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Introduction

Urinary stone disease is a common urological disease with 
a life time risk of approximately 10–15% [1]. Non-contrast-
enhanced computed tomography (NECT) has emerged as 
the primary diagnostic tool for urinary stones with excel-
lent sensitivity and specificity, and the ability to provide 
valuable information regarding differential diagnosis [2, 3].

The role of NECT is not only to diagnose the urinary 
stone but also to provide information that guides the patient 
and the referring clinician in management of the disease. 
The size and location of a ureteral stone predict the chance 
of spontaneous passage. The stone characteristics of a renal 
stone are correlated to stone type and prognosis for treat-
ment success [2, 4–8].

The most common urinary stone types are calcium-
based (Ca) stones followed by uric acid stones (UA), and 
infection-related struvite stones. UA stone composition is 
of particular interest to predict in intra-renal stones, since 
these stones can be treated through alkalinization of the 
urine [2, 9].

During the last decade, several studies have investigated 
the classification of UA stones vs non-UA stones using 
dual-energy CT (DECT) [10–16]. However, since the diag-
nosis of a stone generally is performed using single-energy 
CT, the DECT requires an additional examination. In con-
trast, if the stone type can be accurately predicted with 
single-energy NECT, all information can be reported to the 
clinician on the time of diagnosis, simplifying the manage-
ment and avoiding additional radiation dose and costs.

Although it is widely known that the attenuation value 
of a urinary stone in NECT correlates closely to the stone 
type, there is an overlap in reported attenuation values, 
especially for small stones [6, 7, 16–19]. Information of 
other quantitative characteristics that may improve the 

Abstract Urinary stones composed of uric acid can be 
treated medically. Prediction of uric acid stone type is, there-
fore, desirable when a urinary stone is diagnosed with unen-
hanced CT. The purpose of the present study was to describe 
single-energy thin slice quantitative CT parameters of urinary 
stones correlated to chemical stone type and to develop a 
method to distinguish pure uric acid stones (UA) from other 
stones (non-UA/Mix). Unenhanced thin slice single-energy 
CT images of 126 urinary stones (117 patients) with known 
chemical stone type were retrospectively included in the 
study. Among the included stones, 22 were UA and 104 were 
non-UA/Mix. The included CT images and Laplacian filtered 
images of the stones were quantitatively analyzed using oper-
ator-independent methods. A post hoc classification method 
for pure UA stones was created using a combination of cut-
off values for the peak attenuation and peak point Laplacian. 
The stone types differed in most quantitative image charac-
teristics including mean attenuation (p < 0.001), peak attenu-
ation (p < 0.001), and peak point Laplacian (p < 0.001). The 
sensitivity for the post hoc-developed peak attenuation—peak 
point Laplacian method for classifying pure UA stones was 
95% [21/22, 95% CI (77–100%)] and the specificity was 99% 
[103/104, 95% CI (95–100%)]. In conclusion, quantitative 
image analysis of thin slice routine single-energy CT images 
is promising for predicting pure UA content in urinary stones, 
with results comparable to double energy methods.

Keywords Urinary stone · Kidney stone · Uric acid · 
Computed tomography · Image analysis · Urolithiasis

 * Mats Lidén 
 matsliden@yahoo.com

1 Department of Radiology, Faculty of Medicine and Health, 
Örebro University, 701 85 Örebro, Sweden

http://orcid.org/0000-0002-1346-1450
http://crossmark.crossref.org/dialog/?doi=10.1007/s00240-017-0994-x&domain=pdf


326 Urolithiasis (2018) 46:325–332

1 3

classification of urinary stones using single-energy NECT 
are not present in the literature.

The purpose of the present study was, therefore, to 
describe single-energy thin slice quantitative CT parame-
ters of urinary stones correlated to chemical stone type and 
to develop a method to distinguish pure UA stones from 
non-UA stones.

Materials and methods

Patient selection

In 108 patients (34 female, 74 male, age 18–85 years) with 
single-energy NECT examinations performed between 
January 2012 and January 2016, 110 stones with known 
compositions were retrospectively included in the study. 
The inclusion was based on the register of urinary stones 
analyzed with infrared (IR) spectroscopy at the insti-
tutional laboratory between January 2012 and January 
2016. Stones were included according to Fig. 1a if the 
analyzed stone could be identified on pre-analysis thin 
slice images obtained using the radiology department’s 
standard NECT protocol for the urinary tract. The median 
interval between NECT and IR spectroscopy was 42 days 
(range 7–242 days). 36 stones passed spontaneously, 43 
after shock wave lithotripsy, 26 after laser lithotripsy, and 
4 stones were surgically removed. The treatment for one 
stone could not be determined from the radiology informa-
tion system.

Because of the low number of UA stones included 
according to Fig. 1a, an additional inclusion of UA stones 
with dual-energy CT (DECT) as reference was performed. 
The frequency of UA stones in the DECT cohort was 
higher since patients referred for DECT generally had clin-
ical suspicion of UA stone disease. In 9 patients (3 female, 
6 male) with single-energy NECT examination performed 
between January 2012 and May 2016, 16 stones with pure 
UA composition determined by DECT were included 
according to Fig. 1b, giving a total of 126 included stones. 
The additional inclusion was based on a list of all DECT 
scans for stone type classification performed between Janu-
ary 2012 and May 2016. Multiple stones were included in 
four patients.

The chemical stone composition was determined using 
Fourier transform IR spectroscopy (Spectrum 100, Perki-
nElmer, Waltham, MA, USA). The stones were classified 
as UA, or non-uric acid/mixed (non-UA/Mix) according to 
Table 1. While the majority of non-UA/Mix stones were 
calcium-based (Ca), the group also included one struvite 
stone and two mixed UA/calcium oxalate monohydrate 
(UA-COM) stones.

The DECT reference scan of the additional UA stones 
was acquired with a 2 × 128 channel dual-source CT scan-
ner (Siemens Somatom Definition Flash, Siemens Health-
care, Erlangen, Germany). The dual-energy datasets were 
100 kV/Sn140 kV, except in one stone where 80 kV/
Sn140 kV was used. Color coded images were created 
using manufacturer default settings of the Kidney stone 
application in Syngo.Via (14 stones) and in Multi Modal-
ity Workplace (2 stones), (Siemens Healthcare, Erlangen, 
Germany). A stone was considered as a pure UA stone if 
≤1 mm DECT high- and low-energy datasets were avail-
able and the color coded ≤1 mm thick images were entirely 
or almost entirely color coded as UA stone. The determina-
tion of stone type with DECT was performed before quan-
titative analysis of the single-energy images.

Image acquisition

Only 1 mm contiguous axial images performed with the 
institutional intermediate dose stone NECT protocol (field 
of view (FoV) 420 mm, in plane pixel size ~0.8 × 0.8 mm, 
120 kVp, 70 mAs/slice) were included. The images were 
acquired with three different CT systems: Philips Bril-
lance, (n = 33), 40 channels, filter B, CTDI 4.9 mGy 
(Philips Medical Systems, Best, The Netherlands); Siemens 
Somatom Definition AS, (n = 15), 64 channels, filter B20f/
I30f2, CTDI 5,7 mGy; Siemens Somatom Definition Flash 
(n = 78), filter B20f/I30f3, CTDI 4.7 mGy, except one 
patient, CTDI 6.1 mGy.

Image processing

All urinary stones were automatically segmented using a 
3D thresholding method where the threshold for each stone 
was defined as the half value between the peak stone atten-
uation (maxHU) and the background, which was approxi-
mated to 0 HU. Any hole in the thresholded image mask 
was filled and considered to be part of the stone.

For each segmented stone, histogram statistics were 
computed (mean attenuation (meanHU), standard deviation 
(sdHU), kurtosis, and skewness). The stone images were 
filtered using a scaled 3D Laplacian filter (see “Appendix”) 
for texture analysis. In the filtered images, the mean Lapla-
cian value (meanLapl) was computed using an image mask 
corresponding to the segmented stone.

The voxel location corresponding to maxHU was defined 
as the peak point. The peak point Laplacian (ppLapl) was 
defined as the voxel in the Laplacian filtered image corre-
sponding to the peak point.

The sphericity and volume of the stone were evalu-
ated using an alpha shape that encompassed all seg-
mented voxel locations (see “Appendix”).
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Fig. 1  Inclusion process flow-
charts. a Inclusion based on IR 
spectroscopy stone analysis. b 
Inclusion of UA stones based on 
DECT reference

Assessed for eligibility
(Urinary stones analyzed

at institutional
laboratory January 2012 - 

January 2016)
n = 656

Included stones n=110
(108 patients)

2. >1 stone in CT, analysed stone not definitely
identified (n = 131)

3. Stone >2 cm (n = 9)

4. Adjacent inseparable stones (n = 4)

5. Adjacent catheter (n = 6)

6. Patient <18 years (n = 3)

1. No pre-analysis single energy stone protocol
CT available (n = 392)

Ambiguous reference (IR spectroscopy vs.
DECT) (n=1)

Assessed for eligibility
(Dual energy studies

for stone type classification
January 2012 - 

May 2016)
n = 70

Included patients
n = 9 (16 stones)

3. No single energy stone protocol CT available
(n = 7)

4. Stone >2 cm (n = 1)

5. Adjacent inseparable stones (n = 2)

6. Adjacent catheter (n = 0)

7. Patient <18 years (n = 0)

8. Stone already included on other examination
(n = 4)

2. No UA stone according to DECT (n = 34)

1. No thin slice DECT data available (n = 13)

a

b
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The largest diameter of each stone in the axial slice plane 
was measured with the caliper tool in the PACS workstation 
using a bone window setting (L300/W1120) [20].

Statistical analysis

No predefined hypothesis could be set up prior to image 
analysis because of the limited availability of quantita-
tive CT analysis data in the literature. The study, there-
fore, consisted of data exploration for discovering the 
best combination of quantitative image parameters for 
stone type prediction. Shapiro–Wilks test showed non-
normal distribution for a majority of parameters. Con-
sequently, non-parametric Wilcoxon signed-rank tests 
between the UA group and the non-UA/Mix group 
were used. The Spearman correlation coefficient versus 
maxHU was computed for each parameter.

A post hoc classification method was created using 
a combination of cutoff values for maxHU and ppLapl. 
The sensitivity, specificity, accuracy, positive predictive 
value (PPV), and negative predictive value (NPV) for the 
peak attenuation—peak point Laplacian method were 
computed with 95% confidence intervals (CI).

Image analysis and statistics were computed using 
Matlab R2015b (The MathWorks Inc, Natick, MA, USA). 
The Regional Research Ethics Board approved the study 
protocol and waived the informed consent requirement.

Results

One stone had ambiguous references and was excluded 
from the analysis according to Fig. 1. The stone was iden-
tified as a mixed UA/non-UA stone on a preoperative 

DECT, but had a fragment collected after ESWL that was 
IR spectroscopy analyzed as UA. Of the remaining 126 
stones, 110 were included after IR spectroscopy and 16 
stones were included as UA stones based on DECT, as 
detailed in Table 1.

The manually estimated largest diameter ± SD was 
6.0 ± 2.4 mm and 5.1 ± 2.9 mm for UA and non-UA/
Mix stones, respectively.

The quantitative parameters are detailed in Table 2. 
The stone attenuation, analyzed as maxHU and meanHU, 
is closely related to the sdHU. The correlation between 
maxHU, meanHU, and sdHU was almost perfect, indicat-
ing that these three variables to the largest part carried 
the same information.

The histogram-based statistical properties, kurtosis, 
and skewness showed moderate correlation with maxHU, 
while the meanLapl showed low correlation with peak 
attenuation. The ppLapl was not correlated to maxHU.

Even though the median results were significantly dif-
ferent between the stone types for almost every parameter 
according to Wilcoxon signed rank test, no single param-
eter could completely distinguish pure UA stones from the 
other stone types. The stone attenuation is, as previously 
known, the major predictor differentiating pure UA stones 
from non-UA/Mix stones [6, 7, 17–19]. The best combina-
tion between the attenuation-based parameter maxHU and a 
non-attenuation-based parameter was, therefore, sought for.

Separate scatterplots with maxHU on the x-axis were 
created with volume, meanLapl, kurtosis, skewness, sphe-
ricity and ppLapl on the y-axis, respectively. The scatter-
plots were visually evaluated for optimal clustering effects 
of UA stones vs the non-UA/Mix stones. The visually best 
discriminant was the combination of peak attenuation and 
peak point Laplacian, see Fig. 2.

Table 1  Classification of 
urinary stones Non-uric acid/mixed stones (non-UA/Mix) (n = 104)

 Calcium oxalate monohydrate (n = 54)

 Calcium oxalate monohydrate with a minor admixture of hydroxyapatite (n = 18)

 Calcium oxalate monohydrate with traces of hydroxyapatite (n = 17)

 Mixture of calcium oxalate monohydrate and hydroxyapatite (n = 5)

 Mixture of calcium oxalate monohydrate and hydroxyapatite with traces of carbonate apatite (n = 1)

 Hydroxyapatite with a minor admixture of calcium oxalate monohydrate (n = 2)

 Hydroxyapatite with traces of calcium oxalate monohydrate and carbonate apatite (n = 1)

 Mixture of hydroxyapatite and carbonate apatite (n = 1)

 Mixture of hydroxyapatite, carbonate apatite and calcium oxalate monohydrate (n = 1)

 Mixture of hydroxyapatite and carbonate apatite with traces of magnesium ammonium phosphate (n = 1)

 Mixture of carbonate apatite and magnesium ammonium phosphate (Struvite) (n = 1)

 Mixture of uric acid and calcium oxalate monohydrate (UA-COM) (n = 2)

Uric acid stones (UA) (n = 22)

 Uric acid (IR spectroscopy) (n = 6)

 Uric acid (DECT) (n = 16)
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Optimal cutoff values for classification of pure UA 
stones were created based on visual examination of Fig. 2. 
A stone was defined as UA stone if maxHU was ≤1000 
HU and ppLapl was ≤195 HU. Using this classification, 
the sensitivity for pure UA stones was 95% [21/22, 95% 
CI (77–100%)] and the specificity was 99% [103/104, 
95% CI (95–100%)]. The PPV was 95% [21/22, 95% CI 
(77–100%)] and the NPV was 99% [103/104, 95% CI 
(95–100%)]. The accuracy was 98.4% [124/126, 95% CI 
(94.4–99.8%)].

With an alternative limit for UA stones (maxHU ≤ 800 
HU and ppLapl ≤ 190 HU), the sensitivity was 91% [20/22, 
95% CI (71–99%)], the specificity was 99% [103/104, 95% 
CI (95–100%)] and the accuracy was 97.6% [123/126, 95% 
CI (93.2–99.5%)].

The optimal cutoff for maxHU as single parameter 
was 745 HU. With this cutoff the accuracy for classifica-
tion of pure UA stones was 96.8% [122/126, 95% CI 
(92.1–99.1%)].

Discussion

The role of NECT in urinary stone disease is not only to 
provide the diagnosis but also to provide information that 
guides the patient and the clinician in the management of 
the stone [2, 3]. In the present study, it is demonstrated 
that the peak attenuation of a urinary stone in thin slice 
single-energy NECT data is an excellent classifier for 
pure UA stones with an accuracy of 96.8%. With the peak 

attenuation—peak point Laplacian method that is intro-
duced in this article, the accuracy was even higher, 97.6–
98.4% depending on the choice of limits. These results are 
comparable to the results of DECT [10–12, 14–16].

In almost every analyzed quantitative single-energy 
parameter, there was a significant difference related to 
stone type. As previously demonstrated, the stone attenua-
tion is the major predictor of stone type [6, 7, 17–19].

Although the difference in accuracy is small compared 
to stone type classification based on maxHU alone, a 
peak attenuation—peak point Laplacian method is sug-
gested based on the clustering demonstrated in Fig. 2, 
where the combination of maxHU and ppLapl may pro-
vide a more specific test than maxHU alone. In contrast 
to DECT techniques, where the acquisition of two data-
sets at different kVps are needed for stone classification, 
the peak attenuation—peak point Laplacian method uses 
the information that is already present in the routine CT 
images.

In vivo stone classification using DECT has during 
the last decade become well established and studies have 
shown that DECT stone classification can be performed 
even with low to intermediate dose protocols [12, 15]. 
However, the availability of DECT is still limited com-
pared to single-energy scanners. The main contribution of 
the present study is, therefore, not to replace DECT when 
dual-energy scanning is possible, but rather that it may 
offer a possibility to avoid the additional radiation and cost 
of a separate DECT scan when a single-energy NECT has 
already been performed.

Table 2  Quantitative CT characteristics for the analyzed stone types

a The volume and sphericity are based on the alpha shape
b In one non-UA/Mix stone, all segmented voxels were located in the same image plane, leading to an alpha shape volume of 0. This stone was 
not included in the computation of sphericity

Mean ± 1 SD (range) Correlation coeff  
vs. maxHU

Wilcoxon
p value

UA (n = 22) Non-UA/Mix (n = 104)

Segmentation-based statistics

 Number of analyzed voxels 188 ± 207 (11–968) 117 ± 188 (6–1166) 0.22 0.001

 Mean attenuation, meanHU (HU) 387 ± 98 (240–634) 912 ± 234 (195–1453) 0.99 <0.001

 Standard deviation sdHU (HU) 70 ± 19 (47–113) 180 ± 42 (36–284) 0.94 <0.001

 Mean stone Laplacian, meanLapl (scaled, HU) 67 ± 29 (34–177) 187 ± 62 (45–328) 0.33 <0.001

 Kurtosis 2.6 ± 0.6 (1.7–3.8) 2.3 ± 0.7 (0.3–5.0) −0.44 0.013

 Skewness 0.4 ± 0.4 (−0.5 to 1.2) 0.4 ± 0.4 (−0.7 to 1.4) −0.38 N/S

Shape  statisticsa

 Sphericity 0.7 ± 0.1 (0.5–0.8) 0.8 ± 0.1b (0.4–0.9) 0.39b 0.005b

 Volume  (mm3) 89 ± 117 (1–506) 49 ± 97b (0–626) 0.22 0.001

Peak point estimates

 Maximum attenuation, maxHU (HU) 559 ± 139 (365–966) 1275 ± 306 (301–1938) <0.001

 Peak point Laplacian, ppLapl (scaled, HU) 136 ± 46 (62–266) 276 ± 107 (61–507) 0.05 <0.001
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MaxHU and ppLapl are point estimates that have an 
important advantage, since they are independent of the seg-
mentation parameters. In contrast, the segmentation-based 
parameters depend not only on the stone but also on the 
delineation between the urinary stone and the background, 
which can be achieved differently with or without human 
interaction [21–25].

In digital image processing, the Laplacian is a standard 
image filter which primarily is used for edge enhancement 
[26]. In the quantitative context of CT images the discrete 
Laplacian operator produces quantitative values that have 
meaningful interpretations. With the scaled 3D Laplacian 
operator that was used in the study (see “Appendix”), the 
voxel value in the filtered image corresponds to the dif-
ference between the voxel in the unfiltered image and a 
weighted mean of its 26 neighbors. The ppLapl is thus a 
measure of the peakedness of the peak point, see Fig. 3.

The difference in ppLapl between UA and Ca stones with 
low maxHU has a logical interpretation. Low attenuating 
Ca stones are smaller than UA stones with similar maxHU, 
leading to a larger peakedness for the Ca stones, quantified 
by ppLapl. Larger Ca stones show a wide high density peak, 
resulting in high maxHU and low ppLapl, see Fig. 2.

Several factors contribute to the high accuracy of NECT 
classification in the present study compared to previous 
studies. The automated analysis of the stones without the 

need for freehand ROIs, the consistent use of thin slice 
images and the use of point estimates that are independent 
of segmentation parameters are the strengths in the study. 
Other contributing factors are related to the limitations of 
the study—the distribution of stone types that was found in 
the included cohort and the post hoc-defined cutoffs.

Although the number of stones in the present study is 
larger than in many DECT studies [11, 12, 14–16], fur-
ther validation of the method, including more UA stones 
is needed. In the present cohort no cystine stones were 
present. The differentiation between UA and cystine 
stones is supposedly challenging because of overlapping 
attenuation values [18]. As seen in Fig. 2, there is a sin-
gle outlier UA stone with maxHU 966 HU and ppLapl 
191 HU. Further studies will reveal whether the limits 
for classification of a stone as pure UA may preferably 
be shifted towards the main UA cluster (for example to 
maxHU 800 HU and ppLapl 190 HU), leaving an area 
with maxHU between 800 and 1050 HU and low ppLapl 
for other stone types such as cystine.

The most important limitation in the present study is that 
there was no sufficient pre-study quantitative data for set-
ting up a test hypothesis before the study. The sensitivity 
and specificity is, therefore, likely to be overestimated since 
the suggested limits were optimized for the existing data.

Struvite stones can often be identified based on mor-
phology [3] and in the present study most struvite stones 
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were excluded based on  size during the inclusion pro-
cess. The two UA/COM stones could not be classified 
in the present study. Similarly, classification of mixed 
stones remains a challenge even with DECT [14, 15].

Quantitative image analysis is affected by image 
parameters including kVp, FoV, slice thickness, and 
reconstruction algorithm [25]. Even though images from 
three different CT systems were included in the present 
study, evaluation and optimization of the stone NECT 
protocol is necessary for other systems.

Conclusion

With the limitations of the study in mind, it can be con-
cluded that quantitative image analysis of thin slice 
single-energy NECT images is promising for predicting 
pure UA content in urinary stones, with results compa-
rable to DECT. However, further prospective evaluation 
of the proposed peak attenuation—peak point Laplacian 
method is needed.

Appendix

The Laplacian image filter

The images were filtered using a three-dimensional 
Laplacian image filter, with the convolution kernel scaled 
so that the center voxel had coefficient 1, according to 
Eq. 1. The Laplacian image filter is the discrete approxi-
mation of the sum of the second-order derivatives of the 
intensity values in the image. When properly scaled, 
the discrete Laplacian image filter produces a weighted 
mean difference between an intensity value in the unfil-
tered image and its neighbors. In the present study, a 
three-dimensional filter was used to include also the 
neighbors on adjacent slices. The drawback of using the 
three-dimensional filter is that the CT image data are not 
completely isotropic, and the noise distribution is differ-
ent in the z-direction compared to the acquisition plane. 
Therefore, another option that was not used in the study, 
would have been to use a two-dimensional Laplacian fil-
ter, omitting the information from the adjacent slices
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Equation 1: the symmetrical three-dimensional Laplacian 
image filter used in the study, using Matlab notation.

Shape analysis

For the shape analysis, the point cloud corresponding 
to the thresholded three-dimensional-segmented image 
mask of each urinary stone was translated into a geo-
metrical volume using the alpha shape procedures in the 
Matlab package (http://www.mathworks.com/help/mat-
lab/ref/alphashape.html). An alpha shape corresponding 
to a point cloud can be seen as the volume enclosed by 
a three-dimensional surface consisting of the triangles 
that are obtained when rolling a sphere of a given radius 
around the point cloud. The alpha radius of the sphere, 
that determines the level of detail of the volume, was set 
to the smallest value that produced an alpha shape that 
enclosed all segmented voxel center points. From the 
alpha shape the volume and the surface area of the stone 
could be computed.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.mathworks.com/help/matlab/ref/alphashape.html
http://www.mathworks.com/help/matlab/ref/alphashape.html
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Since the boundary of the alpha shape consists of 
triangles with coordinates corresponding to the center 
points of the voxels, there is no 1:1 relationship between 
the number of voxels in the segmented stone and the 
volume of the corresponding alpha shape. Especially in 
small stones, the volume of the alpha shape is consid-
erably lower than the number of voxels multiplied by 
the voxel size. For example, in a point cloud with eight 
points forming a perfect cube with a 1 × 1 × 1 mm voxel 
size, the alpha shape volume is 1 mm3, while the number 
of voxels multiplied by the voxel size is 8 mm3.

The sphericity is a measure of the roundness of the stone. 
The sphericity is defined as the ratio between the surface area 
of a perfect sphere with the same volume as the lesion and 
the surface area of the lesion. A perfect sphere consequently 
has a sphericity value of 1. The sphericity value approaches 
zero the more a shape deviates from a perfect sphere.
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