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The concept of FDG-PET imaging was discussed for the first
time among three investigators from the University of
Pennsylvania, Abass Alavi, David Kuhl, and Martin
Reivich, in the early 1970s [1]. These investigators had real-
ized the potential for this novel radiolabeled compound in
human research and clinical practice based on autoradiograph-
ic imaging studies using 14C-deoxyglucose in animals [1].
This initial discussion led to contacting chemists at the
Brookhaven National Laboratory (BNL), which soon led to
a joint effort to label deoxyglucose with 18F and determine its
role by examining brain function in human beings. This in-
vestigation was led by AlfredWolf and his colleagues at BNL
and eventually, the compound was successfully synthesized
and tested for toxicity before plans were made to image its
distribution in human beings [2]. By mid-1976, an investiga-
tional new drug (IND) application was secured from the FDA
for administering this radiotracer to normal human volunteers.
Finally, in August 1976, the compound was shipped by a
private plane to Philadelphia and successful images of the
whole body by a conventional rectilinear scanner and tomo-
graphic images by a SPECT instrument were acquired by
Abass Alavi at the University of Pennsylvania [3]. Soon

thereafter, research protocols were drafted to determine the
patterns of cerebral glucose metabolism with this compound
in central nervous system disorders by Penn/BNL and UCLA
investigators [4, 5]. The results from these early research stud-
ies conducted initially at these institutions and then later by a
few other centers in the USA and Europe in the 1980s clearly
demonstrated the great promise of FDG for both research and
clinical applications.

In spite of the complexity and technical challenges that
were faced by this demanding technology, over the past 4
decades, the role of this powerful imaging modality has been
validated and well-established for assessing numerous disor-
ders [6, 7]. Soon after its introduction, this approach was
proven to be of great value in diagnosing Alzheimer’s disease
with very high sensitivity and specificity which has remained
unmatched by any other technique to date [8–10]. Other ap-
plications in the 1980s and 1990s included detection of sei-
zure focus in temporal lobe epilepsy [11–13], vascular disor-
ders [14], and a variety of neuropsychiatric diseases such as
schizophrenia and manic depression [15–18]. However, the
major observation that was made from the early research stud-
ies in animal [19] and in human brain images with FDG was
its critical role in detecting and characterizing malignant cells,
particularly, brain tumors [20, 21]. These early research pro-
jects were carried out by investigators at BNL, Penn, and NIH.
For the first time, the observation that was described by
Warburg in the in vitro setting, where he was able to demon-
strate high glycolytic activity of cancer cells compared with
normal tissues, was verified by in vivo imaging with FDG [22,
23]. The latter further enhanced the potential for employing
FDG-PET imaging to expand the horizons of this powerful
methodology beyond central nervous system disorders.

In parallel with synthesis of FDG and testing its novel
application in human diseases and disorders, efforts by
Michael TerPogossian and colleagues at Washington
University had resulted in designing and testing early PET
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instruments for imaging positron-based radiotracers [24]. The
initial instruments provided images in a limited axial field of
view and therefore were employed for assessing small organs
such as the brain and the heart. By the early 1980s, efforts
were made to assemble advanced instruments that could im-
age the entire body with extended fields of view, which have
been improved substantially over the past 3 decades [25].

Major advances that have been made in designing and
building sophisticated PET instruments have further enhanced
the impact of FDG-PET in many settings where imaging larg-
er segments of the body along with structural data are essential
for accurate diagnosis. In particular, the introductions of PET/
CT in 2000 [26] and PET/MRI in 2008 [27] have substantially
improved the performance of PET in disciplines such as radi-
ation therapy and surgery. These instruments have allowed
precise localization of FDG-positive targeted lesions.

The introduction of total-body PET imaging during the past
year by investigators at UC Davis and Penn is expected to
substantially enhance the role of this powerful modality even
further [28]. This instrument allows imaging of the entire body
within minutes and by administering substantially lower doses
of FDG than the amounts currently being administered with
limited field of view PET/CT scanners. Furthermore, total
body imaging is going to allow for global disease assessment
in serious diseases and disorders such as atherosclerosis, os-
teoporosis, vascular complications of many malignancies, and
systemic inflammation including rheumatoid arthritis and
psoriasis.

The synthesis of FDG, which was somewhat cumbersome
and limited to academic institutions, was significantly simpli-
fied over the ensuing years and this has allowed rapid expan-
sion of this technology to most advanced centers around the
world. Since the 1990s, applications of FDG-PET have ex-
panded to include imaging various malignancies and this has
resulted in the acceptance of this technology by the oncolo-
gists for the diagnosis and treatment response following vari-
ous therapeutic interventions [25]. By the mid-1990s, it was
noted that FDG-PET imaging could potentially play a role in
the detection of infection and aseptic inflammation due to a
variety of disorders [29]. In the early 2000s, studies were
reported describing FDG uptake in the atherosclerotic plaques
in the aorta and other major arteries [30, 31]. Similarly, it was
shown that clots in the venous system have substantial glyco-
lytic activity and can be visualized by this technique [32–34].
In addition, detecting FDG uptake in the myocardium has
been adopted for assessing myocardial viability before coro-
nary artery bypass surgery [35, 36]. Therefore, over the past 2
decades, the domain for FDG-PET applications has expanded
substantially and, in fact, the rate of expansion of this technol-
ogy has exceeded that of any other modern imaging tech-
niques in recent years [7]. Moreover, the molecular dimension
and the ability to overlook major parts of the body in a single
examination séance are going to change and improve our

understanding of many diseases as exemplified by FDG-
PET findings of significant vasculitis inside the body in what
until now was considered a serious skin disease, namely pso-
riasis [37]. In addition, the superior sensitivity of PET and
targeting at the molecular level opens for much earlier disease
detection than with conventional structural imaging. A strik-
ing example of that is the detection of bonemarrow instead of
bone metastases by means of FDG-PET probably months or
years before changes in the skeletal bone matrix become ap-
parent by CT imaging, where they may persist even after
active cancer cells are no longer present [38].

In contrast to CT and MRI, which were adopted without
any hesitation, the medical community was reluctant to accept
the validity of exploring PET as a viable modality for
assessing any of the diseases and disorders enumerated above.
In fact, early applications of PETwere primarily supported by
grants from the NIH, other government agencies, foundations,
and institutional funding. It was not until 1998 whenMedicare
(US Government Insurance Agent) approved the use of this
technology for characterizing lung nodules and for initial stag-
ing of non-small cell lung cancer (NSCLC). Fortunately, over
the past decade, Medicare has expanded its coverage of PET
for most malignancies and this has allowed rapid expansion of
this technology particularly in the USA [39, 40]. In fact, with-
out the latter initiative, PET would have never survived as a
viable imaging technique. Unfortunately, clinical acceptance
of FDG-PET as a very powerful method for assessing infec-
tion and inflammation has been somewhat slow and limited to
centers where research funding has been secured from various
agencies [41–47]. This is very disappointing since, based on
reports that have appeared in the literature, FDG-PET imaging
appears to be the most successful imaging approach for detec-
tion and characterization of many infectious and inflammatory
disorders [7]. Efforts are being made to educate both the sci-
entific and clinical communities about the unparalleled role of
this technique in such domains.

Finally, FDG-PET is the most quantitative imaging tech-
nique for assessing disease activity in medicine, and as such, it
contributes enormously to determine the course of disease and
the effectiveness of various interventions [48]. Particularly, its
ability to provide a single value as evidence for global disease
activity is essential for overall assessment of multiple benign
and malignant disorders [49]. Previously, the mentioned lim-
ited fields of view was a hindrance to such overall assess-
ments, but with the extended fields of modern scanners, their
higher sensitivity and correspondingly shorter image acquisi-
tion times, not to mention the advent of the total-body PET
scanner [28], the concept of providing a global disease score
(GDS) representing the extension and severity of disease in
part of (D) or in the total body has come into reach as illus-
trated in Fig. 1 in a HIV/TB-positive patient. Until recently, to
provide such scores have often been too time-consuming for
application in the daily routine since it requires careful
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segmentation of all disease areas and lesions in the body,
which implies great observer experience and, in particular,
when it comes to small lesions, correction for partial volume
effect. However, with the rapid introduction of artificial
intelligence-based systems for quantitative, observer-
independent processing of PET images in seconds or a few
minutes, overall disease assessment will become a major tar-
get for future clinical research and implementation [49].

In this review, we will describe in great detail the role of
FDG in a variety of infectious and inflammatory disorders.

Early in the history of FDG-PET imaging, occasional re-
ports of false-positive findings due to infection or inflamma-
tion in patients with malignant tumors were a nuisance to
oncologists who had to realize that FDG was not a cancer-
specific tracer [50]. It has now been established that this is
because cells involved in the inflammatory response (e.g.,
neutrophils, macrophages, and activated leukocytes) similar
to malignant cells often express high levels of glucose trans-
porters. In addition, circulating cytokines seem to increase the
affinity of these glucose transporters for FDG [51, 52]. Tahara
et al. reported on the first cases using FDG directly for imag-
ing infection with increased accumulation in abdominal ab-
scesses in humans [53], and since then, there has been a grow-
ing interest in using PET and PET/CT for the study of infec-
tious and inflammatory diseases [29, 54, 55]. Generally speak-
ing, the use of FDG and PET in infectious and inflammatory
diseases can be divided into systemic whole-body diseases
and focused, organ- or symptom-specific diagnostics.

In the former category falls one of the most well-
established indications, namely fever of unknown origin

(FUO), a heterogeneous group of diseases with a multitude
of differential diagnoses, i.e., infectious, malignant, or inflam-
matory diseases all with an element of hypermetabolism.
Patients often present with unspecific symptoms and few di-
agnostic clues, and it may be challenging to reach an etiologic
diagnosis [56, 57]. Whole-body FDG-PET/CT is sensitive in
guiding the clinician towards more specific investigations and
provides clinically helpful and important information towards
reaching a diagnosis in overall 50–60% of patients (i.e., 42–
92% of cases depending on how the authors define “helpful”),
substantially better than any other diagnostic procedure [58,
59]. Also, one must remember that the underlying studies
usually include patients without a firm diagnosis after a mul-
titude of other diagnostic procedures, i.e., often the most dif-
ficult patients.

Another challenging whole-body ailment is bacteremia of
unknown origin; early studies found clinically relevant find-
ings in up to half of patients with bacteremia of unknown
origin or suspected metastatic spread with high positive and
negative predictive values [60, 61] and established FDG-PET/
CT to be cost-effective due to significantly lower relapse rates
and mortality [62, 63]. More recent studies have corroborated
these initial findings in heterogeneous settings of bacteremia
of unknown origin with PET leading to change in clinical
management in half of the patients, also after prolonged fe-
brile periods in patients heavily pretreated with antibiotics
[64]. FDG-PET/CT has also been shown to have a direct ther-
apeutic consequence in one-third of critically ill septicemic
patients with unknown etiology [65], and high sensitivity
and s i gn i f i c an t c l i n i c a l impac t i n 53–75% of

Fig. 1 Baseline (a, b) and follow-up (c, d) maximum intensity projection
(MIP) PET images of an HIV/TB-positive patient. The lung lesion
decreased in size and disease activity following 2 months of
antiretroviral therapy (black arrows). Coincident with response to
treatment in the lung lesion, an increased lymph node reaction was
observed on FDG-PET scan (red arrows). The FDG-avid lung
inflammatory site was segmented semi-automatically using an adaptive

contrast-oriented thresholding system (ROVER; ABBX, Radeberg,
Germany). The values for metabolic tumor volume (MTV), SUVmean,
partial volume corrected SUVmean (pvcSUVmean), SUVmax, total
lesion glycolysis (TLG), and partial volume corrected total lesion
glycolysis (pvcTLG) at the baseline and the follow-up are noted in the
table. (These images are courtesy of Professor Mboyo-Di-Tamba Vangu,
University of the Witwatersrand, Johannesburg)
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immunocompromised patients with febrile neutropenia [66,
67]. Another entity with potential metastatic infection is infec-
tive endocarditis (IE), especially prosthetic valve endocarditis;
focal FDG uptake in the valve area may be indicative of en-
docarditis, often an incidental finding in FUO or equivocal
cases, but imaging the heart is difficult without prolonged
fasting due to the physiologic myocardial uptake of FDG;
thus, FDG-PETmay better contribute in infective endocarditis
by detecting clinically occult metastatic infectious foci, as an
adjunct to echocardiography in equivocal cases, or in
suspected cardiac device infection [68–71].

Looking at more specific indications, FDG-PET/CT is sec-
ond to none in chronic osteomyelitis; a meta-analysis pooling
data from 23 studies found FDG-PET had the highest accura-
cy in diagnosing and excluding chronic osteomyelitis, with a
sensitivity of 96% and a specificity of 91%, compared with
78% and 84% with combined bone and leucocyte scintigra-
phy, and 84% and 60% with MRI [72]. Similarly, with
spondylodiscitis, a meta-analysis found sensitivity and speci-
ficity of 97% and 88%, respectively [73], and a recent study
established that FDG-PET/CT is especially adept in the early
phase with sensitivity of 96% compared with 50% with MRI
within the first 2 weeks after symptom debut [74]. Although it
only represents 2–4% of osteomyelitis cases, structural imag-
ing may be insufficient in spondylodiscitis, because morpho-
logic changes are often nonspecific and discrimination be-
tween infection and degenerative changes is challenging.
Although the specificity of FDG-PET may be lower in the
initial postoperative period due to unspecific inflammation
[75], excellent results are achievable in patients with
suspected spinal infection related to metallic implants, i.e.,
overall sensitivity, specificity, and accuracy in the range of
94–100%, 87–93%, and 91–97%, respectively, with corre-
sponding results for patients with metallic implants: 91%,
71%, and 83%, respectively—in one study, FDG-PET was
found to increase the physician’s confidence, which added
significantly to the clinical decision-making process and treat-
ment strategy in two-thirds of patients [76, 77].

FDG-PET has also been employed in the diagnosis of pros-
thetic joint infections. Although still controversial, several
meta-analyses as well as prospective comparisons have dem-
onstrated more robust results with FDG-PET (i.e., pooled sen-
sitivity and specificity of 70–95% and 84–93%, respectively)
compared with combinations of white blood cell scintigraphy
and bone marrow scintigraphy (i.e., pooled sensitivity and
specificity of 33–80% and 93–96%, respectively) [47, 78–81].

Finally, several studies have pointed to FDG-PET as a use-
ful modality in the diagnostic challenging diabetic foot. One
study reported lower sensitivity but higher specificity and ac-
curacy with FDG-PET than with MRI [82], while another
found both higher sensitivity and accuracy with FDG-PET,
concluding that this method was able to reliably differentiate
Charcot’s neuroarthropathy from osteomyelitis [45]. A recent

prospective study found that FDG-PET/CT imaging of the
diabetic foot had a sensitivity, specificity, and accuracy of
100%, 92%, and 95%, respectively, in the diagnosis of osteo-
myelitis [83].

Vascular graft infection is a rare but serious complication
carrying high mortality and morbidity with a substantial risk
of limb loss or death [84, 85]. It is often difficult to distinguish
morphologically between graft infection, non-infected hema-
toma, and lymphocele. While CT has low sensitivity in low-
grade infections, FDG-PET may lack specificity. In the first
hybrid PET/CT study, Keidar et al. found excellent sensitivity
and specificity of 93% and 91%, respectively [86]. Whereas
subsequent studies generally confirmed the high sensitivity,
specificities varied considerably, i.e., two recent meta-
analyses found pooled sensitivities and specificities of 95–
97% and 80–89%, respectively, with confidence intervals for
specificities ranging from 69–96%. Even so, FDG-PET/CT
generally performs much better than CT with several studies
finding both sensitivities and specificities in the 55–65%
range only [85, 87]. However, several caveats pertain to the
available FDG-PET literature, e.g., patient populations are
generally a heterogeneous mix of acute and chronic, low-
grade infections, various graft types, and most are heavily
pretreated with antibiotics. Also, methodologies are generally
suboptimal with regard to a reference standard and a lack of
consensus on interpretation strategy.

Due to the nonspecific nature of FDG, more infection-
specific tracers are desirable. A multitude of alternative can-
didates has been assessed preclinically, including several dif-
ferent isotopes (e.g., 64Cu, 68Ga, and 124I). Although results
have been promising and scientifically interesting, a recent
systematic review established a significant lack of standardi-
zation in the preclinical settings and that only few have been
translated into humans and with disappointing results [88].

Besides mere diagnosis, the use of FDG-PET/CT for re-
sponse evaluations of treatments for infectious diseases has
also been explored, albeit to a much lesser extent than in
malignant diseases, e.g., spondylodiscitis [89], vascular graft
infections [90, 91], and tuberculosis [92]; results have been
promising, but further and larger prospective studies are war-
ranted in this setting.

Non-infectious inflammation is also FDG-avid by mecha-
nisms similar to those of infectious diseases, i.e., higher glu-
cose transporter expression in inflammatory cells and in-
creased affinity of the glucose transporters for FDG under
the influence of circulating cytokines [46, 93]. Most validated
clinically is vasculitis characterized by inflammation and ne-
crosis of the vessel wall, most commonly affects large- and
medium-sized arteries, e.g., giant cell arteritis (GCA) and
Takayasu’s arteritis [94]. In GCA, biopsy of the temporal ar-
tery remains the reference standard, but false-negative results
are seen in as many as 40% of patients [93]. Furthermore, a
significant proportion of patients have extra-cranial disease
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manifestations, and thus, imaging remains important to help
locate suitable biopsy sites and assess disease extent and re-
sponse to treatment. Evidence on FDG-PET in GCA ismount-
ing, and recent systematic reviews have found sensitivities
and specificities of 80–90% and 89–98% [95, 96], respective-
ly, in GCA, and 70–87% and 73–84%, respectively, in
Takayasu’s arteritis [96–98]. Earlier studies underlined prob-
lems with visualizing the smaller arteries in the head-and-neck
including the temporal artery because of its small caliber and
proximity to physiologic uptake in the adjacent brain, but a
recent study found high diagnostic accuracy for GCA using a
dichotomous assessment of FDG uptake in cranial arteries
[99]. A well-known pitfall is glucocorticoid treatment known
to hamper FDG uptake and leading to false-negative scans,
but another recent study found remaining high sensitivity
within the first 3 days of high-dose glucocorticoids, whereas
sensitivity was significantly reduced after 10-day treatment
[100]. Polymyalgia rheumatica is a systemic disease entity
characterized by soft tissue inflammation, synovitis, and bur-
sitis, and is often associated with large-vessel vasculitis. As
with GCA, available imaging has been sparse, but in recent
years, several reports have proposed several well-defined an-
atomical areas related to bursae and axial joints where in-
creased FDG uptake is associated with polymyalgia
rheumatica [101–103].

Reports on FDG uptake in sarcoidosis emerged in the early
1990s, and whole-body FDG-PET is a sensitive marker of
sarcoidosis activity [104, 105]. Although not the modality of
choice in the initial diagnostic workup due to its inability to
differentiate benign granulomatous disease from lymphoma, a
systematic review identified nine studies with a total of 379

patients and reported great potential in several areas, e.g.,
assessing disease activity and thus aiding the monitoring of
treatment response as early as 6 weeks following initiation of
therapy, and for staging and detection of sites that are clinical-
ly occult [106]. Also, FDGmay have a role in cardiac sarcoid-
osis, but the same caveats as with infective endocarditis apply,
i.e., patient preparation is pivotal to suppress physiologic up-
take in the myocardium [107, 108].

Several other inflammatory diseases have been suggested
and investigated using FDG-PETwith potential, but evidence
is still equivocal. These include inflammatory bowel disease
where physiologic FDG uptake may complicate matters, but
two meta-analyses found overall sensitivity and specificity of
84–85% and 86–87%, respectively [109, 110]. A possible
application is a differentiation between inflammatory and
fibrostenotic strictures with obvious advantages for treatment
planning and avoiding invasive surgical procedures [111]. All
of this could be of special significance in pediatric inflamma-
tory bowel disease [112]. Also, FDG has been suggested to
detect and assess inflammatory joint disorders [113], also for
monitoring treatment response because morphologic assess-
ment of synovial thickening is difficult [114], but important
with the effective but expensive new biological drugs that may
present serious side effects [115]. Finally, FDG has been pro-
posed in venous thromboembolism (VTE) as commonly used
diagnostic imaging techniques do not address some of the
important aspects of this disease [32]: VTE may present in
the entire venous vasculature, but routine imaging only as-
sesses lower extremity veins and pulmonary arteries; an un-
derlying disease like cancer is often a key factor in the devel-
opment of VTE, but patients are not examined routinely to

Fig. 2 Introduction of X-ray to
medicine by Röntgen in 1895
(left) has had a substantial impact
on the day-to-day practice of
medicine. Similarly, imaging with
FDG (right) has been another
major step forward by enhancing
the role of medical imaging and
this has led to an unparalleled
impact on both research and
patient care
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disclose this; and differentiating acute from chronic VTE is
impossible by routine imaging, but has profound influence on
treatment strategy. A recent systematic review has summa-
rized the potential within all of the mentioned domains, but
the literature is still too sparse for firm conclusions [116].

The enormous impact of FDG-PET imaging on many dis-
ciplines of medicine competes with any other major develop-
ment to date. The increasing number of newer applications of
FDG for assessing diseases beyond cancer has significantly
improved patient care far beyond any other imaging technique
over the past decades. As it becomes more and more evident
that contrast agents designed for CT and MRI are associated
with serious side effects, it is conceivable that FDG will be
used in place of these radiologic contrast agents in the future.
In addition, the introduction of FDG has resulted in the sur-
vival of PET as an imaging modality and made PET as the
most powerful imaging technique to assess disease processes
at the molecular level. Furthermore, the survival of PET as
such a powerful modality has resulted in the development of
new radiotracers that are revolutionizing our ability to assess
many diseases and disorders at the molecular level. These
advances are going to be essential for characterizing the un-
derlying causes of numerous maladies and developing poten-
tial approaches for therapeutic interventions. As such, it may
be appropriate to portray the introduction of FDG-PET to
medicine as compared with that of X-ray by Roentgen in
1895 (Fig. 2).
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