
Appl Math Optim (2018) 77:567–597
https://doi.org/10.1007/s00245-016-9388-7

Nonzero-Sum Games of Optimal Stopping for Markov
Processes

Natalie Attard1

Published online: 7 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Two players are observing a right-continuous and quasi-left-continuous
strong Markov process X. We study the optimal stopping problem V 1

σ (x) =
supτ M

1
x (τ, σ ) for a given stopping time σ (resp. V 2

τ (x) = supσ M2
x (τ, σ ) for

given τ ) where M1
x (τ, σ ) = Ex [G1(Xτ )I (τ ≤ σ) + H1(Xσ )I (σ < τ)] with

G1, H1 being continuous functions satisfying somemild integrability conditions (resp.
M2

x (τ, σ ) = Ex [G2(Xσ )I (σ < τ) + H2(Xτ )I (τ ≤ σ)] with G2, H2 being con-
tinuous functions satisfying some mild integrability conditions). We show that if
σ = σD2 = inf{t ≥ 0 : Xt ∈ D2} (resp. τ = τD1 = inf{t ≥ 0 : Xt ∈ D1})
where D2 (resp. D1) has a regular boundary, then V 1

σD2
(resp. V 2

τD1
) is finely contin-

uous. If D2 (resp. D1) is also (finely) closed then τ
σD2∗ = inf{t ≥ 0 : Xt ∈ D

σD2
1 }

(resp. σ
τD1∗ = inf{t ≥ 0 : Xt ∈ D

τD1
2 }) where D

σD2
1 = {V 1

σD2
= G1} (resp.

D
τD1
2 = {V 2

τD1
= G2}) is optimal for player one (resp. player two). We then derive a

partial superharmonic characterisation for V 1
σD2

(resp. V 2
τD1

) which can be exploited
in examples to construct a pair of first entry times that is a Nash equilibrium.
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1 Introduction

Optimal stopping games, often referred to as Dynkin games, are extensions of optimal
stopping problems. Since the seminal paper of Dynkin [14], optimal stopping games
have been studied extensively. Martingale methods for zero-sum games were studied
by Kifer [32], Neveu [44], Stettner [55], Lepeltier andMaingueneau [41] and Ohtsubo
[45]. The Markovian framework was initially studied by Frid [22], Gusein-Zade [26],
Elbakidze [18] and Bismut [5]. Bensoussan and Friedman [2] and Friedman [20,21]
considered zero-sum optimal stopping games for diffusions and developed an analytic
approach by relying on variational and quasi-variational inequalities. Ekström and
Peskir [16] proved the existence of a value in two-player zero-sum optimal stopping
games for right-continuous strong Markov processes and construct a Nash equilib-
rium point under the additional assumption that the underlying process is quasi-left
continuous. Peskir in [51] and [52] extended these results further by deriving a semi-
harmonic characterisation of the value of the game without assuming that a Nash
equilibrium exists a priori. In particular, a necessary and sufficient condition for the
existence of a Nash equilibrium is that the value function coincides with the smallest
superharmonic and the largest subharmonic function lying between the gain and the
loss function which, in the case of absorbed Brownian motion in [0,1], is equivalent
to ‘pulling a rope’ between ‘two obstacles’ (that is finding the shortest path between
the graphs of two functions). Connections between zero-sum optimal stopping games
and singular stochastic control problems were studied in [23,31] and[4]. Cvitanic and
Karatzas [11] showed that backward stochastic differential equations are connected
with the value function of a zero-sum Dynkin game. Advances in this direction can
be found in [27]. Various authors have also studied zero-sum optimal stopping games
with randomised strategies. For further details one can refer to [39] and the references
therein. Zero-sum optimal stopping games have been used extensively in the pricing
of game contingent claims both in complete and incomplete markets (see for example
[15,17,24,25,30,33,35,36,38] and [19]).

Literature on nonzero-sum optimal stopping games is mainly concerned with the
existence of a Nash equilibrium. Initial studies in discrete time date back to Morimoto
[42] wherein a fixed point theorem for monotone mappings is used to derive sufficient
conditions for the existence of a Nash equilibrium point. Ohtsubo [46] derived equilib-
riumvalues via backward induction and in [47] the same author considers nonzero-sum
games in which the lower gain process has a monotone structure, and gives sufficient
conditions for a Nash equilibrium point to exist. Shmaya and Solan in [54] proved
that every two player nonzero-sum game in discrete time admits an ε-equilibrium in
randomised stopping times. In continuous time Bensoussan and Friedman [3] showed
that, for diffusions, a Nash equilibrium exists if there exists a solution to a system of
quasi-variational inequalities. However, the regularity and uniqueness of the solution
remain open problems. Nagai [43] studies a nonzero-sum stopping game of sym-
metric Markov processes. A system of quasi-variational inequalities is introduced in
terms of Dirichlet forms and the existence of extremal solutions of a system of quasi-
variational inequalities is discussed. Nash equilibrium points of the stopping game are
then obtained from these extremal solutions. Cattiaux and Lepeltier [8] study special
right-processes, namely Hunt processes in the Ray topology, and they prove existence
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of a quasi-Markov Nash Equilbrium. The authors follow Nagai’s idea but use prob-
abilistic tools rather than the theory of Dirichlet forms. Huang and Li in [29] prove
the existence of a Nash equilibrium point for a class of nonzero-sum noncyclic stop-
ping games using the martingale approach. Laraki and Solan [40] proved that every
two-player nonzero-sum Dynkin game in continuous time admits an ε−equilibrium
in randomised stopping times. Hamadène and Zhang in [28] prove existence of a
Nash equilibrium using the martingale approach, for processes with positive jumps.
One application of nonzero-sum optimal stopping games is seen in the study of game
options in incomplete markets, via the consideration of utility-based arguments (see
[34]). Nonzero-sum optimal stopping games have also been used to model the inter-
action between bondholders and shareholders in the study of convertible bonds, when
corporate taxes are included and when the company is allowed to claim default (see
[9]).

In this work we consider two player nonzero-sum games of optimal stopping for
a general strong Markov process. The aim is to use probabilistic tools to study the
optimal stopping problem of player one (resp. player two) when the stopping time of
player two (resp. player one) is externally given. Although this work does not deal
with the question of existence of mutually best responses (that is the existence of a
Nash equilibrium) the results obtained can be exploited further in various examples,
to show the existence of a pair of first entry times that will be a Nash equilibrium.
Indeed, the results derived here will be used in a separate work (see [1]) to construct
Nash equilibrium points for one dimensional regular diffusions and for a certain class
of payoff functions.

This paper is organised as follows: In Sect. 2 we introduce the underlying setup
and formulate the nonzero-sum optimal stopping game. In Sect. 3 we show that if the
strategy chosen by player two (resp. player one) is σD2 (resp. τD1 ), the first entry time
into a regular Borel subset D2 (resp. D1) of the state space, then the value function of
player one associated with σD2 (resp. the value function of player two associated with
τD1 ), which we shall denote by V

1
σD2

(resp. V 2
τD1

), is finely continuous. In Section 4 we

shall use this regularity property of V 1
σD2

(resp. V 2
τD1

) to construct an optimal stopping
time for player one (resp. player two). In Sect. 5 we shall use the results obtained
in Sects. 3 and 4 to provide a partial superharmonic characterisation for V 1

σD2
(resp.

V 2
τD1

). More precisely if D2 (resp. D1) is also a closed or finely closed subset of the

state space then V 1
σD2

(resp. V 2
τD1

) can be identified with the smallest finely continuous
function that is superharmonic in Dc

2 (resp. in Dc
1) and that majorises the lower payoff

function. In Section 6 we shall consider stationary one-dimensional Markov processes
and we shall assume that there exists a pair of stopping times (τA∗ , σB∗) of the form
τA∗ = inf{t ≥ 0 : Xt ≤ A∗} and σB∗ = inf{t ≥ 0 : Xt ≥ B∗} where A∗ < B∗,
that is a Nash equilibrium point. We first show that V 1

σB∗ (resp. V 1
τA∗ ) is continuous at

A∗ (resp. at B∗). Then for the special case of one dimensional regular diffusions we
shall use the results obtained in Sect. 5 to show that V 1

σB∗ (resp. V 2
τA∗ ) is also smooth

at A∗ (resp. B∗) provided that the payoff functions are smooth. This is in line with
the principle of smooth fit observed in standard optimal stopping problems (see for
example [49] for further details).
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2 Formulation of the Problem

In this section we shall formulate rigorously the nonzero-sum optimal stopping game.
For this we shall first set up the underlying framework. This will be similar to the one
presented by Ekström and Peskir (cf. [16, p. 3]). On a given filtered probability space(
�,F , (Ft )t≥0,Px

)
we define a strong Markov process X = (Xt )t≥0 with values in

a measurable space (E,B), with E being a locally compact Hausdorff space with a
countable base (note that since E has a countable base then it is a Polish space) and
B the Borel σ -algebra on E . We shall assume that Px (X0 = x) = 1, that the sample
paths of X are right-continuous and that X is quasi-left-continuous (that is Xρn → Xρ

Px -a.s. whenever ρn and ρ are stopping times such that ρn ↑ ρ Px -a.s.). All stopping
times mentioned throughout this text are relative to the filtration (Ft )t≥0 introduced
above, which is also assumed to be right-continuous. This means that entry times in
open and closed sets are stopping times. Moreover F0 is assumed to contain all Px -
null sets from F X∞ = σ (Xt : t ≥ 0), which further implies that the first entry times
to Borel sets are stopping times. We shall also assume that the mapping x 	→ Px (F)

is (universally) measurable for each F ∈ F so that the mapping x 	→ Ex [Z ] is
(universally) measurable for each (integrable) random variable Z .

Remark 2.1 Note that a subset F of a Polish space E is said to be universally measur-
able if it isμ-measurable for every finite measureμ on (E,B), where B is the Borel-σ
algebra on E . By μ-measurable we mean that F is measurable with respect to the
completion of B under μ. If B∗ is the collection of universally measurable subsets of
E then a function f : E → R is said to be universally measurable if f −1(A) ∈ B∗
for all A ∈ B(R), where B(R) is the Borel-σ algebra on R.

Finally we shall assume that� is the canonical space E [0,∞) with Xt (ω) = ω(t) for
ω ∈ �. In this case the shift operator θt : � → � iswell definedby θt (ω)(s) = ω(t+s)
for ω ∈ � and t, s ≥ 0.

The Markovian version of a nonzero-sum optimal stopping game may now be
formally described as follows. Let G1,G2, H1, H2 : E → R be continuous functions
satisfying Gi ≤ Hi and the following integrability conditions;

Ex [sup
t

|Gi (Xt )|] < ∞, and Ex [sup
t

|Hi (Xt )|] < ∞ (2.1)

for i = 1, 2. Suppose that two players are observing X . Player one wants to choose a
stopping time τ and player two a stopping time σ in such a way as to maximise their
total average gains, which are respectively given by

M1
x (τ, σ ) = Ex [G1 (Xτ ) I (τ ≤ σ) + H1 (Xσ ) I (σ < τ)] (2.2)

M2
x (τ, σ ) = Ex [G2 (Xσ ) I (σ < τ) + H2 (Xτ ) I (τ ≤ σ)] . (2.3)

For a given strategy σ chosen by player two, we let

V 1
σ (x) = sup

τ
M1

x (τ, σ ) (2.4)
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and for a given strategy τ chosen by player one, we let

V 2
τ (x) = sup

σ
M2

x (τ, σ ). (2.5)

We shall refer to V 1
σ (resp. V 2

τ ) as the value function of player one (resp. player two)
associated with the given stopping time σ (resp. τ ) of player two (resp. player one).
We shall assume that the stopping times in (2.4) and (2.5) are finite valued and if the
terminal time T is finite we shall further assume that

Gi (XT ) = Hi (XT ) Px -a.s. (2.6)

for i = 1, 2. In this case one can think of X as being a two dimensional process
((t,Yt ))t≥0 so that Gi and Hi will be functions on [0, T ] × E (cf. [49, p. 36]).
(We note that if the terminal time T is infinite and the stopping times τ and σ are
allowed to be infinite our results will still be valid provided that lim supt→∞ Gi (Xt ) =
lim supt→∞ Hi (Xt ) Px -a.s).

The game is said to have a solution if there exists a pair of stopping times (τ∗, σ∗)
which is a Nash equilibrium point, that is M1

x (τ, σ∗) ≤ M1
x (τ∗, σ∗) and M2

x (τ∗, σ ) ≤
M2

x (τ∗, σ∗) for all stopping times τ, σ . Thismeans that none of the playerswill perform
better if they change their strategy independent of each other. In this case V 1

σ∗(x) =
M1

x (τ∗, σ∗) is the payoff function of player one and V 2
τ∗(x) = M2

x (τ∗, σ∗) the payoff
function of player two in this equilibrium. So V 1

σ∗ and V 2
τ∗ can be called the value

functions of the game (corresponding to (τ∗, σ∗)). In general, as we shall see in Sect.
6, there might be other pairs of stopping times that form a Nash equilibrium point,
which can lead to different value functions.

3 Fine continuity property

In this section we show that if the strategy chosen by player two (resp. player one)
corresponds to the first entry time into a subset D2 (resp. D1) of E , whose boundary
∂D2 (resp. ∂D1) is regular, then V 1

σD2
(resp. V 2

τD1
) is continuous in the fine topology

(i.e. finely continuous). For literature on the fine topology one can refer to [6,10] and
[13]. We first define the concept of a finely open set and a regular boundary of a Borel
subset of E .

Definition 3.1 An arbitrary set B ⊆ E is said to be finely open if there exists a Borel
set A ⊆ B such that Px (ρAc > 0) = 1 for every x ∈ A, where ρAc = inf{t > 0 :
Xt ∈ Ac} is the first hitting time in Ac.

Definition 3.2 The boundary ∂D of a Borel set D ⊆ E is said to be regular for D if
Px (ρD = 0) = 1 for every point x ∈ ∂D, where ρD = inf{t > 0 : Xt ∈ D}.

We now introduce preliminary results which are needed to prove the main theorem
of this section.
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Lemma 3.3 For any given stopping time σ (resp. τ ), the mapping x 	→ V 1
σ (x), (resp.

x 	→ V 2
τ (x)) is measurable.

Proof To prove measurability of the mapping x 	→ V 2
τ (x) one can follow the proof

in [16, p. 5, pt. 3] by replacing G1 and G2 with G2 and H2 respectively (note
that our payoff functions are assumed to be continuous, hence finely-continuous).
So we shall only prove the result for V 1

σ . Ekström and Peskir [16, p. 5, pt. 3]
proved that for any given stopping time σ , the function Ṽ 1

σ of the optimal stop-
ping problem supτ M̃

1
x (τ, σ ) = supτ Ex [G1(Xτ )I (τ < σ) + H1(Xσ )I (σ ≤ τ)]

is measurable. The same method of proof can be applied in this setting with the fol-
lowing slight modification: Let Gσ,1

t = G1(Xτ )I (t ≤ σ) + H1(Xσ )I (σ < t) and
G̃σ,1

t = G1(Xt )I (t < σ) + H1(Xσ )I (σ ≤ t). Note that the mapping t 	→ Gσ,1
t is

not right-continuous. Now for any stopping time τ in the optimal stopping problem
(2.4) we let τn = k

2n on { k−1
2n < τ ≤ k

2n } for each n ≥ 1. It is well known that τn , for
each n is a stopping time on the dyadic rationals Qn of the form k

2n and that τn ↓ τ as
n → ∞. Since G1(X) is right-continuous we have that

lim
n→∞Gσ,1

τn
= G̃σ,1

τ Px -a.s. (3.1)

SinceG1 ≤ H1 we get, upon using (3.1) and Fatou’s lemma (the required integrability
condition for using Fatou’s lemma can be derived from the integrability assumption
(2.1)), that

Ex
[
Gσ,1

τ

] ≤ Ex
[
G̃σ,1

τ

] = Ex
[
lim
n→∞Gσ,1

τn

] ≤ lim inf
n→∞ Ex

[
Gσ,1

τn

]

≤ sup
n≥1

sup
τ∈Qn

Ex
[
Gσ,1

τ

] =: sup
n≥1

V σ,1
n (x). (3.2)

Taking the supremum over all τ it follows that V 1
σ (x) ≤ supn≥1 V

σ,1
n (x). On the

other hand, V σ,1
n (x) ≤ V 1

σ (x) for all n ≥ 1 so we get that V 1
σ (x) = supn≥1 V

σ,1
n (x)

for all x ∈ E . Measurability of V 1
σ (x) follows from the measurability property of

supn≥1 V
σ,1
n (x) as in [16]. �

Lemma 3.4 Let D be a Borel subset of E and let x ∈ ∂D, where ∂D is a regular
boundary for D. Suppose that (ρn)

∞
n=1 is a sequence of stopping times such that

ρn ↓ 0 Px -a.s. as n → ∞. Set σρn = inf{t ≥ ρn : Xt ∈ D}. Then σρn ↓ 0 Px -a.s. as
n → ∞.

Proof Let x ∈ ∂D. By regularity of ∂D for any ε > 0 there exists t ∈ (0, ε) such
that Xt ∈ D Px -a.s. Since σρn is a sequence of decreasing stopping times then σρn ↓
β Px -a.s. for some stopping time β. So suppose for contradiction that β > 0. Now
ρn ↓ 0 Px -a.s. and for each n we have σρn ≥ β Px -a.s. So for any given ω ∈ �\N
where Px (N ) = 0 we have that Xt (ω) /∈ D for all t ∈ (0, β(ω)) and this contradicts
the fact that ∂D is regular for D.

The next lemma and theorem, which we shall exploit in this study, provide condi-
tions for fine continuity. The proofs of these results can be found in [13].
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Lemma 3.5 A measurable function F : E → R is finely continuous if and only if

lim
t↓0 F(Xt ) = F(x) Px -a.s. (3.3)

for every x ∈ E. This is further equivalent to the fact that the mapping

t 	→ F(Xt (ω)) is right-continuous on R+ (3.4)

for every ω ∈ �\N where Px (N ) = 0 for all x ∈ E.

Theorem 3.6 Let F : E → R be ameasurable function and suppose that K1 ⊆ K2 ⊆
K3 ⊆ ... is a nested sequence of compact sets in E. Suppose also that ρKn ↓ 0 Px -a.s.
as n → ∞, where ρKn = inf{t ≥ 0 : Xt ∈ Kn}. If limn→∞ Ex [F(XρKn

)] = F(x)
then F is finely continuous.

We next state and prove the main result of this section, that is the fine continuity
property of V 1

σD2
(resp. V 2

τD1
).

Theorem 3.7 Let (ρn)∞n=1 be any sequence of stopping times such that ρn ↓ 0 Px -a.s.
as n → ∞. Suppose that D1, D2 are Borel subsets of E having regular boundaries
∂D1 and ∂D2 respectively. Then

lim
n→∞Ex

[
V 1

σD2
(Xρn )

] = V 1
σD2

(x) (3.5)

lim
n→∞Ex

[
V 2

τD1
(Xρn )

] = V 2
τD1

(x) (3.6)

where σD2 = inf{t ≥ 0 : Xt ∈ D2} and τD1 = inf{t ≥ 0 : Xt ∈ D1}.
Proof We will only prove (3.5) as (3.6) follows by symmetry.

1◦ From Lemma 3.3 we know that V 1
σD2

is measurable. This implies that

V 1
σD2

(Xρn ) = sup
τ

M1
Xρn

(τ, σD2) (3.7)

is a random variable. By the strong Markov property of X we have that

M1
Xρn

(τ, σD2) = Ex
[
G1(Xτρn

)I (τρn ≤ σρn ) + H1(Xσρn
)I (σρn < τρn )|Fρn

]
(3.8)

where we set τρn = ρn + τ ◦ θρn and σρn = ρn + σD ◦ θρn . It is well known that τρn

and σρn are stopping times (see for example [10, Section 1.3, Thoerem 11]). Let us set

M1
x (τ, σ |Fρ) = Ex

[
G1(Xτ )I (τ ≤ σ) + H1(Xσ )I (σ < τ)|Fρ

]
(3.9)

for given stopping times τ, σ and ρ. Then from (3.7) and (3.8) we get that

V 1
σD

(Xρn ) = ess supτ M
1
x (τρn , σρn |Fρn ) = ess supτ≥ρn

M1
x (τ, σρn |Fρn ). (3.10)
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The last equality follows from the fact that for every stopping time τ ≥ ρn , there exists
a function τρn : � × � → [0,∞] such that

τρn is Fρn ⊗ F∞ − measurable (3.11)

ϑ 	→ τρn (ω, ϑ) is a stopping time (3.12)

τ(ω) = ρn + τρn (ω, θρn (ω)) (3.13)

for all ω ∈ �. Note that the latter assertion can be derived from Galmarino’s test. In
particular if τ is the first entry time of X into a set, then τ = σ + τ ◦ θρn and τρn

can be identified with τ in the sense that τρn (ω, ϑ) = τ(ϑ) for all ω and ϑ . Taking
expectations on both sides in (3.10) we get

Ex
[
V 1

σD
(Xρn )

] = Ex
[
ess supτ≥ρn

M1
x (τ, σρn |Fρn )

]
. (3.14)

2◦ We next show that the family {M1
x (τ, σρn |Fρn ) : τ ≥ ρn} is upwards directed. For

this we show that for any two stopping times τ1, τ2 ≥ ρn there exists τ3 ≥ ρn such that
M1

x (τ3, σρn |Fρn ) ≥ M1
x (τ1, σρn |Fρn ) ∨ M1

x (τ2, σρn |Fρn ). So let τ1, τ2 ≥ ρn be any
two stopping times given and fixed and define the set A = {ω : M1

x (τ1, σρn |Fρn )(ω) ≥
M1

x (τ2, σρn |Fρn )(ω)}. Now A ∈ Fρn because M1
x (τi , σρn |Fρn ) for i = 1, 2 are

Fρn−measurable. Let τ3 = τ1 IA + τ2 IAc . Since τ1, τ2 ≥ ρn it follows that τ3 ≥ ρn .
Also, {τ3 ≤ t} = {{τ1 ≤ t} ∩ A} ∪ {{τ2 ≤ t} ∩ Ac} = {{τ1 ≤ t} ∩ A ∩ {ρn ≤ t}} ∪
{{τ2 ≤ t} ∩ Ac ∩ {ρn ≤ t}} ∈ Ft . This follows from the fact that the sets A and Ac

belong to Fρn and that {τi ≤ t} ⊆ {ρn ≤ t} for i = 1, 2. So τ3 is a stopping time and
hence,

M1
x

(
τ3, σρn |Fρn

) = M1
x

(
τ1 IA + τ2 IAc , σρn |Fρn

)
(3.15)

= M1
x

(
τ1, σρn |Fρn

)
IA + M1

x

(
τ2, σρn |Fρn

)
IAc

= M1
x

(
τ1, σρn |Fρn

) ∨ M1
x

(
τ2, σρn |Fρn

)

3◦ We next prove that if ∂D2 is a regular boundary for D2 then

V 1
σD2

(x) ≤ lim inf
n→∞ Ex

[
V 1

σD2
(Xρn )

]
. (3.16)

For this we first show that

M1
x (τ, σρn ) − M1

x (τ ∨ ρn, σρn ) = Ex [G1(Xτ∧ρn ) − G1(Xρn )] (3.17)
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Since σρn ≥ ρn we have that

M1
x (τ, σρn ) = Ex

[
(G1(Xτ )I (τ ≤ σρn ) + H1(Xσρn

)I (σρn < τ))I (τ < ρn)
]

+ Ex
[
(G1(Xτ∨ρn )I (τ ∨ ρn ≤ σρn )

+ H1(Xσρn
)I (σρn < τ ∨ ρn))I (τ ≥ ρn)

]

= Ex
[
G1(Xτ )I (τ < ρn)

] + M1
x (τ ∨ ρn, σρn )

− Ex
[
(G1(Xρn )I (ρn ≤ σρn ) + H1(Xσρn

)I (σρn < ρn)))I (τ < ρn)
]

= Ex
[
(G1(Xτ ) − G1(Xρn ))I (τ < ρn)

] + M1
x (τ ∨ ρn, σρn )

= Ex
[
G1(Xτ∧ρn ) − G1(Xρn )

] + M1
x (τ ∨ ρn, σρn ) (3.18)

fromwhich (3.17) follows. By considering separately the sets {σD2 < ρn}, {σD2 ≥ ρn}
(note that σρn = σD2 on the set {σD2 ≥ ρn}), {σD2 > 0}, {σD2 = 0}, {τ = 0} and
{τ > 0}, and by using Lemma 3.4 we get

M1
x (τ, σD2) − M1

x (τ, σρn )

= Ex [−G1(Xτ )I (τ ≤ σρn )I (0 < ρn)I (σD2 = 0)I (τ > 0)

+ (H1(X0) − H1(Xσρn
)I (σρn < τ))I (0 < ρn)I (σD2 = 0)I (τ > 0)]

= Ex [(H1(X0) − H1(Xσρn
))I (0 < ρn)I (σD2 = 0)I (τ > 0)] (3.19)

for n sufficiently large. The last equality in (3.19) can be seen as follows: If x ∈ intD2
the interior of D2 then by the right-continuity property of the sample paths it follows
that σρn = 0 Px -a.s. for n sufficiently large. If on the other hand x ∈ ∂D2 then by
Lemma 3.4, we have that σρn ↓ 0 Px -a.s. Note that in the case x /∈ D2 ∪ ∂D2 then
σD2 > 0 Px -a.s. and so the terms in the right-hand side of (3.19) vanish. Combining
(3.17) and (3.19) we get

M1
x (τ, σD2) − M1

x (τ ∨ ρn, σρn )

= M1
x (τ, σD2) − M1

x (τ, σρn ) + M1
x (τ, σρn )

− M1
x (τ ∨ ρn, σρn ) ≤ Ex [ sup

t≤ρn

|G1(Xt∧ρn ) − G1(Xρn )|]
+ Ex [|H1(X0) − H1(Xσρn

)|I (0 < ρn)I (σD2 = 0)I (τ > 0)]. (3.20)

for n sufficiently large. So

V 1
σD2

(x)

≤ lim inf
n→∞ sup

τ
M1

x (τ ∨ ρn, σρn )

= lim inf
n→∞ sup

τ≥ρn

M1
x (τ, σρn ) = lim inf

n→∞ Ex
[
V 1

σρn
(Xρn )

]
. (3.21)

The first inequality follows from (3.20). Indeed, since G1 and H1 are continuous,
the composed processes G1(X) and H1(X) are right-continuous and so both terms
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on the right hand side of (3.20) tend to zero as n → ∞ (note that if x ∈ ∂D2 this
follows from Lemma 3.4 whereas if x ∈ intD2 or x /∈ D ∪ ∂D the result follows as
explained in the text before (3.20)). The last equality in (3.21) follows from the fact
that the family {Mx (τ, σρn |Fρn ) : τ ≥ ρn} is upwards directed (see step 2◦), and so
we can interchange the expectation and the essential supremum in (3.14).

4◦ We show that V 1
σD2

(x) ≥ lim supn→∞ Ex [V 1
σρn

(Xρn )]. From (3.17) and (3.19)
we get

M1
x (τ, σD2) ≥ M1

x (τ ∨ ρn, σρn ) − Ex [ sup
t≤ρn

|G1(Xt ) − G1(Xρn )|] (3.22)

− Ex [|H1(X0) − H1(Xσρn
)|]

for any stopping time τ . From this, together with Lebesgue dominated convergence
theorem (upon recalling assumption (2.1)) and the continuity property of G1 and H1
we conclude that

V 1
σD2

(x) ≥ lim sup
n→∞

sup
τ≥ρn

M1
x (τ ∨ ρn, σρn ) = lim sup

n→∞
Ex

[
V 1

σρn
(Xρn )

]
.

�
We next present an example to show that if ∂D is not regular for D then V 1

σD
may

not be finely continuous.

Example 3.8 Let E = R and B the Borel σ -algebra on R. Suppose that X is the
deterministic motion to the right, that is the process starts at x ∈ R and Xt = x+ t Px -
a.s. for each t ≥ 0. In this case the fine topology coincides with the right-topology (cf.
[53]), so a function is finely continuous if it is right-continuous. Define the functions
G1(x) = ex−1

2 I (x < 1) + 1
2x2

I (x ≥ 1) and H1(x) = 1I (x < 1) + 1
x2
I (x ≥ 1).

Let D = {1} and σD = inf{t ≥ 0 : Xt ∈ D}. Then ∂D is not regular for D
because if ρD = inf{t > 0 : Xt ∈ D} then ρD = ∞ P1-a.s. We show that for
any given ε > 0 the stopping time τ ε = (τ[1,∞) + ε)1A + τ[1,∞)1A, where τ[1,∞)

is the first entry time of X in [1,∞) and A = {τ[1,∞) = σD}, is optimal for player
one given the strategy σD chosen by player two. For each ε > 0 we have that τ ε =
τ[1,∞) I (x > 1) + (τ[1,∞) + ε)I (x ≤ 1) = 0I (x > 1) + (1 − x + ε)I (x ≤ 1). So
M1

x (τ
ε, σD) = H1(1)I (x ≤ 1)+G1(x)I (x > 1). On the other hand, for any stopping

time τ one can see that

M1
x (τ, σD) ≤ Ex [G1(Xτ )I (τ < σD) + H1(XσD )I (σD ≤ τ)]

< (H1(1)I (τ < 1 − x) + H1(1)I (1 − x ≤ τ))I (x ≤ 1)

+ G1(x + τ)I (x > 1) ≤ M1
x (τ

ε, σD)

where the last inequality follows from the fact that G1 is decreasing in [1,∞). Taking
the supremum over all τ we get that V 1

σD
(x) ≤ M1

x (τ
ε, σD) for all x . Since on the other

hand V 1
σD

(x) ≥ M1
x (τ

ε, σD), it follows that V 1
σD

(x) = M1
x (τ

ε, σD) for all x and so we
must have that τ ε is optimal for player one, provided that player two selects strategy
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σD . The value function is thus given by V 1
σD

(x) = H1(x)I (x ≤ 1) + G1(x)I (x > 1)
which is not right-continuous.

4 Towards a Nash equilibrium

The main result of this section is to show that if σD2 (resp. τD1 ) is externally given as
the first entry time in D2 (resp. D1), a set that is either closed or finely closed, and
has a regular boundary, then the first entry time τ

σD2∗ = inf{t ≥ 0 : Xt ∈ D
σD2
1 }

(resp. σ
τD1∗ = inf{t ≥ 0 : Xt ∈ D

τD1
1 }) where D

σD2
1 = {V 1

σD2
= G1} (resp. DτD1

2 =
{V 2

τD1
= G2}) solves the optimal stopping problem V 1

σD2
(x) = supτ M

1
x (τ, σD2) (resp.

V 2
τD1

(x) = supσ M2
x (τD1 , σ )). The proof of this result will be divided into several

lemmas and propositions.

Proposition 4.1 Let D1, D2 be Borel subsets of E having regularies boundaries ∂D1
and ∂D2 respectively. Set τD1 = inf{t ≥ 0 : Xt ∈ D1} and σD2 = inf{t ≥ 0 : Xt ∈
D2}. Then,

V 1
σD2

(x) ≤ M1
x

(
τ

σD2
ε , σD2

) + ε (4.1)

V 2
τD1

(x) ≤ M2
x

(
τD1 , σ

τD1
ε

) + ε (4.2)

for any ε > 0, where τ
σD2
ε = inf{t ≥ 0 : Xt ∈ D

σD2 ,ε

1 } and σ
τD1
ε = inf{t ≥ 0 : Xt ∈

D
τD1 ,ε

2 } with D
σD2 ,ε

1 = {V 1
σD2

≤ G1 + ε} and D
τD1 ,ε

2 = {V 2
τD1

≤ G2 + ε}.

Proof We shall only prove (4.1) as for (4.2) the result follows by symmetry. The proof
will be carried out in several steps.

1◦ Consider the optimal stopping problem

Ṽ 1
σD2

(x) = sup
τ

M̃1
x (τ, σD2) (4.3)

where

M̃1
x (τ, σD2) = Ex

[
G1(Xτ )I (τ < σD2) + H1(XσD2

)I (σD2 ≤ τ)
]
. (4.4)

Recall that themapping x 	→ Ṽ 1
σD2

(x) ismeasurable (cf. [16, p. 5]) and so Ṽ 1
σD2

(Xρ) =
supτ M̃

1
Xρ

(τ, σD2) is a random variable for any stopping time ρ. By the strongMarkov
property of X it follows that for any stopping time ρ given and fixed

M̃1
Xρ

(τ, σD2) = EXρ

[
G1(Xτ )I (τ < σD2) + H1(XσD2

)I (σD2 ≤ τ)
]

(4.5)

= Ex
[
G1(Xρ+τ◦θρ )I (ρ + τ ◦ θρ < ρ + σD2 ◦ θρ)

+ H1(Xρ+σD2◦θρ )I (ρ + σD2 ◦ θρ ≤ ρ + τ ◦ θρ)|Fρ

]
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and so we have that

Ṽ 1
σD2

(Xρ) = ess sup
τ

Ex
[
G1(Xρ+τ◦θρ )I (ρ + τ ◦ θρ < ρ + σD2 ◦ θρ)

+ H1(Xρ+σD2◦θρ )I (ρ + σD2 ◦ θρ ≤ ρ + τ ◦ θρ)|Fρ

]

=: ess sup
τ

M̃1
x (τρ, σ

ρ
D2

|Fρ) (4.6)

where σ
ρ
D2

= inf{t ≥ ρ : Xt ∈ D2} and τρ = ρ + τ ◦ θρ . The gain process

G̃
σD2 ,1
t = G1(Xt )I (t < σD2) + H1(XσD2

)I (σD2 ≤ t) is right-continuous, adapted
and satisfies the integrability condition

Ex [sup
t≥0

|GσD2 ,1
t |] = Ex [sup

t≥0
|G1(Xt )I (t < σD2) + H1(XσD2

)I (σD2 ≤ t)|]
≤ Ex [sup

t≥0
|G1(Xt )I (t < σD2)| + sup

t≥0
|H1(XσD2

)I (σD2 ≤ t)|] < ∞

where the last inequality follows from assumption (2.1). So the martingale approach
in the theory of optimal stopping (cf. [49, Theorem 2.2]) can be applied in this setting
to deduce that there exists a right-continuous modification of the supermartingale

S̃
σD2
t = ess sup

τ≥t
M̃1

x (τ, σD2 |Ft ), (4.7)

known as the Snell envelope (for simplicity of exposition we shall still denote the
right-continuous modification by S̃

σD2
t ), such that the stopping time τ̂t := τ̂

σD2
t =

inf{s ≥ t : S̃σD2
s = G̃

σD2 ,1
s } is optimal. It is known (cf. [49, Theorem 2 p. 29]) that

the stopped process (S̃
σD2
s∧τ̂t

)s≥t is a right-continuous martingale and so

Ex
[
S̃

σD2
ρ

] = Ex
[
S̃

σD2
ρ∧τ̂ε

] = Ex
[
S̃

σD2
ρ∧τ̂ε∧τ̂0

] = S̃
σD2
0 = Ṽ 1

σD2
(x) (4.8)

for every stopping time ρ ≤ τ̂ε where τ̂ε := τ
σD2
ε = inf{t ≥ 0 : S̃σD2

t ≤ G̃
σD2 ,1
t + ε}.

Using the fact thatσρ
D2

= σD2 for any stopping timeρ ≤ σD2 , thatPx -a.s., the essential
supremum and its right-continuous modification are equivalent at stopping times and
that the essential supremum is attained at hitting times (cf. [49]) it follows, from (4.6),
that

Ṽ 1
σD2

(Xρ) = S
σD2
ρ Px -a.s. (4.9)

for every stopping time ρ ≤ σD2 .
2◦. We next show that V 1

σD2
(x) = Ṽ 1

σD2
(x). Since G1 ≤ H1 we have that

Ṽ 1
σD2

(x) ≥ M̃1
x (τ, σD2) ≥ M1

x (τ, σD2) (4.10)

for all stopping times τ and for all x ∈ E . Taking the supremum over all τ we get that

Ṽ 1
σD2

(x) ≥ V 1
σD2

(x). (4.11)
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To prove the reverse inequality we will show that M̃1
x (τ, σD2) ≤ V 1

σD2
(x) for all

stopping times τ so that supτ M̃
1
x (τ, σD2) = Ṽ 1

σD2
(x) ≤ V 1

σD2
(x). By definition of

V 1
σD2

we have that V 1
σD2

(x) ≥ M1
x (τ, σD2) for all stopping times τ . Now take any

stopping time τ and set τ ε = (τ + ε)1A + τ1Ac where A = {τ = σD2}. (Note that τ ε

is a stopping time since A ∈ Fτ∧σD2
⊂ Fτ ). If the time horizon T is finite, then we

shall replace τ + ε in the definition of τ ε with (τ + ε) ∧ T ). Then we have that

M1
x (τ

ε, σD2)

= Ex
[
(G1(Xτ ε )I (τ ε ≤ σD2) + H1(XσD2

)I (σD2 < τε))I (τ = T )I (σD2 = T )

+ (G1(Xτ ε )I (τ ε ≤ σD2) + H1(XσD2
)I (σD2 < τε))I (τ < T )I (σD2 = T )

+ (G1(Xτ ε )I (τ ε ≤ σD2) + H1(XσD2
)I (σD2 < τε))I (τ = T )I (σD2 < T )

+ (G1(Xτ ε )I (τ ε ≤ σD2) + H1(XσD2
)I (σD2 < τε))I (τ < T )I (σD2 < T )]

= Ex [(G1(Xτ )I (τ < σD2) + H1(XσD2
)I (σD2 ≤ τ))I (τ = T )I (σD2 = T )

+ (G1(Xτ )I (τ < σD2) + H1(XσD2
)I (σD2 ≤ τ))I (τ < T )I (σD2 = T )

+ (G1(Xτ )I (τ < σD2) + H1(XσD2
)I (σD2 ≤ τ))I (τ = T )I (σD2 < T )

+ (G1(Xτ )I (τ < σD2) + H1(XσD2
)(1A + I (σD2 < τ))I (τ < T )I (σD2 < T )

]

= M̃1
x (τ, σD2)

The first and third expressions in the second equality follow from assumption (2.6).
The second expression also follows from assumption (2.6) together with the fact that
I (τ ε < σD2) = I (τ < σD2) on the set {τ < T }. The last expression follows from
the fact that I (τ ε = σD2) = 0 and I (σD2 < τε) = 1A + I (σD2 < τ) on the
set {τ < T } ∩ {σD2 < T }. So for any given stopping time τ we have V 1

σD2
(x) ≥

M1
x (τ

ε, σD2) = M̃1
x (τ, σD2).

3◦. We show that V 1
σD2

(x) = Ex [V 1
σD2

(XσD2∧τε )] where τε := τ
σD2
ε = inf{t ≥ 0 :

Xt ∈ D
σD2 ,ε

1 } with D
σD2 ,ε

1 = {V 1
σD2

≤ G1 + ε}. From step 2◦ it is sufficient to prove

that Ṽ 1
σD2

(x) = Ex [Ṽ 1
σD2

(XσD2∧τ̃ε
)] where τ̃ε := τ̃

σD2
ε = inf{t ≥ 0 : Xt ∈ D̃

σD2 ,ε

1 }
with D̃

σD2 ,ε

1 = {Ṽ 1
σD2

≤ G1 + ε}. By definition of τ̃ε, for any given t < σD2 ∧ τ̃ε, we
have

Ṽ 1
σD2

(Xt ) > G1(Xt ) + ε

= G1(Xt )I (t < σD2) + H1(XσD2
)I (σD2 ≤ t) + ε

= G̃
σD2 ,1
t + ε (4.12)

where the first equality follows from the fact that I (σD2 ≤ t) = 0. Since σD2 ∧ τ̃ε ≤
σD2 , by (4.9) it follows that

Ṽ 1
σD2

(XσD2∧τ̃ε
) = S̃

σD2
σD2∧τ̃ε

Px -a.s. (4.13)
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Using (4.9) again we get
Ṽ 1

σD2
(Xt ) = S̃

σD2
t Px -a.s. (4.14)

So by (4.12) we can conclude that

S̃
σD2
t > G̃

σD2 ,1
t + ε Px -a.s. (4.15)

Recall, from step 2◦, that τ̂ε = inf{t ≥ 0 : S̃σD2
t ≤ G̃

σD2,1
t }. By using the definition

of τ̂ε together with (4.15) one can see that σD2 ∧ τ̃ε ≤ τ̂ε. By using (4.8), (4.9) and
that (S̃

σD2
s∧τ̂0

)s≥0 is a martingale we further get that

S̃
σD2
0 = Ṽ 1

σD2
(x) = Ex

[
S̃

σD2
σD2∧τ̃ε∧τ̂ε

] = Ex
[
S̃

σD2
σD2∧τ̃ε

] = Ex
[
Ṽ 1

σD2
(XσD2∧τ̃ε

)
]
. (4.16)

From (4.16) together with the fine continuity property of V 1
σD2

(upon using Lemma
3.5), the right-continuity property of the composite process G(X) and the fact that
Ṽ 1

σD2
= V 1

σD2
, we have

V 1
σD2

(x) = Ex
[
S̃

σD2
σD2∧τε

] = Ex
[
S̃

σD2
τε I (τε ≤ σD2) + S̃

σD2
σD2

I (σD2 < τε)
]

= Ex
[
Ṽ 1

σD2
(Xτε )I (τε ≤ σD2) + H1(XσD2

)I (σD2 < τε)
]

≤ Ex
[
(G1(Xτε ) + ε)I (τε ≤ σD2) + H1(XσD2

)I (σD2 < τε)
]

≤ M1
x (τε, σD2) + ε (4.17)

for any ε > 0, where the third equality follows from the fact that

S̃
σD2
σD2

= ess sup
τ≥σD2

Ex [G1(Xτ )I (τ < σD2) + H1(XσD2
)I (σD2 ≤ τ)|FσD2

]

= ess sup
τ≥σD2

Ex [H1(XσD2
)|FσD2

] = H1(XσD2
) (4.18)

�
Lemma 4.2 Let {ρn}∞n=1 be a sequence of stopping times such that ρn ↑ ρ Px -a.s.
For a given Borel set D ⊆ E define the entry times σρn = inf{t ≥ ρn : Xt ∈ D} and
σρ = inf{t ≥ ρ : Xt ∈ D}. If either

D is closed, or (4.19)

D is finely closed with regular boundary ∂D, (4.20)

then σρn ↑ σρ Px -a.s.

Proof Since ρn is an increasing sequence of stopping times, σρn is increasing and thus
σρn ↑ β Px -a.s. for some stopping time β. We need to prove that β = σρ Px − a.s.
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1◦ We first show that β ≥ ρ Px -a.s. Suppose, for contradiction, that the set �̂ :=
{ω ∈ � : β(ω) < ρ(ω)} is of positive measure. Since ρn ↑ ρ Px -a.s. then for every
ω ∈ �̂\N1, where Px (N1) = 0-a.s., there exists n0(ω) ∈ N such that

ρn(ω) > β(ω) (4.21)

for all n ≥ n0(ω). But for each n ∈ N we have that σρn ≤ β Px -a.s., so for every
ω ∈ �̂\N2 where Px (N2) = 0 there exists n1(ω) ∈ N such that

σρn (ω) < ρn(ω) (4.22)

for all n ≥ n1(ω). Combining (4.21) and (4.22) it follows that for every ω ∈ �̂\(N1 ∪
N2) there exists n̂(ω) ∈ N such that σρn (ω) < ρn(ω) for all n ≥ n̂(ω). But this
contradicts the fact that σρn ≥ ρn Px -a.s. So we must have that β ≥ ρ Px -a.s.

2◦ Let �1 = {ω ∈ � : β(ω) > ρ(ω)} and �2 = {ω ∈ � : β(ω) = ρ(ω)}. We
prove that there exists a set N with Px (N ) = 0 such that β(ω) = σρ(ω) for every
ω ∈ (�1 ∪ �2)\N .

(i.) Suppose first that Px (�1) > 0. Since σρn ↑ β Px -a.s. then for every ω ∈
�1\N3, where Px (N3) = 0, there exists n2(ω) ∈ N such that σρn (ω) > ρ(ω) for all
n ≥ n2(ω). Moreover, since σρ(ω) ≥ ρ(ω) for every ω ∈ �1\N4 where Px (N4) = 0
it follows that for every ω ∈ �1\N , where N = N3 ∪ N4, there exists n3(ω) ∈ N

such that σρn (ω) = σρ(ω) for all n ≥ n3(ω). From this it follows that β = σρ Px -a.s.
on �1.

(ii.)Now suppose thatPx (�2) > 0. Let us consider first the case when (4.19)holds.
So we have that σρn (ω) ↑ ρ(ω) for every ω ∈ �2\N5 where Px (N5) = 0. The fact
that D is closed implies that Xσρn

∈ D for all n ∈ N. Moreover, by the quasi-left-
continuity property of X it follows that Xσρn (ω)

(ω) → Xρ(ω)(ω) for every ω ∈ �2\N6
where Px (N6) = 0. Again using the fact that D is closed we have that Xρ(ω) ∈ D
for every ω ∈ �2\N7 where Px (N7) = 0. From this it follows that σρ(ω) = ρ(ω)

for every ω ∈ �2\N with N = N6 ∪ N7. By definition of �2, this implies that
σρ = β Px -a.s. on�2. Now let us consider the casewhen (4.20) holds. Again by quasi-
left-continuous of X it follows that Xσρn (ω)(ω) → Xρ(ω)(ω) for each ω ∈ �2\N8
withPx (N8) = 0. Since D is not necessarily closed we have that Xρ(ω)(ω) ∈ D∪∂D.
Suppose first that Xρ(ω)(ω) ∈ D. This means that σρ(ω)(ω) = ρ(ω) and so we have
that σρn(ω)(ω) ↑ σρ(ω)(ω). From this we can conclude that β(ω) = σρ(ω)(ω). To
prove that σρ = ρ Px -a.s. on the set �′ := {ω ∈ � : Xρ(ω) ∈ ∂D} it is sufficient to
show that Px ({σρ > ρ} ∩ �′). Let ηD = inf{t > 0 : Xt ∈ D}. By the strong Markov
property of X we have that

EXρ [I (ηD > 0)] = Ex [I (ρ + ηD ◦ θρ > ρ)|Fρ] (4.23)

Multiplying both sides in (4.23) by I�′ and taking Ex expectation on both sides (note
that Xρ is Fρ measurable) we get that Px ({σρ > ρ} ∩ �′) = Ex [I�′EXρ [I (ηD >

0)]] = 0 by the regularity property of X . �
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Proposition 4.3 Let D1, D2 be either closed or finely closed subsets of E. Suppose
also that their respective boundaries ∂D1 and ∂D2 are regular. Let τD1 and σD2 be
the first entry times into D1 and D2 respectively. Set τ

σD2
ε = inf{t ≥ 0 : Xt ∈ D

σD2 ,ε

1 }
and σ

τD1
ε = inf{t ≥ 0 : Xt ∈ D

τD1 ,ε

2 } where D
σD2 ,ε

1 = {V 1
σD2

≤ G1 + ε} and

D
τD1 ,ε

2 = {V 2
τD1

≤ G2 + ε}. Then τ
σD2
ε ↑ τ

σD2∗ Px -a.s. and σ
τD1
ε ↑ σ

τD1∗ Px -

a.s., where τ
σD2∗ = inf{t ≥ 0 : Xt ∈ D

σD2
1 } with D

σD2
1 = {V 1

σD2
= G1} and

σ
τD1∗ = inf{t ≥ 0 : Xt ∈ D

τD1
2 } with D

τD1
2 = {V 2

τD1
= G2}.

Proof We shall only prove that τ
σD2
ε ↑ τ

σD2∗ Px -a.s. as the other assertion follows
by symmetry. Recall the definition of Ṽ 1

σD2
from (4.3)–(4.4). From step 2◦ in the

proof of Proposition 4.1 it is sufficient to prove that τ̃ε ↑ τ̃∗, where we recall that
τ̃ε = inf{t ≥ 0 : Xt ∈ D̃

σD2 ,ε

1 } with D̃
σD2 ,ε

1 = {Ṽ 1
σD2

≤ G1 + ε} and τ̃
σD2∗ = inf{t ≥

0 : Xt ∈ D̃
σD2
1 } with D̃

σD2
1 = {Ṽ 1

σD2
= G1}. For each ε > 0 we have that τ̃ε ≤ τ̃

σD2∗ .

Since τ̃ε increases as ε decreases, τ̃ε ↑ β as ε ↓ 0 where β ≤ τ̃
σD2∗ Px -a.s. To prove

that β = τ̃
σD2∗ we first show that

Ex
[
Ṽ 1

σD2
(Xβ)

] ≤ lim inf
ε↓0 Ex

[
Ṽ 1

σD2
(X τ̃ε

)
]

(4.24)

For stopping times σβ = inf{t ≥ β : Xt ∈ D2} and στ̃ε
= inf{t ≥ τ̃ε : Xt ∈ D2} we

have

M̃1
x (τ, σβ) − M̃1

x (τ, στ̃ε
)

= Ex
[
G1(Xτ )I (τ < σβ) + H1(Xσβ )I (σβ < τ)

+H1(Xσβ )I (σβ = τ, σβ �= στ̃ε
) − G1(Xτ )I (τ < στ̃ε

)

−H1(Xστ̃ε
)I (στ̃ε

< τ) − H1(Xστ̃ε
)I (στ̃ε

= τ, στ̃ε
�= σβ)

+H1(Xσβ )I (στ̃ε
< τ) − H1(Xσβ )I (στ̃ε

< τ)
]

≤ Ex
[
G1(Xτ )(I (τ < σβ) − I (τ < στ̃ε

) − I (στ̃ε
= τ, στ̃ε

�= σβ))
]

+ Ex
[
H1(Xσβ )(I (σβ < τ) − I (στ̃ε

< τ) + I (σβ = τ, σβ �= στ̃ε
)
]

+ Ex
[
(H1(Xσβ ) − H1(Xστ̃ε

))I (στ̃ε
< τ)

]

= Ex
[
(G1(Xτ ) − H1(Xσβ ))I (στ̃ε

< τ < σβ)
]

+ Ex
[
(H1(Xσβ ) − H1(Xστ̃ε

))I (στ̃ε
< τ)

]

≤ Ex
[
(sup

t
|G1(Xt )| + sup

t
|H1(Xt )|)I (στ̃ε

< τ < σβ)
]

+ Ex
[|H1(Xσβ ) − H1(Xστ̃ε

)|] (4.25)

where the first inequality follows from the fact that G1 ≤ H1. By Lemma 4.2 we
have that στ̃ε

↑ σβ as ε ↓ 0 and so the first term on the right hand side of the above
expression tends to zero uniformly over all τ . Since H1(X) is quasi-left-continuous,
the second expression also tends to zero. By the strong Markov property of X (recall
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that the expectation and the essential supremum in (3.14) can be interchanged) it
follows that Ex [Ṽ 1

σD2
(Xβ)] = supτ≥β M̃1

x (τ, σβ). By (4.25) we have

sup
τ≥β

M̃1
x (τ, σβ) ≤ lim inf

ε↓0 sup
τ≥β

M̃1
x (τ, στ̃ε

) ≤ lim inf
ε↓0 sup

τ≥τ̃ε

M̃1
x (τ, στ̃ε

)

= lim inf
ε↓0 Ex

[
Ṽ 1

σD2
(X τ̃ε

)
]

(4.26)

Using again the fact that Ṽ 1
σD2

= V 1
σD2

so that Ṽ 1
σD2

is finely continuous, together
with the fact that G1(X) is left-continuous over stopping times, we get, from Lemma
3.5, that Ṽ 1

σD2
(X τ̃ε

) ≤ G1(X τ̃ε
) + ε Px -a.s. Hence it follows that

Ex
[
Ṽ 1

σD2
(Xβ)

] ≤ lim inf
ε↓0 Ex

[
Ṽ 1

σD2
(X

τ̃
σD2
ε

)
]

≤ lim inf
ε↓0 Ex

[
G1(X

τ̃
σD2
ε

) + ε
] = Ex [G1(Xβ)]. (4.27)

Combining (4.27) with the fact that Ṽ 1
σD2

(Xβ) ≥ G1(Xβ) Px -a.s. we conclude that

Ṽ 1
σD2

(Xβ) = G1(Xβ) Px -a.s. (4.28)

But τ̃
σD2∗ = inf{t ≥ 0 : Xt ∈ D̃

σD2
1 } and so we must have that β ≥ τ̃

σD2
0 . This fact

together with β ≤ τ̃
σD2∗ proves the required result. �

We now state and prove the main result of this section.

Theorem 4.4 Given the setting in Proposition 4.3, we have

V 1
σD2

(x) = M1
x

(
τ

σD2∗ , σD2

)
, (4.29)

V 2
τD1

(x) = M2
x

(
τD1 , σ

τD1∗
)
. (4.30)

Proof We shall only prove (4.29) as the proof of (4.30) follows by symmetry.
Recall, from Proposition 4.1, that V 1

σD2
(x) ≤ Mx (τ

σD2
ε , σD2) + ε. We show that

lim supε↓0 M1
x (τ

σD2
ε , σD2) ≤ M1

x (τ
σD2∗ , σD2) so that V 1

σD2
(x) ≤ lim supε↓0(M1

x (τ
σD2
ε ,

σD2) + ε) ≤ M1
x (τ

σD2∗ , σD2). For simplicity of exposition let us set τε := τ
σD2
ε and
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τ∗ := τ
σD2∗ . Now

M1
x (τ∗, σD2) − M1

x (τε, σD2)

= Ex
[
G1(Xτ∗)I (τ∗ < σD2) + H1(XσD2

)I (σD2 < τ∗)
+ G1(XσD2

)I (σD2 = τ∗, τ∗ �= τε)

− G1(Xτε )I (τε < σD2) − H1(XσD2
)I (σD2 < τε)

− G1(XσD2
)I (σD2 = τε, τε �= τ∗) + G1(Xτε )I (τ∗ < σD2)

− G1(Xτε )I (τ∗ < σD2) + G1(Xτε )I (τ∗ = σD2 , τ∗ �= τε)

− G1(Xτε )I (τ∗ = σD2 , τ∗ �= τε)
] ≥ Ex

[
(G1(Xτ∗)

− G1(Xτε ))I (τ∗ < σD2)
] + G1(Xτε )(I (τ∗ < σD2)

− I (τε < σD2)I (τ∗ = σD2 , τ∗ �= τε))

+ G1(Xτ∗)I (τ∗ = σD2 , τ∗ �= τε)

− G1(Xτε )I (τ∗ = σD2 , τ∗ �= τε) + H1(XσD2
)(I (σD2 < τ∗)

− I (σD2 < τε) − I (τε = σD2 , τε �= τ∗))]
= Ex

[
(G1(Xτ∗) − G1(Xτε ))I (τ∗ < σD2) + (H1(XσD2

)

− G1(Xτε ))I (τε < σD2 < τ∗) + G1(Xτ∗)I (τ∗ = σD2 , τ∗ �= τε)

− G1(Xτε )I (τ∗ = σD2 , τ∗ �= τε)
] ≥ −2Ex

[|G1(Xτ∗)

− G1(Xτε )|
] + Ex

[
(H1(XσD2

) − G1(Xτε ))I (τε < σD2 < τ∗)
]

≥ −2Ex
[|G1(Xτ∗) − G1(Xτε )|

] − Ex
[
(sup

t
|H1(Xt )|

+ sup
t

|G1(Xt )|)I (τε < σD2 < τ∗)
]

(4.31)

The first inequality follows from the assumption −G1 ≥ −H1 whereas the second
equality follows from the fact that

I (σD2 < τ∗) − I (σD2 < τε) − I (τε = σD2 , τε �= τ∗) = −(I (τ∗ < σD2)

− I (τε < σD2) + I (τ∗ = σD2 , τ∗ �= τε)) = I (τε < σD2 < τ∗) (4.32)

The penultimate inequality follows from the fact that

(G1(Xτ∗) − G1(Xτε ))I (τ∗ < σD2) + (G1(Xτ∗) − G1(Xτε ))I (τ∗ = σD2 , τ∗ �= τε)

≥ −2|G1(Xτ∗) − G1(Xτε )| (4.33)

whereas the last inequality follows from the fact that

(H1(XσD2
) − G1(Xτε ))I (τε < σD2 < τ∗) ≥ −((sup

t
|H1(Xt )|

+ sup
t

|G1(Xt )|)I (τε < σD2 < τ∗)) (4.34)

Letting ε ↓ 0 in (4.31) we get, from Proposition 4.3, that I (τε < σD2 < τ∗) converges
to zero uniformly over σD2 . Moreover, by using the quasi-left-continuity property of
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G1(X) we conclude that M1
x (τ∗, σD2) ≥ lim supε↓0 M1

x (τε, σD2) and this completes
the proof. �

5 Partial superharmonic characterisation

The purpose of the current section is to utilise the results derived in Sects. 3 and
4 to provide a partial superharmonic characterisation of V 1

σD2
(resp. V 2

τD1
) when the

stopping time σD2 (resp. τD1 ) of player two (resp. player one) is externally given. This
characterisation attempts to extend the semiharmonic characterisation of the value
function in zero-sum games (see [51] and [52]) and can informally be described as
follows: Suppose that G2 ≡ −∞ in (2.3). Then the second player has no incentive of
stopping the process and so (2.4) reduces to the optimal stopping problem V 1∞(x) =
supτ Ex [G1(Xτ )]. By results in optimal stopping theory V 1∞ admits a superharmonic
characterisation.More precisely V 1∞ can be identifiedwith the smallest superharmonic
function that dominates G1 (see [49, p. 37 Theorem 2.4]). However, if G2 is finite
valued then there might be an incentive for the second player to stop the process.
This raises two questions: (i) is the superharmonic characterisation of V 1

σ still valid
before the second player stops the process, (ii) does V 1

σ coincide with H1 at the time
the second player stops the process? If the second player selects the stopping time
σ := σD2 = inf{t ≥ 0 : Xt ∈ D2} where D2 is a closed or finely closed subset of the
state space E having a regular boundary ∂D2 then the above questions can be answered
affirmatively and we will say that the value function of player one associated with the
stopping time σD2 admits a partial superharmonic characterisation. To bemore precise
let us consider the set

Sup1D2
(G1, K1) = {F : E → [G1, K1] : F is finely continuous, F = H1 in D2,

F is superharmonic in Dc
2} (5.1)

where K1 is the smallest superharmonic function that dominates H1 and [G1, K1]
means that G1(x) ≤ F(x) ≤ K1(x) for all x ∈ E . Then the value function
of player one can be identified with the smallest finely continuous function from
Sup1D2

(G1, K1).
Likewise, suppose that player one selects the stopping time τD1 = inf{t ≥ 0 : Xt ∈

D1} where D1 is a closed or finely closed set having a regulary boundary ∂D1, and
consider the set

Sup2D1
(G2, K2) = {F : E → [G2, K2] : F is finely continuous, F = H2 in D1,

F is superharmonic in Dc
1} (5.2)

where K2 is the smallest superharmonic function that dominates H2 and [G2, K2]
means that G2(x) ≤ F(x) ≤ K2(x) for all x ∈ E . Then the value function of player
two associated to τD1 can be identified with the smallest finely continuous function
from Sup2D1

(G2, K2).
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G2G1

H1 = H2

u = V 1
σD2v = V 2

τD1

D1 D2

Fig. 1 The double partial superharmonic characterisation of the value functions in a nonzero-sum optimal
stopping game for absorbed Brownian motion

The above characterisation of V 1
σD2

and V 2
τD1

can be used to study the existence of a
Nash equilibrium. Indeed suppose that one can show the existence of finely continuous
functions u and v such that:

(i.) u lies between G1 and K1, u is identified with H1 in the region D2 = {v = G2}
and u is the smallest superharmonic function that dominates G1 in the region
{v > G2}

(ii.) v lies between G2 and K2, v is identified with H2 in the region D1 = {u = G1}
and v is the smallest superharmonic function that dominates G2 in the region
{u > G1}.

Then under the assumption that D1 and D2 have regular boundaries and are either
closed or finely closed, u and v coincide with V 1

σD2
and V 2

τD1
respectively. In this

case we shall say that together, V 1
σD2

and V 2
τD1

admit a double partial superharmonic
characterisation (see Fig. 1) and can be called the value functions of the game (2.4)–
(2.5). Moreover, the pair (τD1 , σD2) will form a Nash equilibrium point.

To prove the partial superharmonic characterisation of V 1
σD2

(resp. V 2
τD1

) we first

show that for any stopping time σ (resp. τ ), V 1
σ (resp. V 2

τ ) is bounded above by K1
(resp. K2). For this we define the concept of superharmonic functions.

Definition 5.1 Let C be a measurable subset of E and D = E\C . A measurable
function F : E → R is said to superharmonic in C if Ex [F(Xρ∧σD )] ≤ F(x) for
every stopping time ρ and for all x ∈ E , where σD = inf{t ≥ 0 : Xt ∈ D}. F is
said to be superharmonic if Ex [F(Xρ)] ≤ F(x) for every stopping time ρ and for all
x ∈ E .

Lemma 5.2 Let Sup(H1) = {F : E → R : F ≥ H1, F is superharmonic} be the
collection of superharmonic functions that majorise H1. Then for any given stopping
time σ we have
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V 1
σ ≤ inf

F∈Sup(H1)
F. (5.3)

Similarly let Sup(H2) = {F : E → R : F ≥ H2, F is superharmonic}. Then for any
given stopping time τ we have

V 2
τ ≤ inf

F∈Sup(H2)
F. (5.4)

Proof We shall only prove (5.3) as (5.4) can be proved in exactly the same way. Take
any stopping time σ and any F ∈ Sup(H1). Then

M1
x (τ, σ ) ≤ Ex [F (Xτ ) I (τ ≤ σ) + F (Xσ ) I (σ < τ)] = Ex [F (Xτ∧σ )] (5.5)

for all stopping times τ . The first two inequalities follow from the fact that G1 ≤
H1 ≤ F. F is superharmonic, so Ex

[
F

(
Xρ

)] ≤ F (x) for any stopping time ρ and
for all x ∈ E . In particular Ex [F (Xτ∧σ )] ≤ F (x) for every stopping time τ. Thus

M1
x (τ, σ ) ≤ F (x) (5.6)

for all stopping times τ and for all x ∈ E . Taking the infimum over all F in Sup(H1)

on the right hand side and the supremum over all τ on the left hand side of (5.6) we
get the required result. �
Theorem 5.3 i. Suppose that K1 is the smallest superharmonic function that domi-
nates H1. Let v ≥ G2 be a finely continuous function, with D2 = {v = G2}, such that
u := infF∈Sup1D2 (G1,K1)

F where Sup1D2
(G1, K1) is the collection of functions given

in (5.1), exists. If the boundary ∂D2 of D2 is regular for D2, then

u(x) = V 1
σD2

(x) (5.7)

for all x ∈ E where σD2 = {t ≥ 0 : Xt ∈ D2}.
ii. Similarly suppose that K2 be the smallest superharmonic function that dominates

H2. Let u ≥ G1 be a finely continuous function, with D1 = {u = G1}, such that
v := infF∈Sup2D1 (G2,K2)

F where Sup2D1
(G2, K2) is the collection of functions defined

in (5.2), exists. If the boundary ∂D1 of D1 is regular for D1, then

v(x) = V 2
τD1

(x) (5.8)

for all x ∈ E where τD1 = {t ≥ 0 : Xt ∈ D1}.
Proof We shall only prove (i.) as (ii.) follows by symmetry. We first show that u ≥
V 1

σD2
. Take any F ∈ Sup1D2

(G1, K1). We know that F is superharmonic in Dc
2 so

F (x) ≥ Ex

[
F

(
Xτ∧σD2

)]
= Ex [F(Xτ )I (τ ≤ σD2) + F(XσD2

)I (σD2 < τ)]
≥ Ex

[
G1 (Xτ ) I (τ ≤ σD2) + F

(
XσD2

)
I (σD2 < τ)

]
(5.9)
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for every stopping time τ and for all x ∈ E , where the last inequality follows from
the fact that F ≥ G1. Since v is finely continuous and G2 is continuous (hence finely
continuous), D2 is finely closed and thus by the definition of Sup1D2

(G1, K1), upon
using (3.4) (since F is finely continuous and H1 is continuous hence finely continuous)
it can be seen that F(XσD2

) = H1(XσD2
). Thus for any F ∈ Sup1D2

(G1, K1) we have

F (x) ≥ Ex

[
G1 (Xτ ) I (τ ≤ σD2) + H1

(
XσD2

)
I (σD2 < τ)

]
= M1

x

(
τ, σD2

)

(5.10)
for every stopping time τ and for all x ∈ E . Taking the infimum over all F and the
supremum over all τ we get that u(x) ≥ V 1

σD2
(x) for all x ∈ E . We next show that

u ≤ V 1
σD2

. For this it is sufficient to prove that V 1
σD2

∈ Sup1D2
(G1, K1) as the result

will follow by definition of u. Recall, from Theorem 3.7, that V 1
σD2

is finely continuous

since the boundary ∂D2 is assumed to be regular for D2. The fact that V 1
σD2

≤ K1

follows from Lemma 5.2. To show that V 1
σD2

is bounded below by G1 we note that

V 1
σD2

≥ M1
x (τ, σD2) for any τ in particular for τ = 0. Since M1

x (0, σD2) = G1(x) the

result follows. To prove that V 1
σD2

= H1 in D2 we take any x ∈ D2 so that σD2 = 0.

Then by selecting any stopping time τ > 0 we get that V 1
0 (x) ≥ M1

x (τ, 0) = H1(x).
On the other hand

V 1
0 (x) ≤ sup

τ
(H1(x)Px (τ = 0) + H1(x)Px (τ > 0)) = H1(x). (5.11)

From this we conclude that V 1
0 (x) = H1(x). It remains to prove that V 1

σD2
is super-

harmonic in Dc
2 By the strong Markov property of X we have

Ex
[
V 1

σD2
(Xρ∧σD2

)
]

= Ex
[
sup
τ

M1
Xρ∧σD2

(τ, σD2)
]

= Ex
[
ess sup

τ
M1

x (ρ ∧ σD2 + τ ◦ θρ∧σD2
, ρ ∧ σD2 + σD2 ◦ θρ∧σD2

|Fρ∧σD2
)
]

= Ex
[
ess sup
τ≥ρ∧σD2

M1
x (τ, σD2 |Fρ∧σD2

)
]

= sup
τ≥ρ∧σD2

M1
x (τ, σD2)

≤ sup
τ

M1
x (τ, σD2) = V 1

σD2
(x) (5.12)

for any stopping time ρ where we recall that M1
x (τ, σ |Fρ) = Ex [G1(Xτ )I (τ ≤

σ) + H1(Xσ )I (σ < τ)|Fρ] for stopping times τ, σ and ρ. �

6 The case of stationary one-dimensional Markov processes

In this section we shall assume that the Markov process X takes values in R and is
such that Law(X |Px ) = Law(Xx |P). We shall also assume that there exist points A∗
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and B∗ satisfying −∞ < A∗ < B∗ < ∞ such that (i.) for given D2 of the form
[B∗,∞), the first entry time τA∗ = inf{t ≥ 0 : Xt ≤ A∗} (as obtained from Theorem
4.4) is optimal for player one and (ii.) for given D1 of the form (−∞, A∗], the first
entry time σB∗ = inf{t ≥ 0 : Xt ≥ B∗} (as obtained from Theorem 4.4) is optimal
for player two.

So in this section we will assume the existence of a pair (τA∗ , σB∗) that is a Nash
equilibrium.

6.1 The principle of double continuous fit

We prove that V 1
σB∗ (resp. V 2

τA∗ ) is continuous at A∗ (resp. B∗). We shall refer to this
result as the principle of double continuous fit. For this we shall further assume that
the following time-space conditions hold:

X A∗+ε
t+h → X A∗

t P − a.s. (6.1)

XB∗−ε
t+h → XB∗

t P − a.s. (6.2)

as ε, h ↓ 0 and

X A∗+ε
ρn

→ X A∗
ρ P − a.s. (6.3)

XB∗−ε
ρn

→ XB∗
ρ P − a.s. (6.4)

whenever ρn is a sequence of stopping times such that ρn ↑ ρ. Conditions (6.1)-
(6.4) imply that the mapping x 	→ Xx (stochastic flow) is continuous at A∗ and B∗.
Stochastic differential equations driven by Lévy processes, for example, satisfy this
property under regularity assumptions on the drift and diffusion coefficients (see for
example ([37, p. 340])).

We shall first state and prove the following lemma.

Lemma 6.1 Let σ A∗
B∗ = inf{t ≥ 0 : Xt ≥ B∗} be the optimal stopping time for player

two under PA∗ and let σ
A∗+ε
B∗ = inf{t ≥ 0 : Xt ≥ B∗} be the optimal stopping time of

player two under PA∗+ε, for given ε > 0. Then, if condition (6.3) is satisfied we have
that σ

A∗+ε
B∗ ↑ σ

A∗
B∗ as ε ↓ 0. Similarly, if τ

B∗
A∗ = inf{t ≥ 0 : Xt ≤ A∗} is the optimal

stopping time for player two under PB∗ and τ
B∗−ε
A∗ = inf{t ≥ 0 : Xt ≤ A∗} is the

optimal stopping time of player one under PB∗−ε, for given ε > 0, then if condition
(6.4) is satisfied we have that τ B∗−ε

A∗ ↑ τ
B∗
A∗ as ε ↓ 0.

Proof We shall only prove that σ
A∗+ε
B∗ ↑ σ

A∗
D2

as ε ↓ 0. The fact that τ
B∗−ε
A∗ ↑ τ

B∗
A∗

as ε ↓ 0 can be proved in the same way. Since Law(X |Px ) = Law(Xx |P) we have
that σ

A∗+ε
B∗ is equally distributed as σ̂

A∗+ε
B∗ := inf{t ≥ 0 : X A∗+ε

t ≥ B∗} under P
whereas σ

A∗
B∗ is equally distributed as σ̂

A∗
B∗ := inf{t ≥ 0 : X A∗

t ≥ B∗} under P. Now
σ̂
A∗+ε
B∗ ↑ γ as ε ↓ 0 for some stopping time γ ≤ σ̂

A∗
B∗ . So to prove the result it remains

to show that γ ≥ σ̂
A∗
B∗ . By the time-space condition (6.3) we have that X A∗+ε

σ̂
A∗+ε
B∗

→ X A∗
γ
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P-a.s. as ε ↓ 0. Now since X A∗+ε

σ̂
A∗+ε
B∗

≥ B∗ for each ε > 0 it follows that X A∗
γ ≥ B∗.

But this implies that γ ≥ σ̂
A∗
B∗ and this proves the required result. �

Proposition 6.2 Suppose that the payoff functions Gi , Hi for i = 1, 2 are also
assumed to be bounded. Then the value functions V 1

σB∗ and V 2
τA∗ are continuous at A∗

and B∗ respectively.

Proof We shall only prove the result for V 1
σB∗ as for V 2

τA∗ the result will follow by
symmetry. To prove this it is sufficient to show that

lim
ε↓0

(
V 1

σB∗ (A∗ + ε) − V 1
σB∗ (A∗)

) = 0 (6.5)

because limε↓0(V 1
σB∗ (A∗ − ε) − V 1

σB∗ (A∗)) = limε↓0(G1(A∗ − ε) − G1(A∗)) = 0

by continuity of G1. Since V 1
σB∗ (x) ≥ G1(x) for all x ∈ R and V 1

σB∗ (A∗) = G1(A∗)
we get that V 1

σB∗ (A∗ + ε) − V 1
σB∗ (A∗) ≥ G1(A∗ + ε) − G1(A∗) for every ε > 0.

So by continuity of G1 we have that lim infε↓0(V 1
σB∗ (A∗ + ε) − V 1

σB∗ (A∗)) ≥ 0. We

next show that lim supε↓0(V 1
σB∗ (A∗ + ε) − V 1

σB∗ (A∗)) ≤ 0 so that we get the required

result. Given ε > 0, let τ
A∗+ε
A∗ = inf{t ≥ 0 : Xt ≤ A∗} be the optimal stopping

time for player one under PA∗+ε. Then we have that τ
A∗+ε
A∗ is equally distributed as

τ̂
A∗+ε
A∗ = inf{t ≥ 0 : X A∗+ε

t ≤ A∗} under P. Now from the optimality of τ
A∗+ε
A∗ under

PA∗+ε we have that

V 1
σB∗ (A∗ + ε) − V 1

σB∗ (A∗)

≤ M1
A∗+ε

(
τ
A∗+ε
A∗ , σ

A∗+ε
B∗

) − M1
A∗

(
τ
A∗+ε
A∗ , σ

A∗
B∗

)

= EA∗+ε

[
G1(Xτ

A∗+ε
A∗

)I
(
τ
A∗+ε
A∗ ≤ σ

A∗+ε
B∗

)] − EA∗
[
G1(Xτ

A∗+ε
A∗

)I
(
τ
A∗+ε
A∗ ≤ σ

A∗
B∗

)]

+ EA∗+ε

[
H1(Xσ

A∗+ε
B∗

)I
(
σ
A∗+ε
B∗ < τ

A∗+ε
A∗

)] − EA∗
[
H1(Xσ

A∗
B∗

)I
(
σ
A∗
B∗ < τ

A∗+ε
A∗

)]

= E
[
G1(X

A∗+ε

τ̂
A∗+ε
A∗

)I
(
τ̂
A∗+ε
A∗ ≤ σ̂

A∗+ε
B∗

) − G1
(
X A∗

τ̂
A∗+ε
A∗

)
I
(
τ̂
A∗+ε
A∗ ≤ σ̂

A∗
B∗

)]

+ E
[
H1

(
X A∗+ε

σ̂
A∗+ε
B∗

)
I
(
σ̂
A∗+ε
B∗ < τ̂

A∗+ε
A∗

) − H1
(
X A∗

σ̂
A∗
B∗

)
I
(
σ̂
A∗
B∗ < τ̂

A∗+ε
A∗

)]
(6.6)

The first expectation in the last expression on the right hand side of (6.6) can be written
as

E
[
(G1

(
X A∗+ε

τ̂
A∗+ε
A∗

)
I
(
τ̂
A∗+ε
A∗ ≤ σ̂

A∗+ε
B∗

) − G1
(
X A∗

τ̂
A∗+ε
A∗

)
I
(
τ̂
A∗+ε
A∗ ≤ σ̂

A∗
B∗

))
I
(
τ̂
A∗+ε
A∗ < σ̂

A∗
B∗

)

+ (
G1

(
X A∗+ε

τ̂
A∗+ε
A∗

)
I
(
τ̂
A∗+ε
A∗ ≤ σ̂

A∗+ε
B∗

) − G1
(
X A∗

τ̂
A∗+ε
A∗

)
I
(
τ̂
A∗+ε
A∗ ≤ σ̂

A∗
B∗

))
I
(
τ̂
A∗+ε
A∗ = σ̂

A∗
B∗

)

+ (
G1

(
X A∗+ε

τ̂
A∗+ε
A∗

)
I
(
τ̂
A∗+ε
A∗ ≤ σ̂

A∗+ε
B∗

) − G1
(
X A∗

τ̂
A∗+ε
A∗

)
I
(
τ̂
A∗+ε
A∗ ≤ σ̂

A∗
B∗

))
I
(
τ̂
A∗+ε
A∗ > σ̂

A∗
B∗

)]

= E
[(
G1

(
X A∗+ε

τ̂
A∗+ε
A∗

) − G1
(
X A∗

τ̂
A∗+ε
A∗

))
I
(
τ̂
A∗+ε
A∗ < σ̂

A∗
B∗

)]
(6.7)
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The last expression in (6.7) follows from the fact that P(τ̂
A∗+ε
A∗ = σ̂

A∗
B∗ ) = 0 for all

ε > 0 sufficiently small (upon assuming that the hitting times considered are finite).

and from the fact that ˆ
σ
A∗+ε
B∗ ↑ ˆ

σ
A∗
B∗ as ε ↓ 0 (see Lemma 6.1).

In a similar way one can show that the second expectation in the last expression on
the right hand side of (6.6) can be written as

E
[(
H1

(
X A∗+ε

σ̂
A∗+ε
B∗

) − H1
(
X A∗

σ̂
A∗
B∗

))
I
(
σ̂
A∗
B∗ < τ̂

A∗+ε
A∗

)]
(6.8)

Since G1 and H1 are continuous and bounded then by the time space conditions (6.1)
and (6.3) together with Lemma 6.1 and Fatou’s lemma we get the required result. �
Remark 6.3 The assumption of boundedness on G1 and H1 in Proposition 6.2 can be
relaxed. For example, the result will also hold provided thatG1(X

A∗+ε

τ̂
A∗+ε
A∗

)−G1(X
A∗
τ̂
A∗+ε
A∗

)

and H1(X
A∗+ε

σ̂
A∗+ε
B∗

)−H1(X
A∗
σ̂
A∗
B∗

) are bounded above by some integrable random variables

Z̃1 and Z̃2 respectively. Similarly the boundedness assumption on G2 and H2 can be
relaxed.

6.2 The principle of double smooth fit

In this section we will consider the special case when X is a one dimensional regular
diffusion process and we shall assume that V 1

σB∗ and V
2
τA∗ are obtained from the double

partial superharmonic characterisation as explained in Sect. 5.More precisely we shall
assume that the functions u, v introduced in Theorem 5.3 (i.) coincide with those from
Theorem 5.3 (ii.) so that a mutual response is assumed to exist. The aim is to use this
characterisation to derive the so-called principle of double smooth fit. This principle
is an extension of the principle of smooth fit observed in standard optimal stopping
problems (see [49]). We note that in the case of more general strongMarkov processes
inR this principlemaybreakdown.Asobserved in standard optimal stoppingproblems
this may happen for example when the scale function of X is not differentiable (see
[50]) or in the case of Poisson process (see [48]). Carr et. al in [7], for example, also
showed that this principle breaks down in a CGMY model.

Remark 6.4 Examples of nonzero-sum optimal stopping games for one dimensional
regular diffusion processes, for which the optimal stopping regions are of the threshold
type are given in [1] and [12]1. In particular the authors therein provide sufficient
conditions for existence and uniqueness of Nash equilibria.

So suppose that X is a regular diffusion process with values in R. We shall also
assume that the fine topology coincides with Euclidean topology so that fine continuity
is equivalent to continuity in the classical sense. In this context we can define the scale

1 The second manuscript was available to the author after the first draft of the paper was published on
The University of Manchester Website http://www.maths.manchester.ac.uk/our-research/research-groups/
statistics-and-its-applications/research-reports/.
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function S of the process X , that is the mapping S : R → R which is a strictly
increasing continuous function satisfying

Px (τc < τd) = S(d) − S(x)

S(d) − S(c)
and Px (τd < τc) = S(x) − S(c)

S(d) − S(c)
(6.9)

for any c < x < d where τy = inf{t ≥ 0 : Xt = y} for y ∈ R. Since we are assuming
that D2 = [B∗,∞) then for any given a, b ∈ (−∞, B∗) such that a < b we have

u(x) ≥ Ex [u(Xτa,b∧σB∗ )] = Ex [u(Xτa,b )] = u(a)
S(b) − S(x)

S(b) − S(a)
+ u(b)

S(x) − S(a)

S(b) − S(a)

(6.10)

for all a < x < b, where τa,b = inf{t ≥ 0 : Xt /∈ (a, b)}. The first inequality follows
from the fact that u is superharmonic in Dc

2 (recall Definition 5.1). This means that u
is S-concave in every interval in (−∞, B∗) and as for concave functions this implies
that the mapping

y 	→ u(y) − u(x)

S(y) − S(x)
(6.11)

is decreasing provided that y �= x . By symmetry we have that v is S-concave in
every interval in (A∗,∞) and that the mapping y 	→ v(y)−v(x)

S(y)−S(x) is decreasing provided
y �= x .

From the results for the Dirichlet problem (see for example [49, (7.1.2)-(7.1.3)])
one can show that

LXu = 0 and LXv = 0 in C1 ∩ C2u
∣∣
∂C1 = G1 and u

∣∣
∂C2 = H1

v
∣
∣
∂C1 = H2 and v

∣
∣
∂C2 = G2

where C1 = Dc
1 and C2 = Dc

2. The aim is to show that u′ ∣∣A∗ = G ′
1

∣∣A∗ and v′ ∣∣B∗ =
G ′

2

∣∣B∗ These two conditions will be referred to as the principle of double smooth fit.
Informally this principle states that the optimal stopping boundary points A∗ and B∗
must be selected in such a way that u and v are respectively smooth at these points.
The proof of this result follows in a similar way as the proof of Theorem 2.3 in [50].
We shall first state the following lemma, the proof of which can be found in [50].

Lemma 6.5 Suppose that f, g : R+ → R are two continuous functions such that
f (0) = g(0) = 0, f (ε) > 0 whenever ε > 0, and g(δ) > 0 whenever δ > 0. Then
for every εn ↓ 0 as n → ∞, there exists εnk ↓ 0 and δk ↓ 0 as k → ∞ such that

limk→∞
f (εnk )

g(δk )
= 1.

Proposition 6.6 Suppose that D1 is of the form (−∞, A∗] and D2 of the form [B∗,∞)

for some points A∗, B∗ such that A∗ < B∗. Suppose that G1 is differentiable at A∗
and G2 is differentiable at B∗. If the scale function S of X is differentiable at A∗ and
B∗, then u′(A∗) = G ′

1(A∗) and v′(B∗) = G ′
2(B∗).
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Proof We shall first consider the case when S′(A∗) �= 0. Since u is superharmonic in
(−∞, B∗) we have that Ex [u(Xρ∧σB∗ )] ≤ u(x) for all stopping times ρ and for all
x ∈ R. Define the exit time τε = inf {t ≥ 0 : Xt /∈ (A∗ − ε, A∗ + ε)} for ε > 0 such
that A∗ + ε < B∗. Then

EA∗ [u(Xτε∧σD2
)] = EA∗ [u(Xτε )]

≤ u(A∗) = u(A∗)PA∗(Xτε = A∗ + ε) + G1(A∗)PA∗(Xτε = A∗ − ε) (6.12)

where the last equality follows from the fact that u(A∗) = G1(A∗). On the other hand
we have

EA∗ [u(Xτε )] = u(A∗ + ε)PA∗(Xτε = A∗ + ε) + G1(A∗ − ε)PA∗(Xτε = A∗ − ε).

(6.13)
By combining (6.12) and (6.13) it follows that

(u(A∗ + ε) − u(A∗))PA∗
(
Xτε = A∗ + ε

)

≤ (G1(A∗) − G1(A∗ − ε))PA∗
(
Xτε = A∗ − ε

)
. (6.14)

Since we are assuming that S and G1 are differentiable at A∗ and that S′(A∗) �= 0
we get, upon using the facts PA∗(Xτε = A∗ − ε) = S(A∗+ε)−S(A∗)

S(A∗+ε)−S(A∗−ε)
and PA∗(Xτε =

A∗ + ε) = S(A∗)−S(A∗−ε)
S(A∗+ε)−S(A∗−ε)

, that

(u(A∗ + ε) − u(A∗))(S(A∗) − S(A∗ − ε))

S(A∗ + ε) − S(A∗ − ε)

≤ (G1(A∗) − G1(A∗ − ε))(S(A∗ + ε) − S(A∗))
S(A∗ + ε) − S(A∗ − ε)

which is equivalent to (since the scale function is increasing)

u(A∗ + ε) − u(A∗)
ε

≤ (G1(A∗) − G1(A∗ − ε))

ε

(S(A∗+ε)−S(A∗))
ε

(S(A∗)−S(A∗−ε))
ε

. (6.15)

Taking the limit as ε ↓ 0 on both sides of (6.15) and using the fact thatG1 and S are dif-
ferentiable at A∗ and that S′(A∗) �= 0 we get that u′(A∗+) = limε↓0 u(A∗+ε)−u(A∗)

ε
≤

G ′
1(A∗). On the other hand we have

u(A∗ + ε) − u(A∗) ≥ G1 (A∗ + ε) − G1 (A∗)
ε

. (6.16)

Taking limits on both sides of (6.16) as ε ↓ 0 we get that u′(A∗+) ≥ G ′
1(A∗). So we

can conclude that u′(A∗+) = G ′
1(A∗). On the other hand, since u(A∗−ε) = G1(A∗−

ε) for all ε > 0 sufficiently small we have that u′(A∗−) = limε↓0 u(A∗−ε)−u(A∗)
ε

=
G ′

1(A∗). So the result is proved in the case S′(A∗) �= 0. Now suppose that S′(A∗) = 0.
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Since G1 ≤ u, we have, for any ε, δ > 0 sufficiently small, that

G1(A∗ + ε) − G1(A∗)
S(A∗ + ε) − S(A∗)

≤ u(A∗ + ε) − u(A∗)
S(A∗ + ε) − S(A∗)

≤ u(A∗ − δ) − u(A∗)
S(A∗ − δ) − S(A∗)

= G1(A∗ − δ) − G1(A∗)
S(A∗ − δ) − S(A∗)

(6.17)

where the second inequality follows from the fact that the mapping y 	→ u(y)−u(x)
S(y)−S(x) is

decreasing. Multiplying both sides of (6.17) by S(A∗+ε)−S(A∗)
ε

and using the fact that
the scale function is increasing we get

G1(A∗ + ε) − G1(A∗)
ε

≤ u(A∗ + ε) − u(A∗)
ε

≤
G1(A∗−δ)−G1(A∗)−δ

S(A∗−δ)−S(A∗)−δ

S(A∗ + ε) − S(A∗)
ε

(6.18)

Setting f (ε) := S(A∗+ε)−S(A∗)
ε

and g(δ) := S(A∗−δ)−S(A∗)−δ
in Lemma 6.5 we get that

for any εn ↓ 0, there exists εnk ↓ 0 and δk ↓ 0 as k → ∞ such that

G ′
1(A∗) ≤ lim

k→∞
u(A∗ + εnk ) − u(A∗)

εnk
≤ lim

k→∞
f (εnk )

g(δk)

G1(A∗ − δk) − G1(A∗)
−δk

= G ′
1(A∗). (6.19)

From this it follows that that u′(A∗+) = G ′
1(A∗). On the other hand if we multiply

(6.17) by S(A∗−δ)−S(A∗)−δ
we get

G1(A∗+ε)−G1(A∗)
ε

S(A∗+ε)−S(A∗)
ε

S(A∗ − δ) − S(A∗)
−δ

≤ u(A∗ − δ) − u(A∗)
−δ

= G1(A∗−δ) − G1(A∗)
−δ

Interchanging ε and δ in (6.20) and using Lemma 6.5 again with f (ε) :=
S(A∗)−S(A∗−ε)

ε
and g(δ) := S(A∗+δ)−S(A∗)

δ
we get that d−u(A∗)

dx = G ′
1(A∗). This asser-

tion together with d+u(A∗)
dx = G ′

1(A∗) proves the required result. By symmetry one
can show that v′(B∗) = G ′

1(B∗). �
Figure 2a, b show that there can exist more than one Nash equilibrium point. In

this example, if both players cooperate and decide to stop the process in the regions
D1 and D2 given in Fig. 2a, then their expected gains are higher than those earned
if they stop the process in the regions given in Fig. 2b. However this is not the case
in the example presented in Fig. 2c, d, where it is evident that nothing is gained if
the players cooperate. For a more detailed study on the existence and uniqueness of
a Nash equilibrium in the case of absorbed Brownian motion in [0,1] and when the
class of payoff functions Gi are of a similar form to the one presented in Fig. 2, the
reader is referred to [1].
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Fig. 2 Examples for absorbed Brownian motion which show that uniqueness of Nash equilibrium fails in
general
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