified parametric analysis of dPET data Parametric im-
ages can be calculated by fitting a linear regression function
to the time-activity data on a pixel basis. Images of the slope
and the intercept can then be calculated using dedicated soft-
ware packages, such as the PMod software (PMOD
Technologies Ltd., Zuerich, Switzerland) [51]. In particular,
parametric images of the slope reflect primarily the transport/
phosphorylated part of 18F-FDG and may be used for the
delineation of suspicious tumor lesions due to the better con-
trast as compared with the SUV images (parametric images
calculated from the original DICOM images by dividing them
by injected dose normalized to body weight) or for the VOI
placement in order to assess the trapped (phosphorylated) part
of 18F-FDG in a lesion. Respectively, parametric images of
the intercept reflect the transport/perfusion-related part of 18F-
FDG, which is an indirect parameter of the perfusion of a
lesion (Fig. 5). Some tumors, such as the giant cell tumors,
are very clearly delineated in the intercept images of 18F-FDG.

It was shown, that the enhanced perfusion related part of the
18F-FDG in these tumors correlated to enhanced expression of
genes related to angiogenesis, like the vascular endothelial
growth factor A [52]. Futhermore, intercept images allow
the visualization of vessels and can be used for the placement
of input VOIs. Another advantage of this simplified paramet-
ric analysis of dPET data is that no input function is needed.
Details of this method have been described elsewhere [53].

Patlak-based analysis Similar to compartmental modeling and
in contrary to the simplified parametric analysis of dPET data,
an input function is needed for the calculation of influx and
intercept images according to Patlak analysis. Furthermore,
the time frame used for the calculations should be defined
by the operator. In general terms, it is recommended that the
linear part of the TAC of a radiotracer should be used for
Patlak analysis, when all reversible compartments are in equi-
librium with plasma. In the case of 18F-FDG this is approxi-
mately fulfilled during the last 30 min of the 60-min dPET
acquisition [44]. However, several investigators have used the
dynamic data from the whole dPET acquisition for the calcu-
lation of parametric Patlak images, resulting in differences
depending on the time frame used for the calculation. A de-
pendence of the Patlak slope and intercept parameters and the
post-injection time window of the dPET data from which the
Patlak parameters were estimated, has been demonstrated.
This time dependence of the supposedly time rate constant
parameters of the Patlak model suggest that the conventional
linear Patlak model may not always be the appropriate model
for accurately describing the underlying tracer kinetics, for
example due to the presence of nonnegligible uptake revers-
ibility by the tracer under study [45, 54].

Fig. 5 Patient with a liver
metastasis of rectal cancer
following FOLFOX
chemotherapy. Fused transversal
18F-FDG PET/CT image (left)
demonstrating enhanced uptake at
the site of the metastasis 60 min
p.i. Transversal SUV image 50–
60 min p.i. demonstrates an en-
hanced uptake (right upper row),
while parametric image of the in-
tercept (middle row) shows a de-
crease in the perfusion-related
18F-FDG uptake, and parametric
image of the slope (lower row)
demonstrates an enhanced
phosphorylation-related 18F-FDG
uptake
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The intercept and influx images according to Patlak
are related and very similar to the intercept and slope
images based on the simplified parametric analysis mod-
el (Fig. 6).

Besides the standard linear Patlak graphical analysis, which
does not take into account uptake reversibility, e.g., dephos-
phorylation in the case of 18F-FDG, a nonlinear generalized
Patlak method has been introduced by Patlak and Blasberg
[44]. Moreover, Karakatsanis et al. proposed different
Patlak-based parametric imaging methods for multibed
dPET imaging. They compared the linear with the nonlinear
graphical analysis and introduced a hybrid method consisting
of a combination of linear and nonlinear Patlak analysis; this
was achieved by applying nonlinear Patlak analysis selective-
ly only to TACs from voxels exhibiting high Patlak correla-
tion coefficients and linear Patlak to all other voxels. The
authors recommend the use of nonlinear Patlak for highly
quantitative imaging tasks, while for lesion detectability the
hybrid technique is superior. Overall, all methods resulted in
higher contrast-to-noise ratios as compared with SUV images
[45].

In 2004, Zhu et al. developed a 4D linear Patlak algorithm
for direct reconstruction from list-mode data across multiple
bed positions based on a dual time point dynamic protocol
instead of a full multiframe dynamic scan [55]. Recently,
whole-body direct 4D parametric PET images employing
nested generalized Patlak expectation-maximization recon-
struction algorithms have been introduced and the first results
demonstrate less noise in Ki than the conventional post-
processing Patlak images [46]. The authors of this study pro-
pose a 7-frame protocol, consisting of an initial early dynamic
scan (6 min) at the cardiac bed position immediately after the
tracer injection for the calculation of the image-derived input

function, followed by 6 whole-body dynamic scans over sev-
en bed positions (40 min). However, the procedure needs a
high computer capacity and a long reconstruction time. Some
recently published studies have highlighted the clinical feasi-
bility and impact of these approaches [14, 56].

Two- and three-tissue compartment model It is possible to
calculate parametric images of the transport rates K1, k2,
k3, and k4 as well as of the distribution volume VB

based on a voxel-based application of the 3-tissue com-
partment described previously in this article. However,
the robustness of the method is limited and needs fur-
ther development. The advantage of the visualization of
the transport rates and the distribution volume is the
direct visual comparison of the rates in particular in
follow-up studies, and theoretically the direct VOI-
based calculation of the rates using the parametric im-
ages of each rate.

Fractal dimension Parametric images of FD can also be cal-
culated [48]. As mentioned above, fractal geometry can be
used to quantify lesions with high structural complexity and
irregular borders, and might therefore be helpful as an addi-
tional parameter for the assessment of tracer heterogeneity in
PET images. The example of Fig. 6 demonstrates a marked
FD enhancement within a sarcoma of the left back muscles on
the parametric image of FD, which is indicative for an en-
hanced heterogeneity in the tumor area (Fig. 6).

Principal component analysis Principal component analysis
(PCA) is another noncompartment model, which describes
the variance-covariance structure of a set of variables through
some linear combinations of them. PCA has the main

Fig. 6 Patient with an advanced high-grade retroperitoneal sarcoma in-
filtrating the left dorsal muscles. Tranversal 18F-FDG PET images prior
(upper row) and after the end of neoadjuvant pazopanib therapy (lower
row) on the left part of the figure. The 55–60-min SUV images

demonstrate a decrease of uptake and a central tumor necrosis as response
to therapy (left). Comparable 18F-FDG response pattern in the parametric
images of the fractal dimension and the influx according to Patlak (mid-
dle). “Conventional,” tranversal-fused PET/CT images on the right part

28 Eur J Nucl Med Mol Imaging (2021) 48:21–39



objectives of data reduction and interpretation and can be used
for parametric imaging. This method visualizes regions with
different kinetics in a dynamic sequence by explaining the
variance-covariance structure of the data set, leading to opti-
mization of the signals by simultaneously considering the
complete set of images in the dynamic sequence. Being inde-
pendent of any kinetic model, PCA does not require the man-
ual selection of VOIs and does not include any model-based
restrictions. In general, only the first two to three components
are useful for image interpretation: the first component is re-
lated to the perfusion in the case of 18F-FDG, whereas the
second one is related to enhanced viability [57]. Methods for
reduction of the background noise have been proposed to
increase the image quality [58].

Similarity mapping Similarity mapping (SM) is a method of
segmenting images into regions according to their temporal
rather than spatial properties. Based on this approach, the sim-
ilarity between the TAC of each pixel and the TAC of a ref-
erence ROI is calculated and displayed as an image. SM im-
ages provide spatially differentiated quantitative information
describing the physiological behavior of the image structures,
which sometimes may not be easily extracted from the visual
inspection of dPET image sequences. Our group has reported
on the application of this method in 20 patients with different
malignancies who underwent 18F-FDG dPET [59]. In that
study, SM supported the visual interpretation of PET data:
based on the squared-sum normalized correlation coefficient,
SM could identify structures with similar temporal properties
to the tumor, enhancing the detection of metastases that were
not easily depicted in the SUV images due to poor image
quality or lesions’ characteristics (size, location, etc.).

Current clinical applications

18F-FDG PET/CT imaging has a great impact on the diagnos-
tics and management of oncological patients and has gained
tremendous use worldwide [60, 61]. As mentioned above,
most of the oncological studies are performed with static,
whole-body PET/CT acquisitions, which assessment is mostly
based on visual analysis and semi-quantitative evaluations by
means of SUV calculations. In contrast, dPET imaging has
been traditionally used for research purposes and is, thus,
mainly performed in dedicated centers. A PubMed literature
search with the keywords: compartment AND patients AND
tumor AND PET revealed 204 papers (until October 2019).
After exclusion of case reports, review articles and articles
published in other languages than English 133 articles
remained. The majority of these articles (n = 42) were based
on dPET studies with 18F-FDG and used 3-tissue compart-
ment modeling, Patlak analysis, and fractal analysis. An over-
view of the radiotracers used, the tumors studies, the model

used for kinetic analysis, and the goal of these studies is pre-
sented in Table 1.

The question raised by most physicians is when and why to
use dPET imaging, given the fact that dynamic acquisition
protocols are time consuming, the data processing and post-
processing are complicated, and it requires dedicated software
tools beyond the ones regularly provided by the manufac-
turers. In the following paragraphs, the main applications of
dPET—additional to the conventional, static PET imaging—
in several clinical settings are described.

Diagnosis, staging, and tumor characterization

Onemain clinical application of dPET is in the context of tumor
diagnosis and staging. The concept behind this is the expansion
of the diagnostic tools applied on the basis of a multiparametric
image evaluation approach, including—besides SUV
calculations—also kinetic data and parametric imaging.
Several studies have highlighted the potential role of dPET
imaging in initial tumor diagnosis and characterization. The
vast majority of them were performed with the tracer 18F-FDG.

Some of the first studies applying dPET in the oncological
diagnostic workup were published by Dimitrakopoulou-
Strauss et al. in patients with bone tumors and soft tissue
sarcomas using 18F-FDG. The authors demonstrated that the
combination of compartmental and SUV data leads to a higher
discrimination between benign and malignant lesions, as well
as to a more accurate tumor grading as compared with the use
of SUV alone [62, 63]. In bone tumors in particular, this
multiparametric analysis was superior for the classification
between grade I and grade III tumors with a positive predictive
value > 80%. The mean SUV, VB, K1, and k3 were higher in
malignant tumors compared with benign bone lesions.
Overall, the combination of SUV, FD, VB, K1, k2, k3, and k4
led to an accuracy of 87.7% in bone lesions as compared with
74.7% for SUV alone [62]. Regarding soft tissue tumors, VB
and mean SUV were higher in sarcomas as compared with
benign lesions. On the basis of six parameters of the 18F-
FDG kinetics (SUV, VB, K1, k3, influx, FD), a better classifi-
cation was achieved for soft tissue tumors with respect to
grading as well as for differentiation between benign and ma-
lignant lesions. Interestingly, inflammatory lesions were
misclassified, which was attributed to the similar 18F-FDG
kinetics between aggressive tumors and acute inflammations
[63]. In another study of the same group, it was shown that
patients with giant cell tumors demonstrated significantly en-
hanced VB as well as highK1 and FD values as compared with
other tumors such as soft-tissue sarcomas, which is of interest
considering the classification of giant cell tumors as benign.
This result was mainly attributable to an enhanced vascular
fraction and increased 18F-FDG transport of these tumors as
was supported by gene chip data analysis, which revealed a
close association between the kinetic 18F-FDG data and the
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expression of genes related to angiogenesis [52]. The addi-
tional valuable—both vascular and metabolic—information
provided by dPET, not obtainable from conventional PET imag-
ing was also highlighted in a smaller study of 11 patients with
high grade (III or IV) soft tissue sarcomas. However, no signif-
icant correlations were found between the PET values and clin-
ical factors such as tumor size, grade, and clinical status [64].

Another tumor group that has been studied bymeans of dPET
is desmoids. Desmoids are slow-growing, locally aggressive tu-
mors without a metastatic potential arising from the connective
tissue. In patients with desmoids, it has been demonstrated that
parametric imaging is helpful for the differentiation between the
perfusion- and the phosphorylation-driven part 18F-FDG uptake.
Most desmoids demonstrate a rather low to moderate 18F-FDG
uptake, a low phosphorylation rate but a higher perfusion rate
[65]. This information may have an impact on the better under-
standing of the tumor biology and the underlying mechanisms of
tracer uptake. In addition, parametric imaging may help to ac-
quire images with better contrast than conventional 18F-FDG
PET images and thus improve diagnosis.

dPET has also been useful in the differentiation of primary
colorectal tumors from normal colon tissue as shown in a study
of 22 patients with colorectal tumors prior surgery. In particular,
FD demonstrated the highest accuracy in correctly predicting
both tumors and reference tissues, with a correct classification
rate of 89%, which was approximately 11% higher than that
reached by SUV. Moreover, the combination of all kinetic 18F-
FDG parameters for the classification of tumors or normal colon
tissue revealed an overall accuracy of 97.3% [66].

Recently, the correlation between several clinicopatholog-
ical features of breast cancer and kinetic parameters measured
by 18F-FDG dPET/CT examinations was assessed. Three-
compartment kinetic modeling was applied and the parame-
ters K1, k2, k3, Ki (tracer flux constant), and MRFDG (18F-
FDGmetabolic rate) were calculated. The authors confirmed a
significant relationship between 18F-FDG kinetic parameters
measured by dPET and the routinely assessed clinicopatho-
logical factors of breast cancer. In particular, high-grade,
hormone-receptor negative tumors with high proliferation rate
were characterized by higher cellular 18F-FDG uptake and
phosphorylation rate [67].

In another study, Mullani et al. compared the blood flow
estimated from early 18F-FDG images and found a linear cor-
relation with perfusion measured by 15O-H2O (r = 0.86). The
results suggest that a dynamic 18F-FDG acquisition provides
additional information to tumor perfusion [68]. Comparable
results have been reported by Cochet et al. in patients with
breast tumors using a short early dynamic 18F-FDG PET ac-
quisition (0–2 min p.i.) and late static images (90 min p.i.).
The authors concluded that the perfusion-dependent part of
18F-FDG was significantly associated to tumor angiogenesis
as evaluated by immunohistochemistry [69].
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In the field of prostate cancer (PC), our group has recently
studied with dynamic and static 68Ga-PSMA-11 PET/CT a
group of 16 patients with PC biochemical relapse attributed
to local recurrence. Data analysis was performed by means of
two-tissue compartment as well as parametric Patlak imaging.
12/16 patients were PSMA-positive in the static scans. Early
dPET as well as parametric Patlak images detected an addi-
tional PC lesion not seen in static PET/CT due to its masking
form urinary bladder activity. Based on these findings, it was
assumed that early PET acquisitions and parametric Patlak
images may have a potential for the detection of PC local
recurrence [70].

Therapy monitoring

PET/CT with 18F-FDG is an appropriate tool for therapy mon-
itoring in a variety of tumors as well as in different therapeutic
protocols including chemotherapy, radiotherapy and, most re-
cently, immunotherapy [60, 71]. In general, response assess-
ment is based on visual evaluation of PET images and SUV
calculations as well as on the application of known response
evaluation criteria for PET, like the EuropeanOrganization for
Research and Treatment of Cancer for PET (EORTC) and the
PET response criteria in solid tumors (PERCIST) [72, 73].

Response assessment based on kinetic data has been used
for research purposes in limited numbers of patients. Our
group performed dPET studies mainly with the radiotracer
18F-FDG in patients with different tumors under several che-
motherapeutic protocols. The most common observation of
these studies was the overall increasing TACs prior to chemo-
therapy, which became decreasing or showed a plateau after
treatment in responders [74, 75]. In particular, multiparametric
analysis was applied in patients with metastatic colorectal
cancer prior andwithin the course of FOLFOX chemotherapy;
a combination of kinetic parameters derived from the baseline
and a late follow-up 18F-FDG PET study (after 4 cycles) was
better than the use of SUV alone for the classification of pa-
tients into a short or a long survival time (correct classification
rate 78% vs. 69%) [74]. The reason for this superiority of
kinetic analysis vs. conventional SUV estimations may be that
kinetic data can provide an early assessment of small meta-
bolic changes, which cannot be detected by SUV. Moreover,
18F-FDG dPET has been shown helpful for the therapy assess-
ment of patients with high-risk soft tissue sarcomas receiving
neoadjuvant chemotherapy, as well as of those with metastatic
soft tissue sarcomas being treated with high-dose chemother-
apy and peripheral blood stem cell transplantation [75–77].
Particularly in chemotherapy, the combination of SUV and
influx (Ki) in the neoaduvant setting or SUV and K1 in the
adjuvant setting resulted in higher accuracy of response as-
sessment than SUV alone (83% vs. 67%, and 90% vs. 85%,
respectively) [75, 76]. In patients treated in a neoadjuvant
setting with the tyrosine kinase inhibitor pazobanib, a

significant decrease of the parameter K1 was demonstrated
before surgery, despite the lack of a statistically significant
change in SUV. This decrease in K1 was considered a poten-
tial marker in response to pazopanib due to the anti-
angiogenic effect of the therapeutic agent [77]. This finding
is in accordance to dPET 18F-FLT studies in patients with
advanced solid tumors studied prior and after therapy with
axitinib, a VEGFR-TK1 inhibitor. The assessment of tracer
kinetics, based on 3-tissue compartment modeling, revealed a
significant decrease in VB, K1, and Ki as early as 2 weeks after
therapy, as a sign of an anti-angiogenic and anti-proliferative
effect [78].

Mankoff et al. performed dPET studies with 15O-H2O and
18F-FDG in patients with locally advanced breast cancer prior
and after neoadjuvant chemotherapy. They used a 2-tissue
compartment for the evaluation of the perfusion studies and
the metabolic rate based on Patlak graphical analysis, and
reported a statistically significant trend for patients with a high
metabolic rate to show a poorer response to chemotherapy.
Furthermore, it was shown that a low ratio of the 18F-FDG
metabolic rate to blood flow was predictive of disease-free
survival [79]. In another dPET study in breast cancer prior
and after neoadjuvant chemotherapy, Humbert et al. assessed
the perfusion-related part of 18F-FDG using a first-pass model
proposed byMullani et al. after applying a short dynamic scan
of 2 min starting with the tracer injection and a late scan
90 min p.i. [68]. Their data demonstrated a drastic reduction
of the perfusion-related part of 18F-FDG only in HER-2 pos-
itive subtypes supporting the anti-angiogenic effect of
trastuzumab. However, changes in SUVmax outperformed
changes in perfusion effects for predicting pathological com-
plete response in all tumor types [80].

Bahce et al. performed dPET studies with 11C-erlotinib and
15O-H2O and applied compartmental analysis in 13 patients
with advanced, epidermal growth factor receptor (EGFR)-mu-
tated nonsmall-cell lung cancer [81]. Erlotinib is a tyrosine
kinase inhibitor used for treatment of EGFR-mutated tumors.
A subgroup of patients was scanned twice, prior, and 1–
2 weeks after beginning of erlotinib. Although no significant
change in the kinetic parameters of 15O-H2O was demonstrat-
ed, the distribution volume (VB) of

11C-erlotinib decreased as
response to treatment. The authors suggested that this effect
may be due to the occupancy of EGF receptors by the
nonlabeled erlotinib, which was given together with the tracer.

In a study by Wardak et al., dynamic longitudinal studies
with either 18F-FLT or 18F-fluoro-L-DOPAwere performed in
21 patients with recurrent malignant glioma prior, after 2, and
6 weeks after onset of treatment with bevacizumab (an angio-
genesis inhibitor) and irinotecan (a chemotherapeutic agent).
They showed that 18F-FLT kinetic parameters early after onset
of treatment were more predictive for overall survival than
SUV. On the other hand, 18F-fluoro-L-DOPA information
was inferior to 18F-FLT [82].
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In multiple myeloma (MM), a prospective study in 19 pa-
tients undergoing 18F-FDG PET/CT before and after the first
cycle of chemotherapy showed that changes in SUV and ki-
netics of the radiotracer could predict progression-free surviv-
al and identify patients who mostly benefited from therapy
[83]. Furthermore, in a group of 34 MM subjects undergoing
high-dose chemotherapy and autologous stem-cell transplan-
tation PET/CT studies with 18F-FDG and the skeletal imaging
tracer 18F-NaF were performed before and after treatment. It
was observed that SUV as well as kinetic parameters of 18F-
FDG and 18F-NaF significantly decreased in all patients, who
at the same time showed at least partial remission of the dis-
ease according to the clinical gold standard [84].

Another interesting field in terms of oncological therapy
assessment is immunotherapy. The recent introduction and in-
creasing application of immunotherapeutic agents in clinical
practice has resulted in unprecedented improvements in pa-
tients’ survival. Due to their unique mechanism of action, these
novel agents have been associated with atypical response pat-
terns by means of standard criteria. Thus, the application of
conventional response criteria may misinterpret the effective-
ness of immunotherapy. In an attempt to address this issue,
dPET has also been employed. Nevertheless, the initial results
were not satisfying. In particular, in patients suffering from
stage IV metastatic melanoma being treated with ipilimumab
immunotherapy, no superiority of dynamic 18F-FDG PET/CT
as compared with static images could be demonstrated [85]. In
this cohort of patients, the best criterion for immunotherapy
response assessment was the number of new lesions detected
on serial PET/CT imaging [86, 87]. This fact may be
melanoma-specific and related to the fact metastatic melanoma
tends to metastasize rapidly in case of disease progression.
Another recently proposed PET-based approach for prediction
of eventual response in advanced melanoma patients under
immunotherapy is the combination of anatomic (CT) and func-
tional (PET) imaging parameters including SUV changes [88].

Overall, a multiparametric PET/CT evaluation based on a
combination of SUV and kinetic data seems to be promising
and superior to an assessment based merely on SUV calcula-
tions. Moreover, it is expected that the implementation of
artificial intelligence in medical practice will facilitate and
improve multiparametric approaches.

Pharmacokinetic studies for tracer characterization

Another main application of dPET is the pharmacokinetic char-
acterization of new tracers. This can only be done by the use of
dynamic scanning over a certain time depending on radiotracer
studied. Most such studies have been performed either in pre-
clinical models or in the field of neurosciences, for example,
pharmacokinetic studies of dopamine, nicotinic acetylcholine
or serotonin receptors as well as brain perfusion studies
[89–92]. In the field of clinical oncology, besides 18F-FDG,

more recently radiolabeled peptides have also been successful-
ly studied with dPET/CT, such as somatostatin analogues (e.g.,
68Ga-DOTATOC and 68Ga-DOTATATE) or PSMA
radioligands (e.g., 68Ga-PSMA-11 and 18F-PSMA-1007). In
the case of receptor-binding tracers, a two-tissue compartment
model can be used as a simplification for the calculation of the
rate constants and VB. The interpretation of the rate constants is
however different than that of 18F-FDG, with K1 reflecting the
receptor binding, k2 the displacement from the receptor, k3 the
cellular internalization, and k4 its externalization.

Neuroendocrine tumors (NETs) of the gastrointestinal tract
as well as meningiomas are 68Ga-DOTATOC avid. It has been
demonstrated that untreated patients with these tumors show a
continuous increase of 68Ga-DOTATOC [17, 93].
Koukouraki et al. reported that K1 had the greatest impact on
the global 68Ga-DOTATOC SUV in NET followed by VB and
k3. Overall, pharmacokinetic analysis helped to separate blood
background activity from receptor binding, which may have
an impact for radionuclide therapy planning [17]. Ilan et al.
compared the Ki values based on kinetic data of a 3-tissue
compartment model and the ones from parametric Patlak im-
ages for 68Ga-DOTATOC and 68Ga-DOTATATE in patients
with metastatic NET and found a very high agreement [94]. In
another study higher K1/k2 and k3/k4 values for 68Ga-
DOTATOC in meningiomas as compared with reference tis-
sue, as well as high VB values were reported, highlighting the
more detailed analysis of the tumor biologic properties offered
by pharmacokinetic modeling [93].

Sachpekidis et al. performed pharmacokinetic studies in PC
patients with both 68Ga-PSMA-11 and 18F-PSMA-1007 [16,
95]. They reported on a continuous tracer increase up to
60 min as well as significantly higher kinetic values of 68Ga-
PSMA-11 and 18F-PSMA-1007 in prostatic recurrence andmet-
astatic lesions as compared with reference tissues. Comparable
results have been reported by Schmuck et al. with 68Ga-PSMA-
11 and a short acquisition protocol (0–10-min dynamic acquisi-
tion and two late static images at 60 and 180 min p.i.) in 20
patients with primary PC. The authors concluded that early and
delayed 68Ga-PSMA-11 images best discriminate PC within the
prostatic gland [96]. Overall, the results are indicative for a high
receptor binding and internalization of 68Ga-PSMA-11 and 18F-
PSMA-1007 in prostate tumors andmetastases, whichmay have
potential applications in the field of PSMA radioligand therapy.

Pharmacokinetic results have been reported with the 68Ga-
bombesin analog BZH3, which is a pan-bombesin analog that
binds to at least three receptor subtypes, the neuromedin B (or
BB1), the gastrin-releasing peptide or GRP (or BB2), and the
bombesin receptor subtype 3 (BB3). dPET studies with 68Ga-
BZH3 in patients with gastrointestinal stromal tumors (GISTs)
demonstrated an enhanced accumulation in 41% of the pa-
tients and overall lower SUV and kinetic values for 68Ga-
BZH3 as compared with 18F-FDG. The authors of that study
concluded, that 68Ga-bombesin may be useful in a subgroup

34 Eur J Nucl Med Mol Imaging (2021) 48:21–39



of GIST patients with low proliferation rate and therefore neg-
ative in 18F-FDG PET [97]. In addition, in patients with re-
current gliomas 68Ga-BZH3 seems to be helpful for the differ-
entiation between low- and high-grade gliomas based on a
combination of kinetic 18F-FDG and 68Ga-BZH3 data.
Overall, the 68Ga-BZH3 accumulation was lower as compared
with 18F-FDG [98].

A plethora of other pharmacokinetic studies with different
radiotracers by means of dPET has been performed in patients
with several malignancies. For example, 18F-fluroethyltyrosine
(FET) and 18F-FLT have been used for the diagnosis of patients
with gliomas [99, 100], while 18F-fluromisonidazole (MISO)
has been successfully tested in different tumor entities like lung
tumors and head and neck tumors for the determination of the
hypoxic parts of the tumors [101–103]. Further, kinetic model-
ing has been used for the characterization of new tracers like
18F-fluciclovine and 18F-HX4 [104, 105].

Future perspectives

dPET scanning is helpful for the diagnosis and therapy mon-
itoring of oncological patients, but it is time-consuming and
requires more complex evaluation techniques, which may
hamper its routine use. Issues that are still open and need to
be addressed include the following:

& The definition of shorter acquisition protocols including,
e.g., a short dynamic acquisition immediately after tracer
injection for the calculation of the input function and a
short late dynamic acquisition 50–60 min p.i. We pro-
posed a short dynamic acquisition 0–16 min and a late
acquisition 60 min p.i. for 18F-FDG and could demon-
strate a high correlation between the kinetic data obtained
from this short acquisition protocol as compared with a
full dynamic series over 60 min [106]. Moreover as men-
tioned above, Karakatsanis et al. proposed a 7-frame pro-
tocol, consisting of an initial early dynamic scan (6 min) at
the cardiac bed position followed by 6 whole-body dy-
namic scans over seven bed positions (40 min) [46].

& The improvement of the evaluation software for dynamic
images including sophisticated segmentation algorithms,
automatic VOI placement, automatic calculation of TACs,
implementation of validated methods for 2- and 3-tissue
compartment modeling including a graphical interface for
the users.

& Automatic calculation of the input function, either image-
derived or population-based.

& Faster acquisition protocols and a potential implementa-
tion of whole-body parametric imaging, e.g., Patlak or
simplified parametric model-based analysis for the new
generation PET/CT scanners with an extended FOV.

& New reconstruction algorithms for the new generation
PET/CT scanners to improve counting statistics and image

resolution. This issue can, however, be addressed with the
introduction of clinically feasible dynamic whole-body
PET imaging protocols in current generation limited axial
FOV PET systems equipped with direct 4D reconstruction
schemes and generalized nonlinear graphical analysis
methods [8, 10, 107, 108].

& Implementation of artificial intelligence for the image
analysis in order to facilitate and improve multiparametric
approaches (combination of kinetic modeling and SUV
measures).

The implementation of such quantitative approaches will
need to be optimized, but it will open a new era for PET
imaging. The adoption of such dynamic whole-body proto-
cols, including parametric imaging, would facilitate the use of
dPET initially in clinical studies for dedicated questions, and
afterwards even into routine clinical protocols. Prerequisites
for this wider usage of dPET include a further evidence of the
added value and the gain in information offered by dPET
compared with conventional static PET alone, and its acqui-
sition in a patient- and operator-friendly manner.

Limitations

Dynamic PET/CT imaging for oncology including kinetic
modeling and parametric imaging has been used until now
primarily for research purposes and cannot be yet recommend-
ed for clinical use in its present form due to several limitations.
Kinetic modeling needs further optimization to avoid
overfitting, for example with the use of reference databases
and SVMalgorithms, as well as a robust definition of the input
VOI. Furthermore, parametric images are noisy; thus, their
interpretation should be done by experienced users and in
comparison with conventional SUV images for reference.
This limitation, however, is beginning to be addressed with
the direct 4D parametric PET image reconstruction that has
been introduced for single-bed and multibed dynamic PET
studies, and which may allow the generation of parametric
PET images of similar noise levels to those of conventional
SUV images. In line with this, the industry has recently auto-
mated this technique to offer the automatic generation of di-
rect Patlak parametric image and image-derived plasma input
functions from dPET whole-body PET data. This effort rep-
resents a promising solution to facilitate the clinical translation
of dPET imaging to clinical routine in oncology PET studies.
Finally, another limitation is that although parametric imaging
based on the Patlak approach and the simplified parametric
analysis of dPET data have been thoroughly investigated in an
experimental level, data are lacking on other algorithms like
compartment modeling, FD, PCA, and SM. Overall, kinetic
modeling and parametric imaging need further development
and optimization of the algorithms used for calculation prior
to their introduction in clinical practice.
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Conclusion

Multiparametric dPET based on kinetic modeling and para-
metric imaging of the applied radiotracers, offers a plethora of
data not otherwise acquired with the conventional, static PET/
CT. Its introduction in the diagnostic approach of the onco-
logical patient is expected to provide superior information
than the one derived from the visual evaluation of PET images
merely supported by one semi-quantitative parameter, namely
SUV. Although at present confined to research protocols,
quantitative dPET and parametric imaging may gain impor-
tance and find increasing usage in the clinical routine as long
as certain issues are addressed. This would be probably ac-
complished with the advent of the new generation PET/CT
scanners and the expected improvement of the technical
equipment, including an extended FOV, faster data acquisi-
tion and more sophisticated software for data evaluation.
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