

Sho Ejiri

Erratum to "When is the Albanese morphism an algebraic fiber space in positive characteristic?"

Published online: 23 April 2022

Erratum to: manuscripta math. 160, 239–264 (2019) https://doi.org/10.1007/s00229-018-1056-6

An error in Proposition 5.11 was pointed out by professor Adrian Langer. In the statement of the proposition, the variety Z must be projective. Therefore, Proposition 5.11 should have been stated as follows:

Proposition 5.11. Let X, Δ , Z and f be as in Definition 5.1, and Y be a normal variety. Assume that $f : X \to Z$ can be factored into projective morphisms $g : X \to Y$ with $g_*\mathcal{O}_X \cong \mathcal{O}_Y$ and $h : Y \to Z$. Suppose that Z is projective.

(1) If (f, Δ) is *F*-split, then so is *h*.

- (2) Assume that Y is smooth. If (g, Δ) and h are F-split, then so is (f, Δ) .
- (3) The converse of (2) holds if $K_Y \sim_{\mathbb{Z}_{(p)}} h^* K_Z$.

Furthermore, the proof of statements (2) and (3) of the proposition includes an unclear part and an unsuitable part, so the proof should be modified as follows:

Proof of Proposition 5.11. Let e > 0 be an integer. Now we have the following commutative diagram:

The original article can be found online at https://doi.org/10.1007/s00229-018-1056-6.

S. Ejiri (\boxtimes): Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

e-mail: s-ejiri@cr.math.sci.osaka-u.ac.jp

Here, $\pi^{(e)} := (F_{Y/Z}^{(e)})_X$. We first show (1). The above diagram induces the commutative diagram of $\mathcal{O}_{Y_{Z^e}}$ -modules

where the left vertical morphism is an isomorphism because of the flatness of $(F_Z^e)_Y$. Since the lower horizontal morphism splits, so does the upper one.

Next, we show (2) and (3). As explained in Observation 5.4, if (g, Δ) is *F*-split, then there exists an effective $\mathbb{Z}_{(p)}$ -Weil divisor $\Delta' \geq \Delta$ on *X* such that $K_{X/Y} + \Delta'$ is $\mathbb{Z}_{(p)}$ -linearly trivial and that (g, Δ') is also *F*-split. Therefore, when we prove (2), we may assume that Δ is a $\mathbb{Z}_{(p)}$ -Weil divisor and that $(p^e - 1)(K_{X/Y} + \Delta) \sim 0$ for every e > 0 divisible enough. In this case, $(p^e - 1)(K_{X/Z} + \Delta) \sim (p^e - 1)g^*K_{Y/Z}$, so $\mathcal{L}_{(X/Z,\Delta)}^{(e)} \cong g^{(e)*}\mathcal{N}_1^{(e)}$ for a line bundle $\mathcal{N}_1^{(e)}$ on Y^e , and $\mathcal{L}_{(X/Y,\Delta)}^{(e)} \cong \mathcal{O}_{X^e} \cong$ $g^{(e)*}\mathcal{O}_{Y^e}$. By an argument similar to the above, when we show (3), we may suppose that for every e > 0 divisible enough, $\mathcal{L}_{(X/Y,\Delta)}^{(e)} \cong g^{(e)*}\mathcal{M}_1^{(e)}$ for a line bundle $\mathcal{M}_1^{(e)}$ on Y^e , and $\mathcal{L}_{(X/Z,\Delta)}^{(e)} \cong \mathcal{O}_{X^e} \cong g^{(e)*}\mathcal{O}_{Y^e}$. In summary, since we now prove (2) and (3), we may assume that for every e > 0 divisible enough, $\mathcal{L}_{(X/Y,\Delta)}^{(e)} \cong g^{(e)*}\mathcal{M}^{(e)}$ and $\mathcal{L}_{(X/Z,\Delta)}^{(e)} \cong g^{(e)*}\mathcal{N}^{(e)}$ for line bundles $\mathcal{M}^{(e)}$ and $\mathcal{N}^{(e)}$ on Y^e .

Let $V \subseteq Y$ be an open subset such that g is flat at every point in $X_V := g^{-1}(V)$ and $\operatorname{codim}(Y \setminus V) \ge 2$. Let $u : U \to X_V$ be the open immersion of the regular locus of X_V . Set $g' := g \circ u : U \to Y$. We then have $g'_* \mathcal{O}_U \cong \mathcal{O}_Y$ because of the assumptions. Therefore, for every line bundle \mathcal{N} on Y, we see that

$$H^{0}(U, (g^{*}\mathcal{N})|_{U}) = H^{0}(U, g'^{*}\mathcal{N}) \cong H^{0}(Y, g'_{*}g'^{*}\mathcal{N}) \cong H^{0}(Y, \mathcal{N}) \cong H^{0}(X, g^{*}\mathcal{N})$$

by the projection formula. In addition, by the flatness of F_Z^e , we get $g'_{Z^e} \approx \mathcal{O}_{U_Z^e} \cong \mathcal{O}_{Y_{Z^e}}$, and so $H^0(U_{Z^e}, \mathcal{O}_{U_{Z^e}}) \cong H^0(X_{Z^e}, \mathcal{O}_{X_{Z^e}})$ by an argument similar to the above. Hence, we have the following commutative diagram:

Note that we are assuming that $\mathcal{L}_{(X/Z,\Delta)}^{(e)} \cong g^{(e)*}\mathcal{N}$ for a line bundle \mathcal{N} on Y^e . Since the splitting of $\phi_{(X/Z,\Delta)}^{(e)}$ is clearly equivalent to the surjectivity of $H^0\left(X_{Z^e}, \phi_{(X/Z,\Delta)}^{(e)}\right)$, we see that the *F*-splitting of (f, Δ) and that of $(f|_U : U \to Z, \Delta|_U)$ are equivalent. By an argument similar to the above, we find that the *F*-splitting of (g, Δ) and that of $(g|_U, \Delta|_U)$ are also equivalent.

Assume that we can choose V = Y and U = X, i.e. X and Y are regular and g is flat. Let e > 0 be an integer. By the flatness of g, we have the following commutative diagram:

This implies that

$$\mathcal{H}om\left(\pi^{(e)^{\sharp}},\mathcal{O}_{X_{Z^{e}}}\right)\cong g_{Z^{e}}^{*}\mathcal{H}om\left(F_{Y/Z}^{(e)}^{*},\mathcal{O}_{V_{Z^{e}}}\right)=g_{Z^{e}}^{*}\phi_{Y/Z}^{(e)}.$$

Applying the functor $\mathcal{H}om(_, \mathcal{O}_{X_{Z^e}})$ and the Grothendieck duality to the natural morphism

$$\mathcal{O}_{X_{Z^e}} \xrightarrow{\pi^{(e)^{\sharp}}} \pi^{(e)} * \mathcal{O}_{X_{Y^e}} \to F_{X/Z}^{(e)} * \mathcal{O}_{X^e}(\lceil (p^e - 1)\Delta \rceil),$$

we obtain the morphism

$$\phi_{(X/Z,\Delta)}^{(e)}: F_{X/Z_*}^{(e)} \mathcal{L}_{(X/Z,\Delta)}^{(e)} \xrightarrow{\pi^{(e)} * \phi_{(X/Y,\Delta)}^{(e)} \otimes \omega_{\pi^{(e)}}} g_{Z^e} * F_{Y/Z_*}^{(e)} \mathcal{L}_{Y/Z}^{(e)} \xrightarrow{g_{Z^e} * \phi_{Y/Z}^{(e)}} \mathcal{O}_{X_{Z^e}}.$$

Note that

$$\omega_{\pi^{(e)}} \cong \omega_{X_{Y^e}} \otimes \pi^{(e)^*} \omega_{X_{Z^e}} \cong g_{Z^e}^* \omega_{Y^e/Z^e}^{1-p^e} \quad \text{and} \quad g_{Z^e}^* F_{Y/Z_*}^{(e)} \mathcal{L}_{Y/Z}^{(e)} \cong \pi^{(e)}_* g_{Y^e}^* \mathcal{L}_{Y/Z}^{(e)}$$

We now prove the assertion. If (g, Δ) is *F*-split and *h* is *F*-split, then both of $\phi_{(X/Y,\Delta)}^{(e)}$ and $\phi_{Y/Z}^{(e)}$ split for every e > 0 divisible enough. Therefore, $\phi_{(X/Z,\Delta)}^{(e)}$ also splits, i.e. (f, Δ) is *F*-split. Conversely, suppose that (f, Δ) is *F*-split and that $(p^e - 1)K_{Y/Z} \sim 0$ for an e > 0. Then, $\mathcal{L}_{Y/Z}^{(e)} \cong \mathcal{O}_{Y_{Z^e}}$ and $\omega_{\pi^{(e)}} \cong \mathcal{O}_{X_{Y^e}}$. Fix an e > 0 divisible enough. Since $H^0\left(X_{Z^e}, \phi_{(X/Z,\Delta)}^{(e)}\right)$ is surjective, $H^0\left(X_{Z^e}, \pi^{(e)}*\phi_{(X/Y,\Delta)}^{(e)}\right)$ is a nonzero morphism, and hence so is $H^0\left(X_{Y^e}, \phi_{(X/Y,\Delta)}^{(e)}\right)$. This morphism is surjective because of $H^0(X_{Y^e}, \mathcal{O}_{X_{Y^e}}) \cong$ $H^0(Y^e, \mathcal{O}_{Y^e}) \cong k$. Thus, $\phi_{(X/Y,\Delta)}^{(e)}$ splits, and so (g, Δ) is *F*-split. Note that the *F*-splitting of *h* follows directly from (1).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.