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Abstract
As both a computational and an experimental endeavor, ancestral sequence reconstruction remains a timely and impor-
tant technique. Modern approaches to conduct ancestral sequence reconstruction for proteins are built upon a conceptual 
framework from journal founder Emile Zuckerkandl. On top of this, work on maximum likelihood phylogenetics published 
in Journal of Molecular Evolution in 1996 was one of the first approaches for generating maximum likelihood ancestral 
sequences of proteins. From its computational history, future model development needs as well as potential applications in 
areas as diverse as computational systems biology, molecular community ecology, infectious disease therapeutics and other 
biomedical applications, and biotechnology are discussed. From its past in this journal, there is a bright future for ancestral 
sequence reconstruction in the field of evolutionary biology.

Introduction

Modern sequencing technologies enable us to know the 
sequence of any protein-encoding gene in any extant spe-
cies. Ancestral sequence reconstruction offers the oppor-
tunity to infer what that protein sequence was at various 
ancestral points in a phylogenetic tree, providing a window 
into molecular functions encoded in ancient genomes and 
how they might differ from those observed in present day 
genomes. A recent overview of such insights has been pro-
vided by Gumulya and Gillam (2017). The history of ances-
tral protein sequence reconstruction begins with a seminal 
paper in 1963 from Journal of Molecular Evolution founding 
editor Emile Zuckerkandl (Pauling et al. 1963) and continues 
with co-publication of the first maximum likelihood algo-
rithm for ancestral protein sequence reconstruction (Yang 
et al. 1995; Koshi and Goldstein 1996). The notion that 
extant sequences and phylogenies could be used to not only 

infer the topological history of evolution, but also to make 
inference about the functional history of proteins continues 
to be an important concept.

Zuckerkandl and Pauling were one of the first to build on 
the idea that recent genes evolved from previous (homol-
ogous) ancestral genes. They noted that using aligned 
sequences at the tips of a phylogenetic tree, it is possible 
to determine the amino acid sequence of the ancestral gene 
and determine where on the tree specific mutations occurred. 
Not only did their work provide evidence that homologous 
genes derive from a common gene ancestor, but they also 
conceptualized a framework that led to the first methods for 
ancestral sequence reconstruction. Although Zuckerkandl 
and Pauling noted that the number of mutations between an 
ancestral gene and a daughter gene is correlated with time, 
the first widely used method of ancestral sequence recon-
struction, parsimony, was notably time-independent (Fitch 
1971). Maximum likelihood was introduced as an algorithm 
a decade later in Journal of Molecular Evolution (Felsen-
stein 1981) but it would take another 15 years before widely 
used models of protein evolution in a maximum likelihood 
framework were developed for ancestral protein sequence 
reconstruction. This was innovative work published in Jour-
nal of Molecular Evolution (Koshi and Goldstein 1996) and 
contemporaneously by others in Genetics (Yang et al. 1995).
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Early Methodological Development

Following prior methods that used the principle of parsi-
mony (Fitch 1971), maximum likelihood was used to infer 
protein ancestral states in a phylogeny. Maximum likeli-
hood allowed for a more accurate characterization of ancient 
sequences with an appropriate model of sequence evolution. 
Just like parsimony, maximum likelihood requires a phylo-
genetic tree and the sequences at the tips of the tree. Unlike 
parsimony methods, maximum likelihood now requires a 
substitution matrix (which can be a mixture of models) and 
other evolutionary model components for proteins as well 
as branch lengths under the model to find the most likely 
ancestral sequence for nodes throughout the tree.

Using marginal likelihoods that integrated over probabili-
ties of specific amino acids in other nodes in a tree, the prob-
ability vector could be generated for all aligned positions 
at each node in a tree. This is calculated from the equation 
below, that uses three knowns: a given mutation matrix M , a 
given (unrooted) evolutionary tree T  , and given amino acids 
at the tips of the tree {A

r
} . Using these three known val-

ues, we can use the equation below to find A
r
 , the ancestral 

sequences at ancestral nodes (Koshi and Goldstein 1996).

Using this equation, we can calculate the maximum like-
lihood at one particular node. To find the maximum likeli-
hood ancestor for an arbitrary node in the tree, we select 
that node as the root, with application of the pulley principle 
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in likelihood-based phylogenetics for time reversible (equi-
librium) models. We then sum over all the possibilities 
(substitutions) from that particular ancestral node and its 
descendents and can do so for any internal node (Yang et al. 
1995) (Fig. 1).

A subsequent methodological development involved joint 
reconstruction across nodes instead of the original marginal 
reconstruction algorithm (Pupko et al. 2000). Here, instead 
of maximizing the likelihood of states at an individual node 
while integrating over all others, all nodes are considered 
together in maximizing the likelihood across the tree. While 
joint reconstruction has not been widely used, conceptually 
it provides a maximum likelihood method for providing a 
complete evolutionary history of each site. In practice, mar-
ginal and joint reconstructions at any site give very simi-
lar sequences, although differences do occur (Pupko et al. 
2007).

One early important computational application of ances-
tral sequence reconstruction was in finding specific epi-
sodes of positive or negative selection on various ancestral 
branches of a given tree. After ancestral sequences at inter-
nal nodes were generated, nonsynonymous (dN) and syn-
onymous (dS) nucleotide differences were calculated from 
the inferred substitution between ancestral nodes to obtain 
the ratio of dN/dS (then known as  KA/KS). Nodes with dN/
dS values less than 1 show evidence for negative selection, 
while dN/dS values greater than one show evidence for 
positive selection. This application was first performed on 
lysosomes in primates (Messier and Stewart 1997) and in 
leptin and the leptin receptor’s extracellular domain across 
mammals (Benner et al. 1998), and these analyses were able 
to find specific adaptive and purifying episodes localized to 

Fig. 1  The procedure for conducting model-based Ancestral 
Sequence Reconstruction is depicted. a An ancestral node to declare 
as the “root” of interest is selected. b The tree is re-rooted with this 
node. Based on the pulley principle for a time reversible model, any 
node can arbitrarily be declared the “root” without changing the like-

lihood. c Inference of the maximum likelihood ancestor is made by 
summing over all possible amino acid substitutions. This is done by 
comparing evolutionary trajectories from the ancestral sequence with 
extant sequences at the tips
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specific nodes on the phylogenetic tree. One such episode 
demonstrated that leptin had evolved significantly during 
early primates, following the most recent common ancestor 
of rodents and primates– and suggested that leptin may not 
be functionally associated with obesity in humans as it is 
in mice (Benner et al. 1998). It was also demonstrated that 
short adaptive episodes can be masked by long-term nega-
tive selection, like in lysozyme evolution studied in primates 
(Messier and Stewart 1997). These methods spurred the sub-
sequent development of maximum likelihood methods that 
integrated across ancestral sequence probabilities in estimat-
ing branch-specific dN/dS values (Yang 1998), methods that 
are still widely used today based upon the Goldman-Yang 
model (Goldman and Yang 1994).

Early Experimental Applications 
of Computational Ancestral Sequence 
Reconstruction

In finding bouts of positive selection, ancestral sequence 
reconstruction generated experimentally testable hypotheses 
for studying molecular evolutionary history with potential 
protein functional change. While other recent reviews have 
examined this direction more systematically (Gumulya and 
Gillam 2017; Liberles et al. 2020), an overview of key devel-
opments from a historical perspective is presented. The first 
experimental study using ASR involved the replacement of 
three amino acid positions in a modern lysozyme protein 
with inferred ancestral residues at these positions (Malcolm 
et al. 1990), and proceeded to dissect possible intermedi-
ate pathways for how these amino acid positions evolved 
under selective constraints during an episode of functional 
divergence. It took an additional 5 years before the first full-
length ancestral sequence was inferred and generated in the 
laboratory (DNA synthesis technology had improved enough 
to allow synthesis of full-length genes). An ASR study gen-
erating 13 resurrected ribonucleases revealed episodes of 
functional divergence during artiodactyl evolution (Jermann 
et al. 1995).

The above two inaugural experimental ASR studies used 
parsimony to infer ancestral character states. The advance-
ment of robust statistical approaches during the 1990s (i.e., 
maximum likelihood) paved the way for more sophisticated 
experimental studies capable of probing deeper (in time) 
and more divergent evolutionary questions. The first study to 
accomplish such a feat involved the resurrection of ancestral 
rhodopsin proteins from a group of archosaurs that included 
birds and dinosaurs, and suggested these ancestors were able 
to best see in dim lighting (Chang et al. 2002). The next 
study to achieve a similar goal involved the resurrection 
of proteins used to infer the environmental temperature of 
the last common ancestor of bacteria, inferred to have lived 

billions of years ago on early Earth (Gaucher et al. 2003). 
The third study to achieve this goal involved the resurrec-
tion of steroid receptor proteins and demonstrated that the 
earliest steroid receptors likely bound estrogen (Thornton 
et al. 2003).

This trifecta of studies opened the door for a diversity 
of experimental ASR studies that have spanned numerous 
periods of evolutionary history and have probed a plethora 
of biomolecular functionalities. This has all been achieved 
from a seed planted by Pauling and Zuckerhandl in 1963, 
and we anticipate that a similar level of growth will occur 
for experimental ASR over the next ~ 60 years.

Methodological Improvements

One of the criticisms of ancestral sequence reconstruction 
approaches is concerned with potential bias of the likelihood 
statistical framework. Maximum parsimony and maximum 
likelihood approaches pick the most parsimonious/likely 
ancestor for experimental reconstruction and this has the 
potential to show functional bias by excluding rare variants 
that are likely to be present in any individual and/or likely 
to be slightly deleterious. One way of adding expected rare 
variants to the ancestors is through Bayesian Sampling, sam-
pling of multiple sequences from the posterior distribution 
(Williams et al. 2006). This framework was shown computa-
tionally to have functional effects on traits like thermostabil-
ity, although such biases have been experimentally shown to 
have minimal effect on actual protein thermostability (Gau-
cher et al. 2008) or actual protein fluorescence (Alieva et al. 
2008). Another experimental extension of Bayesian Sam-
pling involved serum paraoxonases (PONs) using a library 
of alternative PONs. This was created to consider alternative 
ambiguously predicted ancestors, evaluating the effects of 
inclusion of this uncertainty. Through the library approach, 
these authors were able to find certain predictions made by 
maximum likelihood were very unlikely to reflect the actual 
ancestral sequences (Bar-Rogovsky et al. 2015).

A different approach was developed to consider the 
inconsistency of using different models for alignment and 
phylogenetics. BaliPhy (Suchard and Redelings 2006) uses 
the same model to simultaneously generate the tree and 
perform the alignments through a Markov Chain Monte 
Carlo method. This method is dependent upon the underly-
ing substitution model and includes a model for insertion 
and deletion events. This consistency is meant to solve any 
problems that are caused by the ad hoc nature of models 
and parameters for multiple sequence alignment (Anisimova 
et al. 2010).

Another of the limitations of ancestral sequence recon-
struction approaches is the simplicity of models used for 
protein evolution. Developments in the protein model also 
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began stepping away from the 20 × 20 amino acid matrix. 
This was initially done by using mixtures of substitution 
models (Koshi and Goldstein 1995) and models that did 
not assume the same mutational process for all sites in a 
mutation-selection framework (Halpern and Bruno 1998; 
Lartillot and Philippe 2004). The CAT models have been 
extended to include temporal shifts in amino acid fitnesses 
(CAT-BP) and have spawned work on the related mutation-
selection models, including towards relaxing assumptions of 
an equilibrium process (Blanquart and Lartillot 2008; Teufel 
et al. 2018). Variants of the mutation-selection framework 
remain at the cutting edge of amino acid substitution models, 
but have not been widely used for ancestral sequence recon-
struction yet. The strategy utilizing mixtures of substitution 
matrices, including while explicitly considering an attrib-
ute of protein structure (position solvent accessibility), for 
ancestral sequence reconstruction has recently been revisited 
with promising results (Moshe and Pupko 2019). Specifi-
cally, an improvement in the log-likelihood describing fit to 
empirical datasets was found together with the observation 
that the mixture of matrices resulted in major differences in 
inferred ancestral sequences in those datasets.

Another class of models explicitly considered the pro-
tein’s tertiary structure (Robinson et al. 2003; Rodrigue 
et al. 2006; Kleinman et al. 2010; Grahnen et al. 2011; Are-
nas et al. 2017; Chi et al. 2018). Such models do not yet 
describe structural constraints on protein sequences well. 
Many biological processes affecting protein biochemistry 
and evolution affect selective constraints that dictate which 
amino acids are substituted and which are not, but these are 
ignored in current ancestral sequence reconstruction meth-
ods. There is ripe future ground for further model develop-
ment in this direction, where has recently been reviewed 
(Chi and Liberles 2016). This represents a different new 
direction in modeling.

Overall, the state of the art of protein models has pro-
gressed from PAM-style models of increasing sophistication 
(Dayhoff et al. 1978; Jones et al. 1992; Whelan and Goldman 
2001; Le and Gascuel 2008) to CAT models (Lartillot and 
Philippe 2004) to CAT models with breakpoints (Zhou et al. 
2010) to mutation-selection models (Teufel et al. 2018). 
Breakpoints and covarion-type models enable rates to shift 
at a site over a tree (Wang et al. 2007). Another direction 
where important developments are improving our ability to 
model sequences is with models that combine inter-specific 
with intra-specific processes (Wilson et al. 2011; Hey et al. 
2018). This can provide a formal mechanism to character-
ize segregating sequence variants that more informally were 
modeled with Bayesian sampling from an inter-specific 
model.

This discussion of modeling has mostly focused on 
sequence substitution. The standard likelihood-based 
methods didn’t account for indel positions and ancestral 

sequences grew in length as one progressed back the tree 
(Pupko et al 2007). GASP (Edwards and Shields 2004) cou-
pled model-based sequence reconstruction with parsimoni-
ous reconstruction of indel positions, treating each position 
independently. POY is a parsimony-based simultaneous 
alignment and tree method that treats both substitutions and 
indels using parsimony (Wheeler et al. 2015). As previously 
mentioned, Baliphy has a simple indel model in a likeli-
hood framework to extend these types of models (Suchard 
and Redelings 2006). Two additional statistical treatments 
of gaps include a sequence and length-based model that 
generated a zipfian distribution and a fuller set of propensi-
ties of indel occurrence (Chang and Benner 2004) and an 
evolutionary HMM for alignment that can be employed for 
ancestral sequence reconstruction (Rivas and Eddy 2015). 
As with sequence substitution models, the future is ripe for 
development of integrated models for insertion and dele-
tion, coupled to substitution that will improve our ability to 
reconstruct ancestral sequences. Without integrated mod-
els for insertions and deletions together with substitutions, 
there exists bias in current methods that has been shown to 
lead to too long ancestral proteins (Vialle et al. 2018). To 
take a different step towards reducing this bias, one method 
for dealing with alignment error integrates over alignments 
(Aadland and Kolaczkowski (2020) and this reduces the 
number of gapped positions. Towards the future, it is also 
the case that many of the most sophisticated models do not 
have software implementations and filling this gap will also 
be important in the future.

Extending Ancestral Sequence 
Reconstruction into Systems Biology

Most ASR studies examine individual proteins. However, 
differentiating between inter-molecular compensatory pro-
cesses and directional selection acting on multiple proteins 
in a pathway requires an extension of these techniques to 
multiple members of a pathway (Orlenko et  al. 2016b; 
Olson-Manning 2020). To reconstruct a pathway, one could 
use ancestral sequence reconstruction for every protein in 
an entire pathway, insert these into an organism, and meas-
ure flux. This however would be time consuming, even with 
newer models and methods. Another approach would be to 
reconstruct molecular phenotypes in different ways. The 
simplest phenotypic approach would be to reconstruct path-
way flux as a continuous single value. However, assuming 
the pathway structure is conserved over the tree, individual 
parameters can be reconstructed independently subject to 
thermodynamic constraints and fit into differential equations 
to model pathway fluxes at particular ancestral nodes. While 
the ancestral reconstruction approaches are futuristic, glyco-
lysis is one pathway where comparative analysis of kinetic 
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models across species has been performed (Orlenko et al. 
2016a). This work established trends consistent with muta-
tion-selection-drift balance where mutation occurs at the 
gene/protein level and selection occurs at the pathway level 
(Orlenko et al. 2016b) giving rise to gene-specific context-
dependent evolution, which is increasingly well understood 
as a general observation in comparative data (Eguchi et al. 
2019).

Extending Ancestral Sequence 
Reconstruction Further into Molecular 
Ecology

To the extent that ASR is linked to uncovering environmen-
tal adaptation associated with positive directional selection 
for changes in protein function, a key feature of this is the 
relationship of ancient organisms to their environment and 
ecosystem. Including archosaur vision (Chang et al. 2002, 
discussed above) and bacterial protein thermostability (Risso 
et al. 2013), insights into ancient environments and how 
organisms interacted with them have been gained. In the lat-
ter case, direct effects from individual proteins (Risso et al. 
2013) interplay with proteome-wide effects driven by tem-
perature on substitution (Goldstein, 2007; Zeldovich et al. 
2007; Gromiha et al. 2013). The next level beyond, extend-
ing protein interaction analysis to those involving inter-spe-
cific interactions, whether host–pathogen interactions, with 
Dobzhansky–Muller incompatibilities during speciation, or 
across a food web. In these cases, ancestral sequence recon-
struction can be used not only to make protein functional 
inference, but also to make ecological inference about what 
species are interacting with what other species in a com-
munity. Reconstructing parts of the proteome widely across 
the tree of life has the potential to identify changes in com-
munity structure and species interactions over time. This 
is a direction that we have only seen the tip of the iceberg.

Ancestral Sequence Reconstruction 
and Infectious Disease

Ancestral sequence reconstruction can be used to understand 
viral evolution and towards therapeutic applications (Are-
nas 2020). An understanding of the evolutionary histories 
of these viruses can lead to applications in detecting targeted 
regions for future therapeutics, and to assist in predicting 
new viral resistance against current drugs.

Ancestral sequence reconstruction is also of emerging 
interest for vaccine technologies, especially for the develop-
ment of vaccines to combat rapidly evolving viruses such 
as HIV and influenza strains (Gaschen et al. 2002; Ducatez 
et al. 2011). Using ancestrally derived sequences to create 

vaccine reagents takes advantage of the evolutionary his-
tory of the virus. This strategy contrasts with other methods 
which construct a consensus sequence from different viral 
strains, ignoring phylogenetic structure. A vaccine reagent 
can be based on the last common ancestral sequence of 
all the strains that are circulating, or from other points in 
the tree. For example, when the phylogenetic topology is 
skewed, the “center of tree” method may be implemented. 
The center of tree method considers the ancestral sequence 
that minimizes the evolutionary distance between different 
viral strains of interest (Nickle et al. 2003).

In the age of the SARS-CoV-2, ancestral sequence recon-
struction has become of immediate interest to assist in vac-
cine development (Zhou et al. 2020). Like the rapidly evolv-
ing RNA virus influenza and retrovirus HIV, SARS-CoV-2 
is also an RNA virus. However, a recent study used ancestral 
sequence reconstruction to demonstrate that unlike other 
RNA viruses, mutations in SARS-CoV-2 are rare, as the 
evolution rate is slower than the transmission rate. Because 
of the slow evolution of SARS-CoV-2, only one vaccine 
candidate may be necessary to match all currently circulat-
ing SARS-CoV-2 variants (Dearlove et al. 2020).

Aside from disease causing viruses, viruses are also 
developed to serve as a vehicle for gene therapy (Ivics et al. 
1997). The Adeno-associated Virus (AAV) has been consid-
ered an efficient gene therapy for both inherited and infec-
tious diseases. However, the complex structure and diversity 
associated with different target receptor binding for AAV 
make the virus difficult to properly structurally assemble 
when designed. Using ancestral sequence reconstruction, 
Zinn et al. (2015) were able to provide a virus with a struc-
ture that would remain evolutionarily resilient to future 
mutations and maintain broad clinical applicability.

Biomedical and Biotechnological Directions 
for Ancient Proteins

In addition to all the insights ASR reveals about natural evo-
lutionary processes, it turns out that ancient proteins also 
have applied functions in biotechnology and biomedicine 
(Randall et al. 2016). Ancestral variants have been used to 
develop clinical treatments for type 2 diabetes (Skovgaard 
et al. 2006), gout (Kratzer et al. 2014), hemophilia (Zakas 
et al. 2017), tyrosinemia (Hendrikse et al. 2020) and others. 
It is anticipated that this trend in biomedicine will continue 
as ASR generates proteins having expanded biomolecular 
functionalities with lower immunogenic responses in human 
patients compared to their modern protein counterparts. Fur-
ther, ancestral variants are being used in the biotechnology 
sector due to their unique and desirable properties. Compa-
nies such as nanoGUNE (Manteca et al. 2017), Syngenta, 
New England Biolabs (Zhou et al. 2012), DuPont (Ladics 
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et al. 2020) and others have developed or integrated ancient 
proteins into their biotechnology product development pipe-
lines, while some ancient proteins have even been tested for 
their value in the cosmetic industry (Perez-Jimenez et al. 
2011).

The irony of ancient proteins having an applied utility to 
the development of therapeutics and industrial enzymes is 
clear. It is reasonable to expect that this utility will expand 
within the public and private sectors as more examples are 
discovered in the coming years. Sometimes one must explore 
the past in order to navigate the future.

Concluding Thoughts

Starting with the vision of Journal of Molecular Evolution 
founding editor Emile Zuckerkandl together with Linus 
Pauling, through the maximum likelihood method of Felsen-
stein to the application of this method to protein ancestral 
sequences by Koshi and Goldstein, Journal of Molecular 
Evolution has been an important home for the development 
of the field. As models and statistical frameworks for charac-
terizing protein evolution over a phylogenetic tree continue 
to improve, these developments will continue to impact the 
field of ancestral sequence reconstruction, with downstream 
applications in fields as disparate as biomedicine and com-
munity ecology.
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