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Abstract. Let M be a projective fine moduli space of stable sheaves on a smooth projective
variety X with a universal family E . We prove that in four examples, E can be realized as a
complete flat family of stable sheaves on M parametrized by X , which identifies X with a
smooth connected component of some moduli space of stable sheaves on M .

Introduction

Background

The starting point of the article is a classical result on the moduli space of stable
vector bundles on curves. Let C be a smooth complex projective curve of genus
g � 2. We denote the moduli space of stable vector bundles on C of rank n with a
fixed determinant line bundle Ld of degree d by M .

If n and d are coprime, then it is known by [20,27] that M is a fine moduli
space, namely, there exist a universal vector bundle E on C × M with the property
that the fiber E |C×{m} over a closed pointm = [E] ∈ M is isomorphic to the bundle
E itself. But one can also take a closed point c ∈ C and consider the fiber

Ec := E |{c}×M ,

which is a vector bundle on M . In [23] the authors proved that Ec is a simple bundle
for every closed point c ∈ C and that the infinitesimal deformation map

TcC −→ Ext1M (Ec, Ec)

is bijective. In fact, for all closed points c ∈ C , the bundles Ec are stable and
pairwise non-isomorphic by [5,16].
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Thus if we defineM to be the moduli space of stable vector bundles on M with
the same Hilbert polynomial as Ec, then the classifying morphism

f : C −→ M, c �−→ [Ec]
identifies C with a smooth connected component ofM, as explained in [16].

Other examples in a similar spirit appear in the pioneering work of Mukai
[21,22] on abelian varieties and K3 surfaces. In the case of K3 surfaces, Mukai
considered a general polarized K3 surface S of a certain degree, along with a 2-
dimensional fine moduli space M of stable vector bundles of rank at least 2 on S,
admitting a universal family E on S × M . It turns out that M is also a K3 surface,
and E can also be realized as a family of stable bundles on M parametrized by S.

As in the previous example, we can defineM to be the moduli space of stable
sheaves on M with the same Hilbert polynomial as E |{s}×M for any closed point
s ∈ S. Mukai proved that the classifying morphism

f : S −→ M, s �−→ [E |{s}×M ]
is in fact an isomorphism. In other words, S can be identified with the entire moduli
space of stable sheaves on M with some fixed Chern classes.

Main result

Motivated by the above examples, one can formulate the following question under
a more general setting:

Question 0.1. Let X be a smooth projective variety and M a projective fine moduli
space of stable sheaves on X with universal family E on X × M . Then

• Is E also a flat family of stable sheaves on M parametrized by X?
• If so, does the classifying map embed X as a smooth connected component of
some moduli space of stable sheaves on M?

A positive answer to the above question, especially when X is of low dimension
and M is of higher dimension, would be interesting from two perspectives. First
of all, examples of stable sheaves on higher dimensional varieties (in particular on
higher dimensional irreducible holomorphic symplectic manifolds) are in general
difficult to construct. One important class of examples are the tautological bundles
on Hilbert schemes, which were studied in [24,25,28,29]. Question 0.1 provides
another natural approach for finding new examples. Secondly, moduli spaces of
stable sheaves on higher dimensional varieties are in general badly behaved. A
positive answer to Question 0.1 would allow us to identify some nicely behaved
components of suchmoduli spaces, and at the same time give an explicit description
of a complete family of stable sheaves over these components.

In this article, we consider Question 0.1 in some of the first cases:

Theorem 0.2. (Theorems 1.7, 2.4, 3.3, 4.3) Question 0.1 has a positive answer in
the following cases:
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• X is a smooth projective variety of dimension d � 2 and M = Hilb2(X) is the
Hilbert scheme of 2 points on X;

• X is K3 surface and M = Hilbn(X) is the Hilbert scheme of n points on X;
• X is an abelian surface and M = Kumn(X) is the generalized Kummer variety
of dimension 2n associated to X for any n � 2;

• X is a K3 surface of Picard rank 1 and M is some fine moduli space of stable
torsion sheaves of pure dimension 1 on X.

Our proof in the first of the above cases will be completely elementary. In all
other cases, the moduli space M is in fact an irreducible holomorphic symplectic
manifold, and our proof will be divided into two steps: we first establish the flatness
of E over X and the stability of the fibers Ep over any closed point p ∈ X , then
apply some very convenient results about Pn-functors (see [1]) to conclude that X
is in fact a component of some moduli space of stable sheaves on M .

It would be much more interesting to study Question 0.1 in more general set-
tings, especially when X and M have trivial canonical classes and E is torsion free
(or even locally free) of higher rank. However, it could be then much more difficult
to prove the stability of Ep for any closed point p ∈ X . Moreover, the correspond-
ing results about Pn-functors are not yet known to us (see [1, Conjecture, p.2] and
[2, Conjecture 2.1]).

This article consists of four sections, which are devoted to the four cases in
Theorem 0.2 respectively. The notion of Pn-functors will be briefly recalled in the
beginning of Sect. 2, followed immediately by a list of Pn-functors relevant to our
discussion. All schemes are defined over the field of complex numbers C.

1. Hilbert squares of smooth projective varieties

Let X be a smooth projective variety of dimension d, and M = Hilb2(X). We
denote by Z ⊆ X × M the universal closed subscheme and IZ the universal ideal
sheaf on X × M . Then we have a commutative diagram

Z

X × M M

X

π

τ

(1)

where π is a flat morphism.
By [8, Remark 7.2.2.], we haveZ = Bl�(X × X), the blow-up of X × X along

the diagonal �. The projection τ can be interpreted as a composition

τ : Z = Bl�(X × X)
b−→ X × X

q1−→ X (2)

of the blow-up b and the projection q1 to the first factor. Moreover, the group
�2 = Z/2Z acts on Z by switching the two factors, with a fixed-locus given by
the exceptional divisor. By [8, Example 7.3.1(3)], π is the quotient of Z by �2.
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For any closed point p ∈ X , we write

Fp := τ−1(p) ⊆ Z and Sp := π(Fp) ⊆ M.

Then we have the following results regarding the fibers of τ :

Lemma 1.1. We have Sp ∼= Fp ∼= Blp(X), and the morphism τ is flat.

Proof. The morphism π |Fp can be factored into a composition

π |Fp : Fp ↪−→ {p} × M
∼=−→ M,

hence π induces an isomorphism from Fp to its image Sp. The canonical isomor-
phism Fp ∼= Blp(X) is well known. Finally, since Z and X are both smooth and
the fibers Fp of τ are irreducible of dimension d for all closed points p ∈ X , we
deduce from [18, Theorem 23.1, Corollary] that τ is flat. ��

By the description of Fp as a blow-up in Lemma 1.1, we denote the exceptional

divisor by Ep
α

↪−→ Fp, then Ep ∼= P
d−1. This allows us to state the following

result:

Lemma 1.2. π−1(Sp) has simple normal crossing singularities with two irre-
ducible components

π−1(Sp) = Fp ∪ σ(Fp) such that Fp ∩ σ(Fp) = Ep

where σ is the non-trivial element of �2.

Proof. This property can be verified analytically locally. Without loss of generality
we assume that X = A

n , and p = (0, . . . , 0) ∈ X . Then X × X = A
n × A

n with
coordinates (x1, . . . , xn, y1, . . . , yn). We perform an affine change of coordinates:
for each 1 � i � n, we write si = xi + yi and di = xi − yi . Then the diagonal �
is given by

� = {(s1, . . . , sn, d1, . . . , dn) | d1 = · · · = dn = 0}.
By (2) we have Z = Bl�(X × X), which is given by a mixture of affine and
projective coordinates

Bl�(X × X) = {(s1, . . . , sn, d1, . . . , dn, [u1 : . . . : un]) | [d1 : . . . : dn]
= [u1 : . . . : un]}.

It is covered by n affine pieces, among which the first affine piece Bl�(X × X)1 is
given by u1 = 1; in other words

Bl�(X × X)1 = {(s1, . . . , sn, d1, . . . , dn, u2, . . . un) | di = uid1 for 2 � i � n}
= {(s1, . . . , sn, d1, u2, . . . , un)}.

Then we have



Examples of smooth components of moduli spaces 609

q−1
1 (p) = {(x1, . . . , xn, y1, . . . , yn) | x1 = · · · = xn = 0}

= {(s1, . . . , sn, d1, . . . , dn) | si + di = 0 for 1 � i � n}.
We write F1

p = Fp ∩ Bl�(X × X)1, then

F1
p =

{
(s1, . . . , sn, d1, u2, . . . , un)

∣∣∣∣ s1 + d1 = 0
si + uid1 = 0 for 2 � i � n

}

=
{
(s1, . . . , sn, d1, u2, . . . , un)

∣∣∣∣ s1 + d1 = 0
si = ui s1 for 2 � i � n

}
.

Notice that Bl�(X × X)1 is σ2-invariant. The action of the non-trivial element
σ ∈ �2 is given by

g : (s1, . . . , sn, d1, u2, . . . , un) �−→ (s1, . . . , sn,−d1, u2, . . . , un).

Therefore we have

g(F1
p) =

{
(s1, . . . , sn, d1, u2, . . . , un)

∣∣∣∣ s1 − d1 = 0
si = ui s1 for 2 � i � n

}

and the quotient Bl�(X × X)1/�2 is given by coordinates

Bl�(X × X)1/�2 = {(s1, . . . , sn, e1, u2, . . . , un)}
where e1 = d21 . We write the image of F1

p under the quotient map by

S1p := Sp ∩ Bl�(X × X)1/�2,

then it follows that

S1p =
{
(s1, . . . , sn, e1, u2, . . . , un)

∣∣∣∣ s21 = e1
si = ui s1 for 2 � i � n

}
.

It is now clear that

π−1(S1p) =
{
(s1, . . . , sn, d1, u2, . . . , un)

∣∣∣∣ s1 + d1 = 0
si = ui s1 for 2 � i � n

}

∪
{
(s1, . . . , sn, d1, u2, . . . , un)

∣∣∣∣ s1 − d1 = 0
si = ui s1 for 2 � i � n

}

= F1
p ∪ σ(F1

p).

Therefore the intersection of the two components is transverse, and given by

F1
p ∩ σ(F1

p) = {(s1, . . . , sn, d1, u2, . . . , un) | s1 = · · · = sn = d1 = 0}
which gives precisely the exceptional divisor Ep in the first affine chart, namely,
Ep ∩ Bl�(X × X)1. The same argument also applies to all other affine charts of
Bl�(X × X), which finishes the proof. ��
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In the following discussion, for any closed embedding U ↪→ V , we denote
the corresponding ideal sheaf, conormal sheaf and normal sheaf by IU/V , CU/V

and NU/V respectively. Now we consider two smooth closed subvarieties Y and
Z of a smooth variety, which fit in the following commutative diagram of closed
embeddings:

Y ∩ Z Z

Y Y ∪ Z

α

i j

δ

(3)

where the intersection and the union are scheme theoretic. The following lemma
will be required in our next result:

Lemma 1.3. In the situation of (3), we have CZ/(Y∪Z)
∼= α∗C(Y∩Z)/Y .

Proof. We obtain by the second and the third isomorphism theorems that

IZ/Y∪Z ∼= (IY/Y∪Z + IZ/Y∪Z )/(IY/Y∪Z )

= (IY∩Z/Y∪Z )/(IY/Y∪Z )

∼= δ∗IY∩Z/Y .

Therefore we obtain

CZ/(Y∪Z) = j∗IZ/(Y∪Z)

∼= j∗δ∗I(Y∩Z)/Y

∼= α∗i∗I(Y∩Z)/Y = α∗C(Y∩Z)/Y

as required, where the second isomorphism uses [26, Tag 02KG]. ��
In our situation we pick subvarieties Y = σ(Fp) and Z = Fp of Z in (3), then

the morphism α becomes Ep
α

↪−→ Fp. Lemma 1.3 immediately yields

Corollary 1.4. We have CFp/π−1(Sp)
∼= α∗OEp (1). ��

The following result is the key to the main theorem of this section:

Lemma 1.5. If d � 2, then we have dim H0(Sp,NSp/M ) = d.

Proof. We divide the proof in two steps.
Step 1. We claim that NSp/M fits into the exact sequence

0 −→ O⊕d
Fp

−→ (π |Fp )
∗NSp/M −→ Ext1Fp

(α∗OEp (1),OFp ) −→ 0. (4)

We consider the chain of closed embeddings

Fp
ι

↪−→ π−1(Sp) ↪−→ Z.

By [9, Proposition 16.2.7], we get the exact sequence of conormal sheaves

ι∗Cπ−1(Sp)/Z −→ CFp/Z −→ CFp/π−1(Sp) −→ 0. (5)

https://stacks.math.columbia.edu/tag/02KG
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By Lemma 1.1, τ : Z → X is flat, thus by [9, Proposition 16.2.2 (iii)] we get

CFp/Z = (τ |Fp )
∗C{p}/X = (τ |Fp )

∗O⊕d
{p} = O⊕d

Fp
. (6)

Furthermore since Sp ↪→ M is a regular embedding of codimension d, the sheaf
CSp/M is locally free of rank d. It follows by the flatness of π : Z → M that

ι∗Cπ−1(Sp)/Z = ι∗(π |π−1(Sp))
∗CSp/M = (π |Fp )

∗CSp/M (7)

is also locally free of rank d. Therefore the first two terms in (5) are locally free
sheaves of rank d and the third one is by Corollary 1.4 torsion with support Ep. It
follows that the first arrow in (5) is injective. By dualizing (5) we obtain

0 −→ NFp/Z −→ (π |Fp )
∗NSp/M −→ Ext1Fp

(CFp/π−1(Sp),OFp ) −→ 0.

Together with (6), (7) and Corollary 1.4 we obtain the claim (4).
Step 2. We claim that

H0(Fp, Ext1Fp
(α∗OEp (1),OFp )) = 0. (8)

Indeed, the sheaf α∗OEp (1) = α∗OEp (−Ep) admits the following resolution

0 OFp (−2Ep) OFp (−Ep) α∗OEp (−Ep) 0

Dualizing this exact sequence shows

Ext1Fp
(α∗OEp (−Ep),OFp ) = α∗OEp (2Ep) = α∗OEp (−2).

Using Ep ∼= P
d−1 and d � 2, we finally get:

H0(Fp, Ext1Fp
(α∗OEp (1),OFp )) = H0(Fp, α∗OEp (−2))

= H0(Ep,OEp (−2)) = 0.

We conclude the proof by combining the long exact sequence in cohomology
associated to (4) and the vanishing result (8). ��

The following lemma is the main source for finding components of moduli
spaces. The proof follows literally from [5, Theorem 3.6].

Lemma 1.6. Let X be a smooth projective variety of dimension d and Y a projective
scheme. Assume that a morphism f : X → Y is injective on closed points, and
dim TyY = d for each closed point y ∈ f (X). Then f is an isomorphism from X
to a connected component of Y .

Proof. Since X is complete, f (X) is a closed subvariety of Y of dimension d.
Since dim TyY = d for each closed point y ∈ f (X), it follows that Y is smooth
of dimension d at each closed point y ∈ f (X) by [10, Theorem 6.28], hence
f (X) must be a smooth irreducible component of Y , which is also a connected
component of Y . Finally, since f : X → f (X) is a morphism between smooth
projective varieties and bijective on closed points, it is an isomorphism by Zariski’s
Main Theorem. ��



612 F. Reede, Z. Zhang

Combining the above results, we can now give our first main result:

Theorem 1.7. Any smooth projective variety X of dimension d � 2 is isomorphic
to a smooth connected component of a moduli space of stable sheaves with triv-
ial determinants on Hilb2(X), by viewing IZ as a family of coherent sheaves on
Hilb2(X) parametrized by X.

Proof. By Lemma 1.1, Z is flat over X hence IZ can be viewed as a flat family of
sheaves on Hilb2(X) parametrized by X . For each closed point p ∈ X , let (IZ )p
be the restriction of IZ on the fiber {p} ×Hilb2(X). Then (IZ )p is the ideal sheaf
ISp of the closed embedding of Sp into Hilb2(X), hence is a stable sheaf of rank
1. Therefore we obtain an induced classifying morphism

f : X −→ M, p �−→ [ISp ] (9)

whereM denotes themoduli space of stable sheaves onHilb2(X) of the class of ISp
with trivial determinants. By [14, Lemma B.5.6], M is isomorphic to the Hilbert
scheme of subschemes of Hilb2(X) which have the same Hilbert polynomials as
Sp since d � 2. It is easy to see that f is injective on closed points. Indeed, for two
different closed points p, q ∈ X , Sp and Sq are different subschemes of Hilb2(X)

of codimension d � 2, hence ISp and ISq are non-isomorphic ideal sheaves. On
the other hand, for any closed point p ∈ X , we have

T[ISp ]M ∼= HomHilb2(X)(ISp ,OSp )
∼= H0(Sp,NSp/Hilb2(X)).

Hence by Lemma 1.5, we have

dim T[ISp ]M = d.

Therefore we conclude by Lemma 1.6 that the morphism (9) embeds X as a smooth
connected component ofM. ��

2. Hilbert schemes of points on K3 surfaces

What is particular interesting to us is the case of K3 surfaces. The technique of Pn-
functors allows us to obtain similar results for their Hilbert schemes of 0-dimension
subschemes of arbitrary length. We first recall the following notion of Pn-functors
and its implications.

Definition 2.1. [1, Definition 4.1] A functor F : A → B between triangulated
categories with adjoints L and R is called a Pn-functor if:

1. There is an autoequivalence H of A such that

RF ∼= id⊕H ⊕ H2 ⊕ · · · ⊕ Hn
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2. The map

HRF ↪→ RFRF
RεF−−→ RF

written in components

H ⊕ H2 ⊕ · · · ⊕ Hn+1 → id⊕H ⊕ · · · ⊕ Hn

is of the form
⎛
⎜⎜⎜⎜⎜⎝

∗ ∗ · · · ∗ ∗
1 ∗ · · · ∗ ∗
0 1 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · 1 ∗

⎞
⎟⎟⎟⎟⎟⎠

3. We have R ∼= HnL . (If A and B have Serre functors, this is equivalent to
SBFHn ∼= FSA.)

More about Pn-functors and examples can be found in [1, Sect. 4].
We will focus on the case where A = Db(X) and B = Db(Y ) for two smooth

projective varieties X and Y such that F = �F is an integral functor with kernel
F ∈ Db(X ×Y ). In fact, we are mostly interested in the case whereF is actually a
sheaf on X × Y and the autoequivalence H = [−2]. In this case condition (a) can
be stated as

RF ∼= id⊗H∗(Pn,C).

We will use the following simple consequence under this setting

Proposition 2.2. [2, Sect. 2.1]Assume X and Y are smooth projective varieties and
F is a coherent sheaf on X ×Y , flat over X, such that the integral functor F = �F
with kernel F is a P

n-functor with associated autoequivalence H = [−2]. Then
for any closed points x, y ∈ X there is an isomorphism:

Ext∗Y (Fx ,Fy) ∼= Ext∗X (Ox ,Oy) ⊗ H∗(Pn,C),

where Fx and Fy are fibers of F over the closed points x and y respectively. ��
The following list of Pn-functors will be of interest to us:

i) For a K3 surface S, Hilbn(S) is a fine moduli space with universal ideal sheaf
IZ . The integral functor �IZ : Db(S) → Db(Hilbn(S)) is a P

n−1-functor
with associated autoequivalence H = [−2]; see [1, Theorem 3.1].

ii) Let Kumn(A) be the generalized Kummer variety of an abelian surface A with
universal ideal sheaf IZ . For any n � 2, the integral functor �IZ : Db(A) →
Db(Kumn(A)) is a Pn−1-functor with associated autoequivalence H = [−2];
see [19, Theorem 4.1].
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iii) Let S be a K3 surface with Pic(S) = Z[H ] where H is an ample generator of
degree 2g − 2. Assume M is the fine moduli space of stable sheaves on S of
Mukai vector (0, H, d + 1 − g) for some d and U is the universal sheaf over
S × M . Then the integral functor �U : Db(S) → Db(M) is a P

g−1-functor
with associated autoequivalence H = [−2]; see [2, Theorem A].

We give a first application of Pn-functors to our problem: let S be a K3 surface
and M = Hilbn(S) for some positive integer n. Then M is a fine moduli space
and the ideal sheaf IZ of the universal family Z is the universal sheaf on S × M .
It is well-known that M is an irreducible holomorphic symplectic manifold. The
flatness of IZ over S follows immediately from the following result:

Lemma 2.3. [15, Theorem 2.1] For every smooth variety X and every positive
integer n, the universal family Z ⊂ X × M is flat over X. ��

The above result allows us to obtain a smooth component of the moduli space
of stable sheaves on Hilbn(S) as follows:

Theorem 2.4. For any positive integer n, theK3 surface S is isomorphic to a smooth
connected component of a moduli space of stable sheaves on Hilbn(S), by viewing
IZ as a family of coherent sheaves on Hilbn(S) parametrized by S.

Proof. By Lemma 2.3, IZ can be viewed as a flat family of sheaves on Hilbn(S)

parametrized by S. For each closed point s ∈ S, let (IZ )s be the restriction of IZ
on the fiber {s} ×Hilbn(S). Then (IZ )s is the ideal sheaf of the closed embedding
of Z ∩ ({s} ×Hilbn(S)) into Hilbn(S), hence is a stable sheaf of rank 1. Therefore
we obtain an induced classifying morphism

f : S −→ M, s �−→ [(IZ )s] (10)

where M denotes the moduli space of all stable sheaves on Hilbn(S) of the class
of (IZ )s . For any pair of closed points s0, s1 ∈ S, we obtain by [1, Theorem 3.1]
and Proposition 2.2 that

Ext∗Hilbn(S)

(
(IZ )s0 , (IZ )s1

) ∼= Ext∗S(Os0 ,Os1) ⊗ H∗(Pn−1,C). (11)

In particular, when s0 �= s1, it follows from (11) that

HomHilbn(S)

(
(IZ )s0 , (IZ )s1

) ∼= HomS(Os0 ,Os1) = 0,

which implies that (10) is injective on closed points; when s0 = s1 = s, it follows
from (11) that

Ext1Hilbn(S)

(
(IZ )s, (IZ )s

) ∼= Ext1S(Os,Os),

which implies that

dim T[(IZ )s ]M = dim Ts S = 2.

Thereforewe conclude by Lemma 1.6 that themorphism (10) embeds S as a smooth
connected component ofM, as desired. ��
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3. Generalized Kummer varieties

In this section we apply the technique of Pn-functors to study a component of the
moduli space of stable sheaves on generalized Kummer varieties.

Let A be an abelian surface and Hilbn+1(A) the Hilbert scheme parametrizing
closed subschemes of A of length n + 1. Let the morphism � be the composition
of the Hilbert–Chow morphism and the summation morphism with respect to the
group law on A, namely

� : Hilbn+1(A) −→ Symn+1(A) −→ A,

then the generalized Kummer variety is defined to be its zero fiber, namely

Kumn(A) := �−1(0),

which is an irreducible holomorphic symplectic manifold. If we denote the restric-
tion of the universal subscheme over Hilbn+1(A) to Kumn(A) by Z , then we have
a commutative diagram

Z

A × Kumn(A) Kumn(A)

A

ϕ

ψ

p2
p1

where ϕ and ψ are the compositions of the embedding and the projections. We
denote the ideal sheaf of Z in A × Kumn(A) by IZ . It is clear that IZ is flat over
Kumn(A) since ψ is flat. In fact, IZ is also flat over the other factor A.

Lemma 3.1. The universal ideal sheaf IZ is flat over A for any n � 2.

Proof. It suffices to show that the morphism ϕ : Z → A is flat. First of all, we
claim that the dimension of the fiber ϕ−1(a0) is 2n−2 for any closed point a0 ∈ A.

On the one hand, since A is smooth, the closed point a0 ∈ A is locally defined
by two equations. Therefore locally near any point x ∈ ϕ−1(a0), the fiber ϕ−1(a0)
is also defined by two equations, hence is of codimension at most 2 by Krull’s
height theorem; see [17, Sect. 12.I, Theorem 18]. In other words, we have

dim ϕ−1(a0) � 2n − 2. (12)

On the other hand, we have

ϕ−1(a0) = {(a0, ξ) ∈ A × Kumn(A) | a0 ∈ Supp(ξ)}
∼= {ξ ∈ Kumn(A) | a0 ∈ Supp(ξ)}.

For any such ξ , we can write the associated 0-cycle [ξ ] as

[ξ ] =
k∑

i=0

niai ,
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where a0, a1, . . . , ak are pairwise distinct closed points, and n0, n1, . . . , nk are the
multiplicities. We further require n1 � · · · � nk > 0 if k > 0. It is clear that

k∑
i=0

ni = n + 1 (13)

which in particular implies k � n, and

k∑
i=0

niai = 0 ∈ A (14)

which utilizes the group law on A. We call the partition of n

�n = (n0, n1, . . . , nk)

the type of ξ . Let ϕ−1(a0, �n) be the set of all closed points ξ ∈ ϕ−1(a0) of type �n,
then we have a decomposition

ϕ−1(a0) =
⊔
�n

ϕ−1(a0, �n). (15)

We then compute the dimension of ϕ−1(a0, �n) for each �n.
When k = 0, we have �n = (n + 1), and for any ξ ∈ ϕ−1(a0, �n) we have

[ξ ] = (n + 1)a0. It is clear that such ϕ−1(a0, �n) is non-empty if and only if a0 ∈ A
is an (n + 1)-torsion point. When non-empty, ϕ−1(a0, �n) is the punctual Hilbert
scheme Hilbn+1

a0 (A) which parametrizes length (n + 1) subschemes of A having
support at only one point a0. By [13, Corollary 1], we have

dim ϕ−1(a0, �n) = n � 2n − 2 (16)

for each (n + 1)-torsion point a0 and integer n � 2.
When k � 1, every ξ ∈ ϕ−1(a0, �n) corresponds to a configuration {a1, . . . , ak}

of pairwise distinct points satisfying (14). We can choose the first (k − 1) points
freely, then ak is uniquely determined up to nk-torsion. Hence there is a 2(k − 1)-
dimensional family of configurations {a1, . . . , ak}. For any fixed configuration, the
possible scheme structures on ξ is classified by the product of punctual Hilbert
schemes Hilbn0a0 (A) × · · · × Hilbnkak (A). By [13, Corollary 1] and (13), we obtain

dim ϕ−1(a0, �n) = 2(k − 1) +
k∑

i=0

(ni − 1)

= 2(k − 1) + (n + 1) − (k + 1)

= n + k − 2 � 2n − 2.

Combining the two cases, we have by (15) that

dim ϕ−1(a0) � 2n − 2. (17)
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It then follows from (12) and (17) that all fibers ϕ−1(a0) are equidimensional of
dimension 2n − 2.

Moreover, since ψ is a surjective flat morphism and Kumn(A) is smooth of
dimension 2n, we know Z is Cohen–Macaulay of dimension 2n by [7, Corollary
18.17]. Since A is smooth, we conclude that ϕ : Z → A is flat by [18, Theorem
23.1, Corollary], which implies that its ideal sheaf IZ is flat over A, as desired. ��
Remark 3.2. It is easy to see that the statement of Lemma 3.1 fails for n = 1, due
to the failure of (16). In fact, in such a case, ϕ−1(a0) is either a smooth rational
curve or a single point, depending on whether a0 is a 2-torsion point of A.

The above result allows us to obtain a smooth component of the moduli space
of stable sheaves on Kumn(A) as follows:

Theorem 3.3. For any n � 2, the abelian surface A is isomorphic to a smooth
connected component of a moduli space of stable sheaves onKumn(A), by viewing
IZ as a family of coherent sheaves on Kumn(A) parametrized by A.

Proof. By Lemma 3.1, IZ can be viewed as a flat family of sheaves on Kumn(A)

parametrized by A. For each closed point a0 ∈ A, let (IZ )a0 be the restriction
of IZ on the fiber {a0} × Kumn(A). Then (IZ )a0 is the ideal sheaf of the closed
embedding of Z ∩ ({a0} × Kumn(A)) into Kumn(A), hence is a stable sheaf of
rank 1. Therefore we obtain an induced classifying morphism

f : A −→ M, a0 �−→ [(IZ )a0 ] (18)

where M denotes the moduli space of all stable sheaves on Kumn(A) of the class
of (IZ )a0 . For any pair of closed points a0, a1 ∈ A, we obtain by [19, Theorem
4.1] and Proposition 2.2 that

Ext∗Kumn(A)

(
(IZ )a0 , (IZ )a1

) ∼= Ext∗A(Oa0 ,Oa1) ⊗ H∗(Pn−1,C).

From here, a similar argument as in Theorem 2.4 shows that the morphism (18)
embeds A as a smooth connected component ofM. ��

4. Moduli spaces of pure sheaves on K3 surfaces

In this section we extend our discussion to the fine moduli spaces of stable sheaves
of pure dimension 1 on a K3 surface of Picard number 1.

Let S be a K3 surface with Pic(S) = ZH where H is an ample line bundle
of degree 2g − 2. Let P(V ) ∼= P

g be the complete linear system of H where
V = H0(S, H). Since S has Picard number 1, every curve C in the linear system
P(V ) is reduced and irreducible of genus g with planar singularities, hence its

compactified Jacobian Jac
d
(C) is reduced and irreducible of dimension g by [3,

Theorem (9)]. We denote by C the universal curve of the linear system P(V ).
Therefore C is a closed subscheme of S × P(V ) and admits projections to S and
P(V ). All fibers of the first projection τ : C → S are linear subsystems of P(V ) of
codimension 1.
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Let M be the moduli space of stable sheaves on S with Mukai vector

v = (0, H, d + 1 − g).

We assume gcd(2g − 2, d + 1 − g) = 1, then M is a smooth fine moduli space
of stable torsion sheaves of pure dimension 1, hence admits a universal family U .
In fact, M is an irreducible holomorphic symplectic manifold. The corresponding
support morphism

η : M −→ P(V )

sends a stable sheaf to its support curve.
Alternatively, M can also be interpreted as the relative compactified Jacobian

Jac
d
(C/P(V )) of the family C → P(V ). Hence the support of the universal family

U is given by

T := Supp(U) = C ×P(V ) M.

It is more convenient to consider the universal family as a sheaf on T , so we define

E := ι∗U
where ι : T ↪→ S × M is the closed embedding. Then we have U ∼= ι∗E by [10,
Remark 7.35].

The relation among the various spaces and morphisms introduced above can be
summarised in the following commutative diagram

T C S

S × M S × P(V ) S

M P(V )

π

ϕ

ψ

ι

τ

η

(19)

where both squares on the left are cartesian.
Moreover, for any closed point s ∈ S, we denote the fiber ψ−1(s) by Ts , with

the corresponding closed embedding is : Ts ↪→ T . We also denote the pullback of
E to the fiber Ts by Es , and the pullback of U to the fiber {s} × M by Us .

The following properties will be used later:

Lemma 4.1. Both T and Ts (for each closed point s ∈ S) are integral and Goren-
stein.

Proof. We first note that C, being a P
g−1-bundle bundle over S, is smooth and

irreducible of dimension g + 1. Consequently C is integral. Moreover, since both
M and P(V ) are smooth, and all closed fibers of η are compactified Jacobians,
which are integral of dimension g, the morphism η is flat by [18, Theorem 23.1,
Corollary]. It follows that ϕ is also flat, and every closed fiber of ϕ is integral. Thus
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[10, Theorem 14.44] implies that the generic fiber of ϕ is also integral. Therefore T
is integral of dimension 2g+1 by [26, Tag 0BCM]. This means T is a hypersurface
in the smooth variety S × M , hence T is Gorenstein by [7, Corollary 21.19].

For any closed point s ∈ S, the restriction of ϕ to the fibers over s is given by

ϕs : Ts −→ P
g−1.

The above properties of ϕ imply that ϕs is also flat, and that every closed fiber of ϕs

is integral. It follows for the same reason as above that Ts is integral of dimension
2g − 1, hence is a hypersurface in the smooth variety M , which implies that Ts is
also Gorenstein. ��

Now we turn to properties of the universal sheaf:

Lemma 4.2. The sheaf E on T is flat over S, and the sheaf Es on Ts is stable for
each closed point s ∈ S.

Proof. We observe that the morphism C → P(V ) (the composition of the mor-
phisms in the middle column of (19)) is projective, flat and Gorenstein of pure
dimension 1. After the base change along η, the morphism π : T → M (the com-
position of the morphisms in the left column of (19)) is also projective, flat and
Gorenstein of pure dimension 1. Furthermore E is flat over M , and for any point
m ∈ M , the restriction of E to the fiber π−1(m) is torsion free. It follows by [6,
Corollary 2.2] that

ExtiT (E,OT ) = 0

for every i > 0. Since T is irreducible and Gorenstein, this implies that E is a
maximal Cohen–Macaulay sheaf on T .

We have seen that ϕ and τ are both flat morphisms, hence ψ is also a flat
morphism. The closed embedding {s} ↪→ S is a morphism of finite Tor dimension.
After a flat base change along ψ , we see that is : Ts ↪→ T is also of finite Tor
dimension. Since T is irreducible and Gorenstein by Lemma 4.1, [4, Lemma 2.3
(1)] implies

Li∗s E = i∗s E
for every closed point s ∈ S, where Li∗s is the derived pullback functor. It follows
by [12, Lemma 3.31] that E is flat over S.

By Lemma 4.1 we also know Ts is Gorenstein, hence is in particular Cohen–
Macaulay. By [4, Lemma 2.3 (2)], Es is also maximal Cohen–Macaulay, which by
[11, Satz 6.1, a) ⇒ d)] implies that Es is reflexive, and hence in particular torsion
free on Ts . Therefore Es is stable since it is of rank 1. ��

The above result allows us to obtain again a smooth component of the moduli
space of stable sheaves on M as follows:

Theorem 4.3. Under the assumptions in the present section, the K3 surface S is
isomorphic to a smooth connected component of a moduli space of stable sheaves
on M, by viewing U as a family of coherent sheaves on M parametrized by S.

https://stacks.math.columbia.edu/tag/0BCM
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Proof. By Lemma 4.2, we know that the sheaf U = ι∗E is also flat over S, and
the fiber Us is a stable sheaf on M of pure dimension 2g − 1 for each closed point
s ∈ S. Therefore U is a flat family of stable sheaves on M parametrized by S, with
an induced classifying morphism given by

f : S −→ M, s �−→ [Us] (20)

whereM is the moduli space of all stable sheaves on M of the class of Us . For any
pair of closed points s0, s1 ∈ S, we obtain by [2, Theorem A] and Proposition 2.2
that

Ext∗M (Us0 ,Us1)
∼= Ext∗S(Os0 ,Os1) ⊗ H∗(Pg−1,C).

From here, a similar argument as in Theorem 2.4 shows that the morphism (20)
embeds S as a smooth component ofM. ��
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