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Abstract We consider an irreversible capacity expansion model in which additional
investment has a strictly negative effect on the value of an underlying stochastic eco-
nomic indicator. The associated optimisation problem takes the form of a singular
stochastic control problem that admits an explicit solution. A special characteristic
of this stochastic control problem is that changes of the state process due to control
action depend on the state process itself in a proportional way.

Keywords Singular stochastic control · Variational inequality · Capacity expansion ·
Irreversible investment

1 Introduction

A standard capacity expansion model, which is a special case of the model studied by
Kobila [34], can be described as follows. We model market uncertainty by means of
the geometric Brownian motion given by

dX0
t = bX0

t dt + √
2σ X0

t dWt , X0
0 = x > 0, (1)

for some constants b and σ �= 0, where W is a standard one-dimensional Brownian
motion. The random variable X0

t can represent an economic indicator such as the price
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of or the demand for one unit of a given investment project’s output at time t . The firm
behind the project can invest additional capital at proportional costs at any time, but
cannot disinvest from the project. We denote by y the project’s initial capital at time
0 and by ζt the total additional capital invested by time t . We assume that there is no
capital depreciation, so the total capital invested at time t is

Yt = y + ζt , Y0 = y ≥ 0. (2)

The investor’s objective is to maximise the total expected discounted payoff resulting
from the project’s management, which is given by the performance index

J 0x,y(ζ ) = E

[∫ ∞

0
e−r t h(X0

t ,Yt ) dt − K
∫

[0,∞[
e−r t dζt

]
, (3)

over all capacity expansion strategies ζ . The discounting rate r > 0 and the cost of
each additional unit of capital K > 0 are constants, while h is an appropriate running
payoff function.

Under suitable assumptions on the problem data, the solution to this stochastic
control problem is characterised by a threshold given by a strictly increasing free-
boundary function G0 : R+ → R+. In the special case that arises when h(x, y) =
xα yβ , for some α > 0 and β ∈ ]0, 1[, namely, when h is a so-called Cobb-Douglas
production function,

G0(y) =
(
r K (α − m)

−mβ

) 1
α

y
1−β
α for y ≥ 0,

where m < 0 is an appropriate constant. If the initial condition (x, y) is strictly below
the graph of the functionG0 in the x-y plane, then it is optimal to invest so that the joint
process (X0,Y ) has a jump at time 0 that positions it in the graph of G0. Otherwise, it
is optimal to take minimal action so that the state process (X0,Y ) does not fall below
the graph of G0, which amounts to reflecting it in G0 in the positive y-direction.

Irreversible capacity expansion models have attracted considerable interest and can
be traced back to Manne [38] (see Van Mieghem [47] for a survey). More relevant to
this paper models have been studied by several authors in the economics literature:
see Dixit and Pindyck [17, Chapter 11] and references therein. Related models that
have been studied in the mathematics literature include Davis, Dempster, Sethi and
Vermes [13], Arntzen [4], Øksendal [42], Wang [48], Chiarolla and Haussmann [11],
Bank [6], Alvarez [2,3], Løkka and Zervos [35], Steg [45], Chiarolla and Ferrari [9],
De Angelis, Federico and Ferrari [15], and references therein. Furthermore, capacity
expansion models with costly reversibility were introduced by Abel and Eberly [1],
and were further studied by Guo and Pham [22], Merhi and Zervos [40], Guo and
Tomecek [23,24], Guo, Kaminsky, Tomecek and Yuen [21], Løkka and Zervos [36],
De Angelis and Ferrari [16], and Federico and Pham [19].

In the model that we have briefly discussed above, additional investment does not
influence the underlying economic indicator, which is unrealistic if one considers sup-
ply and demand issues. The nature of the optimal strategy is such that, if b < 1

2σ
2,
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then limt→∞ X0
t = 0 and the investment’s maximal optimal capacity level remains

finite for realistic choices of the problem data. On the other hand, if b ≥ 1
2σ

2, then
lim supt→∞ X0

t = ∞ and the optimal capacity level typically converges to ∞ as
t → ∞.

The model that we study here assumes that additional investment has a strictly
negative effect on the value of the underlying economic indicator process X . We
assume that increasing the project’s capacity by a very small amount �ζt = ε at time
t affects the process X linearly, namely,

�Xt ≡ Xt+ − Xt = −cεXt ⇒ Xt+ = (1 − cε)Xt 
 e−cεXt ,

for some constant c > 0, wherewe have taken X to be càglàd. Furthermore, we assume
that increasing the project’s capacity by an amount �ζt > 0 at time t has the same
effect on the process X as increasing the project’s capacity N times infinitesimally
close to each other by an amount �ζt/N for every choice of N , which gives rise to
the identities

Xt+ = e−c(�ζt/N )N Xt = e−c�ζt Xt .

These considerations suggest the modelling of market uncertainty by the solution to
the SDE

dXt = bXt dt − Xt ◦ dζt + √
2σ Xt dWt , X0 = x > 0, (4)

where ∫ t

0
Xs ◦ dζs = c

∫ t

0
Xs dζ c

s +
∑
0≤s<t

Xt
(
1 − e−c�ζt

)
, (5)

in which expression, ζ c denotes the continuous part of the increasing process ζ . At
this point, it is worth noting that Guo and Zervos [25] have considered the same
state dynamics in the optimal execution problem that they study. The objective is to
maximise over all admissible capacity expansion strategies ζ the performance criterion

Jx,y(ζ ) = E

[∫ ∞

0
e−r t h(Xt ,Yt ) dt − K

∫
[0,∞[

e−r t dζt

]
, (6)

where r, K > 0 are constants and the running payoff function h satisfies Assumption 1
in the next section.

The solution to this problem is again characterised by a threshold defined by a
strictly increasing free-boundary function G. Informally, the optimal strategy can be
described as the one in the problem defined by (1)–(3). However, reflection in the
free-boundary G is oblong rather than in the positive y-direction (see Figs. 1, 2,
3). Furthermore, the negative effect that additional investment has on the underlying
economic indicator X results in a maximal optimal capacity level that is bounded
in cases of special interest, such as the ones arising, e.g., when the running payoff
function h is a Cobb-Douglas production function (see Example 2).

From a stochastic control theoretic perspective, the problem that we solve has
the features of singular stochastic control, which was introduced by Bather and Cher-
noff [7]who considered a simplifiedmodel of spaceship control. In their seminal paper,
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Fig. 1 Graph of the free-boundary function G in the general context
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Fig. 2 Graph of G when h is a Cobb–Douglas function with β ∈ ]0, 1[

Beneš, Shepp and Witsenhausen [8] were the first to solve rigorously an example of
a finite-fuel singular control problem. Since then, the area has attracted considerable
interest in the literature. Apart from references that we have discussed in the context
of capacity expansion models, Bahlali et al. [5] Chiarolla and Haussmann [10], Chow,
Menaldi andRobin [12], Davis andZervos [14], Fleming and Soner [20, ChapterVIII],
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Fig. 3 Graph of G when h is a Cobb–Douglas function with β = 1

Haussmann and Suo [27,28], Harrison and Taksar [26], Jack, Johnson and Zervos [29],
Jacka [30,31], Karatzas [32],Ma [37],Menaldi and Robin [39], Øksendal [42], Shreve
et al. [43], Soner and Shreve [44], Sun [46] and Zhu [49], provide an alphabetically
ordered list of further contributions.

In the references discussed above, the controlled process affects the state dynamics
in a purely additive way: the change of the state process due to control action does
not depend on the state process itself. Singular stochastic control models in which
changes of the state process due to control action may depend on the state process
were introduced and studied by Dufour and Miller [18] and Motta and Sartori [41].
To the best of our knowledge, problems with state dynamics such as the ones given by
(4)–(5) have not been considered in the literature before. Furthermore, the problem that
we solve is the very first one in the singular stochastic control literature that involves
control action that does not affect the state dynamics in a purely additive way and
admits an explicit solution (see also Remark 1 in the next section).

2 Problem Formulation and Assumptions

Wefix a probability space (�,F ,P) equippedwith a filtration (Ft ) satisfying the usual
conditions of right continuity and augmentation by P-negligible sets, and carrying a
standard one-dimensional (Ft )-Brownian motion W . We denote by Z the family of
all càglàd (Ft )-adapted increasing process ζ such that ζ0 = 0.

The state space of the control problem that we study is defined by

S = {
(x, y) ∈ R

2 | x > 0 and 0 ≤ y ≤ ȳ
}
,
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where ȳ ∈ ]0,∞] is themaximal capital that can be invested in the project, namely, the
maximum capacity level that can be achieved. Given a capacity expansion processes
ζ ∈ Z , we consider the capacity process Y defined by (2) and the economic indicator
process X given by (4)–(5). Using Itô’s formula, we can verify that

Xt = X0
t e

−cζ ct
∏

0≤s<t

(
1 − e−c�ζt

) = X0
t e

−cζt , (7)

where X0 is the geometric Brownian motion defined by (1).

Definition 1 The set A of all admissible capacity expansion strategies is the family
of all processes ζ ∈ Z such that

E

[∫
[0,∞[

e−r t dζt

]
< ∞. (8)

�

The objective of the control problem is tomaximise the performance index Jx,y defined
by (6) over all admissible strategies ζ ∈ A, for each initial condition (x, y) ∈ S.
Accordingly, we define the problem’s value function v by

v(x, y) = sup
ζ∈A

Jx,y(ζ ), for (x, y) ∈ S. (9)

Remark 1 In view of (7), we can see that the stochastic optimisation problemwe solve
is equivalent to maximising

Jx,y(ζ ) = E

[∫ ∞

0
e−r t h(ecy X0

t e
−cYt ,Yt ) dt − K

∫
[0,∞[

e−r t dζt

]

over all admissible strategies ζ ∈ A, where the dynamics of the state process (X0,Y )

are given by (1)–(2). At first glance, this observation puts us in the context of the
standard singular stochastic control theory because control action affects the dynamics
of (X0,Y ) in a purely additive way. However, such a reformulation is of limited
theoretical value because the problem’s initial condition y enters non-trivially in the
description of the performance criterion,which is a situation that is typically associated
with time-inconsistent control problems. �

Our analysis involves the general solution to the second order Euler’s ODE

σ 2x2u′′(x) + bxu′(x) − ru(x) = 0, (10)

which is given by
u(x) = Axn + Bxm,
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for some A, B ∈ R, where the constants m < 0 < n are the solutions to the quadratic
equation

σ 2λ2 + (b − σ 2)λ − r = 0, (11)

given by

m, n = −(b − σ 2) ±√
(b − σ 2)2 + 4σ 2r

2σ 2 . (12)

Our analysis also involves the function H defined by

H(x, y) = hy(x, y) − cxhx (x, y) − r K , for x > 0 and y ∈ ]0, ȳ[. (13)

This function has a natural economic interpretation. Indeed, increasing capacity by a
small amount ε > 0 causes the joint process (X,Y ) to jump from a value (x, y) to the
value (x − cxε, y + ε). Noting that

h(x−cxε, y+ε)−h(x, y) 
 [
hy(x, y)−cxhx (x, y)

]
ε and K =

∫ ∞

0
e−r t r K dt,

we can see that H(x, y) represents the project’s marginal running payoff rate in excess
of the marginal cost of capital rate. In view of standard economics theory, this inter-
pretation suggests that (a) the function H(·, y) should be increasing for all y ≥ 0
because higher values of the underlying economic indicator X , which models the
price of or the demand for one unit of the project’s output, should reflect higher values
of marginal running payoff, and (b) the function H(x, ·) should be decreasing for all
x > 0 because the project’s payoff rate should be concave in the volume of its output
due to the balancing of supply and demand. These observations suggest requirements
(17)–(19) in the following assumption. In fact, the conditions reflected by (17)–(19)
are much weaker than the ones suggested by the above considerations. However, the
relaxations involved present no added complications in our analysis whatsoever. The
underlying economics theory also suggests that the running payoff function h should
be increasing in the value of the underlying economic indicator X for each fixed value
of the project’s capacity, which is captured by condition (14). The rest of the conditions
appearing in the following assumption, which is admittedly rather long to state, are of
a purely technical nature. It is worth noting that (15) is equivalent to the probabilistic
condition

E

[∫ ∞

0
e−r t

∣∣∣h(X0
t , y)

∣∣∣ dt
]

< ∞ for all x > 0 and y ∈ [0, ȳ] ∩ R

(see (77)–(78) in Appendix 2).

Assumption 1 The constants r , K are strictly positive, the function h is C3,

h(·, y) is increasing for all y ∈ [0, ȳ] ∩ R, (14)∫ x
0 s−m−1 |h(s, y)| ds+∫∞

x s−n−1 |h(s, y)| ds<∞ for all x>0 and y∈[0, ȳ]∩R.

(15)
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There exists a point x0 ≥ 0 and a continuous strictly increasing function y† :
]x0,∞[ → R+ such that

0 ≤ y0 := lim
x↓x0

y†(x) < lim
x→∞ y†(x) =: y∞ ≤ ȳ, y0 = 0 if x0 > 0, (16)

H(x, y)

⎧⎪⎨
⎪⎩

< 0, if (x, y) ∈ H−,

= 0, if (x, y) ∈ S \ (H− ∪ H+),

> 0, if (x, y) ∈ H+,

(17)

lim inf
x→∞ H(x, y) > 0 for all y ∈ ]y0, y∞[, (18)

the function H(x, ·) is strictly decreasing for all y ∈ ]y0, y∞[, (19)

where

H− = {
(x, y) ∈ S | x ≤ x0 or x > x0 and y > y†(x)

}
,

H+ = {
(x, y) ∈ S | x > x0 and y < y†(x)

}
.

Also, there exist a decreasing function 
 : ]y0, y∞[ → ]0,∞[ such that
limy↓0 
(y) < ∞ if x0 > 0 as well as constants C0 > 0 and ϑ ∈ ]0, n[ such
that

− C0(1 + y) ≤ h(x, y) ≤ C0(1 + y)
(
1 + xn−ϑ

)
for all (x, y) ∈ S, (20)

H(x, y) ≤ 
(y)
(
1 + xn−ϑ

)
for all x > 0 and y ∈ ]0, ȳ[. (21)

�

We denote by x† the inverse of the function y† that is defined by

x†(y) =

⎧⎪⎨
⎪⎩
0, if 0 ≤ y < y0,

(y†)−1(x), if y0 ≤ y < y∞,

∞, if y∞ ≤ y < ȳ.

(22)

Example 1 Suppose that ȳ = ∞ and h is a so-called Cobb-Douglas function, given
by

h(x, y) = xα yβ, for (x, y) ∈ S, (23)

where α ∈ ]0, n[ and β ∈ ]0, 1] are constants. In this case, we can check that

H(x, y) = (
βy−1 − cα

)
xα yβ − r K .

If we define

y0 = 0, y∞ = β

cα
and x0 =

{
(r K )1/α, if β = 1,

0, if β ∈ ]0, 1[,
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then we can see that the calculations

∂H(x, y)

∂x
= α

(
βy−1 − cα

)
xα−1yβ

{
> 0 for all y ∈ ]y0, y∞[,
< 0 for all y ≥ y∞,

lim
x↓0 H(x, y) = −r K < 0 for all y > 0 and lim

x→∞ H(x, y)

=
{

∞ for all y ∈ ]y0, y∞[
−∞, for all y ≥ y∞,

imply that there exists a unique function y† : ]x0,∞[ → R+ such that (16)–(17) hold
true. Furthermore, differentiating the identity H

(
x, y†(x)

) = 0 with respect to x , we
can see that

ẏ†(x) = αy(β − cαy)

βx
[
(1 − β) + cαy

] > 0 for all y ∈ ]y0, y∞[,

so y† is indeed strictly increasing. Also, it is straightforward to check that (19)–(18)
and (20)–(21) are all satisfied for ϑ = n − α and


(y) =
{
1, if β = 1,

y−(1−β), if β ∈ ]0, 1[.

��

3 The Solution to the Control Problem

We solve the stochastic control problem that we consider by constructing an appro-
priate classical solution w : S → R to the Hamilton-Jacobi-Bellman (HJB) equation

max
{
σ 2x2wxx (x, y) + bxwx (x, y) − rw(x, y) + h(x, y),

wy(x, y) − cxwx (x, y) − K
}

= 0, (x, y) ∈ S,

(24)

where wy(x, 0) = limy↓0 wy(x, y). To obtain qualitative understanding of this
equation, we consider the following heuristic arguments. At time 0, the project’s
management has two options. The first one is to wait for a short time �t and then
continue optimally. Bellman’s principle of optimality implies that this option, which
is not necessarily optimal, is associated with the inequality

v(x, y) ≥ E

[∫ �t

0
e−r t h(X0

t , y) dt + e−r�tv
(
X0

�t , y
)]

.
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Applying Itô’s formula to the second term in the expectation, and dividing by �t
before letting �t ↓ 0, we obtain

σ 2x2vxx (x, y) + bxvx (x, y) − rv(x, y) + h(x, y) ≤ 0. (25)

The second option is to increase capacity by ε > 0, and then continue optimally. This
action is associated with the inequality

v(x, y) ≥ v(x − cxε, y + ε) − K ε.

Rearranging terms and letting ε ↓ 0, we obtain

vy(x, y) − cxvx (x, y) − K ≤ 0. (26)

Furthermore, theMarkovian character of the problem implies that one of these options
should be optimal and one of (25), (26) should hold with equality at any point in the
state space S. It follows that the problem’s value function v should identify with an
appropriate solution w to the HJB equation (24).

To construct the solution w to (24) that identifies with the value function v, we
first consider the existence of a strictly increasing function G : ]y0, y∞[ → ]0,∞[
that partitions the state space S into two regions, the “waiting” region W and the
“investment” region I defined by

W = {
(x, 0) | 0 < x ≤ x0 if x0 > 0

}
∪ {(x, y) | y ∈ ]y0, y∞[ and 0 < x ≤ G(y)

}
∪ {(x, y) | x > 0 and y ∈ [y∞, ȳ] ∩ R

}
,

I = {
(x, 0) | x > x0 if x0 > 0

}
∪ {(x, y) | x > 0 and y ∈ [0, y0] if y0 > 0

}
∪ {(x, y) | y ∈ ]y0, y∞[ and x > G(y)

}
.

In view of the interpretation of the function H defined by (13) as the project’s marginal
running payoff rate in excess of the marginal cost of capital rate, which we have
discussed in the previous section,we can see that increasing capacity cannot be optimal
whenever the state process takes values (x, y) ∈ S such that H(x, y) < 0. This
observation, (17) in Assumption 1 and (22) suggest that the inequality

G(y) < x†(y) for all y ∈ ]y0, y∞[

should hold true. Figures 1, 2, and 3 depict possible configurations of the waiting and
the investment regions.

Inside the region W , the heuristic arguments that we have briefly discussed above
suggest that w should satisfy the differential equation

σ 2x2wxx (x, y) + bxwx (x, y) − rw(x, y) + h(x, y) = 0. (27)
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In light of the theory that we review in Appendix 2 and the intuitive idea that the value
function should remain bounded as x ↓ 0, every relevant solution to this ODE is given
by

w(x, y) = A(y)xn + R(x, y), (28)

for some function A, where n is given by (12) and R(·, y) is defined by (79) for
k = h(·, y), namely,

R(x, y) = 1

σ 2(n − m)

[
xm
∫ x

0
s−m−1h(s, y) ds + xn

∫ ∞

x
s−n−1h(s, y) ds

]
.

(29)

On the other hand, w should satisfy

wy(x, y) − cxwx (x, y) = K , for (x, y) ∈ I, (30)

which implies that

wyx (x, y) − cxwxx (x, y) − cwx (x, y) = 0, for (x, y) ∈ I. (31)

To determine A and G, we postulate that w is C2,1, in particular, along the free-
boundary G. Such a requirement and (28)–(31) yield the system of equations

[
Ȧ(y) − ncA(y)

]
Gn(y) = −

[
Ry
(
G(y), y

)− cG(y)Rx
(
G(y), y

)− K
]
, (32)

[
Ȧ(y) − ncA(y)

]
Gn(y) = −G(y)

n

[
Ryx

(
G(y), y

)

− cG(y)Rxx
(
G(y), y

)− cRx
(
G(y), y

)]
. (33)

In view of the definition (29) of R, the associated expression (84) for the function
x �→ x Rx (x, y) and (83), we can see that this system is equivalent to

q
(
G(y), y

) = 0, (34)

Ȧ(y) = ncA(y) − 1

σ 2(n − m)

∫ ∞

G(y)
s−n−1H(s, y) ds, (35)

where H is defined by (13) and

q(x, y) =
∫ x

0
s−m−1H(s, y) ds. (36)
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We can also check that the solution to (35) is given by

A(y) = ecny

σ 2(n − m)

∫ y∞

y
e−cnu

∫ ∞

G(u)

s−n−1H(s, u) ds du, for y0 < y < y∞,

(37)
if the integrals converge.

The following result, the proof of which we develop in Appendix 1, is concerned
with the solution to the system of equations (34)–(35).

Lemma 1 Suppose that Assumption 1 holds true. The equation q(x, y) = 0 for x > 0
defines uniquely a strictly increasing C1 function G : ]y0, y∞[ → ]0,∞[, which
satisfies

x†(y) < G(y) for all y ∈ ]y0, y∞[, lim
y↓y0

G(y) = 0, if y0 > 0, and

lim
y↑y∞

G(y) = ∞, (38)

where x† is defined by (22). Furthermore, the function A given by (37) is well-defined
and real-valued, and there exists a constant C1 > 0 such that

0 < A(y)Gn(y) ≤ C1
(y)
[
1 + Gn−ϑ(y)

]
for all y ∈ ]y0, y∞[, (39)

where the decreasing function 
 and the constant ϑ > 0 are as in (21), and

g−1(x) +
[
1 + g−1(x)

]
Gn−ϑ

(
g−1(x)

) ≤ C1
[
1 + xn−ϑ

]
for all x > x0, (40)

where g−1 is the inverse of the strictly increasing function g that is defined by

g(y) = ecyG(y), for y ∈ ]y0, y∞[. (41)

Remark 2 The last limit in (38) implies that, under the optimal strategy, if ȳ < ∞,
then the maximal capacity level ȳ is never reached. This result is due to the assumption
that the function y† appearing in Assumption 1 is such that y†(χ) < limx→∞ y†(x) ≡
y∞ ≤ ȳ for all χ ∈ ]x0,∞[. Our analysis could be trivially modified to allow for
the possibility that ȳ < ∞ and limy↑ȳ G(y) < ∞, which would give rise to the
situation where the maximal capacity level ȳ is reached in finite time with strictly
positive probability. Such a relaxation would simply involve allowing for the strictly
increasing function y† to be such that limx→∞ y†(x) ≡ y∞ > ȳ. However, we have
opted against such a relaxation because this would complicate the notation and the
proof of Lemma 1 substantially. ��
Example 2 Suppose that h is a Cobb-Douglas function given by (23) in Example 1.
In this case, we can check that

G(y) =
[
r K (α − m)

−m

y1−β

β − αcy

]1/α
, for y ∈ ]y0, y∞[ ≡ ]0, β/cα[. (42)
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Figures 2 and 3 illustrate this example. ��
To complete the construction of the solution w to the HJB equation (24) that

identifies with the problem’s value function v, we note that there exists a mapping
z : I → R+ such that

z(x, y) ∈ ](y0− y)+, y∞ − y[ and xe−cz(x,y) = G
(
y+z(x, y)

)
for all(x, y) ∈ I.

(43)
Indeed, this claim follows immediately from the calculations

lim
z↑y∞−y

[
xe−cz − G(y + z)

]
= −∞,

∂

∂z

[
xe−cz − G(y + z)

]
=−cxe−cz − G ′(y+z) < 0, for z∈](y0 − y)+, y∞ − y[,

lim
z↓(y0−y)+

[
xe−cz − G(y + z)

]
=
{
xe−c(y0−y) − limu↓y0 G(u), if y ≤ y0,

x − G(y), if y > y0

}
> 0,

in which, we have used (38) and the fact that G is increasing. We prove the following
result in Appendix 1.

Lemma 2 Suppose that Assumption 1 holds true. The function w defined by

w(x, y)=

⎧⎪⎨
⎪⎩
R(x, y), if (x, y)∈W ∩ (R+×[y∞, ȳ]),
A(y)xn + R(x, y), if (x, y)∈W ∩ (R+×[y0, y∞[),
w
(
xe−cz(x,y), y+z(x, y)

)−Kz(x, y), if (x, y)∈I,

(44)
where A is defined by (37) and z is given by (43), is a C2,1 solution to the HJB equation
(24). Furthermore, the functionw(·, y) is increasing and there exists a constantC2 > 0
such that

− C2(1 + y) ≤ w(x, y) for all (x, y) ∈ S, (45)

w
(
G(y), y

) ≤ C2[
(y) + y][1 + Gn−ϑ(y)
]

for all y ∈ ]y0, y∞[, (46)

where the decreasing function 
 is as in (20)–(21).

We can now establish the main result of the paper.

Theorem 1 Suppose that Assumption 1 holds true. The value function v of the control
problem formulated in Sect. 2 identifies with the solution w to the HJB equation (24)
given by (44) in Lemma 2 and the optimal capacity expansion strategy ζ � is given by

ζ �
t =

{
0, if y > y0 and ecy sup0≤s≤t X

0
s ≤ g(y),

g−1
(
ecy sup0≤s≤t X

0
s

)
, if y < y∞ and ecy sup0≤s≤t X

0
s > g(y),

for t>0,

(47)
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where

g(y) =

⎧⎪⎨
⎪⎩
0, if y0 > 0 and y ≤ y0,

g(y), if y ∈ ]y0, y∞[,
∞, if y ∈ [y∞, ȳ] ∩ R+,

(48)

g is defined by (41), and X0 is the geometric Brownian motion given by (1).

Proof Fix any initial condition (x, y) ∈ S and any admissible strategy ζ ∈ A. In view
of Itô-Tanaka-Meyer’s formula and the left-continuity of the processes X , Y , we can
see that

e−rTw(XT+,YT+)

= w(x, y) +
∫ T

0
e−r t [σ 2X2

t wxx (Xt ,Yt ) + bXtwx (Xt ,Yt ) − rw(Xt ,Yt )
]
dt

+
∫

[0,T ]
[
wy(Xt ,Yt ) − cXtwx (Xt ,Yt )

]
dζ c

t + MT

+
∑

0≤t≤T

e−r t [w(Xt+,Yt+) − w(Xt ,Yt )
]
,

where

MT = √
2σ
∫ T

0
e−r t Xtwx (Xt ,Yt ) dWt . (49)

Combining this calculation with the observation that

w(Xt+,Yt+) − w(Xt ,Yt )

(7)=
∫ �ζt

0

dw
(
Xte−cs,Yt + s

)
ds

ds,

=
∫ �ζt

0

[
wy
(
Xte

−cs,Yt + s
)− cXte

−cswx
(
Xte

−cs,Yt + s
)]
ds,

we obtain

∫ T

0
e−r t h(Xt ,Yt ) dt − K

∫
[0,T ]

e−r t dζt + e−rTw(XT+,YT+)

= w(x, y) +
∫ T

0
e−r t [σ 2X2

t wxx (Xt ,Yt ) + bXtwx (Xt ,Yt ) − rw(Xt ,Yt )

+ h(Xt ,Yt )
]
dt +

∫
[0,T ]

[
wy(Xt ,Yt ) − cXtwx (Xt ,Yt ) − K

]
dζ c

t + MT

+
∑

0≤t≤T

e−r t
∫ �ζt

0

[
wy
(
Xte

−cs,Yt+s
)− cXte

−cswx
(
Xte

−cs,Yt+s
)− K

]
ds.

(50)
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Since w satisfies the HJB equation (24), it follows that

∫ T

0
e−r t h(Xt ,Yt ) dt − K

∫
[0,T ]

e−r t dζt + e−rTw(XT+,YT+) ≤ w(x, y) + MT .

(51)

In view of the integration by parts formula and (2), we can see that

e−rT YT+ − y = −r
∫ T

0
e−r tYt dt +

∫
[0,T ]

e−r t dζt . (52)

This identity, the admissibility condition (8) in Definition 1 and the monotone conver-
gence theorem imply that

E

[∫ ∞

0
e−r tYt dt

]
= lim

T→∞E

[∫ T

0
e−r tYt dt

]

≤ lim
T→∞

(
y

r
+ 1

r
E

[∫
[0,T ]

e−r t dζt

])

= y

r
+ 1

r
E

[∫
[0,∞[

e−r t dζt

]

< ∞, (53)

which implies that

lim inf
T→∞ E

[
e−rT YT+

]
= 0. (54)

The lower bound in (20), the estimate (45) and (52) imply that

∫ T

0
e−r t h(Xt ,Yt ) dt − K

∫
[0,T ]

e−r t dζt + e−rTw(XT+,YT+)

≥ −C0

∫ T

0
e−r t (1 + Yt ) dt − K

∫
[0,T ]

e−r t dζt − C2e
−rT (1 + YT+)

≥ −C0

∫ T

0
e−r t (1 + Yt ) dt − (K + C2)

∫
[0,T ]

e−r t dζt − C2(1 + y)

≥ −
(
C0

r
+ C2 + C2y

)
− C0

∫ ∞

0
e−r tYt dt − (K + C2)

∫
[0,∞[

e−r t dζt .

The admissibility condition (8) and (53) imply that the random variable on the right-
hand side of these inequalities has finite expectation. Combining this observation with
(51), we can see that E

[
infT≥0 MT

]
> −∞. Therefore, the stochastic integral M is a

supermartingale and E [MT ] ≤ 0 for all T > 0. Furthermore, Fatou’s lemma implies
that
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Jx,y(ζ ) ≤ lim inf
T→∞ E

[∫ T

0
e−r t h(Xt ,Yt ) dt − K

∫
[0,T ]

e−r t dζt

]
.

Taking expectations in (51) and passing to the limit, we obtain

Jx,y(ζ ) ≤ w(x, y) + lim inf
T→∞ e−rT

E
[−w(XT+,YT+)

]
.

The inequality Jx,y(ζ ) ≤ w(x, y) now follows because the estimate (45) implies that

lim inf
T→∞ e−rT E

[−w(XT+,YT+)
] ≤ lim

T→∞C2e
−rT + C2 lim inf

T→∞ e−rT E
[
YT+

] (54)= 0.

Thus, we have proved that v(x, y) ≤ w(x, y).
To prove the reverse inequality and establish the optimality of the process ζ � given

by (47), we first consider the possibility that [y∞, ȳ] ∩ R+ �= ∅ and y ∈ [y∞, ȳ]. In
this case, ζ �

t = 0 for all t ≥ 0, and

Jx,y(ζ
�) = E

[∫ ∞

0
e−r t h(X0

t , y) dt

]
(29),(81)= R(x, y)

(44)= w(x, y),

which establish the required claims.
In the rest of the proof, we assume that y < y∞. In this case,

Y �
t =

{
y, if y ∈ ]y0, y∞[ and ecy sup0≤s≤t X

0
s ≤ g(y),

g−1
(
ecy sup0≤s≤t X

0
s

)
, if ecy sup0≤s≤t X

0
s > g(y),

(55)
for all t > 0, and, apart from a possible initial jump of size (g−1(ecyx) − y)+ at time
0, the process (ecy X0,Y �) is reflecting in the free-boundary g in the positive direction.
In particular,

Y �
t ∈[y0, y∞[, ecy X0

t ≤g(Y �
t ) and ζ �

t −ζ �
0 =

∫
]0,t[

1{ecy X0
s=g(Y �

s )} dζ �
s for all t>0.

In view of (7) and the definition (41) of g, we can see that

ecy X0
t ≤ g(Y �

t ) ⇔ X�
t ≤ G(Y �

t ) and {ecy X0
t = g(Y �

t )} = {X�
t = G(Y �

t )},

where X� is the solution to (4) given by (7). It follows that the process (X�,Y �)

satisfies
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Y �
t ∈ [y0, y∞[, X�

t ≤ G(Y �
t ) and ζ �

t −ζ �
0 =

∫
]0,t[

1{X�
s=G(Y �

s )} dζ �
s for all t > 0.

(56)

Since the function g is strictly increasing, ζ �
0 > 0 if and only if xecy > g(y)

(41)=
ecyG(y). Therefore,

ζ �
0 = (

g−1(ecyx) − y
)+

> 0 if and only if (x, y) ∈ I. (57)

Furthermore, given any (x, y) ∈ I, we note that

z = g−1(xecy) − y ⇔ xecy = ec(y+z)G(y + z) ⇔ xe−cz = G(y + z),

which implies that ζ �
0 = z(x, y), where the function z is given by (43). It follows that

w(X�
0+,Y �

0+)−w(x, y) = w
(
xe−cz(x,y), y+z(x, y)

)−w(x, y)
(44)= Kz(x, y). (58)

In light of (56)–(58) and the construction of the solution w to the HJB equation (24),
we can see that (50) implies that

∫ T

0
e−r t h

(
X�
t ,Y

�
t

)
dt − K

∫
[0,T ]

e−r t dζ �
t + e−rTw

(
X�
T ,Y �

T

) = w(x, y) + M�
T

(59)

for all T > 0, where the local martingale M� is defined as in (49).
To show that ζ � is indeed admissible, we use (40) and (55) to calculate

Y �
t = y1{Y �

t =y}+g−1

(
ecy sup

0≤s≤t
X0
s

)
1{Y �

t >y} ≤ y+C1+C1e
c(n−ϑ)y

(
sup
0≤s≤t

X0
s

)n−ϑ

.

Combining these inequalities with the first estimate in (76), we can see that

lim
T→∞E

[
e−rT Y �

T

]
= 0 and E

[∫ ∞

0
e−r tY �

t dt

]
< ∞.

It follows that

E

[∫
[0,∞[

e−r t dζ �
t

]
= lim

T→∞E

[∫
[0,T ]

e−r t dζ �
t

]

(52)= lim
T→∞

(
E

[
e−rT Y �

T

]
+ rE

[∫ T

0
e−r tY �

t dt

]
− y

)

< ∞, (60)

which proves that ζ � ∈ A.
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To proceed further, we note that the inequality in (56), the fact that w(·, y) is
increasing and the bound given by (46) imply that, given any t > 0,

w(X�
t ,Y

�
t ) ≤ w

(
G(Y �

t ),Y �
t

)
≤ C2

[

(Y �

t )+Y �
t

][
1+Gn−ϑ(Y �

t )
] ≤ C2

[

(Y0+)+Y �

t

][
1+Gn−ϑ(Y �

t )
]
,

the last inequality following because 
 is decreasing. Also, (20) and (56) imply that

h(X�
t ,Y

�
t ) ≤ C0(1 + Y �

t )(1 + X�
t
n−ϑ

) ≤ C0(1 + Y �
t )
[
1 + Gn−ϑ(Y �

t )
]
.

The estimate (40) and (55) imply that

(1 + Y �
t )Gn−ϑ(Y �

t )

= (1 + y)Gn−ϑ(y)1{Y �
t =y}

+
[
1 + g−1

(
ecy sup

0≤s≤t
X0
s

)]
Gn−ϑ

(
g−1

(
ecy sup

0≤s≤t
X0
s

))
1{Y �

t >y}

≤ (1 + y)Gn−ϑ(y)1{y>y0} + C1 + C1e
c(n−ϑ)y

(
sup

0≤s≤t
X0
s

)n−ϑ

.

It follows that there exists a constant C3 = C3(y) such that

w(X�
t ,Y

�
t ) ≤ C3

⎡
⎣1 +

(
sup

0≤s≤t
X0
s

)n−ϑ
⎤
⎦ and

h(X�
t ,Y

�
t ) ≤ C3

⎡
⎣1 +

(
sup

0≤s≤t
X0
s

)n−ϑ
⎤
⎦

for all t > 0. These inequalities and the estimates (76) imply that

E

[
sup
T>0

(∫ T

0
e−r t h

(
X�
t ,Y

�
t

)
dt + e−rTw

(
X�
T ,Y �

T

))]

≤ C3

⎛
⎝ (1 + r)

r
+
∫ ∞

0
E

⎡
⎣e−r t

(
sup

0≤s≤t
X0
s

)n−ϑ
⎤
⎦ dt

+E

⎡
⎣sup
T>0

e−rT

(
sup

0≤s≤T
X0
s

)n−ϑ
⎤
⎦
⎞
⎠

< ∞, (61)
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and

lim inf
T→∞ e−rT

E
[−w(X�

T ,Y �
T )
]≥−C3 lim

T→∞ e−rT

⎛
⎝1+E

⎡
⎣
(

sup
0≤s≤T

X0
s

)n−ϑ
⎤
⎦
⎞
⎠=0.

(62)
In view of (59) and (61), we can see that E

[
supT>0 M

�
T

]
< ∞. Therefore, the sto-

chastic integral M� is a submartingale and E
[
M�

T

] ≥ 0 for all T > 0. Furthermore,
Fatou’s lemma implies that

Jx,y(ζ
�) ≥ lim sup

T→∞
E

[∫ T

0
e−r t h(X�

t ,Y
�
t ) dt − K

∫
[0,T ]

e−r t dζ �
t

]
.

In view of these observations and (62), we can take expectations in (59) and pass to
the limit to obtain

Jx,y(ζ
�) ≥ w(x, y) + lim sup

T→∞
e−rT

E
[−w(X�

T ,Y �
T )
] ≥ w(x, y).

This result and the inequality v(x, y) ≤ w(x, y) that we have proved above, imply
that v(x, y) = w(x, y) and that ζ � is optimal. ��
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Appendix 1: Proof of Lemmas 1 and 2

Proof of Lemma 1. Given any y ∈ ]y0, y∞[, we observe that

∂

∂x
q(x, y) = x−m−1H(x, y)

⎧⎪⎨
⎪⎩

< 0, for all x ∈ ]0, x†(y)[,
= 0, for all x = x†(y),

> 0, for all x > x†(y),

where x† is defined by (22) in Assumption 1. Also, we note that (17) and (18) in
Assumption 1 imply that there exist constants ε1 = ε1(y) and x1 = x1(y) > x†(y)
such that H(x, y) ≥ ε1 for all x ≥ x1. Given such a choice of constants, we calculate

lim
x→∞ q(x, y) = lim

x→∞

[
q(x1, y) +

∫ x

x1
s−m−1H(s, y) ds

]

≥ lim
x→∞

[
q(x1, y) + ε1

m
x−m
1 − ε1

m
x−m

]

= ∞,
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because m < 0. Combining these observations with the fact that q(0, y) = 0, we can
see that the equation q(x, y) = 0 for x > 0 has a unique solution G(y) > x†(y) for
all y ∈ ]y0, y∞[, and that G satisfies (38).

To see that the function G : ]y0, y∞[ → ]0,∞[ is C1 and strictly increasing, we
differentiate the identity q

(
G(y), y

) = 0 with respect to y to obtain

Ġ(y) = −Gm+1(y)H−1(G(y), y
) ∫ G(y)

0
s−m−1Hy(s, y) ds > 0, (63)

the inequality following from (19) in Assumption 1.
To establish (40), we note that

lim
y↓y0

Gn−ϑ(y) = e−c(n−ϑ)y0 lim
y↓y0

gn−ϑ(y) ≤ lim
y↓y0

gn−ϑ(y)

and

0 ≤ lim
y↑y∞

(1 + y)g−n+ϑ(y) ≤ lim
y↑y∞

(1 + y)Gn−ϑ(y)g−n+ϑ(y)

= lim
y↑y∞

(1 + y)e−c(n−ϑ)y < ∞,

where we have used (38) and the facts that G is increasing and n−ϑ > 0. Combining
these inequalities with the fact that G and g are continuous increasing functions with
the same domain ]y0, y∞[, we can see that there exists a constant C1 > 0 such that

1 + y + (1 + y)Gn−ϑ(y) ≤ C1
[
1 + gn−ϑ(y)

]
for all y ∈ ]y0, y∞[.

For x > x0 and y = g−1(x), this inequality implies the estimate in (40).
In view of (21) and the fact that the functions G, −
 are increasing, we can see

that, given any y ∈ ]y0, y∞[,

A(y)Gn(y) ≤ ecny

σ 2(n − m)
Gn(y)

∫ y∞

y
e−cnu
(u)

[
1

n
G−n(u) + 1

ϑ
G−ϑ(u)

]
du

≤ ecny

σ 2(n − m)

[
1

n

∫ y∞

y
e−cnu
(u) du + 1

ϑ
Gn−ϑ(y)

∫ y∞

y
e−cnu
(u) du

]

≤ 1

σ 2(n − m)

(y)

[
1

cn2
+ 1

cnϑ
Gn−ϑ(y)

]
,

which implies (39). Finally, the strict positivity of A follows from (17) and the inequal-
ity in (38). ��
Proof of Lemma 2. In view of its construction, we will prove that w is C2,1 if we
show that wy , wx and wxx are continuous along the free-boundary G. To this end, we
consider any (x, y) ∈ I, we recall the definition (44) of w and the definition (43) of
z, and we use (30)–(31) to calculate
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wy(x, y)Z = ∂

∂y

[
w
(
xe−cz(x,y), y + z(x, y)

)− Kz(x, y)
]

= wy
(
xe−cz(x,y), y + z(x, y)

)+
[
wy
(
xe−cz(x,y), y + z(x, y)

)

− cxe−cz(x,y)wx
(
xe−cz(x,y), y + z(x, y)

)− K
]
zy(x, y)

= wy
(
xe−cz(x,y), y + z(x, y)

)
, (64)

wx (x, y) = ∂

∂x

[
w
(
xe−cz(x,y), y + z(x, y)

)− Kz(x, y)
]

= wx
(
xe−cz(x,y), y + z(x, y)

)
e−cz(x,y)

+
[
wy
(
xe−cz(x,y), y + z(x, y)

)

− cxe−cz(x,y)wx
(
xe−cz(x,y), y + z(x, y)

)− K
]
zx (x, y)

= wx
(
xe−cz(x,y), y + z(x, y)

)
e−cz(x,y) (65)

and

wxx (x, y) = ∂

∂x

[
wx
(
xe−cz(x,y), y + z(x, y)

)
e−cz(x,y)

]

= wxx
(
xe−cz(x,y), y + z(x, y)

)
e−2cz(x,y)

+
[
wxy

(
xe−cz(x,y), y + z(x, y)

)
− cxe−cz(x,y)wxx

(
xe−cz(x,y), y + z(x, y)

)
− cwx

(
xe−cz(x,y), y + z(x, y)

)]
e−cz(x,y)zx (x, y)

= wxx
(
xe−cz(x,y), y + z(x, y)

)
e−2cz(x,y) (66)

These calculations imply the required continuity results because limn→∞ z(xn, yn) =
0 for every convergent sequence (xn, yn) in I such that limn→∞ xn = limn→∞ G(yn).

To prove (45)–(46), we note that the bounds of h in (20), the definition (29) of R
and the identity σ 2mn = −r imply that

− C0

r
(1 + y) ≤ R(x, y) ≤ C0(1 + y)

[
1

r
+ 1

σ 2(n − m − ϑ)ϑ
xn−ϑ

]
. (67)

The lower of these bounds and the positivity of A (see (39)) imply that

− C0

r
(1 + y) ≤ A(y)xn + R(x, y) = w(x, y) for all (x, y) ∈ W. (68)

In light of (14) and (82) in Appendix 2, we can see that R(·, y) is increasing for all
y ∈ [0, ȳ] ∩ R. Combining this observation with the inequalities A > 0 and n > 0,
we deduce that wx (x, y) ≥ 0 for all (x, y) ∈ W . This result, (43) and (65) imply that
w(·, y) is increasing for all y ∈ [0, ȳ] ∩ R, which, combined with (68), implies (45).
Also, (46) follows immediately from (39) and the upper bound in (67).
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It remains to show that w satisfies the HJB equation (24). By the construction and
the C2,1 continuity of w, we will achieve this if we show that

σ 2x2wxx (x, y) + bxwx (x, y) − rw(x, y) + h(x, y) ≤ 0 for all (x, y) ∈ I,

(69)

wy(x, y) − cxwx (x, y) − K ≤ 0 for all (x, y) ∈ W ∩ (R+ × ]y0, ȳ[
)
. (70)

To see (69), we consider any (x, y) ∈ I and we use (44), (65)–(66) and the fact that
w satisfies the ODE (27) inside W to calculate

σ 2x2wxx (x, y) + bxwx (x, y) − rw(x, y) + h(x, y)

= σ 2[xe−cz(x,y)]2wxx
(
xe−cz(x,y), y + z(x, y)

)+ b
[
xe−cz(x,y)]

× wx
(
xe−cz(x,y), y + z(x, y)

)
− rw

(
xe−cz(x,y), y + z(x, y)

)+ r K z(x, y) + h(x, y)

= −h
(
xe−cz(x,y), y + z(x, y)

)+ h(x, y) + r K z(x, y)

= −
∫ z(x,y)

0

[
∂h
(
xe−cu, y + u

)
∂u

− r K

]
du

(13)= −
∫ z(x,y)

0
H
(
xe−cu, y + u

)
du.

These calculations, (17), (38), (43) and the continuity of z imply (69).
To prove (70), we first consider the possibility that y∞ < ȳ. In this case, we use the

fact that w = R inside W ∩ (R+ × [y∞, ȳ]), the definition (29) of R, the associated
expression (84) for the function x �→ x Rx (x, y) and (83) to calculate

wy(x, y) − cxwx (x, y) − K = Ry(x, y) − cx Rx (x, y) − K

= 1

σ 2(n − m)

[
xm
∫ x

0
s−m−1H(s, y) ds + xn

∫ ∞

x
s−n−1H(s, y) ds

]

≤ 0 for all (x, y) ∈ W ∩ (R+ × [y∞, ȳ[), (71)

the inequality following thanks to (17) in Assumption 1.
To proceed further, we note that, inside W ∩ (R+ × ]y0, y∞[), the definition (44)

of w, (32), (34), calculations similar to the ones in (71) and the definition (13) of H
imply that

�(x, y) := wy(x, y) − cxwx (x, y) − K

= 1

σ 2(n−m)

[
−xm

∫ G(y)

x
s−m−1H(s, y) ds+xn

∫ G(y)

x
s−n−1H(s, y) ds

]
.

(72)
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In light of (17), (38) and the fact that m < 0 < n, we can see that

�x (x, y) = 1

σ 2(n − m)

[
−mxm−1

∫ G(y)

x
s−m−1H(s, y) ds

+ nxn−1
∫ G(y)

x
s−n−1H(s, y) ds

]

≥ 0 for all x ∈ [x†(y),G(y)],

which, combined with the identity �
(
G(y), y

) = 0, implies that

�(x, y) ≤ 0 for all x ∈ [x†(y),G(y)]. (73)

Also, we can use the inequality

∫ G(y)

x
s−m−1H(s, y) ds > 0 for all x ∈ ]0,G(y)[,

which follows from (17) in Assumption 1 and (34), to calculate

lim
x↓0 �(x, y) ≤ 1

σ 2(n − m)
lim
x↓0 x

n
∫ G(y)

x
s−n−1H(s, y) ds

= 1

σ 2(n − m)
lim
x↓0 x

n
∫ x†(y)

x
s−n−1H(s, y) ds

≤ 0, (74)

the inequality following from (17) and the fact that n > 0.
Finally, we can use the fact that m, n are the solutions to the quadratic equation

(11) and straightforward calculations to obtain

σ 2x2�xx (x, y) + bx�x (x, y) − r�(x, y) = −H(x, y) > 0 for all x ∈ ]0, x†(y)[.

This inequality and the maximum principle imply that the function � has no positive
maximum inside ]0, x†(y)[, which, combinedwith (73)–(74), implies that �(x, y) ≤ 0
for all y ∈ ]y0, y∞[ and x ∈ ]0,G(y)], and (70) follows. ��

Appendix 2: A Second Order Linear ODE

In this section, we review certain results regarding the solvability of a second order
linear ODE on which our analysis has been based. All of the claims that we do not
prove here are standard and can be found in several references (e.g., with the exception
of (76), which is proved in Merhi and Zervos [40, Lemma 1], all results can be found
in Knudsen et al. [33]).

123



548 Appl Math Optim (2017) 75:525–551

Given a constant λ,

E

[∫ ∞

0
e−r t

(
X0
t

)λ

dt

]
= xλ

∫ ∞

0
e
[
σ 2λ2+(b−σ 2)λ−r

]
t
E

[
e−σ 2λ2t+√

2σλWt
]
dt

=
{

∞, if λ ≤ m or λ ≥ n,

−xλ/
[
σ 2λ2 + (b − σ 2)λ − r

]
, if λ ∈ ]m, n[,

(75)

where X0 is the geometric Brownian motion given by (1) and m < 0 < n are
the constants defined by (12). Furthermore, for all λ ∈ ]0, n[, there exist constants
ε,C > 0 such that

e−rT
E

⎡
⎣
(

sup
0≤t≤T

X0
t

)λ
⎤
⎦ ≤ Cxλe−εT and E

⎡
⎣sup
T≥0

e−rT

(
sup

0≤t≤T
X0
t

)λ
⎤
⎦ ≤ Cxλ

(76)
for all x > 0.

A Borel measurable function k : ]0,∞[ → R satisfies

E

[∫ ∞

0
e−r t

∣∣∣k(X0
t )

∣∣∣ dt
]

< ∞ for all x > 0, (77)

if and only if

∫ x

0
s−m−1 |k(s)| ds +

∫ ∞

x
s−n−1 |k(s)| ds < ∞ for all x > 0. (78)

In the presence of these equivalent integrability conditions, the function R defined by

R(x) = 1

σ 2(n − m)

[
xm
∫ x

0
s−m−1k(s) ds + xn

∫ ∞

x
s−n−1k(s) ds

]
, for x > 0,

(79)
is a special solution to the non-homogeneous ODE

σ 2x2u′′(x) + bxu′(x) − ru(x) + k(x) = 0 (80)

that admits the probabilistic expression

R(x) = E

[∫ ∞

0
e−r t k(X0

t ) dt

]
. (81)

Furthermore,

if k is increasing, then R is increasing, (82)

and, if k is constant, then r R(x) = k for all x > 0. (83)
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In our analysis we have used the following result.

Lemma 3 Consider any C1 function k : ]0,∞[ → R satisfying the equivalent inte-
grability conditions (77)–(78) and suppose that there exists ε > 0 such that

∀x<ε, either k′(x)≥0 or k′(x)≤0 and ∀x>ε−1, either k′(x)≥0 or k′(x)≤0.

Then

x R′(x) = 1

σ 2(n − m)

[
xm
∫ x

0
s−mk′(s) ds + xn

∫ ∞

x
s−nk′(s) ds

]
for all x > 0,

(84)
in which expression, both integrals are well-defined and real-valued.

Proof We first note that the integrability condition (78) implies that the limits

lim
z↓0

∫ x

z
s−m−1k(s) ds and lim

z→∞

∫ z

x
s−n−1k(s) ds

exist in R and that

lim inf
z↓0 z−m |k(z)| = 0 and lim inf

z→∞ z−n|k(z)| = 0. (85)

To see the latter claim, suppose that lim inf z↓0 z−m |k(z)| > 0. In such a case, there
exist constants ε, z1 > 0 such that z−m |k(z)| ≥ ε for all z ≤ z1. Therefore,

∫ z1

0
s−m−1|k(s)| ds ≥ ε

∫ z1

0
s−1 ds = ∞,

which contradicts (78). We can argue similarly by contradiction to prove the second
limit in (85).

Using the integration by parts formula, we calculate

x−mk(x) − z−mk(z) = −m
∫ x

z
s−m−1k(s) ds +

∫ x

z
s−mk′(s) ds for all 0 < z < x .

(86)
The assumptions that we have made on k′ and the monotone convergence theorem
imply that the limit limz↓0

∫ x
z s−mk′(s) ds exists. Therefore, we can pass to the limit

as z ↓ 0 in (86) to obtain

x−mk(x) = −m
∫ x

0
s−m−1k(s) ds +

∫ x

0
s−mk′(s) ds for all x > 0.

Similarly, we can see that

−x−nk(x) = −n
∫ ∞

x
s−n−1k(s) ds +

∫ ∞

x
s−nk′(s) ds for all x > 0.
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The required result follows immediately from these calculations and the expression

x R′(x) = 1

σ 2(n − m)

[
mxm

∫ x

0
s−m−1k(s) ds + nxn

∫ ∞

x
s−n−1k(s) ds

]
.

��
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