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Abstract
Purpose To quantitate gadolinium deposits in gliomas and adjacent normal brain specimens, and to evaluate their association
with tumor contrast enhancement and the type of gadolinium-based contrast agent (GBCA) used.
Methods A total of 69 patients with primary glioma who underwent contrast-enhanced magnetic resonance imaging (MRI) prior
to surgery were included in this retrospective study. Gadolinium was measured from histologically viable tumor, normal brain,
and necrosis within the sample, when available, using inductively coupled plasma mass spectrometry (ICP-MS). Tumor contrast
enhancement was categorized as none, minimal, or noticeable. Differences in gadolinium deposits by contrast enhancement and
GBCA type were assessed.
Results Seven patients received linear GBCA and 62 macrocyclic, respectively. At the time of surgery, gadolinium deposits were
detected in 39 out of 69 (57%) tumor samples, 8 out of 13 (62%) normal brain, and 12 out of 14 (86%) necrotic specimens.
Gadoliniumwas detected in both enhancing and non-enhancing tumors, but was greatest in gliomaswith noticeable enhancement
(p = 0.02). Administration of linear agents gadodiamide and gadopentetate dimeglumine resulted in significantly higher tumor
gadolinium relative to macrocyclic gadoterate meglumine (p < 0.01 and p < 0.05, respectively). Normal brain and necrosis also
showed higher gadolinium after exposure to linear gadodiamide (both p < 0.05). In multivariate regression, GBCA type (linear/
macrocyclic) was the most powerful predictor of tumor gadolinium retention (p < 0.001).
Conclusion Gadolinium can be detected in both enhancing and non-enhancing gliomas, neighboring normal brain, and necrosis.
Gadolinium retention is higher after exposure to linear GBCAs compared with the macrocyclic gadoterate meglumine.
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Introduction

Gadolinium is a heavy metal employed by the standard con-
trast agents used for MRI due to its paramagnetic nature. Free
gadolinium ion (Gd3+), however, is highly toxic. To decrease
its toxicity and increase elimination from the body, Gd3+ is
bound to organic chelating agents. Chelators used in
gadolinium-based contrast agents (GBCAs) can be classified
as either linear or macrocyclic, of which the latter are superior
in stability (especially the kinetic stability) [1]. In contrast,
linear GBCAs have shown in vitro to release substantial
amounts of free Gd3+ and are regarded as more unstable [2].

Deposition of gadolinium in the liver, kidney, and bone of
mice and rats after exposure to linear GBCAs was reported
already in the 1990s [3]. Nevertheless, both linear and macro-
cyclic GBCAs have been used in routine clinical practice for
almost 30 years with no other serious adverse effects
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described than nephrogenic systemic fibrosis in patients with
severe renal insufficiency [4].

In 2014, however, Kanda et al. demonstrated increased
signal intensities in the dentate nucleus (DN) and globus
pallidus (GP), attributed to deposition of gadolinium, on the
T1-weighted (T1W) brain MR images of patients who had
receivedmultiple doses of linear GBCA andwith normal renal
function [5]. This association was supported by several other
investigators [6–8], whereas administration of macrocyclic
GBCAs, even at high doses, was not found to be related to
increased signal intensity [9–11]. Finally, gadolinium deposi-
tion in the human brain after exposure to both linear and mac-
rocyclic GBCAs was confirmed in autopsy specimens raising
concern about the toxicity of the potential free gadolinium in
the brain [12–14].

Several pathological conditions of the brain parenchyma
such as tumor, infection, autoimmune disease, and ischemia
may alter the integrity of the blood–brain barrier (BBB)
resulting in contrast enhancement. Whereas gadolinium accu-
mulation is predictable in diseased brain with disrupted BBB
and contrast enhancement, gadolinium retention in brain ab-
normalities without evident BBB disruption or in adjacent
normal brain has not previously been studied. Furthermore,
despite the routine use of contrast MRI in brain tumor diag-
nostics, only one previous study has attempted to quantify
gadolinium retention in brain tumors. Xia et al. visually de-
tected gadolinium deposits in five out of 28 tumor samples
using scanning electron microscopy/energy-dispersive X-ray
spectroscopy (SEM/EDS) [15]. However, only linear GBCAs
were used in this study and tumor contrast enhancement was
not reported.

The purpose of this study was to quantitate gadolinium
accumulation in viable tumor tissue and the neighboring
normal-appearing brain in both enhancing and non-
enhancing gliomas. Also, the aim was to study the association
of gadolinium retention with the type and number of GBCA
doses administered, tumor subtype, contrast enhancement,
and patient renal function.

Materials and methods

This study was approved by the Ethics Committee of Auria
Biobank (TYKS-SAPA, Turku University Hospital, Turku,
Finland) and the Hospital District of Southwest Finland. All
tissue samples were obtained from Auria Biobank, and in
accordance with the Finnish Biobank Act (688/2012), a sepa-
rate informed consent from individual patients was waived.

Patient selection

Adult patients with newly diagnosed supratentorial glioma
(brainstem gliomas excluded) surgically resected or biopsied

at Turku University Hospital from January 2005 through
December 2013 were retrospectively included. A total of
184 glioma patients were identified out of which 115 were
excluded due to insufficient tissue material and/or unavailable
pre-operative MR scan. Finally, 69 patients were included.
Clinical data was collected from electronic patient records.
Plasma creatinine level obtained nearest to the MR scan was
used, and glomerular filtration rate (GFR) was calculated
using the CKD-EPI equation with creatinine, age, gender,
and race taken into consideration.

GBCA administration and tumor contrast
enhancement on T1W MRI

Pre-operative MR scans were performed in Turku University
Hospital, affiliated hospitals, or private clinics, in case of
which all related scans were transferred to University
Hospital PACS. Information on the GBCA used was retrieved
from the Radiology Information System at University
Hospital, PACS, or personal communication with the chief
radiologists in affiliated hospitals and private clinics. Only
GBCA exposures with evidence of the tumor on brain MRI
were included in analyses.

Pre-operative MR images were analyzed by a radiologist
with 7 years of experience (A.K.). Tumor contrast enhance-
ment on T1WI was visually categorized into three separate
groups: (1) no evidence of contrast enhancement, (2) minimal
contrast enhancement defined as one or two small foci of
enhancement while the gross majority of the solid tumor
was non-enhancing, and (3) distinct/noticeable contrast
enhancement.

Tissue samples

Formalin-fixed paraffin-embedded glioma samples were used
to determine gadolinium concentration in three distinctive
areas: (1) histologically viable tumor, (2) normal-appearing
brain tissue when present in the sample, and (3) necrosis. A
neuropathologist (M.G.) made annotations with a diameter of
1.5 mm to the most representative areas in the scanned hema-
toxylin and eosin slides using Pannoramic Viewer software
(3DHistech, Budapest, Hungary). Corresponding tissue
cores from paraffin-embedded samples were then automat-
ically obtained using a dedicated automatic microarrayer
(TMA Grand Master, 3DHistech, Budapest, Hungary).
Depending on the sample thickness, one to four cores per
area were used for analyses . Tissue cores were
deparaffinized with xylene and washed in serial dilutions
of ethanol which was finally vaporized at room tempera-
ture. Deparaffinized tissue samples were weighted and
used for gadolinium measurements using ICP-MS.
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Gadolinium measurements using ICP-MS

First, 57 samples (42 tumor, 8 normal brain, 7 necrosis)
were microwave digested in a mixture of 2.5 ml nitric acid
and 0.5 ml hydrogen peroxide and a Teflon vessel was
washed out with 50 ml deionized water resulting in rela-
tively low concentrations (average weight of tumor sam-
ples 3.3 mg). Therefore, the remaining 40 samples (27
tumor, 6 normal brain, 7 necrosis) were digested by heating
the mixture of tissue, 0.5 ml nitric acid, and 0.1 ml hydro-
gen peroxide up to 100 °C in a glass bottle and washed out
with 5 ml deionized water.

Samples were analyzed by ICP-MS (PerkinElmer Sciex
Elan 6100 DRC Plus, Waltham, MA, USA) using the follow-
ing parameters: sweeps/reading = 10, readings/replicate = 1,
number of replicates = 7, scan mode = peak hopping, MCA
channels = 1, dwell time = 100.0 ms, and integration time =
1000 ms. In addition to gadolinium (mass = 157.924), also
rhodium (mass = 102.905) was analyzed and used as an inter-
nal standard. Multi-standard 101 was used as a calibration
standard for gadolinium (conc. 1, 2.5, 5.0, 10, 25, 50 ppb).
The limit of detection was set at 33% relative standard devia-
tion (RSD) to reckon the low gadolinium concentration in the
first set of analyses [16]. Measurements with an RSD above
33% were regarded as gadolinium concentration of zero.

The radiologist, neuropathologist, and laboratory personnel
were all blinded to the type of GBCA administered at the time
of MRI evaluation, tissue analysis, and ICP-MS measure-
ments, respectively.

Glioma classification

The molecular profile of the glioma samples including IDH1
and IDH2 mutation (immunohistochemistry and DNA se-
quencing), 1p19q codeletion (fluorescent in situ hybridiza-
tion), and ATRX and p53 mutation (immunohistochemistry)
were analyzed, and with all the molecular data available, gli-
omas were re-assessed by a neuropathologist (M.G.) and di-
agnosed according to the new WHO 2016 classification.

Statistics

Gadolinium concentration is reported as medians, minimum–
maximum range, 25th percentile (P25th), and 75th percentile
(P75th) due to the non-normal distribution of the data.
Differences on gadolinium concentration by diagnosis, tumor
contrast enhancement, and number of GBCA doses adminis-
tered were assessed with Kruskal–Wallis test. The Mann–
Whitney U test was used for pairwise comparisons using the
Bonferroni correction when appropriate. Correlations be-
tween gadolinium in the tumor and MRI–operation inter-
val, GFR, and gadolinium in normal brain and necrosis
were assessed by using the Spearman rank correlation

coefficient. A linear multivariate regression analysis was
performed to evaluate the significance of contrast enhance-
ment, GBCA type, and GBCA–operation interval to pre-
dict gadolinium content. Two-tailed p values < 0.05 were
regarded as significant. All statistical analyses were con-
ducted using the IBM SPSS Statistics version 23.0 for Mac
(IBM Corp., Armonk, NY, USA).

Results

Baseline patient, tumor, and MRI characteristics

Primary glioma samples from 69 patients were included (28
gl ioblas tomas, 27 diffuse as t rocytomas, and 14
oligodendrogliomas; Table 1). Viable tumor tissue was obtain-
ed from all 69 samples, normal brain from 14 samples, and
necrosis from 14 glioblastomas. One normal brain sample was
excluded since the patient had received three doses of
gadopentetate dimeglumine 11 years earlier (without evidence
of brain tumor on MRI). This may affect gadolinium deposi-
tion in the normal brain and would influence the analyses
since at the time of glioma diagnosis the patient received
gadoterate meglumine only. Finally, 13 normal brain samples
were analyzed.

All glioblastomas showed distinct contrast enhancement
whereas in diffuse gliomas the enhancement was more vari-
able. Gadoterate meglumine (Dotarem, Guerbet, Villepinte,
France) was used in 60 patients, gadobutrol (Gadovist,
Bayer, Whippany, NJ, USA) in two, gadodiamide
(Omniscan, GE Healthcare, Chicago, IL, USA) in four, and
gadopentetate dimeglumine (Magnevist, Bayer, Whippany,
NJ, USA) in three patients, respectively. Linear GBCAs were
administered during 2006–2009 and macrocyclic agents
2005–2013. Sixty patients received only one GBCA dose,
and nine patients received two to three doses (exclusively
gadoterate meglumine) prior to surgery and with evidence of
the tumor occurring in the brain MRI. The mean interval be-
tween the last GBCA administration and operation was
24 days (range 1–104 days). None of the patients suffered
from renal failure.

Gadolinium is detected both in enhancing
and non-enhancing gliomas

Gadolinium was detected in 39 out of 69 (57%) tumor sam-
ples. Gadolinium retention was most common in glioblasto-
mas, however, without significant difference among diagno-
ses. In contrast, gadolinium retention associated with contrast
enhancement (chi-square p = 0.04, Table 2). Gadolinium was
significantly higher in gliomas with noticeable contrast en-
hancement compared to non-enhancing gliomas (p = 0.02,
Fig. 1). However, it should be noted that 7 out of 21 (33%)
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patients with non-enhancing gliomas showed detectable gad-
olinium (Fig. 2). Among these, six had received gadoterate
meglumine and one gadobutrol, respectively. The routinely

used dosage of GBCAs was 0.2 ml/kg. For four patients with
one GBCA MRI, the dosage was 0.1 ml/kg. No difference in
gadolinium retention was detected with regard to the dose

Table 2 Gadolinium retention in
tumor, normal brain, and necrotic
tissue according to tumor contrast
enhancement (CE) in T1W MRI
(gadolinium concentrations μg/kg
reported as median; min–max
range; 25th percentile; 75th
percentile)

Gadolinium deposits No CE n = 21 Minimal CE n = 7 Noticeable CE n = 41

Tumor, n

Yes 7 (34; 15–824; 32; 373) 5 (54; 9–1648; 20; 983) 27 (123; 12–3549; 68; 349)

No 14 2 14

Normal brain, n

Yes 2 (32–403) 2 (31–308) 4 (193; 13–447; 16; 425)

No 3 1 1

Necrosis, n

Yes na na 12 (512; 31–15,012; 136; 1819)

No na na 2

na not applicable, necrosis only in glioblastomas with noticeable CE

Table 1 Patient, tumor, and MRI characteristics

Glioblastoma Astrocytoma Oligodendroglioma

IDHwt IDHmut IDHwt IDHmut 1p19q-codeleted,
IDHmut

n (total 69) 25 3 7a 20 14b

Age (years)c 61 58 62 48 45

Grade

IV 25 (100%) 3 (100%)

III 5 (71%) 9 (45%) 4 (29%)

II 2 (29%) 11 (55%) 10 (71%)

Contrast enhancement

None 0 0 4 (57%) 11 (55%) 6 (43%)

Minimal 0 0 1 (14%) 3 (15%) 3 (21%)

Noticeable 25 (100%) 3 (100%) 2 (29%) 6(30%) 5 (36%)

No. of GBCA MRIs

1 22 (88%) 3 (100%) 5 (72%) 19 (95%) 11 (79%)

2 2 (8%) 0 1 (14%) 1 (5%) 3 (21%)

3 1 (4%) 0 1 (14%) 0 0

GBCA usedd

Gadoterate meglumine 20 (80%) 2 (67%) 7 (100%) 18 (90%) 13 (93%)

Gadobutrol 0 0 0 1 (5%) 1 (7%)

Gadodiamide 3 (12%) 0 0 1 (5%) 0

Gadopentetate dimeglumine 2 (8%) 1 (33%) 0 0 0

Interval GBCA—operation
(days)c

16 8 25 27 16

GFR, ml/min (range)c 91 (60–131) 102 (85–111) 100 (62–140) 107 (70–137) 108 (82–131)

IDH isocitrate dehydrogenase, IDHwt IDH-wild type, IDHmut IDH-mutant
a Includes one astrocytoma NOS grade 2
b Includes two oligodendrogliomas NOS grade 2
c Expressed as median values
d Latest preoperative contrast MRI
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(p = 0.62), GFR value (p = 0.17), or number of GBCA doses
administered (p = 0.34; gadoterate meglumine was exclusive-
ly used in patients receiving multiple GBCA doses).

Gadolinium retention in gliomas is related to linear
GBCAs

As presented in Fig. 3, significantly higher gadolinium con-
centrations were detected in tumors after administration of
linear gadodiamide (median 627 μg/kg, range 319–
2624 μg/kg, P25th 322 μg/kg, P75th 2199 μg/kg, n = 4;
p = 0.002) and linear gadopentetate dimeglumine (median
349 μg/kg, range 164–3549 μg/kg, n = 3, p = 0.03) when
compared with the macrocyclic gadoterate meglumine (medi-
an 4.5 μg/kg, range 0–1648 μg/kg, P25th 0 μg/kg, P75th

82 μg/kg, n = 60). No difference in tumor gadolinium was
measured between the two linear agents or gadobutrol (range
34–627 μg/kg, n = 2) and other GBCAs. A negative correla-
tion was found between tumor gadolinium concentration and
the time interval between MRI and operation (Spearman’s
rho = − 0.28, p = 0.02).

For the purpose of linear multivariate regression, GBCA
type was analyzed as macrocyclic (gadoterate meglumine and
gadobutrol) or linear (gadodiamide and gadopentetate

dimeglumine). Linear regression was calculated to predict tu-
mor gadolinium concentration (dependent variable) based on
age, sex, tumor contrast enhancement, GBCA type, andMRI–
operation interval (independent variables). Thirty one percent
of the tumor gadolinium variance could be explained by the
predictors (R2 = 0.312). GBCA type (macrocyclic versus lin-
ear) was the only significant predictor of tumor gadolinium
concentration, which was 1042 μg/kg higher with linear com-
pared with macrocyclic agents (p < 0.001, unstandardized co-
efficient 1042 μg/kg, 95% CI 628–1457 μg/kg).

Gadolinium retention in normal brain and necrosis is
higher after exposure to linear gadodiamide

Gadolinium was detected in 8 out of 13 (62%) samples of
histologically normal appearing brain (Table 2) with a signif-
icant correlation between gadolinium concentrations in the
tumor and normal brain (Spearman’s rho = 0.65; p = 0.016;
n = 13). Of these eight patients with gadolinium detected in
the normal brain, two had received linear gadodiamide and six
macrocyclic gadoterate meglumine, respectively. As shown in
Fig. 4, gadolinium concentration in normal brain was signifi-
cantly higher after exposure to linear gadodiamide (range
361–447 μg/kg, n = 2) compared with macrocyclic gadoterate
meglumine (median 13 μg/kg, range 0–403 μg/kg, P25th

0 μg/kg, P75th 32 μg/kg; n = 11; p = 0.04).
Gadolinium retention was also detected in 12 out of 14

(86%) necrotic tissue samples (Table 2) with a significant
correlation between gadolinium concentration in the tumor
and necrosis (Spearman’s rho = 0.66; p = 0.01; n = 14).
Necrosis gadolinium was significantly higher after exposure
to linear gadodiamide (median 2852 μg/kg, range 639–
15,012 μg/kg, n = 3) compared with macrocyclic gadoterate
meglumine (median 118 μg/kg, range 0–1518 μg/kg, P25th

16 μg/kg, P75th 348 μg/kg; n = 9) as presented in Fig. 5 (p =
0.04). No difference in necrosis gadolinium was measured
between gadoterate meglumine and gadopentetate
dimeglumine (range 1734–1847 μg/kg, n = 2), or the two
linear agents.

No significant difference in gadolinium concentrations
were detected between tumor and normal brain, or tumor
and necrosis, when comparing the concentrations within pa-
tients that had either normal brain (n = 13) or necrotic tissue
samples (n = 14) available, respectively. Three patients had all
three tissue specimens available. No significant difference,
however, was detected in gadolinium concentrations between
tumor, normal brain, and necrosis within the three patients.

Discussion

Gadolinium deposited in both enhancing and non-enhancing
gliomas with the highest concentrations detected among

Fig. 1 Levels of tumor gadolinium by contrast enhancement (CE) on
T1W MRI. Gadolinium concentration is significantly higher in
noticeably enhancing gliomas compared to non-enhancing gliomas
(*p = 0.02). Three outliers are distinguished with their gadolinium
concentration. Data points are shown with medians and interquartile
ranges
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tumors with gross enhancement on T1W MRI. Gadolinium
was not only found in the viable tumor tissue but also in the
normal-appearing adjacent brain and necrotic tissue, with a
positive correlation between the amounts deposited in the tu-
mor and normal brain or necrosis. Gadolinium retention was
significantly higher after administering linear GBCAs com-
pared with macrocyclic gadoterate meglumine. In multivariate
regression analysis, GBCA type (macrocyclic versus linear)
was the only significant predictor of tumor gadolinium
concentration.

To date, five postmortem studies have demonstrated the
pathologic accumulation of gadolinium in the human brain
after exposure to linear [12, 13, 17, 18] or macrocyclic [14,
18] GBCAs. None of the studies, however, included dece-
dents who had received gadoterate meglumine that was the
most common GBCA used in our cohort of glioma pa-
tients. While the highest gadolinium concentrations were
detected in DN and GP, two of these studies additionally
showed small but measurable concentrations in the brain
cortex and white matter suggesting more widespread low-
level gadolinium retention in brain parenchyma than just
the posterior fossa and basal ganglia [13, 14]. Our results
are in line with this and further support the notion of gad-
olinium retention in small quantities in brain parenchyma

of other regions than DN and GP after administration of
both linear and macrocyclic agents.

Autopsy studies have shown that gadolinium deposition in
the posterior fossa and basal ganglia is not limited to patients
with intracranial abnormalities but can also be detected in
patients with normal brains at the time of autopsy [17, 18].
Several mechanisms of this gadolinium transit and retention in
brain regions without impaired BBB have been suggested
including active metal transporters [19, 20], passage from
the cerebrospinal fluid [21–23], and brain glymphatic system
[24]. The exact mechanism behind the retention, however,
remains unsolved. While the brain tumor provides an obvious
explanation for gadolinium retention, we additionally found
gadolinium deposits in the adjacent normal brain.
Furthermore, a small but significant correlation between the
amount of gadolinium in the tumor and normal brain was
detected implying passage of gadolinium from the site of path-
ologic brain lesion. While further studies are needed to con-
firm this association, an interesting question arises whether
gadolinium traverses from the region of brain lesion to neigh-
boring sites in other brain abnormalities such as ischemia,
infection, or multiple sclerosis.

Gadolinium concentration was significantly higher in
both the tumor tissue and normal brain, as well as in

Fig. 2 Representative images of contrast-enhanced T1W MRI and
corresponding H&E stainings (×200 magnification). a Astrocytoma,
IDH-mutant grade II with no contrast enhancement on MRI and b no
signs of endothelial proliferation in tumor vessels (black arrow). c
Oligodendroglioma, IDH-mutant, and 1p19q-codeleted grade II with a
minor focus of enhancement (white arrow) but d H&E showing thin-

walled tumor vessels and no signs of endothelial proliferation. (e)
Glioblastoma IDH-wild type with noticeable contrast enhancement and
(f) tumor vasculature showing endothelial proliferation with multiple
layers of endothelial cells and glomeruloid structures within tumor
vessels (black arrow). Gadolinium was detected in each of these tumors
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necrosis, after exposure to linear GBCAs compared with
the macrocyclic agent gadoterate meglumine. Our results
emphasize the higher stability of macrocyclic agents and
correspond to animal models showing higher gadolinium
retention in brain tissue after exposure to linear relative to
macrocyclic GBCAs [25, 26]. In humans, several studies
have demonstrated increased T1W MRI signal intensities
in the DN and GP after serial application of linear GBCAs
[5, 6, 8, 10] but not after the use of macrocyclic agents [9,
10, 27].

We detected gadolinium deposits in 33% of gliomas that
showed no evident contrast enhancement on T1W MR im-
ages. Whereas contrast enhancement indicates disrupted and
leaky BBB and provides an obvious explanation for gadolin-
ium retention, the mechanism on how gadolinium accumu-
lates in non-enhancing gliomas is unclear. Despite the lack
of contrast enhancement on conventionalMRI, several studies
have detected heterogeneity in non-enhancing gliomas when
using dynamic perfusion-weighted MR imaging (PWI)
[28–30]. PWI and quantitative tumor blood volume maps as-
sess tumor vascularity and reflect the degree of angiogenesis.
Therefore, although there is no obvious BBB destruction, it
may be speculated that different degrees of angiogenesis and
potential microleaks result in gadolinium deposits that remain,
however, visually undetectable on conventional T1W MRI
due to low gadolinium concentration.

To our knowledge, this is the first study to provide quanti-
tative data of gadolinium retention in gliomas and neighboring
normal brain with respect to tumor enhancement and type of
GBCA used. Despite the fact that GBCAs have been used for
decades in MRI of brain tumors to identify BBB breakdown
and characterize tumor vasculature, only one previous study
can be found where gadolinium deposits in brain tumor biop-
sies have been evaluated [15]. Xia et al. visually assessed
gadolinium deposits in tissue sections of gliomas or other
brain tumors from 28 patients using SEM/EDS. Gadolinium
deposits were detected in five of these patients (two glioblas-
tomas and three anaplastic gliomas) and were primarily found
in highly vascular tumor areas and in association with calcifi-
cations. The study provided important information on the spa-
tial occurrence of gadolinium deposits. However, contrast en-
hancement of the tumors was not reported. Furthermore, all
patients received linear GBCAwith no potential comparison
between macrocyclic and linear agents.

Our study has several limitations. First, two different diges-
tion and dilution strategies were used to measure gadolinium
concentrations from the tissue samples with ICP-MS. Lower
concentrations in the first set of analyses resulted in higher
variability in the measurements and, therefore, the limit of
detection was set at RSD 33%. This may have increased the
margin of error for both false-negative and false-positive con-
centrations and is a major limitation of this study in general.

Fig. 3 Gadolinium concentration
in tumor tissue after
administration of gadoterate
meglumine (n = 60), gadobutrol
(n = 2), gadodiamide (n = 4), or
gadopentetate dimeglumine (n =
3). Data points are shown with
medians and interquartile ranges.
**p < 0.01; *p < 0.05
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Second, it cannot be excluded that the patients received un-
documented GBCA doses given the widespread use of MRIs
and the fact that we did not have access to other hospitals’
imaging archives. Since the treatment of gliomas is centralized
in the university hospital, and at the time of treatment all
related MRIs are transferred to its PACS, we assume this not
to be a major issue regarding gadolinium retention in the tu-
mor. However, prior GBCA exposuremost likely would affect
gadolinium retention in the normal brain. In our cohort, we
identified one patient with available normal brain tissue who
received gadoterate meglumine at the time of diagnosis, but
who had been exposed to three doses of gadopentetate
dimeglumine 11 years earlier. Whereas no gadolinium was
detected in the tumor, the normal brain showed gadolinium
at a concentration of 37 μg/kg. This normal brain specimen
was excluded from analyses. However, it cannot be excluded
that the remaining 13 patients with normal brain specimens
were exposed to other GBCAs earlier. Third, it is unknown
whether BBB in the normal tissue around the tumor was intact
or compromised. Since no control subjects without brain
tumor–receiving GBCA were included, it remains unclear
whether normal brain gadolinium would be observed in pa-
tients without brain malignancies and definite intact BBB, or

whether it is related to the tumor and/or compromised BBB.
Fourth, control subjects without GBCA exposure were not
included. However, because gadolinium is very rare in nature,
its presence in the human body is most likely due to GBCA
administration.

Conclusions

Gadolinium retention occurred both in the enhancing and non-
enhancing tumors but was greatest in gliomas with noticeable
enhancement as expected. In addition to tumor tissue, gado-
linium was detected in the neighboring normal brain. The
levels of gadolinium in the tumor and normal brain correlated
suggesting a possible transit of gadolinium to the surround-
ings of the brain lesion. The most powerful predictor of gad-
olinium retention was the type of GBCA administered with
significantly higher gadolinium accumulation detected with
linear (gadodiamide and gadopentetate dimeglumine) relative
to macrocyclic (gadoterate meglumine and gadobutrol)
agents. While the clinical significance of gadolinium retention
into the brain remains unsolved, the European Medicines
Agency has taken a significant step and has given recommen-
dations to suspend the usage of certain linear GBCAs related
to gadolinium accumulation [31]. In USA, the US Food and

Fig. 5 Gadolinium concentration in necrotic tissue after administration of
macrocyclic gadoterate meglumine (n = 9), linear gadodiamide (n = 3), or
linear gadopentetate dimeglumine (n = 2). Data points are shown with
medians and interquartile ranges. *p < 0.05Fig. 4 Gadolinium concentration in normal brain tissue after

administration of macrocyclic gadoterate meglumine (n = 11) or linear
gadodiamide (n = 2). Data points are shown with medians and
interquartile ranges. *p < 0.05
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Drugs Administration requires warning labeling to all GBCAs
[32]. Our study elucidates gadolinium retention in brain tu-
mors and surrounding normal tissue with an implication of
higher retention associated with linear agents.
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