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Abstract
In the prediction of sedimentation  profiles in analytical ultracentrifugation, the counterflow due to diffusion must be taken 
into account for a proper analysis of experimental data in the determination of molecular properties. This is usually achieved 
by numerical solution of the Lamm equation. This  paper presents an alternative approach, in which the displacement of the 
solute in the cell, resulting from the opposite effects of ultracentrifugal force and diffusional drift, is described by Brownian 
dynamics simulation of the solute particles. The formalism is developed for heterogeneous solutes, composed of several 
species, and implemented in computational schemes and tools. The accuracy of the procedure is verified by comparison 
with other methods based on the Lamm equation, and its efficiency is illustrated. The possibilities offered by the Brownian 
dynamics methods in the determination of solute properties and sample composition are demonstrated.
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Introduction

Analytical ultracentrifugation (AUC) is a classical (Sved-
berg and Rinde 1924), yet contemporary (Uchimaya et al. 
2016) technique for the characterization of macromolecular 
and colloidal particles in solution. As described in numer-
ous recent reviews, book chapters and monographs (see, for 
instance, Uchimaya et al. 2016; Schuck et al. 2016; Patel 
et al. 2016), AUC permits the separation of the components 
of a solute sample in the centrifugal field, as well as the 

characterization of their individual solution properties and, 
even, their interactions.

The prediction of the time course of sedimentation is 
required not just for the simulation of experiments from the 
properties of the solute, but also for the inverse problem, 
i.e., the analysis of the outcome of the sedimentation run for 
the determination of the molecular properties. If the motion 
caused by the centrifugal field was the only contribution to 
solute transport, the mathematical description of sedimen-
tation would be very easy. However, there is another effect 
to be considered: the diffusional counterflow caused by the 
concentration gradient that evolves as the solute is concen-
trating toward the bottom of the cell. The contribution of 
diffusion could be neglected when sedimentation is over-
whelmingly fast, as could be the case when particles are suf-
ficiently large and/or rotor speed is sufficiently high. Indeed, 
some treatments of AUC neglect diffusion to concentrate on 
other relevant aspects. However, in many practical instances, 
this is not the case; the effect of diffusion must be consid-
ered for a rigorous description of AUC experiments. Indeed, 
rather than complicating matters, the consideration of diffu-
sion in the analysis of AUC data provides additional valu-
able molecular information.

As described below, the sedimentation–diffusion bal-
ance has been customarily expressed by means of the Lamm 
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equation, which combines the flux of the bulk transport caused 
by the centrifugal force, associated with the bulk sedimenta-
tion velocity, with the flux of diffusion, which is represented 
by Fick’s law. In the proposal that we put forward (Díez et al. 
2011), instead of the macroscopic view of diffusion, we adopt 
a microscopic view described by the fundamental Einstein 
laws of Brownian motion (Einstein 1905). The replacement 
of the Fickian by the Einstenian description of diffusion, with 
the solute represented by discrete particles, replaces the Lamm 
equation by a Brownian dynamics algorithm that is remark-
ably simple, computationally efficient, and adaptable to the 
arbitrarily complex situations that are often found in AUC 
experiments. Although AUC experiments are essentially mac-
roscopic, the paradigm of computer simulation using particles 
is certainly applicable and effective (Hockney and Eastwood 
1988).

In our previous paper Díez et al. (2011), we proposed this 
novel approach based on Brownian dynamics (BD) simula-
tion and, as proofs of concept, we presented some simple test 
examples for monocomponent systems. In the present paper, 
we develop the methodology further and present various appli-
cations of practical importance. In addition to improving and 
benchmarking the new computational procedures, we consider 
in detail the case of heterogeneous solutes. In our scheme, 
heterogeneity is considered not only as a polydispersity of 
molecular weight, but also in molecular composition, as hap-
pens with mixtures of particles with different densities.

The present developments are implemented in a suite of 
computer programs, SimuSed, which currently comprises a 
program, PrediSed, for BD-based prediction of sedimen-
tation profiles and another, AnaSed, which carries out the 
analysis of these profiles in the determination of their sedimen-
tation coefficients, other molecular information, and sample 
composition.

Theoretical framework

Basic aspects of analytical ultracentrifugation

Under the action of a centrifugal force, due to rotation with 
angular velocity � at a distance r of the rotation axis, a particle 
experiences a force mb�

2r , where mb = m(1 − v̄𝜌) is the buoy-
ant mass, and m is the particle mass, v̄ its specific volume, and 
� the density of the solution in which is immersed. The motion 
of the particle, with velocity v, is opposed by a frictional force 
−vf  , where f is the friction coefficient of the particle in the 
viscous solution. The sedimentation coefficient is defined as 
the ratio of the linear velocity to the centrifugal acceleration, 
s = v∕(�2r) , so

(1)v =
dr(t)

dt
= s�2r(t).

The balance of the centrifugal and frictional force gives

Here, M is the molecular weight of the particle, NA is Avoga-
dro’s number, and M(b) = M(1 − v̄𝜌) is a buoyancy-corrected 
molecular weight. According to the theory for diffusion in 
solution, f is related to the diffusion coefficient by the Ein-
stein equation, D = kBT∕f  , where kB is Boltzmann constant 
and T the absolute temperature. Combined with Eq. (2), they 
give the Svedberg equation:

where R is the perfect gas constant. As described in text-
books (van Holde et al. 1998; Sun 2004; Hiemenz and Lodge 
2007; Serdyuk et al. 2007), Eqs. (1)–(3) provide a basic 
description of the sedimentation experiment, from which the 
sedimentation coefficient and the other properties involved 
can be determined.

If the particle motion was determined just by this descrip-
tion, according to Eq. (1), the equation of motion would be 
trivially

By applying Eq. (4) to the particles of the sedimentation 
boundary, the well-known expression for estimating the 
sedimentation coefficient from the time-dependent position 
of the boundary is obtained:

where r(t0) is some initial position of the boundary, which is 
located at r(t0 + �) after a time � has elapsed. The sedimenta-
tion coefficient could be determined from the slope of a plot 
of the term in the right-hand side of Eq. (5) vs. �.

If the displacement caused by the centrifugal field was the 
only contribution to the motion of the solute molecules, the 
sedimentation boundaries would be sharp steps, as indicated 
in Fig. 1a. However, this cannot be the only contribution; 
actually, the concentration gradient created by the migration 
of particles in one direction causes a diffusive motion in the 
opposite direction. This effect is observed as a spread of the 
sedimentation boundary (as illustrated in Fig. 1b), whose 
analysis for the determination of s becomes more complex.

In the traditional AUC theory, diffusion is described by 
a macroscopic flux expressed by Fick’s law and determined 
by the diffusion coefficient, D. The net flux is the balance of 
the centrifugal and diffusional fluxes:

which  a long  wi t h  t he  cond i t ion  o f  mass , 
�c(r, t)∕�t = − �J(r, t)∕�r , determines the dependence of the 

(2)s =
mb

f
=

M(1 − v̄𝜌)

NAf
=

M(b)

NAf
.

(3)s

D
=

M(1 − v̄𝜌)

RT
=

M(b)

RT
,

(4)r(t�) = r(t) exp
[
s�2(t� − t)

]
.

(5)ln
[
r(t0 + �)∕r(t0)

]
= s�2�,

(6)J(r, t) = s�2r ⋅ c(r, t) − D
�c(r, t)

�r
,
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particle concentration on time and position, c(r, t), governed 
by the Lamm equation:

In this form, the Lamm equation is written in cylindrical 
coordinates, as required by the radial geometry of the AUC 
setup, with a sector-shaped geometry of the cell. The solu-
tion of the differential equation of Lamm (which is quite 
difficult even in monodimensional form, if one neglects the 
radial geometry) is further complicated by the two bounds 
imposed by the meniscus of the solution and the bottom of 
the cell, at which the net flux must be zero at any time.

A clever scheme for the numerical, finite-element solu-
tion of the Lamm equation was presented by Claverie et al. 
(1975). The complexity of the procedure (as well as the 
size of the data set provided by modern ultracentrifuges) 

(7)
�c

�t
= D

[
�2c

�r2
+

1

r

�c

�r

]
− s�2

[
r
�c

�r
+ 2c

]
.

precluded an operational implementation of their method 
until c.a. 2000 (Demeler and Saber 1998; Schuck 1998; 
Stafford and Sherwood 2004) and it is now at the core of 
the existing software packages for the AUC analysis (Dem-
ler et al. 2017; Schuck et al. 2017; Stafford et al. 2017).

BD simulation algorithm

In our previous paper Díez et al. (2011), we proposed that, 
instead of a macroscopic, Fickean treatment of diffusion, the 
diffusive component of the particle motion could be consid-
ered microscopically in terms of the fundamental equations 
of Brownian motion, so the time course of sedimentation can 
be described by a Brownian dynamics algorithm, which is 
very simple, general, and computationally efficient. Here, we 
summarize the basis aspects of our algorithm for the case of 
a single solute, which will, afterwards, be generalized to the 
case of a heterogeneous solute.

As in the macroscopic description, the trajectory of a sol-
ute particle is a superposition of displacements caused by 
simultaneous sedimentation and diffusion. The first compo-
nent is the deterministic drift due to the centrifugal force, 
governed by the sedimentation velocity equation, Eq. (1), 
which, in integrated form, can be written as Eq. (4), so the 
displacement due to the centrifugal field during time Δt 
would be

The second displacement is that due to Brownian motion; 
according to the Einstein microscopic theory of diffusion, it 
has a random value with Gaussian distribution of zero mean 
and variance:

so the final position after the time step would be

Equation (8) is obviously valid for an arbitrary time step, 
Δt . On the other hand, thanks to the fractal nature of Brown-
ian motion, the Brownian steps follow Eq. (9) regardless of 
how long the step is. Therefore, in an unbounded system, 
Eq. (10) is valid for arbitrary long time steps. The excep-
tions come from the bounds imposed by the solution menis-
cus and the cell bottom. In our previous paper, we devised 
ad hoc protocols to handle these exceptions, and to make 
them less frequent, we proposed dividing the duration of 
the sedimentation experiment in a sufficient number of time 
steps. We noticed that only 50–100 steps suffice, introduc-
ing quite small disturbances in the predictions, and only at 
the extremes of the solution. Actually, these extremes are 
affected by other instrumental effects and are usually disre-
garded in the analysis of experimental data.

(8)Δrsed = r(t)
[
1 − exp(s�2Δt)

]
.

(9)⟨(Δrbrow)2⟩ = 2DΔt,

(10)r(t + Δt) = r(t) + Δrsed + Δrbrow.
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Fig. 1   Concentration profiles, c(r,  t) vs. r, during sedimenta-
tion of lysozyme in water at 20  ◦ C ( s = 1.80  S, M = 14.3  kDa, 
v̄ = 0.703 cm3/s, � = 40,000 rpm) during 6 h at intervals of 80 min. 
a Hypothetical profiles calculated neglecting diffusion. b Real pro-
files, predicted by Brownian dynamics simulation, as implemented in 
PrediSed with Npart = 107 particles and Ns = 50 time steps
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Thus, the trajectory of one sedimenting particle can 
be simulated with the simple algorithm described by 
Eqs. (8)–(10). The duration of the experiment, trun , is dis-
cretized into Ns intervals of duration � = trun∕Ns , so the 
jth instant corresponds to time j� . In addition, the posi-
tion in the solution is divided into Nr sections of width 
� = (rb − rm)∕Nr ; the midpoint of the ith interval is 
ri = rb + (i −

1

2
)� . We note that, in the simulation, r is a 

continuous variable; from Eqs. (8)–(10), it can take any 
value between rm an rb . It is discretized in Nr partitions just 
to evaluate the signal z(ri, tj) from the number of particles, 
as indicated below.

The solute is represented in the simulation by a large 
number of particles, Npart . The trajectory of each particle 
is simulated, and at each instant j, the interval i where the 
particle is located is determined. Then, the n(i, j) counter, 
which gives the number of particles located at i at time t, is 
increased by one unit. The starting point r0 , where a particle 
departs, is chosen under the condition that the concentration 
is initially uniform through the sector-shaped cell. Consid-
ering that the volume of the intervals of width � is propor-
tional to r, we found (Díez et al. 2011; Díez 2014) that the 
condition of uniform initial concentration is fulfilled taking

where u ∈ (0, 1) is a uniformly distributed random number. 
At the end of the simulations, we obtain the particle coun-
ters for each position and time interval, n(i, j). Taking into 
account again the sector shape of the cell, which causes a 
radial dilution effect, it can be shown that the concentration 
at some interval is related to the fraction of the total particles 
as follows (Díez et al. 2011; Díez 2014):

As the signal, z, detected in the ultracentrifuge is propor-
tional to concentration, the signal at each position and time 
relative to the initially uniform value, z(ri, tj)∕z0 , is also 
given by the right-hand side of Eq. (12).

Sedimentation of a heterogeneous solute: 
description and BD simulation

We now present the generalization of our simulation scheme 
to a solute composed of an arbitrary number, nc , of compo-
nents. Before going into details of the BD simulation for such 
a heterogeneous system, we consider the forms for the rela-
tionships between the detector signal and the concentrations 
of the components. At any position r and time t, the signal 
is assumed to be additive on contributions of each compo-
nent, z(r, t) =

∑
k zk(r, t) , k = 1,… , nc and, of course, for the 

(11)r0 =

√
u(r2

b
− r2

m
) + r2

b
,

(12)
c(ri, tj)

c0
=

z(ri, tj)

z0
=

(r2
b
− r2

m
)

2�

1

ri

n(i, j)

Npart

.

initial uniform signal z0 =
∑

k z0,k . Contributions to signal are 
proportional to concentration. In the most frequent detection 
modes, absorbance and interference, the zs are proportional 
to the mass concentrations, cs, so zk = qkck , with qk being a 
constant related to the nature of the kth component and instru-
mental data. We also envision the case when signals would be 
proportional to the molar concentrations cM,k = ck∕Mk (for 
instance for a polydisperse sample with an end-tagged fluoro-
phore in fluorescence detection). In both cases, the signal–con-
centration relationship can be condensed into the form:

with either �k = 0 or �k = 1 for dependence on either mass or 
molar concentration, respectively. We can define a fraction 
contributed by each component to the total signal:

so that 
∑nc

k=1
yk = 1.

It is noteworthy that if the qk for all the species were identi-
cal (as it would be the case for a mixture of oligo- or polymeric 
components), then yk would coincide with the weight fraction 
if the signal is proportional to mass concentration:

or it would be equal to the number fraction if the signal is 
proportional to molar mass:

Nonetheless, we continue to consider the general case, in 
which yk expresses the sample composition in terms of the 
fractional signal contribution of component k.

In the BD simulation of the heterogeneous systems of nc , 
non-interacting components, each will be represented by a sub-
set of Npart,k particles for component k, and the trajectories will 
be generated independently, as described above. By applying 
Eq. (12) for each of the nc species, and invoking the additivity 
of the signal at every time and position, we have

As in the case of a single species, Npart,k can be arbitrarily 
chosen. In the computer implementation of the algorithm, 
we shall give an appropriate value for the total number of 
particles, Npart (as this value determines the computing 
time; vide infra), which will be partitioned into nc groups, 

(13)z0,k =
qkc0,k

M
�k
k

,

(14)yk =
z0,k

z0
=

qkc0,k∕M
�k
k∑nc

k=1
qkc0,k∕M

�k
k

,

(15)yk =
c0,k∑nc
k=1

c0,k
= wk (�k = 0)

(16)yk =
c0,k∕Mk∑nc
k=1

c0,k∕Mk

= xk (�k = 1).

(17)z(ri, tj) = z0
(r2

b
− r2

m
)

2�

1

ri

nc∑

k=1

yk
nk(i, j)

Npart,k

.
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Npart =
∑nc

k=1
Npart,k . The remaining problem is to distribute 

this number of particles among the components. Our crite-
rion is that Npart,k should be related to the zk contribution, 
whose statistical noise, which contributes to the noise of 
the total signal, is proportional to 1∕

√
Npart,k (vide infra). A 

lengthy derivation based on this criterion and omitted here 
(details can be found in Díez 2014) concludes that the frac-
tion �k of particles should be related to the contribution of 
component k to the loading, initial signal, as follows:

We insist that choices of the number of particles, if they are 
sufficiently numerous, are not essential for the final result. 
Equation (18) provides a way of distributing a given Npart 
that optimized the statistical noise of the outcome from the 
BD simulation.

Simulation of sedimentation experiments

Method: program PrediSed

Based on our BD algorithm, we have written a computer pro-
gram, PrediSed, to predict the outcome of a sedimentation 
experiment of multi-component samples. Instrumental data 
are rotor speed � , temperature T, duration trun , and position of 
meniscus rm , and bottom rb . Data pertaining to the simulation 
are the number of time and position intervals, Ns and Nr , and 
the total number of particles, Npart . The data needed for each 
of the nc components are the sedimentation coefficient sk and 
the buoyant molecular weight, Mb

k
 , along with their fractional 

contribution, yk , to the initially uniform signal, z0 (Eq. (14)). 
We recall that the diffusion coefficient is determined by this 
pair of values as follows:

The program assigns Npart,k particles to each component 
according to Eq. (18), generating a Brownian trajectory for 
each of them. The distribution of particles along the cell at 
the times of successive scans, nk(i, j) , is evaluated by track-
ing the trajectories. By doing this for each component and 
by adding their contributions according to Eq. (17), the 
sedimentation profiles z(r, t) are calculated and stored in 
computer files with various optional formats, including that 
of the output files of the Beckman XL/I ultracentrifuge.

Computational details

Owing to the stochastic nature of the Brownian simulation 
algorithm, the simulated signal shows a random noise that 

(18)
Npart,k

Npart

≡ �k =
z
2∕3

0,k

∑nc
k=1

z
2∕3

0,k

=
y
2∕3

k
∑nc

k=1
y
2∕3

k

.

(19)Dk = RTsk∕M
(b)

k
.

depends on the size of the sample, thus obviously decreas-
ing with increasing number of particles in the sample, Npart . 
In addition to this dependence, intrinsic to the simulation 
of particle trajectories, the noise of the z(r,  t) values is 
seen to depend also on the number of partitions or bins in 
radial position, Nr . The signal at a given radial position, 
r, is evaluated from the number of particles, n, found in 
an interval around r (Eq. (12)) of width � = (rb − rm)∕Nr ; 
if Nr is increased for a given Npart , the value of n will be 
smaller, and, therefore, more noisy. Nonetheless, the noise 
in the simulated results can be reduced with smoothing pro-
cedures. We have found the Savitzky–Golay smoothing filter 
(Savitzky and Golay 1964; Press et al. 1986) particularly 
useful. Smooth z(r, t) vs. r or z(r, t) vs. t series allow for 
the calculation of the time and position derivatives, �z∕�t 
and �z∕�r.

The simplicity of our BD-based simulation algorithm has 
the very welcome consequence of computing efficiency. In 
this regard, it is noteworthy that the time steps, Δt , in our 
BD algorithm may be arbitrarily long; in practice, they may 
have the same duration as the time interval between scans, 
� , so the number of steps in the simulation would be exactly 
equal to the number of scans, Ns . Furthermore, we have been 
able to adapt our BD code for typical multi-core architec-
ture, present today even in personal computers, by inserting 
OpenMP directives. Thus, in a processor allowing a number 
Nthreads of parallel computing threads (usually one or two at 
each core), the trajectories of Nthreads particles can be run 
simultaneously, one on each thread.

The gain in efficiency achieved by our parallel computing 
algorithm is illustrated in Fig. 2, which displays how CPU 
time is decreased by running multiple threads in various 
simple, inexpensive personal computers and workstations. 
The CPU times are for one full simulation using Npart = 106 
particles and Ns = 100 scans, which would provide the 

Fig. 2   CPU times for a simulation of 106 particles, 100 time steps, 
100 scans, run in personal computers and workstations (purchased 
2014 or earlier) equipped with the indicated Intel i7 and Xeon proces-
sors. Values for varying numbers of parallel computing threads up to 
the maximum allowed by each processor
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above-mentioned low level of error, and would be typical 
settings for simulation (recall that CPU time is proportional 
to Npart × Ns ). We note how, in such simple platforms, the 
possibility of parallelizing the code of our algorithm can 
bring a tenfold increase in computing speed, so one full 
simulation can be made in less than 1 s of CPU time.

Thanks to the design, based on simulating trajectories of 
individual particles, and the great simplicity of the equa-
tions for particle motions, the computing code for the BD 
algorithm is particularly suitable for parallelization, thus 
taking full advantage of contemporary multi-core archi-
tectures. This has been demonstrated in this work with a 
conventional OpenMP implementation, but the algorithm 
is extremely well suited for the massively parallel archi-
tecture of graphical-processing-unit (GPU) processors. 
More advanced implementations of the BD algorithm and a 
detailed benchmarking of their computational performance 
are beyond the proof-of-concept scope of this paper.
PrediSed has a single, quite simple input data file. An 

example is presented in Fig. 3. The primary data correspond 
to the instrumental setup, the sample, and options for calcu-
lation and presentation of results. The program includes a 

call to gnuplot (http://www.gnupl​ot.info) that allows us 
to visualize the resulting signal profiles during execution. In 
addition to the raw simulation results, smoothed profiles and 
time—or position—derivatives can be optionally presented. 
The time derivative dz(r, t)∕dt is particularly useful for anal-
ysis in the so-called “dcdt” mode (Stafford and Sherwood 
2004; Stafford 1992; Philo 2000).

Results

To illustrate the functioning and results of program Pre-
diSed in the prediction of AUC experiments on heteroge-
neous system, we consider the case of a solution with two 
solutes of quite different solution properties. For solute 1, 
s1 = 1.91 S and M(b)

1
 = 4250 Da, and for solute 2, s2 = 7.9 S 

and M(b)

2
= 97, 350 Da (actually, these values correspond to 

lysozyme and fibrinogen, respectively). The fractional con-
tributions are taken as y1 = 0.60 , y2 = 0.40 . We consider dif-
ferent experiments. One is a typical sedimentation velocity 
(SV) run for 8 h at 40,000 rpm. The other is an (approach to) 
sedimentation equilibrium (SE) experiment, at 10,000 rpm 

Fig. 3   a Example of the 
input data file of PrediSed. 
This file corresponds to the 
conditions indicated in a . 
b–e Results from PrediSed, 
as displayed during program 
execution. b Raw results from 
the BD simulation. c Savitzky–
Golay smoothed results. d 
Position derivative. e Time 
derivative

lys&fib_V_100_21 !generic filename
40000. !rpm
5.8 !meniscus
7.2 !bottom
100 !intervals
8. !t_run, hours
51 !scans
2 !Output 0-No 1-Beckman 2-Tab
11 !Visual +:EPS, no. curves
20. !Temperature, centrigrade
noise_r.txt !Radial-dep. noise
-!Time-depend. noise

1.0 !Initial uniform signal
1 !Sample mode 1-pauci2-poly
2 ! Number of species
1.91 !S, sved.
4250. !bouyant M
0.60 !fract. contrib. to signal
7.9 !S, sved.
97350. !bouyant M
0.40 !fract. contrib. to signal

4 !Predictor mode: 2-Faxen, 4-BD
1 !0-raw 1-smooth 2-dz/dr 3-dz/dt
1000000 !n_molecules 1.0x10^7
654321 !iseed
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for 100 h, so that, by the end of the run, the equilibrium is 
fully reached.

To evaluate the performance of PrediSed, we compare 
its outcome with results simulated with the Generate> 
Single Non-interacting species mode of SED-
FIT (version 15.01b of 2015) (Schuck et al. 2017). As indi-
cated above, in our BD simulation algorithm, the time steps 
can be arbitrarily long without influencing the results except 
for terminal effects, which can affect the predicted concen-
trations at the meniscus and/or the bottom of the cell. The 
results in Fig. 4a for the SV experiment, from a simulation 
with Npart = 106 and as few as Ns = 20 time steps, show that 
the agreement with the SEDFIT reference is fully accept-
able, except at the bottom of the cell. For the most relevant 
purpose of simulating profiles, namely the interpretation of 
experimental data, this region of the cell, i.e., about 0.2 cm 
at the bottom, is usually disregarded in data analysis—the 
experimental data may, indeed, be faulty and the sharp con-
centration increase here may be of scarce significance. With 
such small Ns , the CPU time is really small, about one-fifth 
of the values reported above for Ns = 100 , while the com-
puted results would be useful for data analysis.

In Fig. 4b, we present results for the SE experiment. In 
this case, we noticed that the PrediSed results are more 
sensitive to Ns , with more severe deficiencies at the menis-
cus and bottom. More time steps are required for acceptable 
simulation results when compared to the SEDFIT reference. 

With Ns = 100, good agreement is achieved at the menis-
cus, and for Ns = 200, as shown in Fig. 4b, the PrediSed 
results are fully valid, with the exception of the terminal 
region at the bottom. As a rule of thumb, a general choice 
of N

�
 = 100 with the computing times reported above seems 

appropriate for any sedimentation conditions.
The primary source of uncertainty in the simulation 

results comes from the noise that depends on the size of 
the sample. This statistical noise, i.e., the uncertainty in 
the z(r, t) results, can be estimated by collecting values 
for repeated simulations in which the seed of the random 
number generator is varied; the standard deviation, �z , 
is a measure of the uncertainty. As indicated above, the 
uncertainty is found to decrease with increasing the num-
ber of particles, Npart , and increase with decreasing the 
number of bins in the radial position, Nr . Detailed infor-
mation on these dependencies is presented in Tables A1, 
A2, and A3 of the supplementary material given in Online 
Resource 1. The noise is found to be uniform throughout 
most of the cell, and nearly coincides with the deviations 
of the simulation results from the SEDFIT reference, thus 
indicating that the source of departure of the outcome of 
the BD scheme from that of the numerical solution of the 
Lamm equation is the simulation sample size. As shown 
by the first case in Table 1, the deviations in z(r, t) when 
Npart = 106 , which seem unimportant for ordinary applica-
tions, can be further reduced with Npart = 107 to the order 

(A) (B)

Fig. 4   Results from PrediSed (circles and diamonds) compared 
with those from SEDFIT (lines). Two components, with s1 = 1.91 S, 
M

(b)

1
 = 4250 Da, yk = 0.60 , s2 = 7.9 S, M(b)

2
 = 97,350 Da, y2 = 0.40 . 

PrediSed simulations with Npart = 106 particles, Nr = 100 radial 
intervals. 11 scans from t = 0 (initially uniform signal) to trun . (A) SV 

run for trun = 8  h at 40,000  rpm, Ns = 20 simulation steps or time 
intervals in PrediSed. Diamonds are PrediSed results with Ns 
= 200 for the scans at t = 0.8 and 8 h. b SE run for trun = 100 h at 
10,000  rpm, Ns = 200 simulation steps or time intervals in Pre-
diSed 
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of 10−3z0 (see Table A1 in Online Resource 1), i.e., com-
parable to the smallest experimental errors achievable with 
the most recent AUC instrumentation.

The other source of error, i.e., the systematic errors at 
the ends of the sample—mostly at the bottom of the cell—
may be disregarded in the analysis of experimental data. 
However, we should note that they are simply consequence 
of the discretization of time and space in the BD simula-
tion, and can be removed by decreasing the time steps, 
� = trun∕Ns , i.e., by increasing the number of steps Ns for a 
given trun . Thus, with the typical displacement during one 
step (Eqs. (8) and (9)) being quite small, the occurrence of 
the bottom-hitting events would be very rare, as only the 
few molecules which are very close to the bottom could 
reach it. However, increasing Ns increases proportionally 
the computing time. In Fig. 4a, we intentionally display 
results for a extremely small Ns = 21 , so the computation 
is very fast, but still gives valid results throughout most 
of the cell. As illustrated by the cases labeled as V/2 and 
E/2 in the supplementary material (Online Resource 1), 
the end effects near the bottom can be removed simply by 
increasing Ns . In Fig. 4a, we have included PrediSed 
results in the bottom region, computed with Ns = 201 
(CPU times just twice those in Fig. 2, about 2 s), showing 
that the agreement with the Lamm equation results from 
SEDFIT is fully satisfactory through the whole cell.

Analysis of experimental data: program 
AnaSed

Lamm equation solvers and the BD simulation imple-
mented in PrediSed provide calculations of the sedi-
mentation profiles, z(r, t;{p}) , for a given set of parameters 
{p} pertaining to molecular properties of the components 
of the sample. The ultimate purpose of such calculations 
is the analysis of experimental data, intended to determine 
the molecular parameters {p} by fitting the experimental 
profiles z(e)(r, t) . Advanced methodology, based on Lamm 
equation solvers, already exists for that purpose (Deme-
ler and Saber 1998; Schuck 1998; Stafford and Sherwood 
2004; Demler et al. 2017; Schuck et al. 2017; Demeler and 

Gorbet 2016; Schuck 2016). To show how the BD calcula-
tion can be embedded into data analysis schemes, we have 
devised a simple tool, AnaSed, for data analysis.

We consider the possibility of a global, simultaneous 
analysis of various nexp experiments, which may differ in 
some instrumental conditions, but have most other condi-
tions in common. For each experiment, profiles z(e)

calc
 are cal-

culated, and the program aims to minimize the global square 
deviation between them and the experimental ones, z(e)exp , by 
optimizing some set of parameters pertaining to the sample. 
In a heterogeneous system, these will include the essential 
quantities that govern the sedimentation of each component, 
sk and M(b)

k
 in our case, along with the sample composition 

(amount of each of them, in terms of either concentrations 
or contributions to signal, yk ), and any other parameter that 
could differ among experiments.

Method

The time–position-dependent signal for each experiment can 
be regarded as a function:

For each experiment, there will be data for the positions and 
scans (ri, tj)e recorded, with eventually different values in 
the set (�,…)e , which includes the rotor speed along with 
other instrumental data (position of meniscus and bottom, 
etc). The determination of the best-fitting set of nc trios 
( sk,M

(b)

k
, yk) , i.e., a set of 3nc − 1 parameters (we recall that 

one of the yk s is determined by 
∑

k yk = 1 ) can be tackled 
using the conventional computational procedures for non-
linear least squares. We intend to minimize a square devia-
tion between calculated and experimental data, which is 
formulated as follows:

where We is some statistical weight that could be assigned to 
each experiment ( 

∑
e We = 1 ), and Δ2

e
 is the square deviation 

between experimental and calculated z(e) for each experi-
ment, which we formulate as

(20)z(e)
[
(s,M(b), y)k;(ri, tj)e;(�,…)e

]
,

(21)Δ2 =

nexp∑

e=1

WeΔ
2
e
,

Table 1   Numerical results from 
the execution of AnaSed in the 
test case

nc s
1 M

(b)

1
y
1

s
2 M

(b)

2
y
2 Δ2 Num. iter.

1 Initial 10. 20,000 1.000 0.13
1 Best fit 3.11 3633 1.000 0.015 26
2 Initial 1.65 1816 0.500 6.22 7215 0.500 0.0030
2 Best fit 1.90 4203 0.650 7.89 96250 0.350 0.0004 121
2 Exact 1.91 4250 0.650 7.90 97350 0.350
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Note that the square deviation is averaged over all the 
Nr × Ns data points and made relative to the initial signal 
to account for eventual differences in z(e)

0
 among experi-

ments. Thus, the problem consists of the minimization of 
a function Δ2(p1, p2,…) , which depends non-linearly on a 
set of parameters to be optimized sk,M

(b)

k
, yk, k = 1,… , nc . 

For the non-linear least-squares fitting, we have adopted the 
SIMPLEX algorithm of Nedler and Mead (1965), because, 
although it is not highly efficient, it was shown to yield 
acceptable results in all the cases that we tested. For the 
present development and proof-of-concept purposes, the 
profiles are generated with our PrediSed tool (recall that 
we have thoroughly verified that the PrediSed predictions 
are identical to those from SEDFIT). While the SIMPLEX 
method requires some initial estimation of the parameters, 
in a real situation, one would ignore not just their approxi-
mate values, but even the number of components. AnaSed 
adopts an heuristic, ad hoc approach. Initially, one single 
component is assumed, and a best fit of the set of data with 
only two parameters, s1 and M(b)

1
 is carried out. Next, a two-

component fit with five parameters is carried out; the initial 
values of s1 and M(b)

1
 on one hand, and s2 and M(b)

2
 on the 

other hand, are taken, respectively, as half and twice those 
resulting from the previous run, setting also y1 = y2 = 0.5 . 
In addition to reporting statistics of the fitting procedures, 
AnaSed (like PrediSed) also provides run-time visu-
alization of the fits, so the quality of the fit can be readily 
appreciated. The numerical results from this example are 
shown in Table 1. After the first trial, with only one compo-
nent, the second trial with two components converges very 
precisely to the correct values of the five parameters—i.e., 
those used in the generation of the “synthetic experimental” 
data. The agreement is excellent for both the high-speed and 
the low-speed experiments: the initial and fitted z(r, t) super-
impose neatly (plots not shown, as they look the same as 
those in Fig. 4). The sum of square residuals, Δ2 = 4 × 10−5 , 
amounts to a relative rms (root-mean-square) deviation of 
just 0.7%, which is just what comes from the noise in the 
initial data. The whole analysis requires a CPU time of about 
1 min in a conventional personal computer.

Concluding remarks

In our previous publication Díez et  al. (2011), we put 
forward the possibility of solving AUC problems from a 
microscopic approach, by means of computer simulation 
using particles, whose motion is described by a Brownian 

(22)Δ2
e
=

1

Nr

1

Ns

Nr∑

i=1

Ns∑

j=1

[
z
(e)

calc
(ri, tj) − z(e)

exp
(ri, tj)

]2/
[z

(e)

0
]2

dynamics (BD) algorithm. The potential advantages of our 
idea of a BD-based scheme alternative to those based on 
the Lamm equation, as already noted in other works (Walter 
et al. 2015; Thajudeen et al. 2017; Chaturvedi et al. 2017), 
is illustrated here for the case of samples of heterogene-
ous mass and density. The simplicity of the BD simulation 
makes it possible to extend the procedure easily to cases like 
those of a non-ideal solution, with physically or chemically 
interacting components, etc. In the present work, we have 
also initiated the development of computational tools, which 
will hopefully be useful for a variety of purposes in analyti-
cal ultracentrifugation.

The SimuSed programs, PrediSed and AnaSed, can 
be downloaded as executable files, along with their User’s 
Guides and sample files, from the website that hosts the 
HYDRO suite, at http://leona​rdo.inf.um.es/macro​mol.
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