Sho Ejiri

# Erratum to 'When is the Albanese morphism an algebraic fiber space in positive characteristic?" 

Published online: 23 April 2022

## Erratum to: manuscripta math. 160, 239-264 (2019) <br> https://doi.org/10.1007/s00229-018-1056-6

An error in Proposition 5.11 was pointed out by professor Adrian Langer. In the statement of the proposition, the variety $Z$ must be projective. Therefore, Proposition 5.11 should have been stated as follows:

Proposition 5.11. Let $X, \Delta, Z$ and $f$ be as in Definition 5.1, and $Y$ be a normal variety. Assume that $f: X \rightarrow Z$ can be factored into projective morphisms $g$ : $X \rightarrow Y$ with $g_{*} \mathcal{O}_{X} \cong \mathcal{O}_{Y}$ and $h: Y \rightarrow Z$. Suppose that $Z$ is projective.
(1) If $(f, \Delta)$ is $F$-split, then so is $h$.
(2) Assume that $Y$ is smooth. If $(g, \Delta)$ and $h$ are $F$-split, then so is $(f, \Delta)$.
(3) The converse of (2) holds if $K_{Y} \sim_{\mathbb{Z}_{(p)}} h^{*} K_{Z}$.

Furthermore, the proof of statements (2) and (3) of the proposition includes an unclear part and an unsuitable part, so the proof should be modified as follows:

Proof of Proposition 5.11. Let $e>0$ be an integer. Now we have the following commutative diagram:


[^0]Here, $\pi^{(e)}:=\left(F_{Y / Z}^{(e)}\right)_{X}$. We first show (1). The above diagram induces the commutative diagram of $\mathcal{O}_{Y_{Z}}$-modules

where the left vertical morphism is an isomorphism because of the flatness of $\left(F_{Z}^{e}\right)_{Y}$. Since the lower horizontal morphism splits, so does the upper one.

Next, we show (2) and (3). As explained in Observation 5.4, if ( $g, \Delta$ ) is $F$-split, then there exists an effective $\mathbb{Z}_{(p)}$-Weil divisor $\Delta^{\prime} \geq \Delta$ on $X$ such that $K_{X / Y}+\Delta^{\prime}$ is $\mathbb{Z}_{(p)}$-linearly trivial and that $\left(g, \Delta^{\prime}\right)$ is also $F$-split. Therefore, when we prove (2), we may assume that $\Delta$ is a $\mathbb{Z}_{(p)}$-Weil divisor and that $\left(p^{e}-1\right)\left(K_{X / Y}+\Delta\right) \sim 0$ for every $e>0$ divisible enough. In this case, $\left(p^{e}-1\right)\left(K_{X / Z}+\Delta\right) \sim\left(p^{e}-1\right) g^{*} K_{Y / Z}$, so $\mathcal{L}_{(X / Z, \Delta)}^{(e)} \cong g^{(e)^{*}} \mathcal{N}_{1}^{(e)}$ for a line bundle $\mathcal{N}_{1}^{(e)}$ on $Y^{e}$, and $\mathcal{L}_{(X / Y, \Delta)}^{(e)} \cong \mathcal{O}_{X^{e}} \cong$ $g^{(e)^{*}} \mathcal{O}_{Y^{e}}$. By an argument similar to the above, when we show (3), we may suppose that for every $e>0$ divisible enough, $\mathcal{L}_{(X / Y, \Delta)}^{(e)} \cong g^{(e)^{*}} \mathcal{M}_{1}^{(e)}$ for a line bundle $\mathcal{M}_{1}^{(e)}$ on $Y^{e}$, and $\mathcal{L}_{(X / Z, \Delta)}^{(e)} \cong \mathcal{O}_{X^{e}} \cong g^{(e)^{*}} \mathcal{O}_{Y^{e}}$. In summary, since we now prove (2) and (3), we may assume that for every $e>0$ divisible enough, $\mathcal{L}_{(X / Y, \Delta)}^{(e)} \cong g^{(e)^{*}} \mathcal{M}^{(e)}$ and $\mathcal{L}_{(X / Z, \Delta)}^{(e)} \cong g^{(e)^{*}} \mathcal{N}^{(e)}$ for line bundles $\mathcal{M}^{(e)}$ and $\mathcal{N}^{(e)}$ on $Y^{e}$.

Let $V \subseteq Y$ be an open subset such that $g$ is flat at every point in $X_{V}:=g^{-1}(V)$ and $\operatorname{codim}(Y \backslash V) \geq 2$. Let $u: U \rightarrow X_{V}$ be the open immersion of the regular locus of $X_{V}$. Set $g^{\prime}:=g \circ u: U \rightarrow Y$. We then have $g^{\prime}{ }_{*} \mathcal{O}_{U} \cong \mathcal{O}_{Y}$ because of the assumptions. Therefore, for every line bundle $\mathcal{N}$ on $Y$, we see that
$H^{0}\left(U,\left.\left(g^{*} \mathcal{N}\right)\right|_{U}\right)=H^{0}\left(U, g^{\prime *} \mathcal{N}\right) \cong H^{0}\left(Y, g^{\prime}{ }_{*} g^{*} \mathcal{N}\right) \cong H^{0}(Y, \mathcal{N}) \cong H^{0}\left(X, g^{*} \mathcal{N}\right)$
by the projection formula. In addition, by the flatness of $F_{Z}^{e}$, we get $g^{\prime}{ }_{Z^{e} *} \mathcal{O}_{U_{Z^{e}}} \cong$ $\mathcal{O}_{Y_{Z^{e}}}$, and so $H^{0}\left(U_{Z^{e}}, \mathcal{O}_{U_{Z^{e}}}\right) \cong H^{0}\left(X_{Z^{e}}, \mathcal{O}_{X_{Z^{e}}}\right)$ by an argument similar to the above. Hence, we have the following commutative diagram:

$$
\begin{gathered}
H^{0}\left(X^{e}, \mathcal{L}_{(X / Z, \Delta)}^{(e)}\right) \xrightarrow{H^{0}\left(X_{\left.Z^{e}, \phi_{(X / Z, \Delta)}^{(e)}\right)}\right.} H^{0}\left(X_{Z^{e}}, \mathcal{O}_{X_{Z^{e}}}\right) \\
\cong \\
\downarrow \\
H^{0}\left(U^{e}, \mathcal{L}_{(X / Z, \Delta)}^{(e)} \mid U^{e}\right) \xrightarrow{H^{0}\left(U_{\left.Z^{e}, \phi_{(U / Z, \Delta \mid U)}^{(e)}\right)}\right)} H^{0}\left(U_{Z^{e}}, \mathcal{O}_{U_{Z^{e}}}\right) .
\end{gathered}
$$

Note that we are assuming that $\mathcal{L}_{(X / Z, \Delta)}^{(e)} \cong g^{(e)^{*}} \mathcal{N}$ for a line bundle $\mathcal{N}$ on $Y^{e}$. Since the splitting of $\phi_{(X / Z, \Delta)}^{(e)}$ is clearly equivalent to the surjectivity of $H^{0}\left(X_{Z^{e}}, \phi_{(X / Z, \Delta)}^{(e)}\right)$, we see that the $F$-splitting of $(f, \Delta)$ and that of $\left(\left.f\right|_{U}\right.$ : $U \rightarrow Z,\left.\Delta\right|_{U}$ ) are equivalent. By an argument similar to the above, we find that the $F$-splitting of $(g, \Delta)$ and that of $\left(\left.g\right|_{U},\left.\Delta\right|_{U}\right)$ are also equivalent.

Assume that we can choose $V=Y$ and $U=X$, i.e. $X$ and $Y$ are regular and $g$ is flat. Let $e>0$ be an integer. By the flatness of $g$, we have the following commutative diagram:


This implies that

$$
\mathcal{H o m}\left(\pi^{(e)^{\sharp}}, \mathcal{O}_{X_{Z^{e}}}\right) \cong g_{Z^{e}}{ }^{*} \mathcal{H o m}\left(F_{Y / Z}^{(e)}{ }^{\sharp}, \mathcal{O}_{V_{Z^{e}}}\right)=g_{Z^{e}}{ }^{*} \phi_{Y / Z}^{(e)} .
$$

Applying the functor $\mathcal{H o m}\left(\_, \mathcal{O}_{X_{Z} e}\right)$ and the Grothendieck duality to the natural morphism

$$
\mathcal{O}_{X_{Z^{e}}} \xrightarrow{\pi^{(e) \sharp}} \pi^{(e)} * \mathcal{O}_{X_{Y}} \rightarrow F_{X / Z_{*}}^{(e)} \mathcal{O}_{X^{e}}\left(\left\lceil\left(p^{e}-1\right) \Delta\right\rceil\right),
$$

we obtain the morphism
$\phi_{(X / Z, \Delta)}^{(e)}: F_{X / Z}^{(e)} \mathcal{L}_{(X / Z, \Delta)}^{(e)} \xrightarrow{\pi^{(e)}{ }_{*} \phi_{(X / Y, \Delta)}^{(e)} \otimes \omega_{\pi}^{(e)}} g_{Z^{e}} e^{*} F_{Y / Z}^{(e)} \mathcal{L}_{Y / Z}^{(e)} \xrightarrow{g_{Z e^{e}} \phi_{Y / Z}^{(e)}} \mathcal{O}_{X_{Z}{ }^{e}}$.
Note that
$\omega_{\pi^{(e)}} \cong \omega_{X_{Y^{e}}} \otimes \pi^{(e)^{*}} \omega_{X_{Z^{e}}} \cong g_{Z^{e}}{ }^{*} \omega_{Y \text { 位 }}^{1-p^{e}} \quad$ and $\quad g_{Z^{e}}{ }^{*} F_{Y / Z *}^{(e)} \mathcal{L}_{Y / Z}^{(e)} \cong \pi^{(e)} * g_{Y e^{e}}{ }^{*} \mathcal{L}_{Y / Z}^{(e)}$.
We now prove the assertion. If $(g, \Delta)$ is $F$-split and $h$ is $F$-split, then both of $\phi_{(X / Y, \Delta)}^{(e)}$ and $\phi_{Y / Z}^{(e)}$ split for every $e>0$ divisible enough. Therefore, $\phi_{(X / Z, \Delta)}^{(e)}$ also splits, i.e. $(f, \Delta)$ is $F$-split. Conversely, suppose that $(f, \Delta)$ is $F$-split and that $\left(p^{e}-1\right) K_{Y / Z} \sim 0$ for an $e>0$. Then, $\mathcal{L}_{Y / Z}^{(e)} \cong \mathcal{O}_{Y_{Z} e}$ and $\omega_{\pi^{(e)}} \cong \mathcal{O}_{X_{Y^{e}}}$. Fix an $e>0$ divisible enough. Since $H^{0}\left(X_{Z^{e}}, \phi_{(X / Z, \Delta)}^{(e)}\right)$ is surjective, $H^{0}\left(X_{Z^{e}}, \pi^{(e)}{ }_{*} \phi_{(X / Y, \Delta)}^{(e)}\right)$ is a nonzero morphism, and hence so is $H^{0}\left(X_{Y^{e}}, \phi_{(X / Y, \Delta)}^{(e)}\right)$. This morphism is surjective because of $H^{0}\left(X_{Y^{e}}, \mathcal{O}_{X_{Y^{e}}}\right) \cong$ $H^{0}\left(Y^{e}, \mathcal{O}_{Y^{e}}\right) \cong k$. Thus, $\phi_{(X \mid Y, \Delta)}^{(e)}$ splits, and so $(g, \Delta)$ is $F$-split. Note that the $F$-splitting of $h$ follows directly from (1).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


[^0]:    The original article can be found online at https://doi.org/10.1007/s00229-018-1056-6.
    S. Ejiri ( $\boxtimes$ ): Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
    e-mail: s-ejiri@cr.math.sci.osaka-u.ac.jp

