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Abstract
Infections due to Clostridioides difficile (previously known as Clostridium difficile) are a major problem in hospitals,
where cases can be caused by community-acquired strains as well as by nosocomial spread. Whole genome sequences
from clinical samples contain a lot of information but that needs to be analyzed and compared in such a way that the
outcome is useful for clinicians or epidemiologists. Here, we compare 663 public available complete genome se-
quences of C. difficile using average amino acid identity (AAI) scores. This analysis revealed that most of these
genomes (640, 96.5%) clearly belong to the same species, while the remaining 23 genomes produce four distinct
clusters within the Clostridioides genus. The main C. difficile cluster can be further divided into sub-clusters, depend-
ing on the chosen cutoff. We demonstrate that MLST, either based on partial or full gene-length, results in biased
estimates of genetic differences and does not capture the true degree of similarity or differences of complete genomes.
Presence of genes coding for C. difficile toxins A and B (ToxA/B), as well as the binary C. difficile toxin (CDT), was
deduced from their unique PfamA domain architectures. Out of the 663 C. difficile genomes, 535 (80.7%) contained at
least one copy of ToxA or ToxB, while these genes were missing from 128 genomes. Although some clusters were
enriched for toxin presence, these genes are variably present in a given genetic background. The CDT genes were
found in 191 genomes, which were restricted to a few clusters only, and only one cluster lacked the toxin A/B genes
consistently. A total of 310 genomes contained ToxA/B without CDT (47%). Further, published metagenomic data
from stools were used to assess the presence of C. difficile sequences in blinded cases of C. difficile infection (CDI)
and controls, to test if metagenomic analysis is sensitive enough to detect the pathogen, and to establish strain
relationships between cases from the same hospital. We conclude that metagenomics can contribute to the identifica-
tion of CDI and can assist in characterization of the most probable causative strain in CDI patients.
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Introduction

Clostridioides difficile (C. difficile) is a Gram-positive, an-
aerobic bacillus that is responsible for pseudomembranous
colitis; it is also a common cause of nosocomial diarrhea,
conditions whose morbidity and mortality have dramatically
increased in the past decade [1–3]. Nosocomial infections
caused by C. difficile are a recurrent problem and increasingly
young individuals are recognized as being at high risk, in
contrast with the historical C. difficile incidence trends, which
pointed to elderly hospitalized patients mainly [4]. In the tra-
ditional view, hospitalized patients are exposed to the spores
of C. difficile by direct contact with medical staff, via contam-
inated utensils or from the hospital environment, although
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food can also be involved in the transmission process [5]. In
patients with an effective immune response, colonization of
the gut by C. difficile can occur without the presentation of
clinical signs. However, in individuals with a history of re-
peated exposure to certain antibiotics, those who are immuno-
compromised or suffer from underlying enteric diseases,
C. difficile can dramatically increase in numbers [6]. This
has knock-on effects on the gut microbiome and results in a
disbalance of other bacterial species (dysbiosis), resulting in a
semi-permanently altered gut micro-environment. Once this
condition is established, treatment becomes very difficult. In
such cases, a fecal transplant may be the only option, which
has shown efficacy rates as high as 90% [7, 8].

The taxonomic description of the genus Clostridium, to
which C. difficile used to belong, has undergone multiple re-
visions over the years. The genus expanded and was split up
again, resulting in some confusion about its members. There
have been at least 240 bacterial species that, at some time in
the past, were accepted as a member ofClostridium. In 1994, a
major revision of the genus was proposed, which moved a
number of its members to novel genera [9]. This proposal
was based on phylogenetic analysis of 16S rRNA sequences
and was later backed up by phylogeny of a selection of protein
genes [10]. Currently, there are 71 recognized species belong-
ing to the genus Clostridium sensu stricto [11] whose type
strain isC. butyricum. The speciesC. difficile is no longer part
of this genus, as it was placed in the novel genus
Clostridioides, together with C. mangenotii [9, 12].

The main virulence determinants of C. difficile are tox-
in A (ToxA) and toxin B (ToxB), which are encoded on
pathogenicity locus (PaLoc) by tcdA and tcdB genes, re-
spectively, together with three regulatory genes tcdC,
tcdE, and tcdR [13]. It has been suggested that PaLoc is
a mobile element [14], in which case transfer of the com-
plete locus can convert a non-toxigenic strain into a toxi-
genic one [15]. In addition, a third toxin may be present,
known as binary toxin or CDT (short for C. difficile toxin,
not to be confused with the cytolethal distending toxin of
Gram-negative bacteria). This toxin is encoded by cdtA
and cdtB genes and belongs to the Iota-family of toxins to
which also Clostridium perfringens toxin belongs [16],
although the relevance of CDT in clinical disease is still
discussed [17].

Genetic differentiation of C. difficile strains is impor-
tant to identify possible nosocomial outbreaks, in which
multiple patients are infected by a single strain. A com-
mon method for genetic differentiation is multilocus se-
quence typing (MLST). By this method, C. difficile strains
have been classified into six phylogenetically different
clades (clades 1 to 5 and C1) [13], although Clade C1 is
not defined in the MLST database collected at the
University of Oxford, UK. These clades may contain both
pathogenic and non-pathogenic strains, but the vast

majority of strains produce one or more toxins [13].
This suggests that MLST may not be an ideal approach
to highlight differences among the toxin gene repertoire of
the isolates under study.

Technical developments now allow routinely sequenc-
ing whole genome sequences (WGS), instead of a limited
number of gene fragments only. A large number of WGS
from C. difficile strains are already available in the pub-
lic domain and these sequences have been useful in mul-
tiple ways. WGS characterization has been helpful in the
study of C. difficile infections (CDI) [18], and it identi-
fied the true genetic diversity that exists among
C. difficile isolates, which was originally assessed by
identification of single-nucleotide variants (SNVs) within
a limited set of known genes only [5]. In addition, WGS
has assisted epidemiological investigations, as it is supe-
rior in identifying CDI transmission sources, in particular
in patients with recurrent CDI infections [19–21]. By
means of WGS, it was recently shown that most cases
of CDI in hospitalized patients are due to endogenous
strains carried by the patients who were asymptomatic
prior to their hospitalization, while in the hospital, expo-
sure to high doses of antibiotics may favor the growth of
the bacteria, resulting in symptomatic CDI [22]. In such
a scenario, even non-toxigenic strains can pose a risk,
since they can acquire the PaLoc by horizontal gene
transfer, carry alternative virulence genes, or result in
the condition of dysbiosis [15, 23]. WGS has further
been applied to assess the effectiveness of fecal trans-
plants in severe CDI cases [7]. Lastly, metagenomics,
in which all DNA present in a (clinical) sample is being
assessed, is increasingly being applied to fecal analysis
and may become a commonly applied technique in med-
ical microbiology in the near future. Its main advantage
is the identification of microorganisms without the need
of culture, saving time in an outbreak investigation [24].

WGS results in a lot more data than what is assessed
by SNP-based analysis or MLST. Since complete
proteomes can be predicted, these can be subjected to
average aminoacid identity (AAI) analysis, a method that
compares all conserved protein-coding genes present in a
given set of genomes, clustering strains into groups that
sharing more than 95% AAI [25, 26]. This method has
proven to have higher resolution power at the species
level than comparison of 16S rRNA or MLST, since it
assesses a far larger fraction of the genome [24].

Here, we compared all available C. difficile genomes
by AAI analysis based on WGS data, starting with a
comparison of taxonomic type strains of Firmicutes.
The aims were to (1) determine if AAI analysis can con-
firm the status of C. difficile as a unique species; (2)
assess if AAI produces groupings within the species that
are of clinical relevance, to accurately identify
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pathogenic strains. For this second aim, the findings
were compared to presence or absence of the toxin genes
in different strains. As aim (3), we investigated whether
metagenomics can identify CDI together with its associ-
ated strain (s), through a detailed analysis of published
whole shotgun metagenomic sequences.

Methodology

Average Amino Acid Identity Analysis

AAI analysis was performed as previously described [27]
and briefly summarized here. Amino acid sequences of
all proteins from the analyzed genomes were extracted
from their original GenBank accessions. AAI analysis
was then carried out for every possible pair of genomes.
The conserved reciprocal best match for each protein
from each genome pair was first identified using
UBLAST [28] with a cutoff of 30% sequence identity
and a required minimum of 70% alignment length of
the query sequence. For each pair of genomes, the aver-
age amino acid identity was then calculated based on the
identities of all conserved reciprocal best matches, a cal-
culation that is not always symmetrical. In such cases,
the average of the two AAI values was assigned to each
pair of genomes. Genomic clusters were then generated
from the AAI values with a default cutoff of 95% (unless
stated otherwise), meaning that members from different
clusters cannot share more than 95% AAI identity, and
members within a cluster have paths consisting of edges
connecting isolates with AAI > 95%. The exact way how
this clustering was done is described elsewhere [25, 26].

The first AAI tree was produced of all 25 taxonomically
valid type strains of Firmicutes for which whole-genome se-
quences were available at the time of analysis. The list of type
strains was obtained from the Names4Life website (www.
namesforlife.com, accessed on 14 March 2017). The
pairwise comparisons used to calculate AAI values for this
set of genomes involved between 236 and 1766 genes (666
genes on average). The AAI tree was built with BIONJ [29] to
dissimilarities of AAI values (100% minus AAI).

For comparison of all Clostridia members, the
GenBank database was accessed on February 12, 2017,
and all available complete genomes and chromosomes
(n = 234) within the Clostridia class were downloaded.
This selection was restricted to completely sequenced
genomes and included 8 genomes from C. difficile. The
AAI values of the Clostridia selection involved compared
between 131 and 5017 genes (955 genes on average).

A third AAI tree was built using all 663 C. difficile
genomes that had genome quality scores > 0.8 as defined
elsewhere [30], this time including complete genomes as

well as draft genome sequences available at the time of
analysis. The dataset contained 653 sequences described
as obtained from C. difficile, completed with 10 genomes
with no species designation but presumed to be C. difficile
based on gANI (genome-wide average nucleotide
identity) [31]. Two genomes of Clostridioides mangenotii
(GCA_000498755 and GCA_000687955) were added to
serve as an outgroup. A tree that contains over 600
branches would be hard to read, and since many genomes
are extremely similar, the tree would end in many very
short branches. For graphical representation of such a
large dataset, branches that contained identical or highly
similar members were collapsed. We attempted to define a
suitable cutoff for such a collapse by varying the required
percentage of similarity within this dataset as described in
the results. Bootstrap values were calculated conceptually
similar to alignment-based trees: among the reciprocal
conserved protein pairs identified for a given pair of ge-
nomes, we selected pairs randomly with replacement of as
many as the number of the original pairs and repeated this
procedure 100 times, resulting in 100 bootstrap AAI
values for that pair of genomes. Then, 100 bootstrap
AAI trees were generated and bootstrap values were cal-
culated, defined as the occurrence of clades of the AAI
tree in 100 bootstrap trees.

In Silico MLST

The seven gene fragments of housekeeping genes adk,
atpA, dxr, glyA, recA, sodA, and tpi were extracted from
the C. difficile genomes by NBLAST using the sequence
of allelle number 1 as the query; these query sequences
were extracted from the MLST database (https://pubmlst.
org/cperfringens/) collected by the University of Oxford.
The best NBLAST hit with each genome was retrieved,
sequences were concatenated, and a NJ tree was
constructed by Muscle [32]. Redundancy was removed
by deleting multiple sequences per sequence type (ST),
recording the number of members per ST. For
comparison, the complete genes instead of MLST
fragments were also concatenated and analyzed.

Identification of Toxin Genes by PFAM Domain
Searches

Prodigal software was used to identify all protein-coding
genes across all analyzed C. difficile genomes [33]. The
Pfam domains in the proteins of these genomes were iden-
tified using HMMER 3.1b2 [34] to scan across the 16,306
profile hidden Markov Models in the Pfam database ver-
sion 30.0 [35]. Presence of genes coding for toxin A or
toxin B was identified on the basis of presence of the
Pfam domains PF12918, PF12919, PF11713, and
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PF12920. CDT protein A was identified on the basis of
presence of the Pfam domain PF03496 and CDT protein
B by presence of PF07691 and PF03495.

Read Coverage Analysis from Metagenomic Data

To assess if metagenomics can be used for identification
of CDI, we investigated the recently published shotgun
metagenomes produced from stool samples of patients
with suspected or confirmed CDI in two different hospi-
tals located in Canada [6] and Italy [33]. A total of 228
metagenomic samples were available from the Canadian
study, including CDI cases and controls. We blinded our
analysis, not knowing which of these samples were from
controls and which were from patients. Of the 15 Italian
metagenomic samples available, we only analyzed two
datasets from clinically confirmed CDI cases, as diag-
nosed by the authors [36]. Reads were downloaded from
NCBI BioProjects PRJNA297252 and PRJNA297269 at
NCBI’s Sequence Read Archive (SRA) database. The
SRA metagenomic data were converted into FASTQ for-
mat using ‘SRA Toolkit’ software and then aligned to the
663 C. difficile genomes using Burrows-Wheeler analysis
(BWA) software version 0.715 [37] using default param-
eters. All reads were compared to C. difficile sequences
and the C. difficile genome to which the most abundant
reads were matched was then identified. The genome cov-
erage of the metagenomic reads against that reference ge-
nome was determined by using the genomecov function in
BEDTools software [38]. For four datasets that had a ge-
nome coverage of over 50%, the reads were plotted using
the Integrative Genomics Viewer (IGV) [39] to illustrate
the presence or absence of toxin operon genes, using the
complete genome of C. difficile NC_009089.1 as a tem-
plate. A sample with lower genome coverage was includ-
ed as a control. The five sequences presented here include
SRR2565933 , SRR2565934 , and SRR2565548
(BioProject ID PRJNA297252) and SRR2582247 and
SRR2582248 (BioProject ID PRJNA297269).

Results and Discussion

Average Amino Acid Analysis of Taxonomic Type
Strains Belonging to Firmicutes

A cladogram tree was generated based on AAI analysis
using 25 genomes from Firmicutes taxonomic type
strains (Fig. 1). All genomes cluster in their expected
class, although the Clostridia class (shown in brown) is
split up into two large clusters. The first Clostridia
cluster starts with C. difficile and for the second mem-
ber of this genus, C. butyricum, its closest neighbor is

Tissierella praeacuta, which at first seems to be
strange. However, the type strain of this species and
that of Clostridium hastiforme have been shown to be
identical, so that the two genus names can be consid-
ered synonyms, with priority for T. praeacuta [40].
The first Clostridia cluster is followed by a cluster of
Negativicutes, represented by type strains of the gen-
era Veillonella, Selenomonas, and Acidaminococcus
(shaded blue in the figure). These Firmicutes produce
negative Gram stains and, like all Gram-negatives,
contain two cell membranes. Nevertheless, based on
their genome content, they are distant to both well-
characterized Gram negatives and Gram positives, but
slightly closer to Gram-positives [41]. All Bacilli type
strain representatives compared in this analysis are
found together in the next cluster, indicated in green.
The only exception to the expected position in the tree
is the type strain of Symbiobacterium thermophilum,
which is found as part of the Bacilli cluster although
this genus is considered to belong to the Clostridia, as
indicated by the brown shading in the figure. From its
position in the tree, it is obvious that the type strain of
Symbiobacterium thermophilum shares considerable
characteristics with Bacilli. That is no surprise, as
these organisms live in strict symbiosis with Bacilli,
which has probably resulted in frequent gene swaps
[42]. From Fig. 1, we conclude that AAI analysis is
able to correctly group Firmicutes genomes according
to recognized taxonomic groupings.

Average Amino Acid Analysis of Completely
Sequenced Clostridia Members

The next AAI analysis concentrated on completely sequenced
genomes of the Clostridia only. A total of 234 genomes were
compared, this time not representing a selection of type strains
but all genomes that were completely sequenced at the time of
analysis. In Fig. 2, distinct clusters are colored, and some of
these nicely overlap with species, for instance the clusters of
Moorella thermoacetica, Caldicellulosiruptor saccharolyticus,
or the eight fully sequenced C. difficile genomes that were
included, highlighted in bright blue. The type strain of
C. difficile (ATCC 9689/DSM 1296) that was used in Fig. 1
is not included here, as its genome sequence is not yet complete.
Compared with the diversity observed in C. botulinum, the
eight C. difficile genomes are much more similar to each other
and are clearly separated from the other species included here.
The closest neighbor of C. difficile on this tree is
Paeniclostridium sordellii. Their close relationship was also
demonstrated with a 16S rRNA neighbor-joining phylogenetic
tree [9]. Nevertheless, most clusters in Fig. 2 contain a mix of
genera. This observation demonstrates that the taxonomic divi-
sions within the Clostridia are still not well resolved. One
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reason for this may be that the phylogenetic relationship on
which taxonomy is partly based is using a relatively small se-
lection of housekeeping genes only (such as gyrA or recA) as
well as 16S rRNA gene sequences. This approach works well
for a number of bacterial families, where species are so clearly
divided that these marker genes can reliably be used to define
taxonomic divisions. In such cases, the findings obtained with
analytic tools that assess the similarity of a large number of
genes fit the taxonomic frame quite nicely. The AAI analysis
applied here is such a multiple-gene comparison tool, and with
this method, we have obtained results in good agreement with
taxonomy for Pseudomonas species [27]. However, a number
of Clostridia members presented in Fig. 2 are not completely
resolved according to their taxonomic description, indicating
that the currently used division is not always in accordance to
their degree of genomic similarity.

Average Amino Acid Analysis of 663 C. difficile
Genomes

Average nucleotide analysis (ANI) is often applied to bac-
terial taxonomy, whereby a cutoff of 94% is considered
suitable [43, 44]. If amino acid-based AAI were to be
added as an extra tool to compare strains within a species,
the most suitable cutoff needs to be determined. We there-
fore analyzed the 663 currently available C. difficile se-
quences (complete genomes combined with those avail-
able as multiple contigs) by AAI. Ten genomes assigned
to ‘Clostridium sp. only’ were included, and two

C. mangenotii genomes were added for comparison as this
is the closest neighbor of C. difficile. Figure 3 shows a
compilation of trees produced with different cutoffs from
the 663 C. difficile. At the default cutoff level that
allowed ≥ 95% identity per branch, five branches were
produced containing C. difficile genomes, two with single
genomes and three representing clusters. The vast major-
ity (640) of C. difficile genomes clustered together, as the
default cutoff level could not distinguish these. This sug-
gests that the vast majority of sequenced C. difficile ge-
nomes are relatively similar, but it also identifies 23 ge-
nomes that are more distant. This is relevant in view of
the present trend to rely on in silico analysis for taxonom-
ic assignment. The single genome branches in Fig. 3a
represent one isolate for which no metadata were provid-
ed, and an isolate that had originated from a French study
on C. difficile infections [45]. The four genomes that
formed a separate cluster (colored blue in the figure) are
from diverse geographic locations (two from Northern
Iraq and two from the French national strain collection
[13]). Likewise, the cluster comprising 17 genomes
(shown in green) contained 9 isolates from a large
Canadian initiative that sequenced a total of 470 strains,
mixed with human isolates from Austria, Ireland, and
Italy, and an equine isolate from Slovenia [46]), 2 samples
supplied by a veterinary institute in Arizona for compar-
ison in the Human Microbiome Project [47] and a 2007
isolate from a Food Safety Centre in Ireland [48]. The last
genome in this cluster is from a strain described as a ‘non-
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epidemic human isolate’, presumably from the USA. At
least one of the strains in this 17-member cluster was
associated with severe diarrhea but several were described
as non-pathogenic. The fact that this cluster contains
strains from different continents and different host species
suggests that the 95% cutoff of AAI groups allotropic
strains with heterologous properties. Based on the avail-
able metadata, there is clearly a mix of virulent and non-
virulent strains.

By increasing the cutoff to 96% (panel 3B), the num-
ber of branches increases to 20, of which 18 are clusters.
The 17 strains that clustered together at 95% are main-
tained (now in cluster number 17), as is the cluster of
four genomes (now cluster number 18). The remaining

640 genomes are now divided over 15 clusters, the larg-
est one containing 168 genomes and the smallest 3. The
genomes that had been derived from ‘Clostridium sp.’
were distributed over different clusters, so these did not
form a group of their own. This trend is continued when
the cutoff is increased to 97%, which maintains the clus-
ters with 17 and 4 genomes (cluster numbers 23 and 24).
However, at a level of 98%, only the 4-genome cluster
remains intact, while the 17 strains are now divided over
4 small clusters and 4 single-genome branches, as shown
in panel d of Fig. 3. The small clusters are only partly
region-specific, for instance, three Canadian strains are
combined (cluster number 32), but another cluster com-
bines the two Irish with the Italian and an Austrian strain
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(cluster number 30). Continuing this analysis with a cut-
off of 99% results in 92 clusters and 151 single-genome
branches (results not shown).

From this analysis, we conclude that the included
Clostridium sp. genomes can be considered to have
been obtained from C. difficile members. Twenty-three
submitted C. difficile genomes are clear outliers, which
form two clusters and two single-genome branches.
Further, with an increase of the chosen cutoff, larger
clusters break up into smaller ones, and this is a con-
tinuous process.

MLST Analysis of C. difficile Genomes

We also analyzed the same set of C. difficile genomes by
MLST, which is often applied to compare strains within
a species [49, 50]. Complete allele fragments could be
extracted from only 607 sequences. A non-redundant tree
of the concatenated gene fragments is shown in Fig. 4. A
table with genome accession numbers and their corre-
sponding MLST sequence type and clade is included as
Supplementary Table S1. Most of the genomes belong to
MLST clades 1 (n = 339) and 2 (n = 161). The single
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most frequently represented sequence type is ST01 (part
of clade 1) which was found for 146 genomes. Clades 3
and 4 have 7 and 18 representatives, respectively. The
AAI cluster with 17 members belongs to clade 5 (for one
the MLST type could not be determined). One of the two
genomes that formed an outlier by AAI analysis had
ST361 that grouped with four genomes in an unassigned
clade; these were the four members that by AAI
remained in one cluster even at 98% (Fig. 3d). The other

AAI outlier was of an unassigned ST positioned between
clade 5 and the unassigned clade. Supplementary
Table S1 compares the STs with AAI cluster numbers
at 98 and 97%. In most cases, genomes with identical
ST cluster together by AAI but there are exceptions. For
instance, ST1 (clade 2) is very homogeneous, but three
ST1 members are placed at a large distance from their
peers in the AAI trees. ST54 members (clade 1) are
divided over 5 AAI clusters and include 3 single
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branches by that analysis, indicating that this ST is rela-
tively heterogeneous.

Although clearly separated by MLST, the clades 1
and 2 were not clearly visible in the AAI trees of Fig.
3. We therefore re-analyzed the seven MLST genes, this
time including complete coding sequences instead of the
typically used MLST fragments. The result (Fig. 4b)
showed that clades 1 and 2 are distinct but closely re-
lated, which explains why this division was not visible
by AAI. In fact, a number of STs that are part of clade 1
are closer related to clade 2 members, based on their
full-length MLST gene assessment, and four ST2 mem-
bers are mixed with clade 1 STs (these 71 genomes are
identified in Table S1). This illustrates that the distinc-
tion in clades based on MLST fragments is somewhat
arbitrary and depends on how these fragments were cho-
sen. Thus, the clades do not necessarily represent truly
distant lineages.

Presence of Toxin Genes in C. difficile Genomes

Next, we assessed the presence of the C. difficile toxin genes,
by searching for their typical Pfam domain architecture. Out of
663 genomes, 535 contained the Pfam domains indicative of
presence of toxin A, toxin B, or both. This means that approx-
imately 81% of the sequenced C. difficile genomes were po-
tentially toxigenic. The two toxins cannot be distinguished
based on their Pfam domains, but when two domains are found
per genome, this indicates presence of two genes, presumably
tcdA and tcdB. This was the case in 483 or 73% of all genomes
analyzed. Most of the clusters produced at various degrees of
collapse combined toxigenic strains with those lacking the tell-
tale toxin Pfam domains. In Fig. 5, the results are presented at
98% clustering for a graphical representation. This suggests
that the toxins can be present or absent independent of genetic
background, which is supportive of their presumed mobility
[14, 15]. Of note is that some clusters (e.g., cluster numbers 23,
24, and 25 at 98% containing 6, 3, and 38 strains, respectively)
were homogeneous for lacking ToxA and ToxB, which is a
striking finding giving the high incidence of these genes. Only
a few of these isolates were epidemiologically related, as ex-
emplified by the 38 strains in cluster 25, of which 20 belonged
to the large strain collection from Quebec that was sequenced,
but it also contained two environmental isolates from the UK,
four related strains from Japan, three strains from the Pasteur
Institute collection, one from Australia, one from Northern
Iraq, and 7 that were sequenced by the University of
Maryland. This would suggest that the cluster represents a
group of globally distributed non-toxigenic isolates, though
their genomes are not completely identical. At 99% collapse,
these genomes are redistributed over three clusters (results not
shown) though again these do not completely separate accord-
ing to geographic origin. Again, these findings would suggest

that a collapse at 98% is sufficient to identify closely related
genomes of C. difficile, acknowledging that variation within
the generated clusters exists, and strains from various geo-
graphic locations may be combined that share a high degree
of protein content similarity.

We also searched for presence of Pfam domains indicative
of the two proteins that make up CDT. Only 191 genomes
contained (after translation) the Pfam domains typically pres-
ent in CdtA, and two more contained CdtB domains.
Interestingly, nearly all of the CDT-positive genomes also
contained one or two copies of ToxA/B: 172 genomes
contained ToxAB (deduced from presence of two copies of
the toxin-specific Pfam domains) and 18 contained one copy.
Since all genomes lacking ToxA/B also lacked CDT (with one
exception), it seems the presence of these different toxins is
highly overlapping. Only one genome analyzed here
contained CDT but not ToxA/B (A −B −CDT+), while 310
genomes reported A + B + CDT−; the latter is most often
found in the investigated genome collection. The presence of
CDT in strains lacking ToxA/B has been described before
[46–51], but apparently, this is rather uncommon, as we find
this in only 0.15% of the strains for which a genome sequence
is currently available.
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Metagenomic Analysis Can Identify C. difficile
Infection in Stool Samples

Lastly, we analyzed metagenomic data obtained from two
studies involving CDI patients. A blinded set of 228
metagenomic datasets obtained from fecal samples from
Canadian CDI patients and controls [4] was screened for
presence of C. difficile sequences. Two metagenomic sam-
ples from an Italian study [37] were also analyzed. The
analysis identified two Canadian samples, C1 and C2, that
produced strong coverage of C. difficile sequences. All
other metagenomic samples from that source resulted in
very poor coverage, of which C3 is presented here as it
retrieved the highest number of reads of the 226 samples.
The reads from the two clinically confirmed Italian cases
also contained C. difficile sequences. Of the five samples
presented here, between 0.25 and 9.05% of the total reads
mapped to a C. difficile reference genome (Table 1). The
abundance of a species in a metagenomic sample can be
roughly estimated from the read coverage, so this obser-
vation indicates that C. difficile was present at low levels
in the gut of four of these individuals. Only the stool of
patient I1 seemed to have high numbers of C. difficile as
deduced from the read coverage (Table 1). Those reads
that could be mapped to a C. difficile genome covered
between 9.69 and 98.76% of that genome. Thus, in the
case of patients C1 and C2, nearly a complete C. difficile
genome was present in the metagenomic reads. The data
from the Italian study, which had resulted in approximate-
ly 10 times fewer total reads (Table 1), still covered
around 52% of a C. difficile genome. In contrast, the reads
obtained from feces of patient C3 only covered < 10% of
the best matching C. difficile genome, although there were
over 139,000 reads mapped to that species in total. The
vast majority of those reads mapped to a few short spe-
cific region of a C. difficile genome only, which happened
to be fragments of 16S and 23S rDNA and one tRNA_met
gene (results not shown). Of note is that these RNA genes
are present in multiple copies (between 13 and 15 copies
of the ribosomal gene locus and about 8 copies of the
tRNA_met gene are typically present in a C. difficile ge-
nome) which may explain why these sequences were
picked up. These results suggest that the stool of patient
C3 contained very low levels of C. difficile, whose pres-
ence could only be detected based on multiple gene cop-
ies of particular RNA genes. In contrast, the much better
coverage of half or a nearly complete C. difficile genome
in samples C1, C2, I1, and I2 suggests that these
contained higher numbers of this pathogen.

For the metagenomic sequences obtained from Canadian
patient C1, the reads that matched C. difficile produced the
best match with the genome ofC. difficile strain 5.3, isolated
in Australia [52]. For patient C2, the best match was Ta
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obtained with strain VL_0181 which had been isolated from
Canada. However, these two strains did not carry the tdc or
the cdt operon, thus resulting in gaps in their sequence, as
illustrated in Fig. 6. Indeed, tdcA, tdcB, and cdt sequences
were absent from the metagenomic reads of C1 and C2,
demonstrating that for these patients, CDI was caused by a
non-toxigenic strain. In addition, our analysis shows that the
two patients had been infected by different strains.
Similarly, different strains were identified in the two pa-
tients from Italy. Patient I1 resulted in sequences most
closely matching to C. difficile strain IT1118 with ribotype
018, which was responsible for outbreaks occurring in Italy,
South Korea, and Japan [53], while patient I2 possessed a
strain whose reads were most similar to C. difficile strain
Y384, isolated in a hospital of Pennsylvania, USA. In these
two cases, the genomes contained tcd and cdt operons,
which is illustrated in Fig. 6.

In total, these data show that metagenomic analysis of
stool samples can identify presence of C. difficile, and the
degree of genome coverage can be taken as a measure for
abundance of the organism. In the future, as the cost of
metagenomic sequencing becomes more affordable and
faster, this approach might become economically feasible
for more routine analysis. We further conclude that, al-
though patients may be diagnosed with a CDI in the same
hospital, their infection was unlikely due to a common
nosocomially transferred strain. More likely, endogenous,
community-acquired strains, may have been responsible
for these analyzed cases.

Conclusions

The cluster analysis presented here has shown that for differ-
ent members of Firmicutes, AAI clustering provides valuable
insights on similarities that broadly agree with taxonomic po-
sition. At the level of genera and species within Clostridia, the
clusters are less well resolved, as various genera are mixed.
The taxonomic classification of C. difficile has encountered
difficulties in the past. The WGS analysis presented here was
based on AAI, which captures a large fraction of protein gene
content. That clearly identified all analyzed 663 C. difficile
members belong to a single species that is distinct from its
closest relatives. At the level of strains within the C. difficile
species, AAI analysis groups the vast majority of genomes
within one cluster at 95% cutoff. This cluster subdivides as
the cutoff for similarity is increased, but a clear optimal cannot
be identified. Most genomes with identical STs group in AAI
clusters, but there are exceptions. MLST clade 1 contains a
number of STs that are more similar to members of clade 2.
The analysis further showed that the toxin genes are unevenly
distributed over the strains.

Metagenomic analysis of stool samples can identify cases of
CDI, and CDI-causing strains can be atoxigenic. Detection of
multi-copy RNA genes exclusively in metagenomic reads may
be indicative of low numbers ofC. difficile in stools. The detected
sequences suggest CDI cases may be caused by different strains
in patients form the same hospital. These findings support evi-
dence for the acquisition of the pathogen within the community,
with autogenous strains causing the infection. The onset of
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symptoms during hospitalization may be a result of treatment
rather than in-hospital spread of an epidemic strain.
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