
Appl Math Optim (2017) 75:365–401
DOI 10.1007/s00245-016-9335-7

An Unstable Two-Phase Membrane Problem and
Maximum Flux Exchange Flow

I McGillivray1

Published online: 16 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract LetU be a bounded open connected set inRn (n ≥ 1).We refer to the unique
weak solution of the Poisson problem −�u = χA on U with Dirichlet boundary
conditions as uA for any measurable set A in U . The function ψ := uU is the torsion
function of U . Let V be the measure V := ψ L n on U where L n stands for n-
dimensional Lebesgue measure. We study the variational problem

I (U, p) := sup
{
J (A) − V (U ) p2

}

with p ∈ (0, 1) where J (A) := ∫
A uA dx and the supremum is taken over measurable

sets A ⊂ U subject to the constraint V (A) = pV (U ). We relate the above problem
to an unstable two-phase membrane problem. We characterise optimsers in the case
n = 1. The proof makes use of weighted isoperimetric and Pólya–Szegö inequalities.
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1 Introduction and Motivation

Let U be a bounded open connected set in R
n (n ≥ 1). We refer to the unique weak

solution of the Poisson problem
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− �u = χA on U, u ∈ W 1,2
0 (U ), (1.1)

as uA for any measurable set A inU . The function ψ := uU is the torsion function of
U . Let V be the measure V := ψ L n on U where L n stands for the n-dimensional
Lebesgue measure. For p ∈ (0, 1) consider the variational problem

I (U, p) := sup
{
J (A) − V (U ) p2

}
(1.2)

where J (A) := (uA, χA) and the supremum is taken over measurable sets A ⊂ U
subject to the constraint V (A) = pV (U ). Here, (·, ·) stands for the usual inner product
in the real Hilbert space L2(U ). Any maximiser E in (1.2) will be called an optimal
configuration for the data (U, p). If E is an optimal configuration and u = uE , then
(u, E) will be called an optimal pair.
In Corollary 2.2 we show that for each p ∈ (0, 1) the problem (1.2) admits an optimal
pair (u, E) for the data (U, p). In Proposition 3.3 we characterise the optimal config-
uration E as a super level set of u/ψ ; that is, E = {u > cψ} for some c ∈ (0, 1) up
to L n-a.e. equivalence. The derivation assumes that U is a C1,1 domain. Under this
last assumption, we show in Corollary 3.4 that u satisfies the following semi-linear
elliptic partial differential equation with discontinuous nonlinearity. Put v := u − cψ
with c as above. Then v is a strong solution of the problem

−�v = (1 − c)χ�+(v) − cχ�−(v) on U

where �±(v) := {±v > 0}. The above equation is similar to Problem C (the two-
phase membrane problem) in [20, 1.2.3] but with a sign change; see also the unstable
membrane problem [20] 2.5. It is noted in [20, 1.1.7] that the composite membrane
problem (see [6,7]) is akin to the unstable membrane problem. Our terminology is
adopted from [6,7] and in places there is a similarity in method. The regular part of
the free boundary �(v) = ∂�±(v) ∩ U is real-analytic (Theorem 3.7). In Sect. 4 we
replaceU with the unit ball B inRn (n ≥ 2). For p ∈ (0, 1) we show that any optimal
configuration E for the data (B, p) possesses spherical cap symmetry L n-a.e. (see
Theorem 4.1).
In the remainder of the article, we study the problem (1.2) in the one-dimensional case
n = 1 and take B = (−1, 1). In Theorem9.5we show that any optimal configuration E
with data (B, p) isL 1-a.e. equivalent to an open interval abutting a boundary point of
B. A first step in obtaining this result is to transform the problem using an analog of the
ground-state transformation (with the torsion function in place of the ground-state) (see
Proposition 9.2).We then obtain an isoperimetric inequality on B with volume density
ψ and perimeter density ψ3/2 (Theorem 6.3) and a corresponding Hardy-Littlewood
type inequality (Theorem 6.6) and a Pólya–Szegö inequality (Theorem 7.10). We also
study the case of equality in the isoperimetric and Pólya–Szegö inequalities (Theorem
6.4 and Corollary 8.7 respectively). We have been guided by [2] in obtaining these
results, though our setting and proofs are slightly different.
We have not obtained an analog of Theorem 9.5 in the case n ≥ 2. At least part of
our method transfers to higher dimensions. There is a counterpart of the isoperimetric
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inequality Theorem 6.3 (though its derivation is more involved with the usual diffi-
culties around regularity and stability) and the Hardy–Littlewood inequality is a ready
consequence. A potential stumbling block is the validity of a corresponding Pólya–
Szegö inequality. We note that the sufficient conditons given in [22] are stringent.
The problem (1.2) is related to maximum flux exchange flow (a model of magma flow
in a volcanic vent [15]).We take n = 2 and consider a configuration of two immiscible
fluids in a vertical duct with cross-sectionU in a state of steady flow. The densities of
the fluids are labelled ρ, ρ′ with ρ > ρ′ and each fluid has unit viscosity. The pressure
p has constant gradient ∂p/∂z = −G onU . Suppose the fluid with density ρ occupies
a region A in U . By the Navier–Stokes equations, the vertical component of velocity
u satisfies

0 = �u + G − ρg on A;
0 = �u + G − ρ′g on U \ A.

Dirichlet boundary conditions are imposed on the boundary of U and it is assumed
that u and its gradient are continuous on the interface between the two regions A and
U \ A.
The parameter G lies in the interval (ρ′g, ρg) which allows the possibility of bidirec-
tional flow. On rescaling (and relabelling the velocities) we obtain the system

0 = �u − λ − 1 on A;
0 = �u − λ + 1 on U \ A; (1.3)

where

λ := (ρ′ + ρ)g − 2G

(ρ − ρ′)g
∈ (−1, 1)

is a proxy for the pressure gradient. Two problems arise: one to maximise the flux
(χU\A, u) over regions A which satisfy the flux balance condition (u, 1) = 0 with
constant λ; the other in which we optimize also over λ. In detail,

γ (U ) := sup
{
(χU\A, u) : (u, 1) = 0, A ⊂ U open, λ ∈ (−1, 1)

}
, (1.4)

γ (U, λ) := sup
{
(χU\A, u) : (u, 1) = 0, A ⊂ U open

}
, (1.5)

where in the latter λ is fixed in the interval (−1, 1). In the case n = 1 and U = B
we show that any optimal configuration E for the problem (1.5) with data (B, λ) is
L 1-a.e. equivalent to an open interval abutting a boundary point of B in Theorem 9.8.
Moreover, any optimal configuration E for the problem (1.4) isL 1-a.e. equivalent to
either (−1, 0) or (0, 1).
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2 Existence of Optimal Configurations

Define

Vt :=
{
f ∈ L2(U ) : 0 ≤ f ≤ 1L n-a.e. on U and ( f, ψ) ≤ t

}

for t ∈ (0, V (U )) and consider the variational problem

β(U, t) := sup
{
J ( f ) : f ∈ Vt

}
(2.1)

where J ( f ) := (u f , f ) and u f is the unique solution of the Poisson problem (1.1)
but with inhomogeneity f . The first main result runs as follows.

Theorem 2.1 Fix t ∈ (0, V (U )). Then

(i) there exists f ∈ Vt such that β(U, t) = J ( f );
(ii) (ψ, f ) = t;
(iii) f has the form f = χE for some measurable set E in U.

Corollary 2.2 For each p ∈ (0, 1) the problem (1.2) admits an optimal pair (u, E)

for the data (U, p).

Proof Let p ∈ (0, 1) and put t := pV (U ). Let E be as in Theorem 2.1 (iii). Then
V (E) = (ψ, χE ) = t = pV (U ). Let A ⊂ U be a measurable set with V (A) =
pV (U ). Then f = χA ∈ Vt so J (E) ≥ J (A). �	
We prepare a few lemmas before proving Theorem 2.1.

Lemma 2.3 Let X,Y be (real) Banach spaces and suppose that X ⊂ Y with contin-
uous embedding. Let (xh) be a sequence in X which converges weakly in X to x ∈ X.
Then (xh) converges weakly to x in Y .

Proof Note that for any g ∈ Y ′, g|X ∈ X ′. �	
We remark that the Dirichlet Laplacian (D(�), �) is associated with the Dirichlet
form (F , E ) in L2(U ) with form domain F := W 1,2

0 (U ) and

E (u, v) =
∫

U
∇u · ∇v dx (u, v ∈ F ).

Let G stand for the corresponding Green operator.

Lemma 2.4 Let t ∈ (0, V (U )). Then

(i) the functional J : Vt → R is continuous in the topology of weak sequential
convergence;

(ii) J : Vt → R is convex.
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Proof (i) Suppose that a sequence ( fh) in Vt converges weakly to an element f ∈ Vt

in L2(U ). Put uh := G fh ∈ L2(U ). For each h and ϕ ∈ L2(U ),

(uh, ϕ) = (G fh, ϕ) = ( fh, Gϕ),

by symmetry of G so that (uh, ϕ) → ( f, Gϕ) = (u, ϕ) as h → ∞ where u := G f .
We also have that

E (uh, ϕ) = ( fh, ϕ) → ( f, ϕ) = E (u, ϕ) as h → ∞

for any ϕ ∈ F . This means that (uh) converges weakly to u inF .
Note that W 1,2

0 (U ) ⊂ W 1,1
0 (U ) and ‖u‖W 1,1

0 (U )
≤ √

2 |U | ‖u‖W 1,2
0 (U )

for each u ∈
W 1,2

0 (U ). By Lemma 2.3, (uh) converges weakly to u in W 1,1
0 (U ).

If n ≥ 2 we may use the Rellich–Kondrachov compactness theorem [10, 5.7] for
example and [16, Theorem 21.2.9] to conclude that (uh) converges strongly to u in
L1(U ). Now

J ( f ) − J ( fh) = (u, f ) − (uh, fh) = (u, f − fh) + ( fh, u − uh)

and the right-hand side converges to zero as h → ∞ as ( fh) is bounded in L∞(U ).
This shows that J ( fh) → J ( f ) as h → ∞.
In the case n = 1 we use the fact thatW 1,2

0 (U ) is compactly embedded in C0(U ) (see
[13, Theorem 7.22]) and hence in L1(U ).
(ii) Let f ∈ Vt . By Dirichlet’s principle [10, 2.2.5] for example,

E( f ) := inf
v∈F

{
(1/2)E (v, v) − (v, f )

}
= −(1/2) J ( f ).

The functional E is concave so that J is convex. �	
Lemma 2.5 Let t ∈ (0, V (U )). A function f in the convex setVt ⊂ L2(U ) is extremal
only if f = χA L n-a.e. on U for some A ⊂ U measurable with (ψ, χA) ≤ t .

Proof The proof runs as in [11, Lemma 2]. A measurable function f onU isL n-a.e.
equivalent to χA for some A ⊂ U measurable if and only if f (1− f ) = 0L n-a.e. on
U . Suppose that f ∈ Vt is an extremal element and assume that |{ f (1− f ) �= 0}| > 0
for a contradiction. Then there exists ε > 0 and a measurable set E inU with positive
L n-measure such that ε ≤ f ≤ 1 − ε on E . Decompose E into two disjoint sets
E1, E2 each with positive L n-measure. Choose α = (α1, α2) ∈ R

2 \ {0} such that
α1(ψ, χE1) + α2(ψ, χE2) = 0 and define

fτ := f + τ

2∑
j=1

α jχE j

for τ ∈ R. Then fτ ∈ Vt for |τ | ≤ ε/|α1| ∨ |α2|. We then derive the contradiction that
f is not extremal as f = (1/2) { fτ + f−τ } for such τ . �	
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Proof of Theorem 2.1 Let ( fh) be a maximising sequence for β(U, t). Now Vt is
weakly sequentially compact in L2(U ). This follows by appeal to [16, Theorem10.2.9]
due to the fact that Vt is bounded, closed and convex in the reflexive Banach space
L2(U ). So we may assume that ( fh) converges weakly in L2(U ) to some f ∈ Vt as
h → ∞ after choosing a subsequence if necessary. By Lemma 2.4 (i),

β(U, t) = lim
h→∞ J ( fh) = J ( f ),

giving item (i) of the Theorem. It is straightforward to see that (ψ, f ) = t and hence
(ii).
We now argue as in [8, Corollary 6.2]. By [5, Chapitre II §7 Proposition 1.1 (EVT
II.58)], J attains its supremum on Vt at an extremal point f . We then invoke Lemma
2.5 to conclude that f has the form f = χA L n-a.e. on U for some measurable set
A in U and hence (iii). �	

3 Some Partial Regularity Results

Proposition 3.1 Suppose that U is a C1,1 domain. Let E ⊂ U be a measurable set
and u = uE . Then V ({u = tψ}) = 0 for each t ∈ (0, 1).

Proof By [13, Theorem 9.15], u ∈ W 2,p(U ) for any 1 < p < ∞. Put v := u − tψ ,
Nt := {v = 0} and assume that |Nt | > 0. By [13, Lemma 7.7], we derive that Dαv = 0
L n-a.e. and hence V -a.e. on Nt for any multi-index α with |α| = 1. Observe that Dαv

belongs to W 1,p(U ) for |α| ≤ 1. Applying the last-mentioned lemma once more, we
see Dαv = 0 V -a.e. on Nt for any multi-index α with |α| ≤ 2. So −�v = 0 V -a.e.
on Nt . But −�v = χE − t χU V -a.e. on U . This leads to a contradiction. �	
We require a version of the bathtub principle (see [17, Theorem 1.14]). Let (X,A , μ)

be a finite measure space and ρ a positive A -measurable integrable function on X .
Given 0 < v < μ(X), consider the variational problem

sup
∫

X
χE ρ dμ (3.1)

where the supremum is taken over measurable sets E ⊂ X with μ(E) = v. We say
that measurable sets A, B in X are equivalent μ-a.e. and write A = B if and only if
μ(A�B) = 0.

Theorem 3.2 Assume that

μ({ρ = t}) = 0 for all t > 0. (3.2)

Then for each v ∈ (0, μ(X)) the problem (3.1) has a unique optimiser up to equiva-
lence μ-a.e. given by E = {ρ > s} where

s := inf{τ > 0 : μ({ρ > τ }) ≤ v}.
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Proof The distribution function μρ : (0,∞) → (0, V (U )); τ �→ μ({ρ > τ }) is
non-increasing and right-continuous on (0,∞); in fact, continuous thanks to (3.2). By
right-continuity of μρ , μρ(s) ≤ v; by left-continuity, the reverse inequality holds, so
μ(E) = μρ(s) = v. For a measurable set A in X with μ(A) = v,

∫

X
χA ρ dμ =

∫ ∞

0
μ(A ∩ {ρ > τ }) dτ

=
∫ s

0
μ(A ∩ {ρ > τ }) dτ +

∫ ∞

s
μ(A ∩ {ρ > τ }) dτ

≤ sv +
∫ ∞

s
μ({ρ > τ }) dτ =

∫

X
χE ρ dμ

according to the layer cake representation [17, Theorem 1.13]. It follows that E is an
optimiser for (3.1).
Suppose A is a measurable set in X with μ(A) = v which is not μ-a.e. equivalent to
E . Then

μ(E) = μ(E \ A) + μ(E ∩ A) = v = μ(A \ E) + μ(E ∩ A) = μ(A)

so μ(E \ A) > 0 as otherwise μ(A \ E) = 0 and A is μ-a.e. equivalent to E . By
countable additivity,

0 < μ(E \ A) = lim
τ↓s μ({ρ > τ } \ A). (3.3)

Thus,

∫

X
χA ρ dμ

=
∫ s

0
μ(A ∩ {ρ > τ }) dτ +

∫ ∞

s
μ({ρ > τ }) dτ −

∫ ∞

s
μ({ρ > τ } \ A) dτ

≤ s v +
∫ ∞

s
μ({ρ > τ }) dτ −

∫ ∞

s
μ({ρ > τ } \ A) dτ

=
∫

X
χE ρ dμ −

∫ ∞

s
μ({ρ > τ } \ A) dτ <

∫

X
χE ρ dμ

where the strict inequality follows from (3.3). �	
Let U be a C1,1 domain and p ∈ (0, 1). Let (u, E) be an optimal pair for (1.2) with
data (U, p). By [13, Corollary 9.18] we may assume that u ∈ C0(U ).

Proposition 3.3 Suppose that U is a C1,1 domain. Let p ∈ (0, 1) and suppose that
(u, E) is an optimal pair for (1.2) with data (U, p). Then V (E�{u > cψ}) =
V (E�{u ≥ cψ}) = 0 where c ∈ (0, 1) is uniquely determined by the condition

V ({u > cψ}) = pV (U ). (3.4)
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Proof Put F := {u > cψ} with c as in (3.4). Assume for a contradiction that
V (E�F) > 0. We consider a version of Problem (3.1) on U with ρ replaced by
w := uE/ψ and μ replaced by V . By Proposition 3.1, V ({w = t}) = 0 for each
t > 0; thus condition (3.2) holds. By uniqueness of the optimiser in Theorem 3.2 and
the Cauchy–Schwarz inequality,

J (E) = (uE , χE ) =
∫

U
wχE dV <

∫

U
wχF dV = E (uE , uF ) ≤ J (E)1/2 J (F)1/2

so that J (E) < J (F), contradicting the assumption that E is an optimal configuration.
The identity V (E�{u ≥ cψ}) = 0 follows from Proposition 3.1. �	

Corollary 3.4 Suppose that U is a C1,1 domain. Let p ∈ (0, 1) and suppose that
(u, E) is an optimal pair for (1.2) with data (U, p). Put v := u− cψ where c is given
by (3.4). Then v is a strong solution of the problem

− �v = (1 − c)χ�+(v) − cχ�−(v) on U (3.5)

where �±(v) := {±v > 0} and E = �+(v) L n-a.e.

Proof By [13, Theorem 9.15], u ∈ W 2,p(U ) for any 1 < p < ∞ and u is a strong
solution of−�u = χE . By Proposition 3.3, u is a strong solution of−�u = χ{u>cψ}.
The result follows from the fact that −�(cψ) = cχU and Proposition 3.1. �	

Lemma 3.5 Let p ∈ (0, 1) and (u, E) be an optimal pair for the data (U, p). Then
(ψ − u,U \ E) is an optimal pair for the data (U, 1 − p).

Proof Let A ⊂ U be a measurable set with V (A) = pV (U ). Then

J (U \ A) = J (A) − V (A) + V (U \ A) = J (A) + (1 − 2p)V (U )

so that J (U \ A) − V (U )(1 − p)2 = J (A) − V (U )p2 and the result follows. �	

Put �±(v) = ∂�±(v) ∩U .

Lemma 3.6 Suppose that U is a C1,1 domain. Suppose that (u, E) is an optimal pair
for the data (U, p) and let v be as in Corollary 3.4. Then �+(v) = �−(v).

Proof Suppose that x ∈ �+(v)\�−(v). Then there exists r > 0 such that B(x, r) ⊂ U ,
u ≥ cψ on B(x, r) and u(x) = cψ(x). By Proposition 3.3, V (B(x, r)\E) ≤ V ({u ≥
cψ} \ E) = 0 and B(x, r) \ E is a Lebesgue null set. Let � stand for the fundamental
solution of Laplace’s equation inRn . By themean-value formula (see [10, 2.5 Problem
3] for example), for any 0 < τ < r ,
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u(x) = |B(x, τ )|−1
∫

∂B(x,τ )

u dHn−1 +
∫

B(x,τ )

{
�(y − x) − �(τω)

}
χE dy

= |B(x, τ )|−1
∫

∂B(x,τ )

u dHn−1 +
∫

B(x,τ )

{
�(y − x) − �(τω)

}
dy

≥ c |B(x, τ )|−1
∫

∂B(x,τ )

ψ dHn−1 +
∫

B(x,τ )

{
�(y − x) − �(τω)

}
dy

> c
{
|B(x, τ )|−1

∫

∂B(x,τ )

ψ dHn−1 +
∫

B(x,τ )

{
�(y − x) − �(τω)

}
dy

}

= cψ(x)

as c ∈ (0, 1), a contradiction. Here, ω is an arbitrary element in the unit sphere Sn−1

in Rn .
Now suppose that x ∈ �−(v)\�+(v). As before, there exists r > 0 such that u ≤ cψ

on B(x, r) and u(x) = cψ(x); alternatively, ψ − u ≥ (1 − c) ψ on B(x, r) and
(ψ − u)(x) = (1− c)ψ(x). By Lemma 3.5, (ψ − u,U \ E) is an optimal pair for the
data (U, 1 − p). We then get a contradiction as above. �	
Put �(v) := �+(v) = �−(v) and �∗(v) := �(v) ∩ {|∇v| �= 0}. The next theorem
follows as in [20, Theorem 4.24].

Theorem 3.7 Suppose that U is a C1,1 domain. Suppose that (u, E) is an optimal
pair for the data (U, p) and that x0 ∈ �∗(v). Then there exists r > 0 such that
�(v) ∩ B(x, r) is a real-analytic hypersurface in B(x, r).

4 Spherical Cap Symmetry

In this section, we replace U by the open unit ball B in R
n (n ≥ 2) centred at the

origin.We prove the following symmetry result. The notion of spherical cap symmetry
is defined below.

Theorem 4.1 Let p ∈ (0, 1). Suppose that (u, E) is an optimal pair for the data
(B, p). Then E possesses spherical cap symmetry L n-a.e.

We first discuss the operation of polarisation for integrable functions on B (see [4]
and references therein). For ν ∈ S

n−1 the closed half-space H = Hν is defined by

Hν := {
x ∈ R

n : x · ν ≥ 0
}

with an associated reflection τH : R
n → R

n; x �→ x − 2 (x · ν) ν. We refer to the
collection of closed half-spaces H by H . The polarisation fH of f ∈ L1+(B) with
respect to H ∈ H is defined as follows. Choose anL n-version f̃ of f . Set

f̃H (x) :=
{
f̃ (x) ∨ f̃ (τH x) for x ∈ B ∩ H,

f̃ (x) ∧ f̃ (τH x) for x ∈ B \ H ;
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f̃H is L n-measurable and its L n-equivalence class fH := [ f̃H ] is the polarisation
of f . The definition is well-defined due to the fact that if f̃ = g̃ L n-a.e. on B then
f̃ = g̃ Hn−1-a.e. on S

n−1
τ forL 1-a.e. 0 < τ < 1, and vice-versa.

The Green kernel G(x, y) for B is given by

G(x, y) = �(y − x) − �(|x |(y − x∗)) for (x, y) ∈ B × B \ d,

where � is the fundamental solution of Laplace’s equation in R
n as before, d stands

for the diagonal in B × B and the decoration ∗ refers to inversion in the unit sphere.
We note the inequality

G(x, y) > G(τH x, y) for any x, y ∈ B ∩ int H, (4.1)

which follows from the strong maximum principle.

Theorem 4.2 Let f ∈ L1+(B) and H ∈ H . Then J ( f ) ≤ J ( fH ) with equality if
and only if either f = fH or f ◦ τH = fH L n-a.e. on B.

Proof Let f̃ be an L n-version of f . Define

A+ := {
x ∈ B ∩ H : f̃ (x) < f̃ (τH x)

}

and similarly S+ butwith the strict inequality replaced by the sign>. Put A− := τH A+
and A := A+ ∪ A−. In this notation,

f̃H = χA f̃ ◦ τH + χB\A f̃ .

As a consequence,

J ( fH ) = J (χA f̃ ◦ τH ) + 2 (χA f̃ ◦ τH ,GχB\A f̃ ) + J (χB\A f̃ )

= J (χA f̃ ) + 2(χA f̃ ◦ τH ,GχB\A f̃ ) + J (χB\A f̃ )

and a similar identity holds for J ( f ) but without composition with reflection. We may
then write

J ( fH ) − J ( f )

= 2(χA[ f̃ ◦ τH − f̃ ],GχB\A f̃ )

= 2
∫

A+

∫

B∩H\A+
( f̃ (τH x) − f̃ (x))G(x, y) f̃ (y) dydx

+ 2
∫

A+

∫

(B\H)\A−
( f̃ (τH x) − f̃ (x))G(x, y) f̃ (y) dydx

+ 2
∫

A−

∫

B∩H\A+
( f̃ (τH x) − f̃ (x))G(x, y) f̃ (y) dydx

+ 2
∫

A−

∫

(B\H)\A−
( f̃ (τH x) − f̃ (x))G(x, y) f̃ (y) dydx
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= 2
∫

A+

∫

B∩H\A+
( f̃ (τH x) − f̃ (x))G(x, y) f̃ (y) dydx

+ 2
∫

A+

∫

B∩H\A+
( f̃ (τH x) − f̃ (x))G(τH x, y) f̃ (τH y) dydx

− 2
∫

A+

∫

B∩H\A+
( f̃ (τH x) − f̃ (x))G(x, τH y) f̃ (y) dydx

− 2
∫

A+

∫

B∩H\A+
( f̃ (τH x) − f̃ (x))G(x, y) f̃ (τH y) dydx

= 2
∫

A+

∫

B∩H\A+
( f̃ (τH x) − f̃ (x))(G(x, y) − G(τH x, y) f̃ (y) dydx

− 2
∫

A+

∫

B∩H\A+
( f̃ (τH x) − f̃ (x))(G(x, y) − G(τH x, y) f̃ (τH y) dydx

= 2
∫

A+

∫

S+
( f̃ (τH x) − f̃ (x))(G(x, y) − G(τH x, y))( f̃ (y) − f̃ (τH y)) dydx .

It is clear from this representation with the help of (4.1) that J ( f ) ≤ J ( fH ).
In the case of equality, it holds that either |A+| = 0 or |S+| = 0. In the former case,
f = fH while in the latter, f ◦ τH = fH L n-a.e. on B. �	
Let ω ∈ S

n−1. Given 0 < τ < 1 and 0 < α ≤ π the spherical cap Cω(τ, α) is the set

Cω(τ, α) := {
x = τ cos θ ω + τ sin θ η : 0 ≤ θ < α, η ∈ S

n−1 ∩ ω⊥} ⊂ S
n−1
τ

and has volume

s(τ, α) := Hn−1(Sω(τ, α)) = ωn−2τ
n−1

∫ α

0
(sin θ)n−2 dθ.

For a Borel set E in B put

L(τ ) := Hn−1(E ∩ S
n−1
τ ) for 0 ≤ τ < 1 and p(E) := {0 ≤ τ < 1 : L(τ ) > 0}.

The function L is Borel measurable The spherical cap symmetrisation of E is the set

CωE :=
⋃

τ∈p(E)

Cω(τ, α) (4.2)

where α ∈ (0, π ] is determined by s(τ, α) = L(τ ). Observe that CωE is a Borel set
in B (use Fubini’s Theorem [1, 1.74] for example) and |CωE | = |E |. We say that
the Borel set E ⊂ B possesses spherical cap symmetry L n-a.e. if CωE = E up to
L n-a.e. equivalence for some ω ∈ S

n−1.
Let f ∈ L1+(B) and choose an L n-version f̃ of f . Put m f̃ (τ, t) := Hn−1({ f̃ >

t}∩S
n−1
τ ) for t ∈ R and 0 ≤ τ < 1. The functionm f̃ (τ, ·) is non-increasing and right

continuous. Define its right continuous inverse by
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f̃ �(τ, s) := inf{t ∈ R : m f̃ (τ, t) ≤ s} for 0 < s ≤ Hn−1(Sn−1
τ ).

For x ∈ B put τ = |x | and choose α ∈ (0, π ] such that x · ω = τ cosα then define

Cω f̃ (x) := f̃ �(τ, s(τ, α)).

Note that m f̃ (τ, t) > s if and only if f̃ �(τ, s) > t . It follows that

{
Cω f̃ > t

} = Cω

{
f̃ > t

}
for each t ∈ R. (4.3)

In particular, Cω f̃ is Borel measurable and itsL n-equivalence class Cω f := [Cω f̃ ]
is the spherical cap symmetrisation of f .
Before proving Theorem 4.1, we prepare a number of lemmas.We first discuss a useful
two-point inequality. We introduce the notation

Q :=
{
(x1, x2) ∈ R

2 : x1 ≥ 0 and x2 ≥ 0
}

,

R := {(x1, x2) ∈ Q : 0 ≤ x2 < x1} ,

S := {(x1, x2) ∈ Q : 0 ≤ x1 < x2} .

Equip Q with the �1-norm ‖x‖1 := |x1| + |x2| and define a mapping ϕ : Q → Q via
(x1, x2) �→ (x1 ∨ x2, x1 ∧ x2); ϕ folds S onto R. A geometric argument establishes
the following lemma.

Lemma 4.3 For any x, y ∈ Q, ‖ϕx − ϕy‖1 ≤ ‖x − y‖1 with strict inequality if and
only if x ∈ R and y ∈ S or x ∈ R and y ∈ S or the same with the rôles of x and y
interchanged.

For ω ∈ S
n−1 introduce the collection of closed half-spaces Hω :=

{
Hν : ν ∈ S

n−1

and ν · ω ≥ 0
}
.

Lemma 4.4 Fix ω ∈ S
n−1. For any H ∈ Hω we have

(i) for any f, g ∈ L1+(B), ‖ fH − gH‖L1(B) ≤ ‖ f − g‖L1(B);
(ii) for any f ∈ L1+(B), (Cω f )H = Cω f L n-a.e. on B;
(iii) for any f ∈ L1+(B),

‖ fH − Cω f ‖L1(B) ≤ ‖ f − Cω f ‖L1(B) (4.4)

with strict inequality if | { f ◦ τH > f } ∩ H | > 0.
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Proof (i) By Lemma 4.3,

‖ fH − gH‖L1(B)

=
∫

B∩H
| fH − gH | dx +

∫

B\H
| fH − gH | dx

=
∫

B∩H
| f ∨ ( f ◦ τH ) − g ∨ (g ◦ τH | dx+

∫

B\H
| f ∧ ( f ◦ τH ) − g ∧ (g ◦ τH | dx

=
∫

B∩H

{
| f ∨ ( f ◦ τH ) − g ∨ (g ◦ τH | + |( f ◦ τH ) ∧ f − (g ◦ τH ) ∧ g|

}
dx

=
∫

B∩H
‖ϕ( f, f ◦ τH ) − ϕ(g, g ◦ τH )‖1 dx

≤
∫

B∩H
‖( f, f ◦ τH ) − (g, g ◦ τH )‖1 dx

=
∫

B∩H

{
| f − g| + | f ◦ τH − g ◦ τH |

}
dx = ‖ f − g‖L1(B).

(ii) Let f ∈ L1+(B) and f̃ aL n-representative of f . For x ∈ B∩H , x ·ω ≥ (τH x) ·ω
so (Cω f̃ )H = Cω f̃ on B. Therefore,

Cω f = [Cω f̃ ] = [(Cω f̃ )H ] = [Cω f̃ ]H = (Cω f )H .

(iii) The inequality follows by (i) and (ii). On B∩H the pair (Cω f̃ ,Cω f̃ ◦τH ) belongs
to R. By Lemma 4.3 if ( f̃ , f̃ ◦ τH ) ∈ S on a set of positive measure in B ∩ H then
strict inequality holds in (4.4). This observation leads to the criterion in the lemma. �	
Lemma 4.5 Let f ∈ L1(Sn−1,Hn−1). Fix ν ∈ S

n−1 and let (νh) be a sequence in
S
n−1 that converges to ν in Sn−1. Then

‖ f ◦ τh − f ◦ τ‖L1(Sn−1,Hn−1) → 0 as h → ∞.

Proof Note that |τhx − τ x | ≤ 4|νh − ν| for each x ∈ S
n−1 and h. Now use the

density of C(Sn−1) in L1(Sn−1,Hn−1) and the fact that each τ, τh is an isometry on
L1(Sn−1,Hn−1). �	
The next lemma is a spherical cap symmetrisation counterpart to [4, Lemma 6.3] and
extends [23, Lemma 3.9].

Lemma 4.6 Let f ∈ L1+(B) and ω ∈ S
n−1 and assume that f �= Cω f . Then there

exists H ∈ Hω such that

‖ fH − Cω f ‖L1(B) < ‖ f − Cω f ‖L1(B).

Proof For non-negative Borel measurable functions f, g on B, f = g if and only if
|{ f > t}�{g > t}| = 0 for any t > 0. As f �= Cω f there exists t > 0 such that

| { f > t} � {Cω f > t} | > 0.
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By (4.3) |{ f > t}| = |{Cω f > t}| and it follows that |{ f ≤ t < Cω f }| = |{Cω f ≤
t < f }|. Put A := { f ≤ t < Cω f } and A′ := {Cω f ≤ t < f }. For later use we note
that

Hn−1(A ∩ S
n−1
τ ) = Hn−1(A′ ∩ S

n−1
τ )

forL 1-a.e. τ ∈ (0, 1).
We claim there exists H ∈ Hω such that |A ∩ τH A′| > 0. Taking this as read, on
A ∩ τH A′ we have that Cω f > t ≥ Cω f ◦ τH so that A ∩ τH A′ ⊂ H . Also, f ≤ t <

f ◦ τH there. In short, A ∩ τH A′ ⊂ { f ◦ τH > f } ∩ H . So | { f ◦ τH > f } ∩ H | > 0
and strict inequality holds by Lemma 4.4 (iii).
To prove the claim, assume for a contradiction that |A ∩ τH A′| = 0 for all H ∈ Hω.
Let F be a countable dense subset in Sn−1 ∩ Hω. Then

∣∣∣
⋃
ν∈F

(A ∩ τHν A
′)
∣∣∣ = 0.

Therefore for all r ∈ (0, 1) it holds that

Hn−1(Ar ∩ τHν A
′
r ) = 0 for every ν ∈ F,

except on aL 1-null set N ⊂ (0, 1). We write Ar := A ∩ S
n−1
r for the r -section of A

and likewise for A′. Let ν ∈ S
n−1 ∩ Hω with corresponding reflection τ = τHν . Select

a sequence (νh) in F which converges to ν in S
n−1 and write τh for the reflection

associated to the closed half-space Hνh . For r ∈ (0, 1) \ N ,

|Hn−1(Ar ∩ τ A′
r ) − Hn−1(Ar ∩ τh A

′
r )| ≤ ‖χA′ − χA′ ◦ τ ◦ τh‖L1(Sn−1

r ,Hn−1)
,

and this latter converges to zero as h → ∞ by Lemma 4.5. We derive that

Hn−1(Ar ∩ τHν A
′
r ) = 0 for every ν ∈ S

n−1 ∩ Hω (4.5)

for all r ∈ (0, 1) \ N .
To conclude the argument, choose r ∈ (0, 1)\N such thatHn−1(Ar ) = Hn−1(A′

r ) >

0. Select a density point x for Ar lying in Ar using [1, Corollary 2.23] for example;
that is,

lim
ρ↓0

1

Hn−1(B(x, ρ)r )

∫

B(x,ρ)r

|χAr (z) − χAr (x)|Hn−1(dz) = 0.

This means that Ar has density 1 at x in the sense that

Hn−1(Ar ∩ B(x, ρ))

Hn−1(Sn−1
r ∩ B(x, ρ))

→ 1 as ρ ↓ 0.
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Choose y in A′
r similarly so that A′

r has density 1 at y. Then Cω f (x) > t ≥ Cω f (y).
So there exists ν ∈ S

n−1 ∩ Hω such that with τ = τHν we have that τ y = x . But then

lim
ρ↓0

Hn−1(Ar ∩ τ Br ∩ B(x, ρ))

Hn−1(Sn−1 ∩ B(x, ρ))
= 1,

so that, in fact,Hn−1(Ar ∩ τ Br ) > 0, contradicting (4.5). �	
Proof of Theorem 4.1 Let E be an optimal configuration for the data (U, p). Assume
for a contradiction that E �= CωE L n-a.e. for any ω ∈ S

n−1. Then there exists
ω ∈ S

n−1 such that

δ := inf
ν∈Sn−1

‖χE − CνχE‖L1(B) = ‖χE − CωχE‖L1(B) > 0.

By Lemma 4.6 there exists H ∈ Hω such that ‖(χE )H − CωχE‖L1(B) < ‖χE −
CωχE‖L1(B). It is plain from this that χE �= (χE )H ; but also χE ◦ τH �= (χE )H , for
otherwise,

‖χE − CτHωχE‖L1(B) = ‖χE − CωχE ◦ τH‖L1(B) = ‖(χE )H − CωχE‖L1(B)

< ‖χE − CωχE‖L1(B),

contradicting optimality of ω. It follows by Theorem 4.2 that J (E) < J (EH ), contra-
dicting the fact that E is an optimal configuration for the data (U, p). The result now
follows. �	

5 Preliminaries on Weighted Dirichlet Forms

Let n = 1 and U = (a, b) be an open bounded interval in R. We are given a density
function w with the property

(A) w is a positive function in C0(U ).

The weighted volume of anL 1-measurable set E inU is given bym(E) := ∫
E w dx .

We introduce the further assumption

(B) w ∈ C1(U ) and w′/w ∈ L2(U,m).

Consider the coercive bilinear form

E (u, v) :=
∫

U

(
uv + u′v′) dm (u, v ∈ D := C∞(U ))

in L2(U,m).

Lemma 5.1 Assume (A)–(B). Then

(i) (D,E ) is closable in L2(U,m) with closure denoted (D(E ),E );
(ii) (D(E ),E ) is a symmetric Dirichlet form in L2(U,m).
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Proof We refer to [19, Definitions I.2.3 and I.4.5] (for example). Note that (D,E ) sat-
isfies the weak sector condition [19] (2.3) by the Cauchy–Schwarz inequality. Suppose
(uh) is a sequence in D such that uh → 0 in L2(U,m). For v ∈ D an integration-by-
parts gives

∫

U
u′
hv

′w dx =
∫

∂U
uhv

′wν dH0 −
∫

U
uh(v

′w)′ dx

= −
∫

U
uh

(v′w)′

w
dm = −

∫

U
uh

{
v′′ + v′ w′

w

}
dm → 0

as h → ∞where ν = ±1 is the one-dimensional unit exterior normal on ∂U . We have
made use of the assumptions (A) and (B). The statement (i) follows by [19, Lemma
I.3.4]. Then (D(E ),E ) is a symmetric closed form by definition (cf. [19, Definition
I.2.3]). By [19, Proposition I.4.10 and II.2 (c)], (D(E ),E ) is a symmetric Dirichlet
form. �	
Given a real-valued function u on R+ (or R) define the function θt u on R+ for each
t > 0 by (θt u)(x) := u(x + t) for x ∈ R+ (or R).

Lemma 5.2 Let λ be a positive L 1-integrable function on R+ such that

c := sup
t>0

sup
x>0

λ(x)

λ(x + t)
< ∞.

Then

(i) θt ∈ B(L2(R+, λL 1)) for each t > 0;
(ii) ‖u − θt u‖L2(R+,λL 1) → 0 as t ↓ 0 for each u ∈ L2(R+, λL 1).

Proof (i) For any u ∈ L2(R+, λL 1),

‖θt u‖2L2(R+,λL 1)
=

∫ ∞

0
|θt u|2λ dx ≤ c

∫ ∞

0
|u(x + t)|2λ(x + t) dx

≤ c‖u‖2L2(R+,λL 1)
.

(ii) The statement holds for u ∈ C([0,∞)) ∩ L2(R+, λL 1) by the dominated con-
vergence theorem and this latter set is dense in L2(R+, λL 1). These observations as
well as (i) lead to the result using a 3ε-argument. �	
Our next assumption is stronger than required but easy to state:

(C) w is unimodal on U .

Lemma 5.3 Assume (A)–(C). Then

D(E ) =
{
u ∈ L2(U,m) : u is weakly differentiable on U and u′ ∈ L2(U,m)

}
.
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Proof Let u ∈ D(E ). There exists a Cauchy sequence (uh) in (D,E ) which con-
verges to u in L2(U,m). Then (u′

h) is a Cauchy sequence in L2(U,m) with limit
v ∈ L2(U,m) (say). For φ ∈ C∞

c (U ),

∫

U
uφ′ dx = lim

h

∫

U
uhφ

′ dx = − lim
h

∫

U
u′
hφ dx = − lim

h

∫

U
u′
h(w

−1φ) dm

= −
∫

U
vφ dx;

so u is weakly differentiable on U with weak derivative u′ = v ∈ L2(U,m).
Now let u ∈ L2(U,m) be weakly differentiable on U such that u′ ∈ L2(U,m).
Multiplying by a partition of unity we may assume that u = 0 near b. Denote by u
the extension of u to R by zero. For t > 0 put vt := (θt u)|U . Note that vt is weakly
differentiable and v′

t = θt (u′)|U . For t > 0, vt , v
′
t ∈ L2(U,m). Let (ρε)ε>0 be a

family of mollifiers on R (cf. [1, 2.1]). For t > 0 and ε > 0 small, (ρε � (θt u))′ =
ρε � (θt u′) on U . The operation � stands for convolution. For t > 0 and ε > 0 small
put wt,ε := ρε � (θt u)|U ∈ C∞(U ). Now

‖u − wt,ε‖L2(U,m) ≤ ‖u − vt‖L2(U,m) + ‖vt − wt,ε‖L2(U,m);
‖u′ − w′

t,ε‖L2(U,m) ≤ ‖u′ − v′
t‖L2(U,m) + ‖v′

t − ρε ∗ (θt u′)|U‖L2(U,m).

By Lemma 5.2 and (A)–(C) the expressions ‖u − vt‖L2(U,m) and ‖u′ − v′
t‖L2(U,m)

are small for t > 0 small. We also use the fact that the mollified functions are regular
approximations in L2 (cf. [1, 2.1]). This shows that u ∈ D(E ). �	
Suppose that Û = (c, d) is an open bounded interval in R and � : Û → U is a C1

bijection such that �′ =: ϕ > 0 on Û . Let m̂ := ��m be the pull-back of m under �;
thus m̂ = ŵL 1 on Û where ŵ := ϕ(w ◦ �). Define a coercive bilinear form

Ê (u, v) :=
∫

Û

(
uv + ϕ−2u′v′) dm̂ (u, v ∈ D(Ê ))

in L2(Û , m̂) with domain

D(Ê ) :=
{
u ∈ L2(Û , m̂) : u is weakly differentiable on Û and ϕ−1u′ ∈ L2(Û , m̂)

}
.

Lemma 5.4 Assume (A)–(C). Then

(i) (D(Ê ), Ê ) is a symmetric Dirichlet form in L2(Û , m̂);
(ii) the mapping D(Ê ) → D(E ); u �→ u := u ◦ �−1 is a Hilbert space isomor-

phism.

Proof (i)We show that (D(Ê ), Ê ) is closed in L2(Û , m̂). Let (uh) be an Ê 1/2-Cauchy
sequence in D(Ê ). Then (uh) resp. (ϕ−1u′

h) are Cauchy sequences in L2(Û , m̂) with
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limits u ∈ L2(Û , m̂) resp. v ∈ L2(Û , m̂). For φ ∈ C∞
c (Û ),

∫

Û
uφ′ dx = lim

h→∞

∫

Û
uhφ

′ dx = − lim
h→∞

∫

Û
u′
hφ dx

= − lim
h→∞

∫

Û
ϕ−1u′

h
φ

w ◦ �
dm̂ = −

∫

Û
v

φ

w ◦ �
dm̂ = −

∫

Û
(ϕv)φ dx

so u is weakly differentiable and ϕ−1u′ = v; that is, u ∈ D(Ê ). It then follows
that (uh) converges to u in Ê 1/2-norm. So (D(Ê ), Ê ) is a symmetric closed form in
L2(Û , m̂).
Letu ∈ D(Ê ).Given ε > 0 letϕε be as in [19,Example II.2.7].Note thatu ∈ W 1,2

loc (Û ).
Then ϕε(u) is weakly differentiable on Û and ϕε(u)′ = ϕ′

ε(u)u′ (see for example [10,
5.10, Exercise 16]) so ϕε(u) ∈ D(Ê ). We then derive that

Ê (ϕε(u), ϕε(u)) ≤ Ê (u, u).

By [19, Proposition I.4.7], (D(Ê ), Ê ) is a symmetric Dirichlet form in L2(Û , m̂).
(ii) Let u ∈ D(Ê ). Note that (u′/ϕ)◦�−1 ∈ L2(U,m) (use [1, (2.47)]) and u is weakly
differentiable on U with u′ = (u′/ϕ) ◦ �−1 ∈ L2(U,m). Thus the mapping is well-
defined. For u, v ∈ D(Ê ), Ê (u, v) = E (u, v) again using [1, (2.47)]. In particular,
the mapping u �→ u is injective. Now let u ∈ D(E ) and put û := u ◦ �. Then
û ∈ L2(Û , m̂), û is weakly differentiable on Û with weak derivative û′ = ϕ(u′ ◦ �)

and ϕ−1û′ ∈ L2(Û , m̂); in other words, û ∈ D(Ê ). This shows that the mapping in
(ii) is surjective. �	
Now take B = (−1, 1). We are given density functions f, g with the properties

(A.1) f is a positive function in C(B);
(A.2) g is a positive unimodal function in C0(B).

The weighted volume of anL 1-measurable set E in B is given by V (E) := ∫
E f dx .

Put ρ := f/g. We introduce the further assumption

(A.3) ρ ∈ L1(B,L 1), g ∈ C1(B) and g′/ f ∈ L2(B, V ).

Define

R : B → R; t �→
∫ t

0
ρ(τ) dτ,

and let B̌ denote the image of B under R; B̌ is an open bounded interval in R. Then
R : B → B̌ is a C1 bijection. Define ǧ := g ◦ R−1 on B̌. Define the measure
V̌ := ǧL 1 on B̌.
We introduce coercive bilinear forms

Ě (u, v) :=
∫

B̌

(
uv + u′v′) dV̌ (u, v ∈ D(Ě ))
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in L2(B̌, V̌ ) with domain

D(Ě ) =
{
u ∈ L2(B̌, V̌ ) : u is weakly differentiable on B̌ and u′ ∈ L2(B̌, V̌ )

}
;

and

Ê (u, v) :=
∫

B

(
uv + ρ−2 u′v′) dV (u, v ∈ D(Ê ))

in L2(B, V ) with domain

D(Ê ) =
{
u ∈ L2(B, V ) : u is weakly differentiable on B and ρ−1u′ ∈ L2(B, V )

}
.

Note that with B̌ in place of U , w := ǧ satisfies properties (A)–(C) above in light of
the assumptions (A.1)–(A.3). We derive

Lemma 5.5 Assume (A.1)–(A.3). Then

(i) (D(Ě ), Ě ) is a symmetric Dirichlet form in L2(B̌, V̌ );

(ii) C∞(B̌) is dense in D(Ě ) with respect to the Ě 1/2-norm;
(iii) (D(Ê ), Ê ) is a symmetric Dirichlet form in L2(B, V );
(iv) the mapping D(Ê ) → D(Ě ); u �→ u ◦ R−1 is a Hilbert space isomorphism.

6 An ( f, g)-Isoperimetric Inequality

Recall that an L 1-measurable set E ⊂ B is said to be a Caccioppoli set if for each
relatively compact open set � in B,

P(E,�) := sup
{ ∫

�

χEφ′ dx : φ ∈ C∞
c (�,R), ‖φ‖∞ ≤ 1

}
< ∞.

There then exists a unique real Radon measure DχE on B such that

∫

B
χEφ′ dx = −

∫

B
φ dDχE

for allφ ∈ C∞
c (B,R) [1, Corollary 1.55]. Denote by |DχE | the total variationmeasure

of DχE .

Theorem 6.1 Suppose that E is a Caccioppoli set in B with |E | > 0. Then there
exist N ∈ N ∪ {∞} and closed intervals Eh = [a2h−1, a2h] ⊂ R (h = 1, . . . , N )

with non-empty interior and separated by open neighbourhoods in R such that E is
L 1-a.e. equivalent to the union of the Eh.

The statement that the collection of intervals (Eh) is separated by open intervals means
that infk �=h d(Eh, Ek) > 0 for each h. Here, d denotes the standard metric on R.
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Proof The proof is along the lines of [1, Proposition 3.52]. Put u := χE ∈ BVloc(B).
Then μ := Du is a real Radon measure on B [1, 1.40]. Define

w(t) :=
⎧⎨
⎩

−μ([t, 0)) for − 1 < t < 0;
0 for t = 0;
μ([0, t)) for 0 < t < 1;

w is left-continuous on B by the Hahn decomposition and inner/outer regularity [1,
1.43]. By Fubini’s theorem, w ∈ BVloc(B) and Dw = μ. By [1, Proposition 3.2],
u = c+w L 1-a.e. on B for some c ∈ R. Let A be the set of atoms ofμ in B. Note that
w is continuous on B \ A andw(t+)−w(t) = μ({t}) at each t ∈ A. As c+w ∈ {0, 1}
L 1-a.e. on B, μ({t}) ∈ {−1, 1} for each t ∈ A. Let � be a relatively compact open
set in B. Then Card(A ∩ �) = |μ|(A ∩ �) ≤ |μ|(�) < ∞. Thus the set of atoms A
accumulates at ∂B (if at all). By the observations above, the function c+w is constant
on each connected component of B \ A with values in the set {0, 1}. Let the sets Eh

be the closure of the open intervals in B \ A where c + w takes the value 1. �	
Let g be a positive lower semicontinuous function on B. Let E be a Caccioppoli set
in B. The g-perimeter of E relative to B is defined by

Pg(E, B) :=
∫

B
g d|DχE |. (6.1)

Lemma 6.2 Let g be a positive lower semicontinuous function on B and E a Cac-
cioppoli set in B. Then

Pg(E, B) =
∑
a∈A

g(a)

where A stands for the set of atoms of DχE in B.

Proof Adirect computation gives DχE = ∑
a∈A DχE ({a})δa and |DχE | = ∑

a∈A δa
which gives the result. We use δa to stand for the Dirac measure at a. �	
Let f, g be densities on B satisfying conditions (A.1)–(A.3). The weighted volume
of an L 1-measurable set E in B is the measure given by V (E) := ∫

E f dx . Define
F : [−1, 1] → [0, V (B)] by F(x) := V ((−1, x)) and

J (p) := (g ◦ F−1)(p) for p ∈ [0, V (B)].

We impose the additional assumptions

(A.4) J (p) = J (V (B) − p) for 0 < p < V (B);
(A.5) for all p, q > 0 with p + q < V (B), J (p + q) < J (p) + J (q).

For an L 1-measurable set E in B the �-rearrangement of E is defined by E� :=
(−1, F−1(V (E))). We then have that the following ( f, g)-isoperimetric inequality is
valid.
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Theorem 6.3 Assume (A.1)–(A.5). Suppose that E is a Caccioppoli set in B. Then
Pg(E, B) ≥ Pg(E�, B).

Proof For 0 < p < q < V (B),

J (p) + J (q) = J (p) + J (V (B) − q) > J (p + V (B) − q) = J (q − p) (6.2)

by (A.4)–(A.5). The above inequality also holds for 0 ≤ p < q ≤ V (B) with >

replaced by ≥ by continuity; equality holds if and only if one or both of p, q are
extremal.
We may suppose that V (E) = p for some p ∈ (0, V (B)). Assume that E has the
form E = ⋃N

h=1[a2h−1, a2h] with −1 ≤ a1 < a2 < · · · < a2N−1 < a2N ≤ 1
for some N ∈ N. Put p j := F(a j ) so that 0 ≤ p1 < · · · < p2N ≤ V (B) and∑N

h=1(p2h − p2h−1) = p. By Lemma 6.2, (6.2) and (A.5),

Pg(E, B) =
N∑

h=1

(
J (p2h−1) + J (p2h)

)
≥

N∑
h=1

J (p2h − p2h−1)

≥ J

(
N∑

h=1

(p2h − p2h−1)

)
= J (p) = Pg(E

�, B).

The result for arbitrary E as in the statement follows by Theorem 6.1, the monotone
convergence theorem and continuity of J . �	
We now investigate the equality case in the isoperimetric inequality.

Theorem 6.4 Assume (A.1)–(A.5). Suppose that E is a Caccioppoli set in B. Assume
that Pg(E, B) = Pg(E�, B). Then either E = E� or B \ E = (B \ E)� V -a.e.

Proof We may assume that E is the union of closed intervals Eh ⊂ R (h =
1, . . . , N , N ∈ N ∪ {∞}) with non-empty interior and separated by open neigh-
bourhoods in R as in Theorem 6.1. In virtue of (6.1) we may take N > 1. We can
then find x ∈ B \ E such that V (E ∩ (x, 1)) > 0 and V (E ∩ (−1, x)) > 0. Put
E− := E ∩ (−1, x), E+ := E ∩ (x, 1), F− := E�

− and F+ := B \ (B \ E+)�. Note
that V (E−) = V (F−) = p− and V (E+) = V (F+) = p+ for some p± ∈ (0, V (B)).
We have

J (p−) + J (p+) = Pg(F−, B) + Pg(F+, B) ≤ Pg(E−, B) + Pg(E+, B)

= Pg(E, B)

by Theorem 6.3. On the other hand, Pg(E, B) = Pg(E�, B) = J (p− + p+) <

J (p−) + J (p+) by (A.5), a contradiction. �	
Proposition 6.5 Assume (A.1)–(A.3). If g′/ f is strictly decreasing on B then (A.5)
holds.
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Proof Note that J is differentiable on (0, V (B)). Moreover, (F−1)′(p) = 1/( f ◦
F−1)(p) and

J ′(p) = g′(F−1(p)) · 1/( f ◦ F−1)(p) = (g′/ f )(F−1(p))

for p ∈ (0, V (B)); this shows that J is strictly concave on (0, V (B)) as (0, V (B)) �→
(−1, 1) : p �→ (F−1)(p) is increasing. For 0 < p < q < V (B) we have that

J (p)

p
≥ J (q)

q
(6.3)

by concavity and the fact that J (0) ≥ 0. Supposing additionally that p + q < V (B)

we have

J (q) − J (p)

q − p
>

J (p + q) − J (q)

p

by considering the gradient of chords. Rearranging and using (6.3) gives (A.5). �	
Let u be a real-valued L 1-measurable function on B. Put μu(t) := V ({|u| > t}) for
t ≥ 0. The functionμu : [0,∞) → [0, V (B)] is non-increasing, right-continuous and
μu(t) → 0 as t → ∞. Define its right-continuous inverse u� : [0, V (B)] → [0,∞]
by

u�(s) := inf{t ≥ 0 : μu(t) ≤ s} for 0 ≤ s ≤ V (B),

with the understanding that inf ∅ = +∞. Define u� := u� ◦ F on B. Note that
μu(t) > s if and only if u�(s) > t (see Lemma 10.1). It follows that

V ({|u| > t}) = V ({u� > t}) for each t ≥ 0; (6.4)

in fact, V ({u� > t}) = V ({F < μu(t)}) = V ((−1, F−1(μu(t)))) = μu(t).
The following result is a Hardy–Littlewood type inequality and can be proved as in
[14, 13.10] (see also [9, Theorem 3]).

Theorem 6.6 Assume (A.1)–(A.5). Let u, v be real-valuedL 1-measurable functions
on B. Then

∫

B
|uv| dV ≤

∫

B
u�v� dV .

The next non-expansivity result can be found in [9, Corollary 1].

Theorem 6.7 Assume (A.1)–(A.5). Let u, v be real-valuedL 1-measurable functions
on B. Then

∫

B
|u� − v�|2 dV ≤

∫

B
|u − v|2 dV .
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Define a metric d̂ on B as follows. The length of a piecewise C1 parametrised curve
γ : [α, β] → B in (B, d̂) is

L̂[γ ] =
∫ β

α

ρ(γ (t))|γ̇ (t)| dt.

For x, y ∈ B, d̂(x, y) stands for the infimum of lengths of piecewise C1 parametrised
curves in B connecting x to y; d̂(·, ·) is a metric on B.

Lemma 6.8 For x, y ∈ B, d̂(x, y) = d(R(x), R(y)).

Proof Let γ : [α, β] → B be a piecewise C1 parametrised curve in B connecting x
to y. Then L̂[γ ] = L[R ◦ γ ] in an obvious notation. So d̂(x, y) ≤ d(R(x), R(y)). A
similar argument gives the reverse inequality. �	
Note that for each L 1-measurable set E in B, V̌ (R(E)) = V (E).

Lemma 6.9 The mapping R : B → B̌ sets up a one-to-one correspondence between
Caccioppoli sets in B resp. B̌. Moreover, let E be a Caccioppoli set in B. Then

(i) |DχR(E)| = R�|DχE |;
(ii) Pǧ(R(E), B̌) = Pg(E, B).

Proof Let � ⊂ B be a relatively compact open set. Then

|DχR(E)|(R(�)) = sup

{∫

R(�)

χR(E)φ
′ dx : φ ∈ C1

c (B̌,R) and ‖φ‖∞ ≤ 1

}

= sup

{∫

�

χE (φ ◦ R)′ dx : φ ∈ C1
c (B̌,R) and ‖φ‖∞ ≤ 1

}

= sup

{∫

�

χEφ′ dx : φ ∈ C1
c (B,R) and ‖φ‖∞ ≤ 1

}

= |DχE |(�),

from which the first assertion follows. Item (i) follows from the definition of the push-
forward [1, Definition 1.7] and the coincidence criterion [1, Proposition 1.8], while
(ii) follows from (6.1), (i) and the change of variables formula for integrals. �	
The function F̌ : R → [0, V (B)] defined by F̌(x) := V̌ (B̌ ∩ (−∞, x)) is the
cumulative distribution function of ǧ. Let u be a real-valuedL 1-measurable function
on B̌. Put μ̌u(t) := V̌ ({|u| > t}) for t ≥ 0 and denote by ǔ� : [0, V̌ (B̌)] → [0,∞]
its right-continuous inverse (as in the Appendix). Define u� := ǔ� ◦ F̌ on B̌.

Proposition 6.10 Let u be a real-valuedL 1-measurable function on B and put v :=
u ◦ R−1. Then u� = v� ◦ R. In particular, for any L 1-measurable set E ⊂ B,
R(E)� = R(E�).

Proof We have that μu(t) = μ̌v(t) for each t ≥ 0; hence u� = v̌� on [0, V (B)].
Now , F̌ ◦ R = F on [−1, 1]. This leads to the first claim. The second then follows
straightforwardly. �	
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Corollary 6.11 Assume (A.1)–(A.5). Suppose that E is a Caccioppoli set in B̌. Then
Pǧ(E, B̌) ≥ Pǧ(E

�, B̌).

Proof Let E be a Caccioppoli set in B. By Lemma 6.9, Theorem 6.3 and Proposition
6.10,

Pǧ(R(E), B̌) = Pg(E, B) ≥ Pg(E
�, B) = Pǧ(R(E�), B̌) = Pǧ(R(E)�, B̌).

�	
Corollary 6.12 Assume (A.1)–(A.5). Suppose that E is aCaccioppoli set in B̌. Assume
that Pǧ(E, B̌) = Pǧ(E

�, B̌). Then either E = E� or B̌ \ E = (B̌ \ E)� V̌ -a.e.

Proof This follows from Lemma 6.9 and Theorem 6.4. �	
Finally, we state a counterpart of Theorem 6.7.

Theorem 6.13 Assume (A.1)–(A.5). Let u, v be real-valuedL 1-measurable functions
on B̌. Then

∫

B̌
|u� − v�|2 dV̌ ≤

∫

B̌
|u − v|2 dV̌ .

7 A Pólya–Szegö Inequality

We first show that the rearrangement ·� is smoothing in the sense of [21] (see also [4]).
Given r > 0 write Er for the r -neighbourhood of anL 1-measurable set E in (B̌, d);
by convention, ∅r = ∅. The Minkowski content of E is the quantity

V̌+(E) := lim inf
r↓0

V̌ (Er ) − V̌ (E)

r
∈ [0,∞].

Lemma 7.1 Let E be a finite union of open intervals in (B̌, d). Then

(i) E is a Caccioppoli set in B̌;
(ii) V̌+(E) = Pǧ(E, B̌).

Proof (i) The set E is a finite union of disjoint open intervals, E is a finite union of
closed intervals in R with non-empty interior and separated by open sets in the sense
of Theorem 6.1 and E = E ∪ I for a finite set I ⊂ R. So E is L 1-a.e. equivalent to
F := E ∩ B̌; in particular, E is a Caccioppoli set in B̌ by Theorem 6.1.
(ii) Suppose first that F = [a1, a2] ⊂ B̌. Then Er = Fr for each r > 0 and V̌ (E) =
V̌ (F) as V̌ is non-atomic. For small r > 0,

1

r
V̌ (Er \ E) = 1

r
V̌ (Fr \ F) = 1

r

∫ a1

a1−r
ǧ dy + 1

r

∫ a2+r

a2
ǧ dy

→
∫

∂F
ǧ dH0 = Pǧ(F, B̌) = Pǧ(E, B̌)
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as r ↓ 0. The result for general E as in the statement follows from the property that
the closed intervals in E are separated by open sets. �	
For p ∈ (0, V (B)) we may write

F̌−1(p) =
∫ p

V (B)/2

dτ

J̌ (τ )

where J̌ = ǧ ◦ F̌−1. Note that J̌ = J due to the fact that F̌ ◦ R = F on B.

Lemma 7.2 Let E be anL 1-measurable set in B̌. Then V̌ (Er ) ≥ V̌ ((E�)r ) for each
r > 0. In particular, the rearrangement ·� is smoothing in the sense that (E�)r ⊂ (Er )

�

for each L 1-measurable set E in B̌ and r > 0.

Proof We verify the conditions in [3, Theorem 2.1 (c)]. The measure V̌ is a separable
non-atomic Borel measure on the metric space (B̌, d). The r -neighbourhood (r > 0)
of any open ball in B̌ is an open ball in B̌. Let E be a finite union of open intervals in
(B̌, d). By Lemma 7.1 and Corollary 6.11,

V̌+(E) = Pǧ(E, B̌) ≥ Pǧ(E
�, B̌) = J̌ (V̌ (E)).

Thus by [3, Theorem 2.1], V̌ (Er ) ≥ F̌(F̌−1(V̌ (E))+r) = V̌ ((E�)r ) for anyBorel set
E in B̌ with 0 < V̌ (E) < V (B) and r > 0. The result then extends toL 1-measurable
sets in B̌. �	
Lemma 7.3 Let A, E beL 1-measurable sets in B̌ with A ⊂ E. Then d(A�, B̌\E�) ≥
d(A, B̌ \ E).

Here, d(A, E) := inf{d(x, y) : x ∈ A, y ∈ E} with the understanding that inf ∅ =
+∞.

Proof We use the criterion that for r > 0, Ar ⊂ E if and only if d(A, B̌ \ E) ≥ r .
Put r := d(A, B̌ \ E); we may assume that r > 0. By the criterion, Ar ⊂ E
and hence (Ar )

� ⊂ E�. By Lemma 7.2, V̌ ((Ar )
�) = V̌ (Ar ) ≥ V̌ ((A�)r ) meaning

(A�)r ⊂ (Ar )
� ⊂ E� which entails that d(A�, B̌ \ E�) ≥ r by the criterion. �	

The modulus of continuity of an arbitrary real-valued function u on B̌ is defined by

ωu(t) := sup
{
|u(x) − u(y)| : x, y ∈ B̌ and d(x, y) < t

}
∈ [0,∞] for t > 0.

Observe that u is uniformly continuous on B̌ if and only if limt↓0 ωu(t) = 0. We state
the following criterion without proof.

Lemma 7.4 Let u be a real-valued function on B̌ and t, τ > 0. Thenωu(t) > τ if and
only if there exist s, s′ ∈ R with s > s′ + τ such that d({u > s}, B̌ \ {u > s′}) < t .

Proposition 7.5 Assume (A.1)–(A.5).
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(i) Let u be a real-valuedL 1-measurable function on B̌. Then ωu(t) ≥ ωu� (t) for
each t > 0.

(ii) If u is uniformly continuous on B̌ then so is u�.
(iii) If u is Lipschitz continuous on B̌ then so is u� and Lip(u�, B̌) ≤ Lip(u, B̌).

Proof Let t > 0.Wemay assume thatωu� (t) > 0. Choose τ > 0 such thatωu� (t) > τ .
By Lemma 7.4 there exist s, s′ ∈ R with s > s′ + τ such that d({u� > s}, B̌ \ {u� >

s′}) < t . Now {u� > s} = {|u| > s}� and likewise for s′ by the counterpart of the
equimeasurabilty property (6.4). ByLemma 7.3we deduce that d({|u| > s}, B̌\{|u| >

s′}) < t and again by Lemma 7.4 that ωu(t) ≥ ω|u|(t) > τ . Item (i) then follows. Part
(ii) is a ready consequence. As for (iii),

Lip(u, B̌) := sup

{ |u(x) − u(y)|
d(x, y)

: x, y ∈ B̌, x �= y

}

= sup
t>0

(1/t)ωu(t) ≥ sup
t>0

(1/t)ωu� (t) = Lip(u�, B̌).

�	

Let u be a Lipschitz continuous function on (B̌, d). By Rademacher’s theorem (cf. [1,
Theorem 2.14]) u is differentiableL 1-a.e. on B̌ and its derivative coincides with the
weak derivative on a set of full measure. Put

Z1 := {
x ∈ B̌ : u is differentiable at x and u′(x) = 0

}
,

Z2 := {
x ∈ B̌ : u is not differentiable at x

}
and Z := Z1 ∪ Z2.

By [1, Lemmas 2.95 and 2.96], Z ∩ {u = t} = ∅ for L 1-a.e. t ∈ R and hence
N := u(Z) ⊂ R is L 1-negligible. The analogous sets corresponding to u� will be
decorated with the subscript �.
We shall make use of the coarea formula [1, Theorem 2.93 and (2.74)],

∫

B̌
φ|u′| dx =

∫ ∞

−∞

∫

B̌∩{u=t}
φ dH0 dt (7.1)

for any L 1-measurable function φ : B̌ → [0,∞].

Lemma 7.6 Let u be a nonnegative Lipschitz continuous function on (B̌, d). Then

(i) μ̌u ∈ BV(R);
(ii) Dμ̌u = −u�V̌ ;
(iii) Dμ̌a

u = Dμ̌u (R \ N );
(iv) Dμ̌s

u = Dμ̌u N;

(v) A :=
{
t ∈ R : L 1(Z ∩ {u = t}) > 0

}
is the set of atoms of Dμ̌u and

Dμ̌
j
u = Dμ̌u A;
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(vi) μ̌u is differentiable L 1-a.e. on R with derivative given by

μ̌′
u(t) = −

∫

(B̌\Z)∩{u=t}
ǧ

|u′| dH
0

forL 1-a.e. t ∈ R;
(vii) Ran(u) = supp(Dμ̌u).

The notation above Dμ̌a
u , Dμ̌s

u , Dμ̌
j
u stands for the absolutely continuous resp. sin-

gular resp. jump part of the measure Dμ̌u (see [1, 3.2] for example).

Proof For any ϕ ∈ C∞
c (R),

∫ ∞

−∞
μ̌uϕ

′ dt =
∫

B̌
ϕ ◦ u dV̌

by Fubini’s theorem; so μ̌u ∈ BV(R) and Dμ̌u is the push-forward of V̌ under u,
Dμ̌u = −u�V̌ (cf. [1, 1.70]). By (7.1),

Dμ̌u (R \ N )(A) = −V̌ ({u ∈ A} ∩ B̌ \ Z) = −
∫

A

∫

(B̌\Z)∩{u=t}
ǧ

|u′| dH
0 dt

for any L 1-measurable set A in R. In light of the above, we may identify Dμ̌a
u =

Dμ̌u (R \ N ) and Dμ̌s
u = Dμ̌u N . The set of atoms of Dμ̌u is defined by

A := {t ∈ R : Dμ̌u({t}) �= 0}. By [13, Lemma 7.7], we may write A as in (v).
The monotone function μ̌u is a good representative within its equivalence class and is
differentiableL 1-a.e. on R with derivative given by the density of Dμ̌u with respect
toL 1 by [1, Theorem 3.28]. Item (vii) follows from (ii). �	
Lemma 7.7 Let u be a nonnegative Lipschitz continuous function on (B̌, d). Then∫
B̌∩Z u

2 dV̌ = ∫
B̌∩Z�

(u�)2 dV̌ .

Proof As Z has finite L 1-measure, A ⊂ R is a countable set. Thus

∫

B̌∩Z
u2 dV̌ =

∑
t∈A

t2V̌ (Z ∩ {u = t})) =
∫

A
t2d(u�V̌ ) = −

∫

A
t2dDμ̌u

and an analogous result holds for u� by Lemma 7.6. The fact that μ̌u = μ̌u� entails
that A = A�. This leads to the result. �	
Theorem 7.8 Assume (A.1)–(A.5). Let u be a Lipschitz continuous function on (B̌, d).
Then u, u� ∈ D(Ě ) and Ě (u, u) ≥ Ě (u�, u�).

Proof Given a Lipschitz continuous function u on (B̌, d), u ∈ W 1,∞(B̌) and
‖u′‖L∞(B̌)

= Lip(u, B̌) (see [1, Proposition 2.13]) so u ∈ D(Ě ). The same is true for
u� by Proposition 7.5. Replacing u by |u| and using the contraction property of the
Dirichlet form (D(Ě ), Ě ) we may assume that u is nonnegative.
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The proof hinges on the identity

∫

B̌\Z

(
u2 + |u′|2

)
dV̌ =

∫

Ran(u)

∫

(B̌\Z)∩{u=t}
u2 + |u′|2

|u′| ǧ dH0 dt, (7.2)

which is a consequence of the coarea formula (7.1).
As μ̌u = μ̌u� we have that Dμ̌u = Dμ̌u� . In particular, we derive that

μ̌′
u(t) = −

∫

(B̌\Z)∩{u=t}
ǧ

|u′| dH
0 = −

∫

(B̌\Z�)∩{u�=t}
ǧ

|u�′| dH
0 = μ̌′

u� (t) (7.3)

forL 1-a.e. t ∈ R by Lemma 7.6.
Let t ∈ Ran(u) be such that Z ∩ {u = t} = ∅ and

∫
(B̌\Z)∩{u=t} ǧ dH0 < ∞ and

the analogous properties hold for u�. We assume in addition that (7.3) holds. Such
t comprise a set of full measure in the range of u. Then ∂{u > t} = B̌ ∩ {u =
t} ∪ ∂ B̌ ∩ ∂{u > t} and {u > t} is a Caccioppoli set in B̌ with finite ǧ-perimeter; and
likewise for u�. From Corollary 6.11,

∞ >

∫

B̌∩{u=t}
ǧ dH0 =

∫

∂{u>t}
ǧ dH0 = Pǧ({u > t}, B̌)

≥ Pǧ({u� > t}, B̌) =
∫

B̌∩{u�=t}
ǧ dH0. (7.4)

Moreover, B̌ ∩ {u� = t} consists of a singleton; thus,

μ̌′
u� (t) = −

∫

(B̌\Z�)∩{u�=t}
ǧ

|(u�)′| dH
0

= −
∫

B̌∩{u�=t}
ǧ

|(u�)′| dH
0 = −

∫

B̌∩{u�=t}
ǧ dH0/

∫

B̌∩{u�=t}
|(u�)′| dH0.

(7.5)

By (7.3) and (7.5),

∫

(B̌\Z)∩{u=t}
u2 + |u′|2

|u′| ǧ dH0 =
∫

(B̌\Z)∩{u=t}
u2 + |u′|2

|u′| ǧ dH0

=
∫

(B̌\Z)∩{u=t}

{
t2 + |u′|2

} ǧ dH0/|u′|
−μ̌′

u(t)

(
− μ̌′

u(t)
)

≥
⎧⎨
⎩t2 +

(∫
(B̌\Z)∩{u=t} ǧ dH0

−μ̌′
u(t)

)2
⎫⎬
⎭

(−μ̌′
u(t)

)

=
⎧⎨
⎩t2 +

(∫
B̌∩{u=t} ǧ dH0

−μ̌′
u(t)

)2
⎫⎬
⎭

(−μ̌′
u(t)

)
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≥
⎧⎨
⎩t2 +

(∫
B̌∩{u�=t} ǧ dH0

−μ̌′
u� (t)

)2
⎫⎬
⎭

(−μ̌′
u� (t)

)

=
∫

B̌∩{u�=t}
(u�)2 + |(u�)′|2

|(u�)′| ǧ dH0 (7.6)

where Jensen’s inequality has been used in the first inequality and (7.4) in the second.
This inequality combined with (7.2) as well as Lemma 7.7 lead to the result. �	
Corollary 7.9 Let u ∈ D(Ě ). Then u� ∈ D(Ě ) and Ě (u, u) ≥ Ě (u�, u�).

Proof Let u ∈ D(Ě ). By Lemma 5.5 we may choose a sequence (uh) in C∞(B̌)

that converges to u in (D(Ě ), Ě ); each uh is Lipschitz continuous on B̌. By Theorem
6.13, (u�

h) converges to u� in L2(B̌, V̌ ). By Theorem 7.8, each u�
h ∈ D(Ě ) and

Ě (u�
h, u

�
h) ≤ Ě (uh, uh), so the sequence (Ě (u�

h, u
�
h))h is uniformly bounded inR. By

the Banach-Alaoglu theorem (cf. [19, A2 Theorem 2.1]) we may assume that u�
h → v

weakly as h → ∞ in (D(Ě ), Ě ) for some v ∈ D(Ě ) by selecting a subsequence if
necessary. We may identify v with u� thanks to the L2(B̌, V̌ ) convergence and the
Banach-Saks theorem (cf. [19, A2 Theorem 2.2]); hence u� ∈ D(Ě ). By [16, Theorem
10.1.5],

Ě (u�, u�) ≤ lim inf
h→∞ Ě (u�

h, u
�
h) ≤ lim inf

h→∞ Ě (uh, uh) = Ě (u, u).

�	
Corollary 7.10 Let u ∈ D(Ê ). Then u� ∈ D(Ê ) and Ê (u, u) ≥ Ê (u�, u�).

Proof Let u ∈ D(Ê ). Then v := u ◦ R−1 ∈ D(Ě ) by Lemma 5.5. Morever, u� =
v� ◦ R by Proposition 6.10. By Lemma 5.5 and Corollary 7.9,

Ê (u, u) = Ě (v, v) ≥ Ě (v�, v�) = Ê (v� ◦ R, v� ◦ R) = Ê (u�, u�).

�	

8 Equality Case in the Pólya–Szegö Inequality

We now investigate the equality case in the Pólya–Szegö inequality.

Lemma 8.1 Let u ∈ D(Ě ) and t ∈ R.

(i) Put v := u ∧ t . Then
∫
B̌ |v′|2 dV̌ = ∫

B̌∩{u>t} |u′|2 dV̌ = ∫
B̌∩{u≥t} |u′|2 dV̌ .

(ii) Put v := u ∨ t . Then
∫
B̌ |v′|2 dV̌ = ∫

B̌∩{u<t} |u′|2 dV̌ = ∫
B̌∩{u≤t} |u′|2 dV̌ .

Proof We only prove (i). Write

∫

B̌
|v′|2 dV̌ =

∫

B̌∩{u<t}
|v′|2 dV̌ +

∫

B̌∩{u=t}
|v′|2 dV̌ +

∫

B̌∩{u>t}
|v′|2 dV̌ .
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The set {u < t} is open in B̌ as u is continuous so v = u and v′ = u′ there. By [13,
Lemma 7.7], v′ = 0 L 1-a.e. on {u ≥ t}. �	
Suppose that u ∈ W 1,2

loc (B̌) is precisely represented in the sense of [18, (2.5)]. Then
the set {u = t} is finite or countably infinite forL 1-a.e. t ∈ R and the coarea formula
(7.1) holds for u by [18, Theorem 1.1].With Z as before it follows that Z∩{u = t} = ∅
forL 1-a.e. t ∈ R and hence N := u(Z) ⊂ R isL 1-negligible.

Lemma 8.2 Let u be a nonnegative function in W 1,2
loc (B̌) precisely represented in the

sense of [18, (2.5)]. Then statements (i)–(vii) of Lemma 7.6 hold.

Proof This runs as in Lemma 7.6. �	
Lemma 8.3 Let u ∈ D(Ě ) be nonnegative. Then

∫
B̌∩Z u

2 dV̌ = ∫
B̌∩Z�

(u�)2 dV̌ .

Proof The proof proceeds as in Lemma 7.7. �	
Lemma 8.4 Let u ∈ D(Ě ) be nonnegative. Then

(i) for t ′, t ′′ ∈ R with 0 ≤ t ′ < t ′′,
∫

B̌∩{t ′<u≤t ′′}

(
u2 + |u′|2

)
dV̌ ≥

∫

B̌∩{t ′<u≤t ′′}

(
(u�)2 + |(u�)′|2

)
dV̌ ;

(ii) forL 1-a.e. t ∈ R,

∫

(B̌\Z)∩{ũ=t}
ũ2 + |ũ′|2

|ũ′| ǧ dH0 ≥
∫

(B̌\Z�)∩{u�=t}
(u�)2 + |(u�)′|2

|(u�)′| ǧ dH0

where ũ is the unique continuous representative of u (cf. [1, Definition 3.31 and
after]).

Proof (i) Put v := (u ∨ t ′) ∧ t ′′ ∈ D(Ě ). By Lemma 8.1,

∫

B̌

(
v2 + |v′|2

)
dV̌ =

∫

B̌∩{t ′<u≤t ′′}

(
u2 + |u′|2

)
dV̌ + t ′2(1 − μu(t

′)) + t ′′2μu(t
′′).

By Lemma 10.2, v̌� = (ǔ� ∨ t ′) ∧ t ′′ on [0, V̌ (B̌)] and hence v� = (u� ∨ t ′) ∧ t ′′.
We may then write an identity of the above form but with u�, v� in place of u, v. The
statement then follows from Corollary 7.9.
(ii) Note that ũ is precisely represented in the sense of [18, (2.5)]. By the coarea
formula for Sobolev mappings [18, Theorem 1.1],

∫

B̌
φ|u′| dx =

∫ ∞

−∞

∫

B̌∩{ũ=t}
φ dH0 dt

for any L 1-measurable function φ : B̌ → [0,∞]. In particular,
∫

B̌\Z
φ(u)

(
u2 + |u′|2

)
dV̌ =

∫ ∞

−∞

∫

(B̌\Z)∩{ũ=t}

{
ũ2 + |ũ′|2

|ũ′| ǧ dH0
}

φ(t) dt (8.1)
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for any L 1-measurable function φ : R → [0,∞].
Define

w(t) :=
∫

(B̌\Z)∩{u>t}
(u2 + |u′|2) dV̌

for t ∈ R. For ϕ ∈ C∞
c (R,R),

∫ ∞

−∞
wϕ′ dx =

∫

B̌\Z
ϕ(u)(u2 + |u′|2) dV̌

so that w ∈ BV(R). By (8.1), Dw = ρL 1 where

ρ(t) := −
∫

(B̌\Z)∩{ũ=t}
ũ2 + |ũ′|2

|ũ′| ǧ dH0

for t ∈ R; that is, w is absolutely continuous [1, Definition 3.31]. By [1, Theorem
3.28], w is differentiable L 1-a.e. on R and w′ = ρ L 1-a.e. on R. The same holds
for the function w� defined as for w but with u� in place of u. Note that ũ� = u�. The
statement then follows from (i). �	
We state the following lemma without proof.

Lemma 8.5 Let u be a continuous real-valued function on B̌. Suppose that for L 1-
a.e. t > 0 the set {u > t} is either an open interval in B̌ abutting a boundary point or
{u > t} = ∅. Then u is monotone on B̌.

Theorem 8.6 Let u ∈ D(Ě ) be nonnegative and suppose that Ě (u, u) = Ě (u�, u�).
Then ũ is monotone on B̌.

Proof By (8.1),

Ě (u, u) =
∫

B̌∩Z
u2 dV̌ +

∫

Ran(ũ)

∫

(B̌\Z)∩{ũ=t}
ũ2 + |ũ′|2

|ũ′| ǧ dH0 dt

and a similar identity holds for u�. We may assume that Ran(ũ) is a closed interval in
[0,∞) with non-empty interior. By Lemmas 8.3 and 8.4,

∫

(B̌\Z)∩{ũ=t}
ũ2 + |ũ′|2

|ũ′| ǧ dH0 =
∫

(B̌\Z�)∩{u�=t}
(u�)2 + |(u�)′|2

|(u�)′| ǧ dH0

for L 1-a.e. t ∈ Ran(ũ). The chain of inequalities in (7.6) is valid with ũ in place of
u and we may replace the sign ≥ with the equality sign. In particular,

∫

B̌∩{ũ=t}
ǧ dH0 =

∫

B̌∩{u�=t}
ǧ dH0 (8.2)
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for L 1-a.e. t ∈ Ran(ũ). Suppose that t ∈ Ran(ũ) such that Z ∩ {ũ = t} = ∅ and∫
B̌∩{ũ=t} ǧ dH0 < ∞. We remark that ∂{ũ > t} = B̌ ∩ {ũ = t} ∪ ∂ B̌ ∩ ∂{ũ > t}

and {ũ > t} is a Caccioppoli set in B̌ with finite ǧ-perimeter Pǧ({ũ > t}, B̌) =∫
B̌∩{ũ=t} ǧ dH0 < ∞. From the identity (8.2) we derive that Pǧ({ũ > t}, B̌) =
Pǧ({u� > t}, B̌) for L 1-a.e. t ∈ Ran(ũ). By Corollary 6.12 the set {ũ > t} is either
an open interval in B̌ abutting a boundary point or {ũ > t} = ∅ for L 1-a.e. t > 0.
The statement follows by Lemma 8.5. �	

Corollary 8.7 Let u ∈ D(Ê ) be nonnegative and suppose that Ê (u, u) =
Ê (u�, u�). Then ũ is monotone on B.

Proof Put v := u ◦ R−1 ∈ D(Ě ) by Lemma 5.5. Also, u� = v� ◦ R by Proposition
6.10. We have

Ê (u, u) = Ě (v, v) ≥ Ě (v�, v�) = Ê (v� ◦ R, v� ◦ R) = Ê (u�, u�).

by Lemma 5.5 and Corollary 7.9. So Ě (v, v) = Ě (v�, v�). By Theorem 8.6, ṽ is
monotone on B̌ and hence ũ is monotone on B. �	

9 Application to Exchange Flow

Consider the positive definite bilinear form (D,E ) in L2(B,L 1) given by

E (u, v) :=
∫

B
u′v′ dx

(
u, v ∈ D := {

u : u/ψ ∈ C∞(B)
})

.

Here, ψ := uB is given by ψ(x) = (1/2)(1 − |x |2) for x ∈ B.

Lemma 9.1 (i) (D,E ) is closable in L2(B, L 1)with closure denoted (D(E ), E );
(ii) (D(E ), E ) is a symmetric Dirichlet form in L2(B, L 1);
(iii) D(E ) = W 1,2

0 (B).

Proof (i) Suppose (uh) is a sequence in D such that uh → 0 in L2(B,L 1). We
write v ∈ D in the form v = ψw for some w ∈ C∞(B); so v′′ ∈ L2(B,L 1). An
integration-by-parts gives

∫

B
u′
hv

′ dx =
∫

∂B
uhv

′ν dH0 −
∫

B
uhv

′′ dx = −
∫

B
uhv

′′ dx → 0

as h → ∞ where ν = ±1 is the unit exterior normal on ∂B. The statement follows
by [19, Lemma I.3.4]. Then (D(E ),E ) is a symmetric closed form by definition
(cf. [19, Definition I.2.3]). By [19, Proposition I.4.10 and II.2 (c)], (D(E ),E ) is a
symmetric Dirichlet form and (ii) follows. Note that ψ = uB ∈ W 1,2

0 (B). Thus

C∞
0 (B) ⊂ D ⊂ W 1,2

0 (B). This proves (iii). �	
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The transient Dirichlet space (D(E ),E ) has reference function ψ−1 and

∫

B
|u|ψ−1 dx ≤ √

E (u, u) for all u ∈ D(E ). (9.1)

Denote by D(E )e the extended Dirichlet space; that is, the family ofL 1-measurable
functions u on B such that |u| < ∞ L 1-a.e. and there exists an E -Cauchy sequence
(uh) of functions in D(E ) such that uh → u L 1-a.e. on B. By [12, Lemma 1.5.5],
(D(E )e,E ) is a Hilbert space. The identity (9.1) extends to D(E )e and D(E )e ⊂
L1(B, ψ−1L 1).
In the notation of Sect. 5 we take f = ψ and g = ψ3/2. The conditions (A.1)–(A.5)
are satisfied by Proposition 6.5. Let V be the measure V := ψL 1 on B. We work
with the symmetric Dirichlet form

Ê (u, v) :=
∫

B

(
uv + ψu′v′) dV (u, v ∈ D(Ê ))

in L2(B, V ) with domain

D(Ê ) :=
{
u ∈ L2(B, V ) : u is weakly differentiable on B and ψ1/2u′ ∈ L2(B, V )

}
.

Proposition 9.2 The bijective mapping D → C∞(B); u �→ u := u/ψ extends to a
Hilbert space isomorphism E : D(E )e → D(Ê ). In particular, for u, v ∈ D(E )e we
have that

E (u, v) = Ê (u, v). (9.2)

Proof Using integration-by-parts and the fact that −ψ ′′ = 1 on B gives

∫

B
u′ v′ ψ2 dx =

∫

B
(u/ψ)′ v′ ψ2 dx

=
∫

B

(
ψ u′ − u ψ ′) v′ dx

=
∫

B
u′ v′ ψ dx −

∫

∂B
u ψ ′ v ν dH0 +

∫

B
(u ψ ′)′v dx

=
∫

B
u′ v′ ψ dx +

∫

B
(u ψ ′)′v dx

=
∫

B
u′ v′ ψ dx +

∫

B
(u′ ψ ′) v − u v dx

=
∫

B
u′ v′ dx −

∫

B
u v ψ dx

where ν = ±1 is the unit exterior normal on ∂B. This establishes (9.2) on D . The
map E extends to D(E ) by density of D in D(E ) as does (9.2). Let u ∈ D(E )e and
choose a sequence (uh) in D(E ) such that uh → u L 1-a.e. on B as h → ∞ and (uh)
is a E -Cauchy sequence. Then (uh) is a Cauchy sequence in (D(Ê ), Ê ) with limit
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v ∈ D(Ê ) say. Define Eu := v. This definition is well-defined and the identity (9.2)
holds on D(E )e. In particular, the mapping E is injective.
We show that E is a surjection. Let v ∈ D(Ê ). We put u := ψv and claim that

u ∈ D(E )e. Then there exists a sequence (wh) inC∞(B̌) such that vh := wh ◦ R → v

in (D(Ê ), Ê ) as h → ∞. Put uh := ψvh for each h. Now uh ∈ C1(B) and uh = 0 on
∂B for each h. Thismeans that (uh) is a sequence in D(E ). By (9.2), (uh) is aE -Cauchy
sequence. As (vh) converges to v in L2(B, V ) we may assume that (vh) converges
to v V -a.e. on B by selecting a subsequence if necessary. Thus, (uh) converges to u
L 1-a.e. on B. This shows that u ∈ D(E )e and Eu = v. �	
Theorem 9.3 For any L 1-measurable set A in B, J (A) ≤ J (A�).

Proof Let A be an L 1-measurable set in B and put u := uA ∈ D(E ) and v :=
uA� ∈ D(E ). By Theorem 6.6, Proposition 9.2, the Cauchy–Schwarz inequality and
Corollary 7.10,

J (A) =
∫

B
u χA dV ≤

∫

B
u� χA� dV = E (ψu�, v) = Ê (u�, v)

≤ Ê (u�, u�)1/2Ê (v, v)1/2 ≤ Ê (u, u)1/2Ê (v, v)1/2 = J (A)1/2 J (A�)1/2

and the result follows. �	
Theorem 9.4 Suppose that A is anL 1-measurable set in B such that J (A) = J (A�).
Then A is L 1-a.e. equivalent to an open interval in B abutting a boundary point of
B.

Proof We may assume that 0 < V (A) < V (B). From the chain of inequalities in
the proof of Theorem 9.3 we derive that Ê (u�, u�) = Ê (u, u). Put v := u. From
Corollary 8.7 we infer that ṽ is monotone on B. Put p := V (A)/V (B) ∈ (0, 1). By
Theorem 9.3, A is an optimal configuration for the problem (1.2) for the data (B, p).
By Proposition 3.3, V (A�{̃v > c}) = 0 for some c ∈ (0, 1). As ṽ is monotone,
{̃v > c} is an open interval in B abutting an end-point of B. This leads to the result.�	
We may now characterise optimal configurations for the problem (1.2).

Theorem 9.5 Let p ∈ (0, 1).

(i) The sets (−1, F−1(pV (B))) and (F−1((1 − p)V (B)), 1) are optimal configu-
rations for the problem (1.2) with data (B, p).

(ii) If E ⊂ B is an optimal configuration for the data (B, p) then E is L 1-a.e.
equivalent to one of the sets in (i).

Let U be a bounded open connected set in Rn (n ≥ 1).

Proposition 9.6 (i) For λ ∈ (−1, 1), γ (U, λ) = 2I (U, p) where p = (1 − λ)/2.
(ii) γ (U ) = 2 supp∈(0,1) I (U, p).

123



Appl Math Optim (2017) 75:365–401 399

Proof (i) Let A be an open set in U . Suppose u satisfies (1.3) and the condition
(u, 1) = 0. Put f := −(λ + 1)χA − (λ − 1)χU\A; then u = G f . From the flux-
balance condition and symmetry of the Green operator,

0 = (u, 1) = (ψ, f ) = −(λ + 1)V (A) − (λ − 1)V (U \ A).

So λ = V (U )−1{V (U \ A) − V (U )} and V (A) = 1−λ
2 V (U ). We have

(χU\A, u) = (GχU\A, f )

= −(λ + 1)(GχU\A, χA) − (λ − 1)(GχU\A, χU\A)

= −(λ + 1)(V (A) − J (A)) − (λ − 1)(V (U \ A) − V (A) + J (A))

= 2J (A) − (λ + 1)V (A) − (λ − 1)V (U \ A) + (λ − 1)V (A)

= 2J (A) + (λ − 1)V (A) = 2
{
J (A) − V (U )p2

}

where p = (1 − λ)/2. This leads to the reformulation (i). (ii) follows immediately.�	
Recall that for x, y ∈ B,

G(x, y) =
{

(1/2)(1 − y)(1 + x) for x ≤ y;
(1/2)(1 + y)(1 − x) for x ≥ y.

Lemma 9.7 The mapping (0, 1) → R; p → I (B, p) has a unique global maximum
at p = 1/2.

Proof Define η : B → R by η = J (A) − V (B)−1V (A)2 where A = (−1, t). Then
I (B, p) = η(F−1(pV (B))) for p ∈ (0, 1) by Theorem 9.5. For t ∈ B,

d

dt
J ((−1, t)) = d

dt

∫ t

−1
Gχ(−1,t)(x) dx = Gχ(−1,t)(t) +

∫ t

−1

d

dt
Gχ(−1,t)(x) dx

= Gχ(−1,t)(t) +
∫ t

−1
G(x, t) dx = 2Gχ(−1,t)(t),

so that

η′(t) = 2Gχ(−1,t)(t) − 2V (B)−1V ((−1, t))ψ(t).

A further computation gives

Gχ(−1,t)(ξ) = (1/4)(1 − t)(1 + t)2 and V (B)−1V ((−1, t)) = (1/4)(2 + 3t − t3).

We then obtain that η′(t) = −(1/4)t (1− t2)2 for any t ∈ B. This proves the result.�	
Theorem 9.8 Let λ ∈ (−1, 1).

(i) The sets (−1, F−1(pV (B))) and (F−1((1 − p)V (B)), 1) are optimal configu-
rations for the problem (1.5) with data (U, λ) where p = (1 − λ)/2.
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(ii) If E ⊂ B is an optimal configuration for the problem (1.5) with data (U, λ) then
E isL 1-a.e. equivalent to one of the sets in (i).

(iii) The sets (−1, 0) and (0, 1) are optimal configurations for the problem (1.4).
(iv) If E ⊂ B is an optimal configuration for the problem (1.4) then E is L 1-a.e.

equivalent to one of the sets in (iii).

Proof Parts (i) and (ii) follow from Proposition 9.6 and Theorem 9.5. (iii) and (iv)
follow from Proposition 9.6 and Lemma 9.7. �	

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: On the Generalised Inverse Function

Let (X,A , μ) be a finite measure space. Let f : X → [0,∞) be an A -measurable
function. The distribution function μ f : [0,∞) → [0, μ(X)] of f is defined by
μ f (t) := μ({ f > t}) for t ≥ 0. Note that μ f is right-continuous and non-increasing
on [0,∞) and μ f (t) → 0 as t → ∞. The generalised inverse f � : [0, μ(X)] →
[0,∞] of μ f is defined by f �(s) := inf{t ≥ 0 : μ f (t) ≤ s} with the understanding
that inf ∅ = +∞.

Lemma 10.1 Let f : X → [0,∞) be an A -measurable function. Let t ≥ 0 and
s ∈ [0, μ(X)]. Then
(i) μ f (t) > s if and only if f �(s) > t;
(ii) μ f (t) ≤ s if and only if f �(s) ≤ t;
(iii) μ f (t−) < s then f �(s) < t in case t > 0.

Proof Suppose μ f (t) > s. The set {μ f > s} ⊂ [0,∞) is relatively open by right-
continuity ofμ f . It follows that f �(s) > t . Conversely, if f �(s) > t thenμ f (t) > s be
definition of f �. This shows (i). (ii) follows from (i). Suppose t > 0 and μ f (t−) < s.
By definition of the left-handed limit, we may choose 0 < τ < t such that μ f (t−) ≤
μ f (τ ) < s. Then f �(s) ≤ τ < t . This shows (iii). �	
Lemma 10.2 Let f : X → [0,∞) be an A -measurable function and t > 0. Then

(i) if g := f ∧ t then g� = f � ∧ t on [0, μ(X));
(ii) if g := f ∨ t then g� = f � ∨ t on [0, μ(X)).

Proof (i) We have that μg = χ[0,t)μ f on [0,∞) and g� = tχ[0,μ f (t−)) +
f �χ[μ f (t−),μ(X)). On the other hand, w := f � ∧ t = f �χ{ f �<t} + tχ{ f �≥t}. Let
0 ≤ s < μ f (t−). As μ f ≥ μ f (t−) > s on [0, t), {μ f ≤ s} ⊂ [t,∞) and f �(s) ≥ t ;
that is, w(s) = t = g�(s). Now suppose that s = μ f (t−). Note that f �(s) ≤ t .
Consider the case that f �(s) = t . Then w(s) = t = f �(s) = g�(s). If f �(s) < t
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then w(s) = f �(s) = g�(s). Finally, suppose that s > μ f (t−). By Lemma 10.1 (iii),
w(s) = f �(s) = g�(s). Item (i) follows.
(ii) In this case, μg = χ[0,t) + χ[t,∞)μ f on [0,∞) and g� = χ[0,μ f (t)) f

� +
tχ[μ f (t),μ(X)). On the other hand, w := f � ∨ t = tχ{ f �≤t} + f �χ{ f �>t}. Let
0 ≤ s < μ f (t). By Lemma 10.1 (i), f �(s) > t and w(s) = f �(s) = g�(s). Now
suppose that s ≥ μ f (t). By Lemma 10.1 (ii), f �(s) ≤ t and w(s) = t = g�(s). �	
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