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Abstract
Secondary metabolites (SM) produced by fungi and bacteria have long been of exceptional interest owing to their unique
biomedical ramifications. The traditional discovery of new natural products that was mainly driven by bioactivity screening
has now experienced a fresh new approach in the form of genome mining. Several bioinformatics tools have been continuously
developed to detect potential biosynthetic gene clusters (BGCs) that are responsible for the production of SM. Although the
principles underlying the computation of these tools have been discussed, the biological background is left underrated and
ambiguous. In this review, we emphasize the biological hypotheses in BGC formation driven from the observations across
genomes in bacteria and fungi, and provide a comprehensive list of updated algorithms/tools exclusively for BGC detection.
Our review points to a direction that the biological hypotheses should be systematically incorporated into the BGC prediction and
assist the prioritization of candidate BGC.
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Introduction

Fungi and bacteria produce a plethora of bioactive secondary
metabolites (SMs), many of which play vital roles in medi-
cine, such as antibiotics and anticancer reagents. For instance,
erythromycin, azithromycin, and penicillin are beneficial an-
tibiotics that treat several bacterial infections in lungs, middle
ears, and sexually transmitted diseases (Chen et al. 2014a;
Taylor et al . 2015) . Vancomycin, isola ted from
Amycolatopsis orientalis, is considered a last-resort drug for
Gram-positive bacterial infections and life-threatening dis-
eases such as severe colitis caused by Clostridium difficile.

Salinosporamide A was first isolated and characterized from
Salinispora tropica in 2003 and acts as a potent anticancer
reagent that has entered several clinical trials for various types
of cancers, including melanoma, pancreatic, and lung cancer
(Feling et al. 2003; Millward et al. 2012).

Recognizing the potential benefits of SMs, scientists have
long sought economical and clinically useful SMs. Traditional
approaches for identification of biosynthetic pathway mainly
leverage bioactivity screening to first extract the bioactive
compounds with desired properties and subsequently locate
the responsible genes by biochemical techniques (Luo et al.
2014). It was not long until scientists noticed that SMs are
usually encoded by genes that cluster together in a genetic
package, which was later referred to as a biosynthetic gene
cluster (BGC). A BGC consists of genes required for the syn-
thesis of the bioactive molecule and regulatory elements, such
as transcription factors and promoters. Sometimes, it also con-
sists of transportation genes for exportation of the produced
SMs and resistance genes that prevent self-destruction in the
producers (Ahn andWalton 1998; Brown et al. 1996;Medema
and Fischbach 2015).

Traditional biochemical characterization approaches have
come to a bottleneck in the discovery pipeline, where many of
SMs prove impossible to produce or extract under laboratory
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conditions. Furthermore, bioactivity screening greatly de-
pends on reference information of the existing pathways,
thereby limiting the capacity to unearth novel compounds
with new bioactivities. This is evidenced by the fact that dur-
ing 37 years between the discovery of chinolone nalidixic acid
(1962) and linezolid, the first commercially available
oxazolidinone antimicrobial (2000); no new structural classes
of antibiotic were introduced to the market (Bax et al. 1998;
Moellering 2003; Walsh and Wencewicz 2013; Weber et al.
2003). In contrast, genomic data were able to be used for the
prediction of 33,351 putative BGCs (false positive rate of 5%)
in 1154 prokaryotic genomes (Cimermancic et al. 2014). The
striking disparity between genetic and phenotypic potentials
suggests that the limit in discovering natural products lies not
in nature’s capacity but in the exploration approach.

The advent of sequencing technologies, bioinformatics
tools, and synthetic biology has revitalized the discovery of
Borphan clusters^whose products have yet to be characterized.
Over the last couple of decades, several tools have been devel-
oped for secondary metabolite gene mining (see Table 1 for list
of bioinformatics tools). For example, an earlier version of
genome mining used the localization of genes on the chromo-
somes across multiple genomes to predict gene clusters of
specific pathways (Hamer et al. 2010). More advanced tools
such as BAGEL, ClustScan, NP.searcher, SMURF,
antiSMASH, ClusterFinder, PRISM, EvoMining, RODEO,
and ARTS were designed to perform genome mining for
BGCs (Alanjary et al. 2017; Blin et al. 2013, 2017;
Cimermancic et al. 2014; Cruz-Morales et al. 2016; de Jong
et al. 2010, 2006; Khaldi et al. 2010; Li et al. 2009; Medema
et al. 2011; Skinnider et al. 2015, 2016, 2017; Starcevic et al.
2008; Tietz et al. 2017; van Heel et al. 2013; Weber et al.
2015). These tools implement algorithms to define BGC
boundaries and to detect potential BGCs based on multiple
indicators such as signature protein domains, distant paralogs
of primary metabolic enzymes, and evolutionary hallmarks
(Medema and Fischbach 2015). For functional characterization
of biosynthetic key genes, two software programs, SBSPKS
and NaPDoS, were developed for analyzing the 3D structure
and predict their natural products (Anand et al. 2010; Ziemert
et al. 2012). Predicted BGCs can then be reconstructed, cloned,
and expressed by heterologous hosts using DNA assembly
technologies (Chao et al. 2015; Cobb et al. 2013; Harvey
et al. 2018; Tang et al. 2015a). The products are subsequently
isolated and characterized with metabolomic techniques
(Breitling et al. 2013; Halabalaki et al. 2014).

As powerful as genome-guided methods might sound, they
usually generate a large number of predictions, which may
result in extensive wet laboratory work to characterize the
BGCs (Lai et al. 2017; Lin et al. 2015, 2016). Therefore,
prioritizing BGCs is crucial in reducing experimental proce-
dures, cutting costs, and time. To accomplish this, additional
features of potential BGCs to connect biological and

pharmacological potentials must be incorporated to highlight
BGCs with the most promising bioactivities. So far, only one
fully automatic platform has been devised for this purpose,
namely the Antibiotic Resistance Target Seeker (ARTS)
(Alanjary et al. 2017). Three important hypotheses have been
put forth to rationalize the computation of BGC priority in
bacteria. While this model might be well applicable to bacte-
rial genomes, a fungus-based platform has not yet been spe-
cifically developed.

In this review, we mainly focus on the biological back-
ground of BGC prioritization to complement most similar
reviews in computation of identifying BGC or the resistance
hypothesis only (in no context of BGC identification). We
described clearly in this review that the biological background
of BGC prioritization can be more complex than just the re-
sistance genes. We also discuss to which extent these hypoth-
eses might be useful for the computation of BGC prioritization
in different genera. Not only do we provide (1) the most com-
plete collection of the biological hypotheses associating with
BGC formation and (2) the most updated list of bioinformatics
tools exclusively for BGC prediction, our review points to a
direction that future BGC prediction tools should be incorpo-
rated with the biological hypotheses, leading to the prioritiza-
tion of candidate BGC for the generation of bioactive
compounds.

Here, we summarize three hypotheses—based on the ob-
servation that some BGCs contain duplicated or resistance
genes and the phenomena that some microbes can acquire
resistance related genes by horizontal gene transfer; therefore,
these hypotheses provide clues for prioritizing BGCs through
bioinformatics analysis tools.

The resistance hypothesis

The resistance hypothesis states that within the BGC there is at
least one gene conferring resistance against the potentially
harmful secondary metabolites that the organism produces.
The resistance mechanism can be categorized into three nota-
ble strategies, i.e., target-based strategies, drug efflux, and
enzyme deactivation (Cundliffe and Demain 2010) (Fig. 1a).
In the target-based strategies (e.g., target modification), the
resistance gene is involved in the modification of normal drug
receptors, or there is a modified version of an essential gene
that is the target of the nascent SM; once transcribed, it can
provide excess targets or a target with greater tolerance against
the SM. As to the drug efflux, the resistance gene might en-
code a transporter that removes the toxic molecule from the
cell or an inhibitory enzyme that intracellularly inactivates the
SM.

Accumulating evidence suggests that the presence of a re-
sistance gene acts as a self-defense mechanism for the organ-
isms. For instance, the tylosin producer Streptomyces fradiae
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has three resistant elements, tlrB, tlrC, and tlrD, within the tyl
cluster, which encodes tylosin (Cundliffe et al. 2001). The
gene tlrC, as an example of efflux-mediated drug resistance,
encodes ATP-binding protein for transporting tylosin out of
cell. The tlrB and tlrD genes encode methyltransferase, a re-
sistance determinant for methylation of 23S rRNA of the ri-
bosomal tunnel, and thereby sterically blocks the interaction
of tylosin with the tunnel wall (Vester and Long 2009), which
is an example of target-based strategy. Similarly, self-

immunity elements, namely homologs of vanHAX, are close
to biosynthetic genes in Streptomyces toyocaensis, an actino-
mycete that produces the glycopeptide antibiotic A47934;
Actinoplanes teichomyceticus producing teicoplanin (Kwun
and Hong 2014; Marshall et al. 1998; Sosio et al. 2000); and
vancomycin-producing Amycolatopsis oriental is
HCCB10007 (Marshall et al. 1998; Xu et al. 2014). The
vanHAX operon genes encode a set of enzymes that alter C-
terminal D-Ala-D-Ala to D-Ala-D-Lac of peptidoglycan,

(b) The duplica�on hypothesis

essential gene BGC

SM duplicate proteinessential protein

biosynthetic genes

(c) The horizontal gene transfer hypothesis:

HGT

Bioinforma�cs
analysis

Poten�al BGCs

Experimental
valida�onHGT

HGT

(a) The resistance hypothesis

resistant gene

Target-based strategies

SM

SMtransporter
Drug efflux

ranking

1.

2.

3.

4. …
…

SM target modifying 
enzyme

SM

Enzyme deac�va�on 
SM modifying 
enzyme

Fig. 1 Overview of biological aspects underlying biosynthetic gene
cluster (BGC) target-directed detection. Three hypotheses, numbered a–
c, are presented here. a The resistance hypothesis comprises three notable
models: target-based strategies, drug efflux, and enzyme deactivation. In
the target-based strategies, the resistance gene is involved in target mod-
ification, in which the encoded protein can modify the SM-targeting
protein, which is a drug receptor in drug-targeting strains or a nascent
target in SM-producing strains. The resistance gene involved drug efflux
encodes a transporter for pumping out the SM. For enzyme deactivation,
the resistance gene encoding the enzyme modifies the SM and then

deactivates it. b The duplication hypothesis holds that the SM producer
harbors a protein isoform (duplicate protein) of an essential protein.
Therefore, it protects the essential protein that the toxic SM targets by
providing excess targets or proteins with greater binding affinity. c The
horizontal gene transfer hypothesis of core genes is a potential way for
microorganism to gain genetic advantage for self-protection.
Bioinformatics analysis is applied to scan for BGCs that contain genes
matching the three hypotheses. The output BGC candidates will be val-
idated with experiments such as refactoring BGCs, identification of the
corresponding SM product, and evaluation of biological activity
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where vancomycin and other glycopeptides bind, thereby re-
ducing binding affinity. On the other hand, the clinical
vancomycin-resistant enterococci encode orthologues of
vanHAX and confer resistance (Arthur and Courvalin 1993).
This modified cell wall increases the resistance to the vanco-
mycin, which is another example of target-based strategies.

The duplication hypothesis

As an extension of the target-based strategies in the resistant
hypothesis, the duplication hypothesis claims that the resis-
tance gene within a BGC usually shares sequence similarity
with an essential gene that performs a primary function in the
organism. At its core, target-based strategies and the duplica-
tion hypothesis describe very similar ideas. However, Btarget-
based strategies^ refers to a self-protective mechanism, where-
as the duplication hypothesis describes one possible property
of the BGCs that can be used to enhance BGC prediction.

The duplication hypothesis arises from the notion that
many antibiotics’ common target sites, such as the ribosome,
are also found in the producers. Hence, to protect itself, the
producer harbors a copy of the target sequence with a slight
modification to induce resistance against the antibiotic it pro-
duces by providing excess targets or proteins with greater
binding affinity to the SM (Fig. 1b). Take Salinispora tropica,
for example, which produces salinosporamide A to inhibit the
proteasome. The proteasome, however, is also present in
S. tropica. The gene cluster encoding salinosporamide A en-
closes the SalI gene, which shares 58% sequence identity to
the proteasome β-subunit gene on Strop_2244. However, at
the protein level, the SalI subunit and the typical β-subunit
differ in only two amino acids, at positions 45 and 49.
Nevertheless, when combined with the α-subunit, SalI protein
forms a proteasome complex with greater binding affinity to
salinosporamide A, thereby acting as an effective target mod-
ification protection against salinosporamide A (Kale et al.
2011). Recently, in a comprehensive paper published in
Nature, Yan et al. (2018) employed the duplication hypothesis
to identify the ast BGS encoding a dihydroxyacid dehydratase
(DHAD) inhibitor in multiple fungal genomes by screening
for homologues of DHAD near a BGC. The research group
further expressed the BGC and confirmed the secreted natural
product to be aspterric acid. It was shown that the resistance
element, the astD gene, encodes a modified DHAD with
narrower entrance to the active site, thus exerting inhibitory
effects on aspterric acid.

The horizontal gene transfer hypothesis

Horizontal gene transfer (HGT) is a widely recognized event
that happens frequently among bacteria as a driving force to

gain genetic advantage (Davies 1994; Ochman et al. 2000). It
is postulated that at least one of the genetic elements in BGCs
is horizontally acquired across species, as SM production is
closely linked to ecological advantage. Natural products (NPs)
such as antibiotics are often secreted as a deterrent to compete
with other species sharing the same niche or to acquire nutri-
ents from the new environment. Therefore, bacteria are bound
to horizontally acquire BGCs for quick adaptation to a new
environment (Fig. 1c).

The phenomenon is widely observed in many different
genera, especially among Actinobacteria, many of which are
notable secondary metabolite producers. Among 320,263
genes laterally acquired by Streptomyces lineages, a large pro-
portion is genes functioning in SM and xenobiotic metabolism
(McDonald and Currie 2017). This study also implied that
93% of BGCs acquired at least one gene through HGTwithin
50 million years, and a vast majority of BGCs were acquired
from multiple sources (McDonald and Currie 2017). Similar
findings were evident in Salinispora species, one of the genera
reputed for a plethora of diverse natural compounds including
products of polyketide synthase (PKS) and nonribosomal pep-
tide synthase pathways (NRPS). A study by Ziemert et al.
(2014) detected incongruence between species and gene tree
in 119 out of 124 operational biosynthetic units (OBUs) that
encode PKS and NRPS, indicating horizontal gene transfer at
various points in 96% of biosynthetic pathways. Linear
pseudochromosomes generated in this study also revealed that
OBUs are assembled within genomic islands along with mo-
bile genetic elements such as transposons that facilitate OBU
exchange (Ziemert et al. 2014).

Critical issues

Prioritizing candidate BGCs

The concept of genome mining for BGCs is empowered by
the development of many bioinformatics tools that utilize var-
ious approaches to tap into the pool of potential NPs. These
tools often rely on algorithms designed to search for PKS and
NRPS pathway conserved enzyme motifs (antiSMASH 1.0,
SMURF, NP.searcher). However, this approach was soon
demonstrated to miss out several BGCs of unknown classes.
The algorithm has since been improved by many different
strategies, such as looking for BGC-like patterns via data
training (ClusterFinder) or a phylogenomics approach
(EvoMining). Despite differences in computational ap-
proaches, all these tools result in a large number of potential
BGC predictions, many of which are uncharacterized, neces-
sitating the laborious wet laboratory work to verify the
Bomics^ forecast. The biggest challenge is now no longer to
detect BGCs but to prioritize the experimental procedures for
BGCs with the most valuable biomedical potentials.

Appl Microbiol Biotechnol (2019) 103:3277–3287 3281



This concept of prioritizing BGCs was first introduced and
validated in Salinispora strains by Tang et al. (2015b). In
2017, ARTS was developed and became the first fully auto-
matic platform that exploited additional genetic features of
value-added BGCs to provide a more precise prediction about
the possibility of synthesizing beneficial natural products
(Alanjary et al. 2017). The model employs all three aforemen-
tioned hypotheses to screen for novel drug targets. Selection
criteria for potential BGCs include (i) the presence of resis-
tance elements near a BGC, (ii) evidence of duplicate genes,
and (iii) evidence of horizontal gene transfer (Alanjary et al.
2017; Freel et al. 2013; Kale et al. 2011; Thaker et al. 2014;
Wright 2007; Ziemert et al. 2014). The model results in a list
of BGCs with information regarding the presence of genes
that match any of these three criteria. Thus, users can draw
attention to the BGCs highlighted with the greatest number of
hits to all screening conditions.

Biological issues

The biological foundation of current target-directed BGC pri-
oritization was mainly derived from observations in
Salinispora species. While this lineage represents a large pro-
portion of natural product producers, it certainly does not ac-
count for the diversity in nature. A number of high-value
BGCs in nature do not follow the stated rules.

Regarding the resistance gene hypothesis, for instance, the
tsnR gene responsible for resistance against thiostrepton has
been identified in Streptomyces laurentii among ribosomal
protein operons that are not closely linked to the
thiostrepton-BGC (Smith et al. 1995). Besides three resistance
genes colocating within the tylosin-producing cluster, the
fourth element of resistance in S. fradiae, tlrA occupies an
undetermined location in the genome (Cundliffe et al. 2001).

The duplicate gene hypothesis faces uncertainty in cases
where different resistance mechanisms are employed. For ex-
ample, in Streptomyces kanamyceticus, the kanM gene, which
encodes for the AAC(6′) enzyme, lies within kanamycin-
BGC. AAC(6′) can inactivate kanamycin to protect the organ-
ism from the lethal effect of kanamycin (Benveniste and
Davies 1973; Kharel et al. 2004; Matsuhashi et al. 1985). In
other cases, the resistance gene might code for a transmem-
brane transporter to export the drug or bind to the drug to
sequester it from susceptible target sites (Cundliffe and
Demain 2010; Le et al. 2009; Linton et al. 1994). In these
examples, there is no need for the resistance gene to be a
duplicate of the target sequence. Current bioinformatics tools
focus on the target modification resistance mechanism since
the search for duplicate genes is more computationally feasi-
ble compared to examining inactivating enzymes or transport-
er genes. In addition, whether transporter and enzyme-coding
genes act in self-protection or biosynthesis of the secondary
metabolite is elusive without experimental characterization.

Although HGT is widespread in bacterial BGCs, it is re-
markable that the extent and rate of HGT remains unknown
(McDonald and Currie 2017). Once thought to be the driving
force of bacterial revolution, there is evidence that HGTmight
not be as rampant as previously believed (McDonald and
Currie 2017). The acquisition of BGCs might be selectively
neutral, thus presenting no genetic advantage to facilitate their
possession, as evidenced by the limited spread of BGCs
among only one or two strains of Salinispora (Jensen et al.
2007;McDonald and Currie 2017; Sieber et al. 2014). In some
cases, the acquired genetic packages remain silent in the host
or might not produce the intended molecules, thereby adding
noise to the computational predictions from ARTS (Alanjary
et al. 2017; Gogarten and Townsend 2005; Kimura 1977).

Bioinformatics issues

Bioinformatics attempts to highlight duplicated genes greatly
dependent on varying, ambiguous parameters such as cut-off
points for sequence similarity and the number of duplicate
genes. Sequence identity at the gene level has been reported
to be as low as 58% and as high as 80% while it was observed
that similarity at the amino acid level might be higher, with
only 1–2 different residues (Hansen et al. 2011; Kale et al.
2011). The number of duplicates also raises certain doubts
about the predictability of potential BGCs. Theoretically, a
single copy of the essential gene is sufficient to protect the
producers, which has also been observed in many species
(Kale et al. 2011; Thiara and Cundliffe 1989). However, some
genomes inherently possess two copies of essential genes via
gene duplication that is associated with environmental adap-
tation (Bratlie et al. 2010).

In addition, current screening procedures necessitate an
existing database of resistance and core genes (e.g., the
Comprehensive Antibiotic Resistance Database (CARD), re-
sistance elements) or a built-in database (e.g., core genes from
the Actinobacteria phylum reference set that includes com-
plete genomes from 189 species of 22 different families)
(Alanjary et al. 2017). While the database is readily available
for bacterial genomes, fungal genomes are less documented,
which hinders the development of such BGC target-directed
detection in fungi.

Fungal genome mining

Like bacteria, fungus is another group of organisms that yields
valuable bioactive compounds. Fungal genomes in general are
more complicated than bacterial genomes, with more genes
and BGCs. Fungal metabolic gene clusters might contain at
least 15 genes and span tens of kilobases (Brown et al. 1996;
Gardiner et al. 2004; Keller et al. 2005; Kennedy et al. 1999;
Proctor et al. 2003). The task of prioritizing fungal BGCs
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hence proves more challenging and has not been developed
yet.

Generally, the aforementioned hypotheses are applicable to
fungi; but the extent to which each hypothesis weighs in the
fungal BGC discovery pipeline is still uncertain. There is ev-
idence for the presence of a resistance gene that is a duplicate
of a target sequence in several Penicillium and Aspergillus
species (Gilchrist et al. 2018; Hansen et al. 2011; Lin et al.
2013). An extra copy of inosine-5′-monophosphate dehydro-
genase (IMPDH), the primary target of MPA, with 80% iden-
tity is embedded within the MPA gene cluster, while the
fumagillin gene cluster possesses an additional housekeeping
gene, MetAP-2, an inhibitory target of fumagillin (Hansen
et al. 2011; Lin et al. 2013, 2014). Similarly, the gene cluster
encoding fellutamide B, a proteasome inhibitor in A. nidulans,
contains the inpE gene, whose protein shares 71% amino acid
sequence similarity to a proteasome component C5. The gene
cluster of aurovertins, potent inhibitors of F1 ATPase, encodes
an ATP synthase which is likely to confer self-resistance (Mao
et al. 2015). The presence of the inpE gene was later con-
firmed to confer resistance to fellutamide B (Yeh et al.
2016). Surprisingly, the A. fumigatus gliotoxin (gli) BGC also
harbors the gliT gene, which encodes for gliotoxin oxidore-
ductase, an enzyme that converts gliotoxin into a less toxic
compound (Scharf et al. 2010). gliAwas found within the gli
BGC to encode an efflux pump that might act in the resistance
mechanism against gliotoxin (Dolan et al. 2015). The extent to
which gliT and gliA contribute to A. fumigatus self-protection
remains difficult to determine. However, there is more evi-
dence of resistance via drug efflux than detoxifying enzyme
activity at present (Keller 2015). With cases where self-
protection is driven mainly by efflux or a detoxifying enzyme,
the duplication hypothesis might not be applicable.

HGT is thought to be an important mode of gene transfer
along with vertical transmission in fungi due to the prominent
genetic instability of the fungal genome. Many studies have
documented events such as translocation, deletions, inver-
sions, and spontaneous mitotic or meiotic instability in fungi
(McDonald and Martinez 1991; P. megasperma Drechs 1990;
Morales et al. 1993; Pitkin et al. 2000; Sweigard et al. 1995).
During genome replication for vertical transmission (sexual or
asexual reproduction), these events will likely lead to the loss
of essential genes. On the other hand, HGT events are inde-
pendent of DNA duplication, making them a safer mode of
gene transfer than vertical transmission. Onemechanism fungi
exploit to adapt to HGT is to cluster metabolic genes into a
wholesale package that can be exchanged in a single event.
There is accumulating evidence of full pathway transfers be-
tween fungi, including the sterigmatocystin gene cluster in
Podospora anserina that was laterally acquired intact from
Aspergillus nidulans (Slot and Rokas 2011). In addition,
HGT might take place in part, such as the case of the
avirulence-conferring enzyme 1 (ACE1) gene cluster in

Aspergillus clavatus, where at least five genes were laterally
acquired from an ancestor of Magnaporthe grisea (Khaldi
et al. 2008). There are also some cases of interkingdom
HGT, such as the ancient transfer event of 6-methylsalicylic
acid-type PKS from actinobacteria to ascomycete fungi
(Schmitt and Lumbsch 2009; Sieber et al. 2014).

Concluding remarks

Traditional approaches to discover SMs are considered Btop-
down^ methods due to their dependency on biochemical
methods (Luo et al. 2014). For example, with a traditional
approach, granaticin was first isolated from Streptomyces
olivaceus in 1957 but also detected in S. violaceoruber based
on antimicrobial testing against Gram-positive bacteria and
protozoa (Barcza et al. 1966; Carbaz et al. 1957). The biosyn-
thesis pathway that involved polyketide synthase was eluci-
dated in 1979 by a combination of feeding experiments, chem-
ical techniques, and it is previously described on other
Streptomyces spp. (Snipes et al. 1979). Leveraging on this
pathway, Bechthold et al. (1995) detected a 50-kb BGC in
S. violaceoruber strain Tü22 using DNA probes derived from
consensus gene sequences encoding similar catalyzing en-
zymes found in other actinomycetes.

The key feature of genome mining is to turn the ad hoc
process of discovering SM into a high-throughput pipeline in
the identification of BGC and the subsequent validations. As
the number of genome sequences available will continue to
rise exponentially, it is now a perfect timing for large scale
genome mining. For example, the genome sequences as well
as the epigenomes of black truffle was recently profiled
(Martin et al. 2010; Montanini et al. 2014), together with the
transcriptomes of several tissues from its developmental
stages (Chen et al. 2014b), these altogether provides much
more information for fungal BGC prediction and experiments
that was simply too challenging in a couple decades ago. The
advancement of sequencing technologies such as Pacific
Biosciences and Oxford Nanopore is likely to generate ge-
nome assemblies with a lesser expense (Lasken 2012).
Furthermore, the development of metagenomic analysis is al-
so contributing to the information for microbial genome min-
ing (Streit and Schmitz 2004).

The call for a genome-guided natural product discovery has
been made since 2010, which Walsh and Fischbach (2010)
referred to as version 2.0. It utilizes algorithms that are inde-
pendent of known biosynthesis pathways to identify core en-
zymes involved in the biosynthesis of SMs via homology
search algorithms such as HMMs. BGCs are then predicted
by comparing nearby core genes with a set of manually curat-
ed BGC cluster rules. In addition to this model, the search for
BGCs also employs the ClusterFinder algorithm, which is
based on annotated PFAM domains (Cimermancic et al.
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2014). This approach enables the discovery of BGCs at full
capacity by taking the whole genome into account. In contrast,
the conventional method omits silent BGCs that are not
expressed under regular conditions and BGCs of
uncharacterized compounds.

Notwithstanding that bioinformatics is an excellent tool to
tackle the bottleneck problem of the traditional discovery
pipeline, it often yields a myriad of BGC predictions with no
ranking, making for a challenging laboratory validation pro-
cedure. ARTS is the first bioinformatics tool that incorporates
three recently arising hypotheses to prioritize BGCs, including
(i) the presence of resistance genes, (ii) duplicate genes, and
(iii) evidence of horizontal gene transfer. It has provided se-
lective criteria for certain species to target antibiotic-
producing BGCs where target modification resistance is
employed but has not been quite applicable to other species.
In general, there seems to be no specific set of rules to high-
light BGCs in all species: the more criteria added, the more
confident the prediction is.

In the future, multiple screening criteria might be included
to increase the accuracy of predictions. Another plausible ap-
proach is to base the search on function-guided rules. For
example, antibiotic seekers will look for resistance elements
in BGCs.
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