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Abstract
Purpose Measurement of he te rogene i ty in 18F-
fluorodeoxyglucose (18F-FDG) positron emission tomogra-
phy (PET) images is reported to improve tumour phenotyping
and response assessment in a number of cancers. We aimed to
determine whether measurements of 18F-FDG heterogeneity
could improve differentiation of benign symptomatic neurofi-
bromas from malignant peripheral nerve sheath tumours
(MPNSTs).
Methods 18F-FDG PET data from a cohort of 54 patients (24
female, 30 male, mean age 35.1 years) with neurofibromatosis-
1 (NF1), and clinically suspected malignant transformation of

neurofibromas into MPNSTs, were included. Scans were per-
formed to a standard clinical protocol at 1.5 and 4 h post-injec-
tion. Six first-order [including three standardised uptake value
(SUV) parameters], four second-order (derived from grey-level
co-occurrence matrices) and four high-order (derived from
neighbourhood grey-tone difference matrices) statistical fea-
tures were calculated from tumour volumes of interest. Each
patient had histological verification or at least 5 years clinical
follow-up as the reference standard with regards to the charac-
terisation of tumours as benign (n = 30) or malignant (n = 24).
Results There was a significant difference between benign and
malignant tumours for all six first-order parameters (at 1.5 and
4 h; p < 0.0001), for second-order entropy (only at 4 h) and for
all high-order features (at 1.5 h and 4 h, except contrast at 4 h;
p < 0.0001–0.047). Similarly, the area under the receiver oper-
ating characteristic curves was high (0.669–0.997, p < 0.05) for
the same features as well as 1.5-h second-order entropy. No
first-, second- or high-order feature performed better than max-
imum SUV (SUVmax) at differentiating benign from malig-
nant tumours.
Conclusions 18F-FDG uptake in MPNSTs is higher than be-
nign symptomatic neurofibromas, as defined by SUV parame-
ters, and more heterogeneous, as defined by first- and high-
order heterogeneity parameters. However, heterogeneity analy-
sis does not improve on SUVmax discriminative performance.

Keywords 18F-FDG pet . Heterogeneity . Standardised
uptake value . Neurofibromatosis-1 .Malignant peripheral
nerve sheath tumour

Introduction

Neurofibromatosis-1 (NF1) is an inherited disease
characterised by multiple neurofibromas in which there is an
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increased risk of malignant transformation to malignant pe-
ripheral nerve sheath tumours (MPNSTs) [1]. Non-invasive
differentiation of benign symptomatic neurofibromas from
those with malignant transformation is a clinical challenge.
Standardised uptake value (SUV) or tumour-to-liver ratio
measurements from 18F-fluorodeoxyglucose (18F-FDG) posi-
tron emission tomography (PET) have previously been de-
scribed as an accurate method to detect MPNSTs in this pa-
tient group [2–6]. Qualitative scoring of heterogeneity of 18F-
FDGPETon a three-point scale has also been described where
MPNSTS displayed a more heterogeneous uptake of tracer
with similar discriminatory power to maximum SUV
(SUVmax) [7].

There is increasing interest in the quantitative measurement
of heterogeneity in medical images of cancer patients, includ-
ing computed tomography (CT), magnetic resonance imaging
(MRI) and PET. There is evidence that the use of heterogene-
ity parameters may improve characterisation, segmentation,
prognostication and therapy response assessment compared
to standard metrics such as size or lesion activity [8–12].
The most commonly used methods involve the measurement
of statistically based parameters including first-, second- and
high-order features. First-order features include global param-
eters such as SUV but also heterogeneity parameters, such as
standard deviation (SD), first-order entropy and first-order
uniformity. These are derived from intensity volume histo-
grams of a tumour volume of interest (VOI) [8, 10, 12].
Second-order features, most often derived from grey-level
co-occurrence matrices (GLCM), measure the relationship be-
tween pairs of voxels [13] and high-order features, most often
derived from neighbourhood grey-tone difference matrices
(NGTDM), measure the relationship between three of more
voxels in the same or adjacent planes [14].

Our hypothesis was that quantitative heterogeneity param-
eters from 18F-FDG PET could improve differentiation of be-
nign symptomatic neurofibromas fromMPNSTs compared to
standard PET metrics such as SUV and our aim was to com-
pare discriminative ability in a retrospective cohort of patients
with NF1 whose tumours had been well-characterised.

Patients and methods

A cohort of 54 consecutive patients with NF1 and clinical
suspicion of malignant transformation of symptomatic neuro-
fibromas, referred from our national neurofibromatosis ser-
vice for 18F-FDG PET/CT scans, was identified. There were
30 male (mean age 34.7 years, range 12 to 73 years) and 24
female patients (mean age 35.5 years, range 9 to 86 years). An
institutional review board waiver was obtained for retrospec-
tive analysis of these data.

18F-FDG PET/CT scans were all acquired to the same pro-
tocol in the same institution on one of two scanners

(Discovery VCT or DST, GE Healthcare, Chicago, IL, USA)
which were cross-calibrated to within 3% [15]. Patients were
fasted for at least 6 h prior to administration of 350 (+/− 10%)
MBq 18F-FDG (scaled to body weight/70 in paediatric
patients) and were only acquired if the blood glucose measure-
ment was less than 10 mmol/l. Scans were acquired according
to the institutional standard clinical protocol for NF1 patients
with an acquisition at approximately 1.5 h (101.5 +/− 15 min)
from the upper thigh to the base of skull followed by an
acquisition at approximately 4 h (251.7 +/− 18.4 min) of the
symptomatic tumour site only, all at 5 min per bed position
[2]. Images were all reconstructed using an ordered subset
expectation maximisation algorithm (2 iterations, 20 subsets)
with a reconstructed slice thickness of 3.27 mm and pixel size
4.7 mm. The CT component of the scans was acquired at 120
kVp and 65mAs without administration of oral or intravenous
contrast agent.

The reconstructed PET datasets were imported into in-
house texture analysis software implemented in MATLAB
(Release 2016a, The MathWorks, Inc., Natick, MA, USA).
Voxel intensities within the symptomatic tumour VOI were
resampled to yield 64 discrete bins. Whilst most patients had
multiple neurofibromas, only the symptomatic tumours were
analysed. Since many of the tumours showed only low-grade
FDG uptake, it was not possible to adequately segment the
tumour regions directly from the PET data by freehand or by
using semi-automated methods such as percentage threshold
or fuzzy locally adaptive Bayesian methods [16]. Regions of
interest were, therefore, drawn on the corresponding CT im-
ages where tumours were more easily defined (Fig. 1) by an
experienced operator with radiology and nuclear medicine
training and over 20 years experience. To assess inter-
observer variability, a random subset of 16 patients had
VOIs defined on 1.5- and 4-h scans by a separate operator
blinded to the initial observer measurements and clinical data.

As well as SUVs (mean, maximum and peak, all normal-
ised to body weight in kilogrammes), three first-order (SD,
entropy and uniformity), four second-order GLCM parame-
ters (contrast, entropy, uniformity and homogeneity) and four
high-order NGTDM parameters (coarseness, contrast, busy-
ness and complexity) were calculated from the resulting VOIs.
Second-order features were calculated from GLCMs measur-
ing the grey-level distribution between pairs of voxels and
high-order features were derived from three-dimensional ma-
trices taking into consideration neighbouring voxels in adja-
cent planes. All these features have been previously described
in detail [13, 14] and the chosen parameters have previously
shown utility and/or robustness when used in clinical 18F-
FDG PET data of cancers [17–22].

Statistical analysis was performed using SPSS (v22,
Chicago, IL, USA) and MedCalc (v16.8.4, Ostend,
Belgium) software. The data distributions were tested for nor-
mality using the Shapiro–Wilk test. As data were not normally

1846 Eur J Nucl Med Mol Imaging (2017) 44:1845–1852



distributed differences between benign andmalignant tumours
were tested with the Mann–Whitney U test for each parameter
and correlations between parameters with Spearman correla-
tion. Receiver operator characteristic (ROC) curves were also
used to compare the ability of each parameter to classify tu-
mours as benign or malignant and the area under ROC curves
(AUROC) were calculated. Comparisons between AUROC
were made as described by DeLong et al. [23]. Separate as-
sessment wasmade by combining SUVmaxwith other param-
eters that did not show a correlation with SUVmax. Statistical
significance was assumed when p < 0.05. Inter-observer var-
iation was assessed with intra-class correlation coefficients
(ICCs).

Results

Thirty patients had benign tumours and 24 had MPNSTs con-
firmed either histologically (n = 30) or by at least 5 years of
follow-up (n = 24). Thirty-six symptomatic tumours were on
the trunk and 18 in the extremities.

Good inter-observer agreement was found for measure-
ment of all parameters with ICC varying from 0.86
(NGTDM contrast and GLCM contrast) to 1.0 (SUVmax
and SUVpeak) on 1.5-h and 4-h scans. Median (and range)
malignant and benign tumour volumes were 60.0 cm3 and
23.2 cm3, respectively (8.3–303.9 and 3.3–164.1 cm3, respec-
tively, p = 0.004).

On 1.5-h scans, there was a significant difference between
benign and malignant tumours for all SUV and other first-
order parameters, for none of the second-order parameters
and for all four high-order parameters. At 4 h, the results were
the same, except second-order entropy was significantly dif-
ferent; high-order contrast was not (Table 1). Only percentage
change SUVmean and SUVpeak showed significant differ-
ences between benign and malignant lesions (Table 1). For
ROC analysis, SUV and other first-order parameters,
second-order entropy and all high-order parameters showed

ability to discriminate at 1.5 and 4 h (except high-order con-
trast at 4 h; Table 2). SUVmax showed the highest AUROC at
1.5 h (0.992) and SUVpeak at 4 h (0.997), closely followed by
SUVmax (0.996). SD showed the best discrimination from the
other first-order features (0.967 and 0.99 at 1.5 and 4 h, re-
spectively; Fig. 2). Coarseness showed the best discrimination
from the high-order features (0.894 and 0.888 at 1.5 and 4 h,
respectively; Table 2; Fig. 3). The percentage change in
SUVmean and SUVpeak showed some discriminatory ability
(AUROC 0.722 and 0.688, respectively; Table 2).

Most parameters showed significant correlations with
SUVmax except the GLCM parameters and NGTDM con-
trast. GLCM parameters performed poorly in discriminating
tumours and, so, were not further assessed, but the combined
parameter SUVmax/NGTDM contrast was further evaluated
to see if there was incremental value from this combination
(Tables 1 and 2). Whilst combining the parameters in this way
showed a better performance than NGTDM contrast alone, it
did not show any additional value over SUVmax.

Discussion

This study has shown that MPNSTs in patients with NF1
display greater heterogeneity of 18F-FDG uptake than benign
symptomatic neurofibromas as measured by a number of
global first-order features (including SD, entropy and unifor-
mity) as well as local high-order features (including coarse-
ness, contrast, busyness and complexity). To our knowledge,
only qualitative measures of heterogeneity have previously
been described in this scenario where a qualitative heteroge-
neity score showed similar sensitivity but lower specificity to
SUVmax [7]. With regards to other primary soft tissue tu-
mours, a previous study has shown that heterogeneity param-
eters from 18F-FDG PET can differentiate benign from malig-
nant musculoskeletal tumours better than SUVmax
(p = 0.004) [24]. Another study showed that heterogeneity
of 18F-FDG uptake and tumour grade in sarcomas were the

Fig. 1 18F-FDG PET and CT
(left) with corresponding images
with ROIs (right). A symptomatic
but benign left posterior thigh
neurofibroma (SUVmax = 2.83)
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only independent prognostic factors predicting overall surviv-
al (p < 0.001 and 0.004, respectively), whereas SUVmax and
tumour type were not [25]. It is hypothesised that increased
heterogeneity of 18F-FDG uptake within tumours is related to
variations in cell density and proliferation as well as more
heterogeneous underlying biology including angiogenesis
and hypoxia and this is why heterogeneous tumours behave
more aggressively [26, 27].

Our study also showed that MPSNTs showed significantly
higher 18F-FDG accumulation compared to benign neurofi-
bromas as measured by SUV parameters, a finding that has
been previously reported [2–4]. Whilst SUVmax showed ex-
cellent ability to discriminate MPNSTs from symptomatic be-
nign neurofibromas as determined by AUROC (0.992,
0.996 at 1.5 and 4 h, respectively), the SUVmax AUROC
was not significantly different from SD, entropy or uniformity,

Fig. 2 ROC curves for SUVmax
and first-order parameters (SD,
entropy and uniformity) at 1.5 h.
See Table 2 for AUROCs. There
was no statistically significant
difference between SUVmax
AUROC and the other first-order
parameter AUROCs (all p > 0.05)

Fig. 3 ROC curves for SUVmax
and high-order parameters
(coarseness, contrast, complexity,
busyness) at 1.5 h. See Table 2 for
AUROCs. There was a
statistically significant difference
between SUVmax AUROC and
the other high-order parameter
AUROCs (coarseness p = 0.019,
contrast p < 0.0001, busyness
p = 0.0009, complexity
p = 0.0002)
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but was significantly higher than all high-order features
(Table 2; Figs. 1 and 2). The percentage change in SUV and
heterogeneity parameters between 1.5- and 4-h scans did not
show any superiority in discriminating benign frommalignant
tumours compared to the parameters alone.

Our study is potentially limited by its retrospective nature,
but our results should be representative as this was a cohort of
patients referred for clinical assessment of symptomatic neu-
rofibromas that were suspected of malignant transformation.
However, it may not necessarily be possible to extrapolate the
findings to other tumour types. Whilst semi-automated
methods of tumour segmentation on 18F-FDG PET images
are preferred and are likely to show even better inter-
observer variation, we were unable to apply these methods
due to difficulty in defining tumours with low uptake on the
PET scans. Nevertheless, VOI definition from the CT images
proved straightforward and with good inter-observer repro-
ducibility. In addition, whilst all image sets were checked
qualitatively for registration of the PET and CT data by an
experienced observer, we cannot exclude small amounts of
mis-registration due to patient movement.

Conclusion

In patients with NF1, MPNSTs showed greater heterogeneity
and greater levels of 18F-FDG uptake than benign symptom-
atic neurofibromas. First-order heterogeneity parameters were
as discriminative as SUVmax. Although high-order features
also showed the ability to differentiate benign and malignant
tumours, these had lesser discriminatory ability compared to
SUVmax.
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