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Abstract
Magnetic resonance imaging (MRI) provides images for estimating fetal volume and weight, but manual delineations are 
time consuming. The aims were to (1) validate an algorithm to automatically quantify fetal volume by MRI; (2) compare 
fetal weight by Hadlock’s formulas to that of MRI; and (3) quantify fetal blood flow and index flow to fetal weight by MRI. 
Forty-two fetuses at 36 (29–39) weeks gestation underwent MRI. A neural network was trained to segment the fetus, with 20 
datasets for training and validation, and 22 for testing. Hadlock’s formulas 1–4 with biometric parameters from MRI were 
compared with weight by MRI. Blood flow was measured using phase-contrast MRI and indexed to fetal weight. Bland–Alt-
man analysis assessed the agreement between automatic and manual fetal segmentation and the agreement between Had-
lock’s formulas and fetal segmentation for fetal weight. Bias and 95% limits of agreement were for automatic versus manual 
measurements 4.5 ± 351 ml (0.01% ± 11%), and for Hadlock 1–4 vs MRI 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 
106 ± 425 g (4% ± 14%), and 179 ± 472 g (6% ± 15%), respectively. Umbilical venous flow was 406 (range 151–650) ml/min 
(indexed 162 (range 52–220) ml/min/kg), and descending aortic flow was 763 (range 481–1160) ml/min (indexed 276 (range 
189–386) ml/min/kg). The automatic method showed good agreement with manual measurements and saves considerable 
analysis time. Hadlock 1–4 generally agree with MRI. This study also illustrates the confounding effects of fetal weight on 
absolute blood flow, and emphasizes the benefit of indexed measurements for physiological assessment.
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Introduction

Congenital anomalies and fetal growth restriction are major 
contributors to fetal and neonatal morbidity and mortality 
[1, 2]. Prenatal diagnosis improves management including 
parental counseling [3–8]. Accurate quantification of 
fetal volume and hence fetal weight is important both for 
assessment of fetal growth and for indexing fetal blood 

flow to fetal weight. This provides a physiologically more 
accurate interpretation of blood flow volumes as blood 
flow is related both to fetal body size and pathology. 
Indexed umbilical blood flow volumes may also be a 
potential indicator of fetal growth restriction and placental 
dysfunction [9].

In clinical practice, fetal weight is estimated by ultrasound 
[10–12], and while these methods are widely available 
and easy to use, they are less accurate than 3D-based fetal 
segmentation [13].

Magnetic resonance imaging (MRI) can provide high-
resolution 3D images for fetal volume quantification. 
However, accurate manual segmentation of the fetus is time 
consuming, and there is a need for fully automatic methods 
to make quantification of fetal volume and weight clinically 
applicable. Deep learning could potentially be used to 
accomplish automatic and fast fetal volume quantification 
[14, 15]. However, previous studies have either shown 
significant measurement errors for automatic versus manual 
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segmentation or involved network structures that require 
highly specialized graphics cards.

The aims of this study were therefore to (1) validate an 
algorithm based on an artificial neural network to automati-
cally quantify fetal volume from 3D MRI; (2) compare fetal 
weight estimated using formulas commonly used in fetal 
ultrasound with 3D MRI-based fetal weight measurements; 
and (3) quantify fetal blood flow in the umbilical vein and 
descending aorta and index blood flow to fetal weight by 
MRI.

Methods

Forty-two fetuses (gestational age 36 (29–39) weeks) under-
went fetal MRI at Skane University Hospital in Lund, Swe-
den between October 2015 and December 2021. Fetal MRI 
examinations were performed both on clinical indication as 
dedicated fetal cardiovascular MRI to assess fetal cardiovas-
cular anatomy, and for research aimed at developing fetal 
cardiovascular MRI. The cohort consisted of fetuses with 
and without known or suspected congenital heart disease. 
The regional ethics committee approved the study (Dnr 
2013/551). All pregnant women gave written informed con-
sent before participation in the study. The study was con-
ducted in accordance with the Helsinki declaration.

Magnetic Resonance Image Acquisition

Fetal MRI was performed using a 1.5  T Aera scanner 
(Siemens Healthineers, Erlangen, Germany). Balanced 
steady-state free precession (bSSFP) sequences were used 
to acquire anatomical overview images in the transverse, 
sagittal, and coronal directions with typical parameters 
1.7 × 1.1 × 4.5 mm acquired spatial resolution and a slice 
gap of 0 or −50%. For fetal volume quantification, a 3D 
image slab covering the uterus was acquired with typi-
cal parameters 1.8 × 1.4 × 2.5  mm acquired resolution, 
TE/TR = 1.77/4.08 ms, and flip angle = 50°. Phase-con-
trast flow images were acquired in the umbilical vein and 
fetal descending aorta using a 2D gradient recalled echo 
sequence with typical parameters 1.4 × 1.4 × 5 mm acquired 
spatial resolution, TE/TR = 2.76/5.03 ms, flip angle = 20°, 
VENC = 150  cm/s, and acquired temporal resolution 
30.18 ms. The fetal MRI examination time was typically 
40–60 min including research and development, whereas 
the 3D acquisition is less than 20 s.

Magnetic Resonance Image Analysis

Manual segmentations of the fetus, umbilical cord, placenta, 
and amniotic fluid were performed in Segment 3D print v 

3.1 (Medviso AB, Lund, Sweden) using a 3D pen tool with a 
diameter of 3–4 mm (Fig. 1; top panel). Manual delineations 
were used as ground truth for training of neural networks 
and for evaluation of network performance. Fetal weight was 
calculated as fetal volume multiplied with a fetal density of 

Automatic segmentation

Automatic segmentation of twins

Manual segmentation

Fig. 1  Segmentation of the fetus in magnetic resonance images. 
The top panel shows a magnetic resonance image with manual 
delineations of the fetus (green), placenta (yellow), umbilical cord 
(blue), and uterine wall (pink). This was repeated throughout the 3D 
image stack and all pixels in the image stack were classified as fetus, 
placenta, umbilical cord, or amniotic fluid. This pixel classification 
was used for training and evaluation of the proposed artificial neural 
network. The middle panel shows fetal 3D models generated by 
automatic (left) and manual (right) segmentation of the same fetus. 
The time required to generate the automatic model is 45 s, whereas 
the time required to generate an accurately manually segmented 
model is 1–2  h. Agreement between manual and automatic fetal 
segmentation is high (c.f. Fig.  3). The bottom panel shows the 
performance of the automatic method on twin fetuses. The proposed 
automatic fetal segmentation method was tested on a case of twin 
fetuses as proof of concept to show generalizability. Although 
the algorithm had only been trained on singleton fetuses, it shows 
promising generalizability. Artifacts at the top of one of the fetal 
heads are related to image artifacts in the 3D MRI images
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1.04 kg/l, as previously reported in late gestation fetuses 
[13].

Fetal weight was also estimated using Hadlock’s 
formulas 1–4 [11, 12] for direct comparison of 
accuracy of ultrasound-based measurements versus 
3D MRI fetal weight as reference standard. For 
this, biometric parameters were measured in MR 
images. Figure  2 shows how these measurements of 
fetal head circumference (HC), biparietal diameter 
(BPD), abdominal circumference (AC) and femur 
length (FL) were performed. In the current study, 
the following Hadlock formulas were used; Hadlock 
1 :  Log

10(weight) = 1.304 + 0.05281 ∙ AC + 0.1938∙

FL − 0.004 ∙ AC ∙ FL ; Hadlock 2: Log
10(weight) = 1.335

−0.0034 ∙ AC ∙ FL + 0.0316 ∙ BPD + 0.0457 ∙ AC + 0.1623 ∙ FL ; 
Hadlock 3: Log

10(weight) = 1.326 − 0.00326 ∙ AC ∙ FL

+0.0107 ∙ HC + 0.0438 ∙ AC + 0.158 ∙ FL  ;  Hadlock 4: 
Log

10(weight) = 1.3596 − 0.00386 ∙ AC ∙ FL + 0.0064 ∙ HC

+0.00061 ∙ BPD ∙ AC + 0.0424 ∙ AC + 0.174 ∙ FL.
Blood flow was quantified in the umbilical vein in 15 

fetuses and in the fetal descending aorta in 20 fetuses by 
manual vessel delineation using Segment v3.3 (Medviso 
AB, Lund, Sweden) [16, 17].

Algorithm for Automatic Fetal Segmentation

The algorithm was developed in a previous project [18]. 
In short, a core part of the algorithm is a U-net convolu-
tional neural network [18, 19] trained to classify each pixel 
as fetus, placenta, umbilical cord, or amniotic fluid with 
manual delineations as ground truth [18]. While the fetus 

was the object of interest in the current study, the inclusion 
of all intrauterine structures was used in a multi-task learn-
ing process to provide more information to the network to 
improve network performance [20]. In contrast to previous 
attempts to automatically segment the fetus [15], the current 
network structure is a 2D U-net which processes data on a 
slice-by-slice basis in three different orthogonal directions. 
The final segmentation result is thus a voxel-wise voting of 
the three directions. Fourfold cross-validation was used for 
training and hyperparameter optimization, with 15 datasets 
used for training and 5 for validation for each iteration. Of 
the remaining 22 datasets, 21 were used for testing network 
performance versus manual segmentation, and one twin 
pregnancy dataset was used to test generalizability of the 
network as proof of concept.

Statistics

Fetal volumes and weights are reported in milliliters and 
grams, respectively. Bland–Altman analysis was used to 
assess agreement between automatic and manual fetal vol-
ume measurements, and between fetal weight estimated 
using Hadlock’s formulas and by volumes from 3D MRI. In 
addition to Bland–Altman analysis, agreement between 
automatic and manual fetal segmentation was assessed using 
the Dice similarity coefficient, defined for two sets A and B 
as 2⋅|A∩B|

|A|+|B|
 and expressed as mean ± standard deviation. Abso-

lute blood flow and blood flow indexed to fetal weight were 
plotted against fetal weight to illustrate the confounding 
effects of fetal weight on absolute blood flow and to provide 

Fig. 2  Fetal biometry for using Hadlock’s weight estimation 
formulas. Three typical images used for measurements of fetal femur 
length (green; left), abdominal circumference (green; middle), head 
circumference (green; right) and biparietal diameter (yellow; right). 

Femur length was measured in the anatomical overview images, as 
the fetal femur was generally not visible in the 3D images due to low 
contrast, whereas the other measurements were performed on 3D data 
after multiplanar reformatting
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proof-of-concept data on indexed blood flow values using 
the proposed method.

Results

Figure 1 (middle panel) shows an example of 3D fetal models 
generated by automatic and manual segmentation. This 
shows a visual good agreement between the automatic and 
manual fetal segmentation. Figure 3 shows the agreement 
between automatic and manual fetal volumes for the test 
set. Bias and 95% limits of agreement were −4.5 ± 351 ml 
(0.01% ± 11%). Mean Dice similarity index for automatic 
versus manual fetal segmentation was 0.94 ± 0.02.

Figure  4 shows the agreement between Hadlock’s 
formulas 1–4 for fetal weight estimation and fetal weight by 
3D MRI. Bias and 95% limits of agreement for Hadlock’s 
formulas 1–4 versus 3D MRI manual delineations 
were 108 ± 435 g (3% ± 14%), 211 ± 468 g (7% ± 15%), 
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Fig. 3  Bland–Altman analysis for agreement between automatic and 
manual fetal volume measurements. Dashed lines indicate bias and 
dotted lines indicate 95% limits of agreement (LoA)
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Fig. 4  Bland–Altman analysis for fetal weight by Hadlock’s formulas 
versus 3D MRI. Fetal weight estimated by Hadlock’s formulas 1–4 
agrees with fetal weight based on 3D MRI measurements, however 

with wide limits of agreement There is however a trend of increasing 
differences with increasing fetal weight. Dashed lines indicate bias 
and dotted lines indicate 95% limits of agreement (LoA)
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106 ± 425  g (4% ± 14%), and 179 ± 472  g (6% ± 15%), 
respectively. Weight estimation by Hadlock’s formulas 
showed a trend of increasing differences versus 3D MRI 
with increasing fetal weight.

Figure 1 (bottom panel) shows the result of the proposed 
automatic method applied on twin fetuses as proof of con-
cept of using the network on other samples than the sin-
gleton pregnancies included for evaluation versus manual 
segmentation.

Figure 5 shows blood flow in the umbilical vein and 
descending aorta in absolute and indexed values. Median 
absolute umbilical venous flow was 406 ml/min (range 
151–650  ml/min), which indexed to fetal weight was 
162 ml/min/kg (range 52–220 ml/min/kg). Median absolute 
descending aortic flow was 763 ml/min (range 481–1160 ml/
min), which indexed to fetal weight was 276 ml/min/kg 
(range 189–386 ml/min/kg).

Discussion

This study validated an automated deep learning-based 
algorithm for automatic quantification of fetal volume and 
weight from MR images. The automatic method showed 
high accuracy for fetal volume measurements compared with 
manual reference standard. While manual adjustments may 
be needed in some cases, the automatic method typically 
takes 45 s per fetus and therefore saves considerable analysis 
time per case. The automatic method thus makes it feasible 
to accurately quantify fetal volume and weight for both clini-
cal and research purposes. This may lead to more accurate 
assessment of fetal growth and to improved assessment of 
fetal blood flow by indexing flow volumes to fetal weight, 
as absolute blood flow is dependent on the size of the fetus 
and not only pathology.

The current study showed a generally good agreement 
between Hadlock’s formulas and 3D MRI-based fetal seg-
mentation for estimation of fetal weight, however with a 
trend of increasing differences with increasing fetal size. 

0 1 2 3 4 5

0

500

1000

1500

Umbilical venous flow

Fetal weight  (kg)

U
m

bi
lic

al
ve

no
us

flo
w

(m
l/m

in
)

0 1 2 3 4 5

0

500

1000

1500

Umbilical venous flow
indexed to fetal weight

Fetal weight (kg)

U
m

bi
lic

al
ve

no
us

flo
w

(m
l/m

in
/k

g)

0 1 2 3 4 5

0

500

1000

1500

Descending aortic flow

Fetal weight (kg)

D
es

ce
nd

in
g

ao
rt

ic
flo

w
(m

l/m
in

)

0 1 2 3 4 5

0

500

1000

1500

Descending aortic flow
indexed to fetal weight

Fetal weight  (kg)In
de

xe
d

de
sc

en
di

ng
ao

rt
ic

flo
w

(m
l/m

in
/k

g)

Fig. 5  Absolute fetal blood flow and blood flow indexed to fetal 
weight. Blood flow versus fetal weight in the umbilical vein (top 
panel) and fetal descending aorta (bottom panel) for absolute flow 

volumes (left) and flow volumes indexed to fetal weight (right). 
Indexed blood flow volumes enable physiological comparisons 
between fetuses so as to study pathophysiology
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In particular, this study shows that MRI-based measure-
ments of fetal biometric parameters may be used for accu-
rate weight estimation using Hadlock’s formulas if complete 
3D MRI datasets are not available. It remains unknown to 
what extent such fetal biometric measurements by MRI and 
ultrasound agree, however, a potential advantage by MRI is 
the ability to accurately acquire images perpendicular to the 
fetal head and abdomen and visualize the fetal femur regard-
less of acoustic windows. Therefore, the results in the cur-
rent study may have exaggerated agreement in comparison 
to if fetal weight by MRI and ultrasound had been compared 
head-to-head. Although Hadlock’s formulas show higher 
overall accuracy compared to other ultrasound-based weight 
estimation formulas [10], Hadlock’s formulas are less reli-
able for small and large fetuses [10]. This may partly explain 
the trend of increasing differences for Hadlock’s formulas vs 
3D MRI with increasing fetal weight observed in the current 
study. Furthermore, this difference could potentially mean 
the difference between small for gestational age versus nor-
mal weight, and therefore could be clinically significant in 
individual cases. Thus, the need for improved methods of 
fetal weight estimation remains and it may be hypothesized 
that 3D MRI-based fetal weight estimation could improve 
accuracy and thus clinical decision-making.

The current study agrees with previous studies in that 
indexed flow volumes may be a more appropriate measure 
of fetal circulatory physiology than absolute flow volumes, 
thus enabling accurate comparison of physiology between 
fetuses independent of fetal weight. Furthermore, the 
weight-indexed blood flow values obtained by phase-con-
trast MRI in the current study are in agreement with previ-
ously reported weight-indexed fetal blood flow values from 
ultrasound measurements [21, 22] and by fetal MRI [23].

Two previous studies have suggested machine learning 
methods for automatic segmentation of the fetus in mag-
netic resonance images [14, 15]. Zhang et al. (14) used a 
graph-based approach to automatically segment the fetal 
body in fetuses at 20–24 weeks of gestation. In the current 
study, the performance of the automatic method was higher 
as shown by the Dice similarity index of 0.94 versus 0.69 
[14]. However, the current study included mainly late gesta-
tion fetuses, and the performance of the proposed method 
earlier in pregnancy remains to be investigated. In compari-
son, Dudovitch et al. [15] evaluated both two- and three-
dimensional U-nets for automatic segmentation of the fetus, 
which showed high accuracy (Dice similarity index up to 
0.96). No apparent improvement was however seen using 
a standard three-dimensional U-net compared to a standard 
two-dimensional U-net. Network performance increased for 
the three-dimensional U-net with the addition of another 
network to correct segmentation in slices prone to error. 
However, that three-dimensional U-net requires advanced 

graphics cards generally not available in clinical routine 
settings. Further, the current study used a two-dimensional 
U-net analyzing the image slab in three orthogonal direc-
tions. This means that the decision to classify a pixel as fetus 
is based on more information compared with standard two-
dimensional U-nets, increasing network performance. Fur-
thermore, two-dimensional U-nets are easily implemented 
on current clinical systems, making the proposed method 
useful for clinical application.

Finally, ultrasound may be better than 3D MRI for fetal 
volume quantification in early pregnancy due to the higher 
resolution of ultrasound images. Although there is currently 
no automatic method for generating fetal 3D models from 
ultrasound images, such methods are developing [24, 25]. 
On the other hand, it may be challenging to get ultrasound 
images of sufficient quality for segmentation of the whole 
fetus, particularly in late pregnancy where acoustic win-
dows may be a limiting factor [25, 26]. It is thus plausible 
that ultrasound and MRI could complement one another to 
achieve accurate fetal volume quantification in early and late 
gestation, respectively.

This study has suggested an artificial intelligence-based 
automatic method for estimation of fetal weight using 3D 
MRI. This enables routine accurate and fast weight estima-
tion of fetuses undergoing MRI examinations, and therefore 
adds potentially clinically useful information to existing 
fetal MRI imaging protocols. Future studies are warranted to 
develop artificial intelligence-based methods for automatic 
detection of fetal pathology, such as congenital heart disease, 
diaphragmatic hernia, or myelomeningocele.

Limitations

The current study included relatively large fetuses with a 
weight span of approximately 2000–4000 g. It remains to be 
shown if fetal volume measurements by the proposed method 
are feasible in smaller fetuses in early gestation, and to what 
extent such measurements agree with ultrasound-based esti-
mations. However, in order to test the generalizability of the 
network, the automatic segmentation algorithm was tested 
on a twin pregnancy with promising results despite that the 
algorithm was not trained in twin pregnancies. This shows 
strong potential for the proposed method to work across a 
wider range of fetal sizes.

Conclusions

The proposed method can be clinically applied for automatic 
segmentation of fetal volume and weight. This saves analysis 
time and makes indexation of fetal blood flow to fetal size 
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clinically feasible. Further, it could be a useful complement 
in clinical practice for assessing fetal growth restriction, par-
ticularly when acoustic windows are poor as in late gestation 
fetuses and in fetuses suspected to be smaller or larger than 
what standard ultrasound methods are accurate for. Indexed 
fetal blood flow values were similar across the range of fetal 
weights in the current study, which illustrates the confound-
ing effect of fetal weight and the benefit of indexed values 
for physiological comparison between individuals.
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