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Abstract. The classical notion of the Darboux transformation of isothermic surfaces can
be generalised to a transformation for conformal immersions. Since a minimal surface is
Willmore, we can use the associatedC∗-family of flat connections of the harmonic conformal
Gaussmap to construct such transforms, the so-calledμ-Darboux transforms.We show that a
μ-Darboux transform of a minimal surface is not minimal but aWillmore surface in 4-space.
More precisely, we show that a μ-Darboux transform of a minimal surface f is a twistor
projection of a holomorphic curve in CP

3 which is canonically associated to a minimal
surface f p,q in the right-associated family of f . Here we use an extension of the notion of
the associated family f p,q of a minimal surface to allow quaternionic parameters. We prove
that the pointwise limit of Darboux transforms of f is the associated Willmore surface of
f at μ = 1. Moreover, the family of Willmore surfaces μ-Darboux transforms, μ ∈ C∗,
extends to a CP1 family of Willmore surfaces f μ : M → S4 where μ ∈ CP

1.

1. Introduction

A classical Darboux pair is given geometrically by a pair of conformal immer-
sions ( f, f �) into 3-space such that there exists a sphere congruence conformally
enveloping both surfaces [10]. In this case, both surfaces f and f � are isothermic,
that is, they allow a conformal curvature line parametrisation. Algebraically, one
obtains a classical Darboux transform of an isothermic surface by a solution to
a Riccati equation which is given in terms of a dual isothermic surface and a real
parameter, [17]. This directly links to integrability: the parameter can be considered
as the spectral parameter of an integrable system [2]. Put differently, the Darboux
transform is given in terms of a parallel section of an associated family of flat
connections, e.g. [6,16]. In [3] the Darboux transformation has been generalised
to arbitrary conformal immersions in the 4-sphere: geometrically, the enveloping

Both authors partially supported by Leverhulme Trust Network Grant IN-2016-019.
Second author supported by JSPS KAKENHI Grant-in-Aids for Scientific Research (C),
Grant Number 18K03272.

K. Leschke (B): Department of Mathematics, University of Leicester, University Road,
Leicester LE1 7RH, UK. e-mail: k.leschke@le.ac.uk

K.Moriya:Department ofMaterial Science,Graduate School ofMaterial Science,University
of Hyogo, 2167, Shosha, Himeji, Hyogo 671-2280, Japan.

Mathematics Subject Classification: 53A10 · 53C42 · 53C43

https://doi.org/10.1007/s00229-019-01142-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s00229-019-01142-9&domain=pdf
http://orcid.org/0000-0001-8511-7934


538 K. Leschke, K. Moriya

condition is weakened, algebraically, one uses quaternionic holomorphic sections
instead of parallel sections. This way, one obtains a geometric interpretation of the
spectral curve of a conformal torus as the normalisation of the set of all closed
Darboux transforms: conformal tori can be constructed by spectral data. At the
same time the Darboux transformation provides a tool to construct new surfaces
from given, simpler ones while controlling the closing conditions.

In recent papers, it has been investigated how the classical spectral parameter
corresponds to such generalised Darboux transforms. In case of a CMC surface,
that is an immersion f : M → R

3 from a Riemann surface M into 3-space with
non-vanishing constant mean curvature, the Gauss map N of f is harmonic by the
Ruh–Vilms theorem. The introduction of a spectral parameter λ ∈ C∗ gives rise to a
C∗-family of flat connections given by the harmonic Gauss map. A parallel section
acts on N by conjugation and gives the associated family of harmonic maps when
λ ∈ S1, and thus CMC surfaces via the Sym–Bobenko formula. On the other hand,
for fixed μ, a parallel section of the associated family of flat connections defines
a quaternionic holomorphic section, and this way a special Darboux transform, a
so-called μ-Darboux transform [9]. CMC surfaces are isothermic however a μ-
Darboux transform of a CMC surface is only a classical Darboux transform in R

3

if μ ∈ R∗ ∪ S1. In general a μ-Darboux transform takes values in R
4 but it can

be shown to be a CMC surface in R3 up to a constant translation in R4. Moreover,
the desingularisation of the set of closed μ-Darboux transforms of a CMC torus is
biholomorphic to Hitchin’s eigenline spectral curve [9,15].

Similar results hold forWillmore surfaces andHamiltonian stationaryLagrangians
[4,19,22]: again the associated harmonic map allows to define a family of flat con-
nections and through those, μ-Darboux transforms which are again Willmore and
Hamiltonian stationary respectively.

The case of minimal surfaces f : M → R
3 is surprisingly more complicated.

Since a minimal surface has constant mean curvature its Gauss map is harmonic
by the Ruh–Vilms theorem. In particular, there is an associated family of flat con-
nections. However, the Gauss map does not determine a minimal surface uniquely
so further information needs to be incorporated into the associated family of flat
connections to encode a minimal surface via spectral data. To do so we consider
in this paper a minimal surface as a Willmore surface: the conformal Gauss map
of a minimal surface is harmonic and thus gives rise to a family of flat connections
dλ with λ ∈ C∗. Parallel sections on the unit circle give again via conjugation new
harmonic conformal Gauss maps and the associated surfaces for λ = eiθ ∈ S1

give the classical associated family fθ = cos θ f + sin θ f ∗ of isometric minimal
surfaces where f ∗ is the conjugate minimal surface of f . This construction can be
extended off the unit circle, and one obtains a generalised left-and right-associated
family of minimal surfaces given by the f p,q = p f + q f ∗ and f p,q = f p + f ∗q
respectively where p, q ∈ H∗ [21]. On the other hand, for fixedμ a parallel section
of the flat connection dμ in the associated family again gives rise to generalised
Darboux transforms. As before, we call Darboux transforms which are given by
parallel sections μ-Darboux transforms.

μ-Darboux transforms are not classical Darboux transforms but we show that
a non-trivial μ-Darboux transform of a minimal surface f : M → R

3 is a twistor
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projection of a holomorphic curve in CP
3. Therefore, a μ-Darboux transform f μ

is given by complex holomorphic data but we show that f μ is not minimal if f is
not a plane.

More precisely, recall [11,24] that aminimal surface has an associatedWillmore
surfacewhich is the twistor projection of a holomorphic curve in complex projective
3-space: In case of a minimal surface f : M → R

3 the associatedWillmore surface
f � is the conformal immersion in 4-space which is given by

f � =
(− < f, N >

f × N − f ∗
)

,

where N is the Gauss map of f and f ∗ is a conjugate of f . We show that a μ-
Darboux transform of f is the associated Willmore surfaces of an element of the
right-associated family f p,q of f for μ ∈ C \ {0, 1}. At μ = −1 we obtain the
associated Willmore surface of the conjugate surface. For μ = 1 all μ-Darboux
transforms are constant, however, the limit of (appropriately scaled and rotated)
Darboux transforms of f is the associated Willmore surface of f at μ = 1.

Finally we show that the family ofWillmore surfaces ofμ-Darboux transforms,
μ ∈ C∗, extends to a CP

1 family of Willmore surfaces f μ : M → S4 where
μ ∈ CP

1: the limits ofμ-Darboux transforms atμ = 0,∞ are Darboux transforms
f 0,∞ in the 4-sphere of f but notμ-Darboux transforms since the associated family
dμ does not extend to μ = 0,∞. In fact, in an affine coordinate f 0,∞ are minimal
surfaces in R4 with an isolated set of ends.

2. Generalised Darboux transforms

We first recall some basic facts about conformal immersions in Euclidean space
which will be needed in the following whilst setting up our notation. Although we
are mostly interested in minimal surfaces in R

3, some of our transforms will be
surfaces in S4. Therefore, we will study more generally conformal immersions in
R
4 and S4. We recall basic facts in the quaternionic formalism, for details see [1].

2.1. Conformal immersions

We consider conformal immersions f : M → R
4 from a Riemann surface M into

4-space. In this paper, we model Euclidean 4-space by the quaternions R4 = H,
and the Euclidean 3-space in R4 by the imaginary quaternions R3 = ImH. Denote
the complex structure of the Riemann surface M by JT M and put

∗ω(X) = ω(JT M X)

for a 1-form ω ∈ �1(T M), X ∈ T M . Thus, ∗ is the negative Hodge star operator.
The conformality of an immersion f : M → R

4 gives [1, p. 10] the left and
right normal N , R : M → S2 = {n ∈ ImH | n2 = −1} of f by

∗ d f = Nd f = −d f R, (1)
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Then the Gauss map of f is given by the map (N , R) : M → S2 × S2 = Gr2(R4)

and the mean curvature vector H of f : M → R
4 satisfies [1, p. 39]

H̄d f = 1

2
(∗dR + RdR), or, equivalently, d f H̄ = −1

2
(∗dN + NdN ).

Since H is normal we have NH = HR. We put H = −RH̄ and denote by

(dR)′ = 1

2
(dR − R ∗ dR), (dR)′′ = 1

2
(dR + R ∗ dR)

the (1, 0) and (0, 1)-part of dR with respect to the complex structure R. Then the
equation of the mean curvature vector becomes

Hd f = (dR)′. (2)

Similarly, the equation for the mean curvature vector in terms of the left normal is

d f H = 1

2
(dN − N ∗ dN ) = (dN )′.

Note that if f : M → R
3 then H is the mean curvature of f .

If f is conformal then

d ∗ d f = d f H ∧ d f, (3)

where we used that (dN )′′ ∧ d f = 0 by type so that dN ∧ d f = (dN )′ ∧ d f .
For f : M → R

3 this is the well-known link between the Laplacian and the mean
curvature, in this formulation see e.g. [20].

2.2. General Darboux transformation

Let us recall that two immersions f, f � : M → R
4 form a classical Darboux

pair [10] if there exists a sphere congruence enveloping both f and f �. In this
case, both f and f � are isothermic, that is, they allow a conformal curvature line
parametrisation. A classical Darboux transform f � = f + T of f is given in
terms of its dual surface (or Christoffel surface) f d which is defined [8,16] by the
property that

d f d ∧ d f = d f ∧ d f d = 0.

Then a classical Darboux tranform f � = f + T is given, see [17], by a solution T
of the Riccati equation

dT = −d f + Td f drT (4)

where f d is a dual surface of f and r ∈ R∗.
By weakening the enveloping condition the notion of a classical Darboux trans-

formation has been extended in [3] to general conformal immersions f : M → S4.
In case of a conformal torus f : T 2 → S4, there exists at least a Riemann sur-
face worth of Darboux transforms f � : T 2 → S4 of f . This way, one obtains a
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geometric interpretation of the spectral curve � of the conformal torus f as the
normalisation of the set of closed Darboux transforms of f .

For the purposes of this paper, it is more useful to see generalised Darboux
transforms as prolongations of holomorphic sections: Using the one-point com-
pactification of R4 we consider a conformal immersion f : M → R

4 as a con-
formal immersion into the 4-sphere. We identify the 4-sphere S4 = HP

1 with the
quaternionic projective line where the oriented Möbius transformations are given
by GL(2,H). In particular, a map f : M → HP

1 can be identified with a line
subbundle L ⊂ H

2 = M × H
2 of the trivial H2 bundle over M whose fibers at

p ∈ M are given by

L p = f (p).

For an immersion f : M → R
4 the line bundle L is given by

L = ψH, where ψ =
(
f
1

)
,

when choosing the point at infinity as ∞ = eH ∈ HP
1 where

e =
(
1
0

)
.

Given a conformal immersion f : M → R
4 with associated line bundle L , the left

normal N of f induces a quaternionic holomorphic structure on the bundle H2/L
via

D(eα) = e
1

2
(dα + N ∗ dα). (5)

Here we identifyH2/L = eH via (πL)|eH : eH → H
2/L where πL : H2 → H

2/L
is the canonical projection.

Denote by Ṽ the bundle which is given by the pullback of a vector bundle V
over M to the universal cover M̃ of M . Then D induces a holomorphic structure

on H̃
2/L which we denote again, in abuse of notation, by D.

Definition 2.1. ( [3,14]) Let f : M → R
4 be conformal with left normal N and L

its associated line bundle.
A section eα ∈ �(ẽH) = �(H̃2/L) is called holomorphic if D(eα) = 0, or,

equivalently, if ∗dα = Ndα.

Since ∗d f = Nd f , for any holomorphic section eα there is β : M̃ → H with
dα = −d fβ. In particular, there exists a unique prolongation of the holomorphic

section eα, that is, a lift ϕ = eα + ψβ ∈ �(H̃2) such that dϕ ∈ �1(L̃).

Definition 2.2. ( [3]) Let f : M → S4 be a conformal immersion. A (generalised)

Darboux transform f � : M̃ → S4 of f is given by the prolongation ϕ ∈ �(H̃2) of
a holomorphic section of H̃2/L .

Away from the zeros of ϕ, the (singular) Darboux transform is given by the line
bundle

L� = ϕH.
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We obtain Darboux transforms of a conformal immersion f by finding non-

trivial sections ϕ ∈ �(H̃2) with dϕ ∈ �1(L̃): writing ϕ = eα + ψβ we see that
α 
= 0 since otherwise 0 = πLdϕ = ed fβ implies ϕ = 0. But then πLϕ = eα
is a non-trivial holomorphic section since ∗dα = − ∗ d fβ = Ndα and ϕ is its
prolongation.

If f : M → R
4 we write T = αβ−1 and the Darboux transform is given as

f � = f + T

away of the zeros of β where T satisfies a generalisation of the Riccati equation
(4)

dT = −d f − Tdβα−1T . (6)

Here we used that dα = −d fβ since dϕ ∈ �1(L̃). Moreover, f � is a classical Dar-
boux tranform if and only if dβα−1 is a closed 1-form. In this case, f is isothermic
and a dual surface f d of f is given by d f d = dβα−1, see [18].

Note that for α constant, we obtain the constant Darboux transform f � = ∞
given by the point ∞ = eH at infinity.

2.3. Willmore surfaces

Willmore surfaces are critical points of the Willmore energy. This notion is confor-
mally invariant hence it is useful to consider the conformal Gauss map rather than
the Gauss map of aWillmore surface. Geometrically, the conformal Gauss map is a
sphere congruence which is tangent at each point and has the same mean curvature
vector as the surface at corresponding points. For our purposes it is convenient to
model the conformal Gauss map by a complex structure:

Definition 2.3. ( [1, p. 27]) The conformal Gauss map of a conformal immersion
f : M → S4 is the unique complex structure S on H2 such that S and dS stabilise
the line bundle L of f and its Hopf field A is a 1-form with values in L .

Here, the Hopf field A of S is the 1-form given by

A = 1

4
(∗dS + SdS) = 1

2
(∗dS)′

where (dS)′ = 1
2 (dS − S ∗ dS) is the (1, 0)-part of the derivative of S with respect

to the complex structure S.

In affine coordinates the conformal Gauss map is given by, see [1, p. 42],

S =
(
N f R − N f
0 R

)
(7)

where N , R are the left and right normals of f respectively and H is given by the
mean curvature vector (2). Moreover, the Hopf field computes [1, Prop 12, p. 44]
to

2 ∗ A =
(
f ω − f ω f + f (dR)′′
ω −ω f + (dR)′′

)
(8)
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where

(dR)′′ = 1

2
(dR + R ∗ dR)

and ω = 1
2 (dH + H ∗ d f H + R ∗ dH − H ∗ dN ). Since HN = RH and thus

ω = 1

2
(dH + H ∗ d f H + ∗dHN − ∗dRH)

we see with (2) that ω satisfies

∗ω = −ωN − (dR)′′H.

Theorem 2.4. ( [1,13,25]) Let f : M → S4 be a conformal immersion with
conformal Gauss map S and Hopf field A. Then f is Willmore if and only if S is
harmonic, that is, if and only if

d ∗ A = 0.

An important example areWillmore surfaces which are given by twistor projections
of holomorphic curves:

Theorem 2.5. ( [1, Thm 4, p. 47]) Let f : M → R
4 be a conformal immersion

with right normal R. Then f is the twistor projection of a holomorphic curve
F : M → CP

3 if and only if (dR)′′ = 1
2 (dR + R ∗ dR) = 0.

In this case, f is Willmore and the twistor lift of f is the holomorphic curve
F : M → CP

3 which is given by the line subbundle E ⊂ L via

F(p) = Ep,

where E is the +i eigenspace of the conformal Gauss map of f restricted to the
line bundle L of f . Moreover, the Hopf field A of f vanishes.

In particular, by [23] if f : S2 → S4 is a Willmore sphere then f is either the
stereographic projection of a minimal surface in R

4 or a twistor projection of a
holomorphic (or anti-holomorphic) curve in CP

3.

2.4. μ-Darboux transforms

It is well-known [26] that an appropriate harmonic map gives rise to a family of
flat connections. We now consider the associated family of flat connections of the
conformal Gauss map S of a Willmore surface f : M → R

4, and use parallel
sections to construct Darboux transforms of f .

We identify C
4 = (H2, I ) where I is given by right multiplication by the unit

quaternion i . If the conformal Gauss map of a conformal immersion f : M → S4

is harmonic, that is d ∗ A = 0, the C∗-family of connections

dλ = d + (λ − 1)A(1,0) + (λ−1 − 1)A(0,1), λ ∈ C∗, (9)
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is flat [19] on the trivial C4 bundle over M where A is the Hopf field of S and

A(1,0) = 1

2
(A − I ∗ A) and A(0,1) = 1

2
(A + I ∗ A)

denote the (1, 0) and (0, 1) parts of A with respect to I .
Since by definition of the Hopf field im A ⊂ L we see that for fixed μ ∈ C∗

every dμ-parallel section ϕ ∈ �(H̃2) has dϕ ∈ �1(L̃), and thus L� = ϕH is a
Darboux transform of f on the universal cover M̃ of M .

Definition 2.6. Let f : M → S4 be a Willmore surface. Let μ ∈ C∗ and ϕ ∈
�(M̃ × H

2) be a non-trivial parallel section of the flat connection dμ where M̃
is the universal cover of M . Then f � = ϕH : M̃ → S4 is called a μ-Darboux
transform of f .

Note that ϕ is a nowhere vanishing section since ϕ is dμ-parallel. In particular,
the μ-Darboux transform is well-defined on M̃ .

3. Minimal surfaces

We first give some basic facts on minimal surfaces in Euclidean 4-space which
will be needed in the following, in particular, we recall the extension of the associ-
ated family of minimal surfaces to allow quaternionic parameters, and characterise
minimal surfaces by their Hopf fields, for details see e.g. [20,21].

3.1. Minimal surfaces in R4

Let f : M → R
4 be a conformal (branched) immersion from a Riemann surface

M into 4-space. Then f is calledminimal if its mean curvature vector is vanishing.
In terms of the Gauss map of f we obtain with (2) that f : M → R

4 is minimal if
and only if

(dR)′ = 0, or, equivalently, (dN )′ = 0.

In other words, if f is minimal then

∗ dR = −RdR = dRR (10)

and ∗dN = −NdN = dNN for the right and left normals of f respectively.
Thus, both N and R are quaternionic holomorphic sections [14] with respect to the
induced quaternionic holomorphic structures on the trivial H bundle H = M ×H.
Note also that a map R : M → S2 is harmonic if and only if

d(dR)′ = 0 or, equivalently, d(dR)′′ = 0. (11)

In particular, both the left and right normal N and R of a minimal surface are
conformal and harmonic.
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On the other hand, (3) shows that f is minimal if and only if f is harmonic,
i.e.,

d ∗ d f = 0.

In particular, ∗d f is closed if f is harmonic and there exists a conjugate surface
f ∗ on the universal cover M̃ of M , given up to translation by

d f ∗ = − ∗ d f.

Next, we observe that a conjugate surface f ∗ of a minimal surface f has the same
left and right normal as f since

∗d f ∗ = − ∗ (∗d f ) = d f = ∗d f R = −d f ∗R,

and similarly ∗d f ∗ = Nd f ∗.
Note that f ∗ is minimal, and so is the associated family (when lifting f to the

universal cover M̃), e.g. [12],

fcos θ,sin θ = f cos θ + f ∗ sin θ, θ ∈ R.

Theassociated family canbe extended to a family dependingonquaternionic param-
eters:

Definition 3.1. ( [21]) Let f : M → R
4 be a minimal surface. The family of

(branched) minimal immersions

f p,q = f p + f ∗q : M̃ → R
4, p, q ∈ H, (p, q) 
= (0, 0), (12)

where f ∗ : M̃ → R
4 is a conjugate surface of f , is called the right associated

family of f .

Note that for p, q ∈ R, (p, q) 
= (0, 0), we obtain the usual associated family
of a minimal surface up to scaling. Moreover, f pn,qn = f p,qn is given by a scaling
of f p,q and an isometry on R

4 for n ∈ H∗.

Remark 3.2. Since d f p,q = d f (p+Rq)we see that f p,q has left normal Np,q = N
and right normal Rp,q = (p + Rq)−1R(p + Rq).

In particular, for any immersion f : M → R
3 = ImH in Euclidean 3-space,

the left and right normal coincide and a surface f p,q in the right associated family
has left normal Np,q = N and right normal Rp,q = (p + Nq)−1N (p + Nq).
This shows that in general Np,q 
= Rp,q and thus, elements of the right associated
families of a minimal surface f : M → R

3 are not necessarily minimal in 3-space
but are minimal surface (Fig 1) in R4.
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Fig. 1.Elements f 5
8 , 12+ 3 j

8
, orthogonally projected intoR3, and f− 1

2 , 12
of the right associated

family of the catenoid f (x, y) = i x + j cosh xe−iy

3.2. Hopf fields of minimal surfaces

We first discuss a characterisation of minimal surfaces by the shape of their Hopf
field. This allows to see that every minimal surface is a Willmore surface and
provides tools for later discussion of μ-Darboux transforms of minimal surfaces.

First note that surfaces which are bothminimal and twistor projections are given
by holomorphic maps into C2:

Proposition 3.3. Let f : M → R
4 be a (branched) conformal immersion. Then

the following statements are equivalent:

(i) There exists a constant complex structure i on R
4 such that f : M → C

2 =
(R4, i) is complex holomorphic.

(ii) The right normal R of f is constant.
(iii) f is minimal and the twistor projection of a holomorphic curve in CP

3.

Proof. If f is complex holomorphic then ∗d f = d f i shows that the right normal
of f is R = −i, hence the right normal R is constant. But then Theorem 2.5 shows
that f is the twistor projection of a holomorphic curve since (dR)′′ = dR = 0. By
(2) we see that H = 0 and f is minimal.

Finally, if f is minimal we have ∗dR = −RdR, thus (dR)′ = 0. If f is also
the twistor projection of a holomorphic curve then (dR)′′ = 0. Thus, the right
normal R is constant and the right multiplication by −R gives a complex structure
onR4 = H. Then ∗d f = −d f R shows that f : M → C

2 is complex holomorphic
when identifying C

2 = (H,−R). ��
In the case when f : M → R

3 is minimal and the twistor projection of a
holomorphic curve in CP

3 then the previous Proposition implies that the Gauss
map N = R of f is constant. But then f is a plane. However, if we allow minimal
surfaces in R4 we obtain non-trivial examples:
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Fig. 2. f (z) = z2 + j z, different orthogonal projections into R
3

Consider the map f : C → R
4 given by f (z) = z2+ j z. Then f is a conformal

immersion with right normal R = −i and thus, R is conformal and harmonic: f
is minimal and the (affine coordinate of the) twistor projection of the holomorphic
curve

h(z) =

⎛
⎜⎜⎝
z2

z
1
0

⎞
⎟⎟⎠C

to HP
1 (Fig. 2) .

We give a condition for minimality in terms of the Hopf field, see also [21].

Theorem 3.4. A conformal immersion f : M → R
4, which is not complex holo-

morphic, is minimal if and only if the kernel of the Hopf field A is the point at
∞.

Proof. Recalling (8) we have

2 ∗ A =
(
f ω − f ω f + f (dR)′′
ω −ω f + (dR)′′

)

with ∗ω + ωN = −(dR)′′H . Thus, if the kernel of A is ∞ = eH then ω = 0 and
(dR)′′ 
= 0. Therefore, 0 = ∗ω + ωN shows that f is a minimal surface.

Conversely, from (8) and (10) we see that the Hopf field A of a minimal immer-
sion f : M → R

4 satisfies

2 ∗ A =
(
0 f d R
0 dR

)
, (13)

where we used that (dR)′′ = dR by the conformality (10) of R and

ω = 1

2
(dH + H ∗ d f H + ∗dHN − ∗dRH) = 0

since H = 0. By assumption R is not constant because f is not complex holomor-

phic. Therefore, ker A =
(
1
0

)
H = ∞.

��
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From the expression (13) of the Hopf field A of a minimal surface f : M → R
4

we see that A is harmonic, that is, d ∗ A = 0, since ∗dR = −RdR and thus
d f ∧ dR = 0.

In particular, we obtain the well-known result:

Corollary 3.5. Every minimal immersion in R
4 is a Willmore surface in R4.

4. The associated Willmore surface

Wenowdiscuss a correspondence betweenminimal surfaces and twistor projections
of holomorphic curves in CP3.

If f is a minimal surface with constant right normal R then d f ∗ = − ∗ d f =
d f R shows that the conjugate surface is by [7] a rigid motion f ∗ = f R + c of
f with c ∈ H. For general minimal surfaces f the map f R − f ∗ is a Willmore
surface in R

4: the following theorem is a special case of a more general statement
for super-conformal maps, [11,24].

Theorem 4.1. Let f : M → R
4 be a minimal surface with conjugate surface f ∗

on the simply connected Riemann surface M and assume that its right normal R is
not constant. Then

f � = f R − f ∗ : M → R
4

is a twistor projection of a holomorphic curve inCP3 with right normal R� = −R.
Moreover, f � is branched if R is branched.

Proof. If f is minimal then its right normal R satisfies ∗dR = −RdR = dRR
and

d( f R − f ∗) = f d R

shows that f � = f R− f ∗ is branched if R is branched. Moreover, the right normal
of f � is R� = −R and

(dR�)′′ = 1

2
(dR� + R� ∗ dR�) = 1

2
(−dR + R ∗ dR) = 0

shows that f � is a twistor projection of a holomorphic curve inCP3 by Theorem2.5.
��

This leads to the following definition:

Definition 4.2. If f : M → R
4 is a minimal surface with conjugate surface f ∗

and (non-constant) right normal R then we call

f � = f R − f ∗

an associated Willmore surface of f .

Note that f � is a Willmore surface but not a minimal surface by Proposition 3.3
since by assumption R� = −R is not constant.

Note that if we change the conjugate f ∗ by a constant, this results in a non-trivial
change (Figs. 3, 4) of the associated Willmore surface ( f ∗ + c)� = ( f ∗)� + cR.
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Fig. 3. The associated Willmore surface of the catenoid, various orthogonal projections into
R
3

Fig. 4. The associated Willmore surface of the helicoid f ∗(x, y) = iy − k sinh xe−iy and
the translated helicoid f ∗ + i − 2 j − k, orthogonally projected into R3

5. µ-Darboux transforms

Previous results [4,5,9,22] seem to indicate that the Darboux transformation pre-
serves a surface class which is given by a harmonicity condition as long as it is
given by a parallel section of the associated family of flat connections of the har-
monic map. In the case of a minimal surface f : M → R

4, the conformal Gauss
map is harmonic and we will consider parallel sections of its associated family
of flat connections dμ. Then a μ-Darboux transform, that is, a Darboux transform
which arises from parallel sections of dμ, is indeed a Willmore surface but we will
show that it is not minimal in R

4. However, a μ-Darboux transform is still given
by complex holomorphic data: it is the twistor projection of a holomorphic curve
in CP3.

5.1. Parallel sections

For this paper to be self-contained, we briefly recall the results of [21] where the
parallel sections of the family of flat connections of aminimal surface are computed.
Let f : M → R

4 be minimal, and let as before

e =
(
1
0

)
, ψ =

(
f
1

)
.
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Let A be the Hopf field of the harmonic conformal Gauss map S of f . By the
expression (13) of the Hopf field of a minimal surface we have

Aψ = −1

2
ψ ∗ dR, and Ae = 0.

Using ∗dR = −RdR = dRR by the minimality of f we see that

A(1,0)ψ = −1

4
ψdR(R + i), A(0,1)ψ = −1

4
ψdR(R − i).

We fix μ ∈ C∗ and compute all parallel sections of dμ. If μ = 1 then dμ = d is
trivial, and every constant section is parallel. Assume from now on that μ 
= 1, and
let L = ψH the line bundle of f . Since eH ⊕ L = H

2 every dμ-parallel section

ϕ ∈ �(H̃
2
) of the trivialH2 bundle over the universal cover M̃ of M can be written

as ϕ = eα + ψβ with α, β : M̃ → H. Then

dμϕ = e(dα + d fβ) + ψ

(
dβ − 1

2
dR(Rβ(a − 1) − βb)

)

where a = μ+μ−1

2 , b = i μ−1−μ
2 . From this we see that ϕ is dμ parallel if and only

if

dα = −d fβ, and dβ = 1

2
dR(Rβ(a − 1) − βb). (14)

Let β = Rm + m b
a−1 , m ∈ H, and α = − f m b

a−1 − f ∗m. Then

Rβ(a − 1) − βb = 2m

where we used that a2 +b2 = 1. Therefore, β satisfies the second condition in (14)
for ϕ = eα + ψβ to be dμ-parallel since

dβ = dRm = 1

2
dR(Rβ(a − 1) − βb).

Moreover, using d f ∗ = − ∗ d f we have the first condition in (14) as

dα = −d f

(
Rm + m

b

a − 1

)
= −d fβ.

Note that b = i(1−μ2)
2μ , a − 1 = (1−μ)2

2μ so that

b

a − 1
= i(1 + μ)

1 − μ
(15)

for μ ∈ C \ {0, 1}. Therefore, we see that

ϕ = −e

(
f m

i(1 + μ)

1 − μ
+ f ∗m

)
+ ψ

(
Rm + m

i(1 + μ)

1 − μ

)

is a dμ-parallel section. Indeed, every non-constant parallel section arises this way:
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Proposition 5.1. ( [21]) Let f : M → R
4 be a minimal surface with conjugate

surface f ∗ and dλ the associated family of flat connections of the conformal Gauss
map S of f . Forμ ∈ C\{0, 1} every dμ-parallel section is either a constant section

ϕ = en, n ∈ H, or is given by ϕ = eα + ψβ ∈ �(H̃
2
) with

α = − f ∗m − f mρ, β = Rm + mρ, m ∈ H∗ (16)

where ρ = i(1+μ)
1−μ

.

Remark 5.2. For μ ∈ C \ {0, 1} and m 
= 0, the section β is nowhere vanishing.
This follows from the fact [21] that β is a parallel section of the associated family
of flat connections of the right normal R of f but can also been shown directly: if
β(p) = 0 then

R(p) = −m
i(1 + μ)

1 − μ
m−1

which implies

−1 = m−1R(p)2m = − (1 + μ)2

(1 − μ)2

contradicting μ 
= 0.

5.2. μ-Darboux tranforms

If a minimal surface f : M → R
4 has constant right normal R then by (13) the

Hopf field A vanishes and dμ = d for all μ ∈ C \ {0, 1}. That is, all μ-Darboux
transforms of f are in this case the constant sections of �(H2). Therefore, from
now on we will assume that f is not the twistor projection of a holomorphic curve
in CP3.

With Proposition 5.1 at hand, we can again discuss all μ-Darboux transforms
of the minimal surface f . If ϕ = en, n ∈ H∗, is a constant parallel section then the
corresponding μ-Darboux transform is the constant point ∞ = eH. On the other
hand, every non-constant dμ-parallel sectionϕ = eα+ψβ ∈ �(H2), μ ∈ C\{0, 1},
is given by (16) and the μ-Darboux transform is in this case given by

Lμ = (eα + ψβ)H,

where β = Rm + m b
a−1 is nowhere vanishing since μ 
= 0,m ∈ H∗. Therefore,

theμ-Darboux transform is given by the affine coordinate f μ = f +T : M → R
4

with

T = αβ−1 = −
(
f ∗ + f

b̂

â − 1

)(
R + b̂

â − 1

)−1

(17)
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and â = mam−1, b̂ = mbm−1. Note that although b̂, â−1 ∈ H, the fraction b̂
â−1 is

well-defined since (â − 1)−1b̂ = b̂(â − 1)−1 = m b
a−1m

−1 and â 
= 1. Moreover,

f μ =
(
f (R + b̂

â − 1
) −

(
f ∗ + f

b̂

â − 1

))(
R + b̂

â − 1

)−1

= (
f R − f ∗)

(
R + b̂

â − 1

)−1

We summarise:

Theorem 5.3. Let f : M → R
4 be a minimal surface in R4 on a simply connected

Riemann surface M (and assume that f not holomorphic in some C2).
Then every non-constant μ-Darboux transform of f is given by

f μ = ( f R − f ∗)(R + ρ̂)−1, (18)

where f ∗ is a conjugate surface of f and ρ̂ = m i(1+μ)
1−μ

m−1 with μ ∈ C \ {0, 1},
m ∈ H∗.

Remark 5.4. (i) Whereas the associated Willmore surface is uniquely defined up
to translation by the choice of the conjugate surface f ∗, the μ-Darboux trans-
formation depends non-trivially on f ∗: a translation of f ∗ by c ∈ H results in
an addition of −c(R + ρ̂)−1 to f μ.

(ii) The μ-Darboux transformation is independent of the choice ofm ∈ H∗ exactly
whenμ ∈ S1. This reflects the fact that the associated family of flat connections
dμ is a family of quaternionic connections on the unit circle.

(iii) If M is not simply connected we still obtain by (18) a μ-Darboux transform but
on the universal cover M̃ of M . Note that f μ is in this case globally defined
on M only if the conjugate surface is defined on M . Put differently, the parallel
section ϕ = eα + ψβ is only a section with multiplier [3] if f ∗ is globally
defined. In this case, the multiplier is trivial.

We also observe that ρ̂ = 0 for μ = −1 and thus:

Corollary 5.5. The associated Willmore surface of a conjugate f ∗ of a minimal
surface f is the μ-Darboux transform

f μ=−1(x, y) = f ∗R + f

of f for μ = −1.

Therefore, the pictures in Fig. 4 show μ-Darboux transforms of the catenoid at
μ = −1.

Since the associatedWillmore surface of a minimal surface is Willmore but not
minimal, we see that μ-Darboux transforms are not minimal for μ = −1. Indeed,
this extends to all μ-Darboux transforms:
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Theorem 5.6. Let f : M → R
4 be minimal (and not holomorphic) on a simply

connected Riemann surface M.
Then every (non-constant) μ-Darboux transform f μ : M → R

4 of f is an
associated Willmore surface of a minimal surface in the right associated family of
f . In particular, f μ is not minimal.

Proof. Consider the minimal surface

h = −1

2
( f b̂ + f ∗(â − 1))

in the right associated family of f where â = m μ+μ−1

2 m−1, b̂ = mi μ−1−μ
2 m−1

and m ∈ H∗. From Remark 3.2 we see that the right normal of the minimal surface
h is

Rh = (b̂ + R(â − 1))−1R(b̂ + R(â − 1)). (19)

Now let ρ̂ = b̂
â−1 then ρ̂ = m i(1+μ)

1−μ
m−1 by (15) and 1 + ρ̂2 = −2(â − 1)−1. On

the other hand

1 + ρ̂2 = 1 + ((R + ρ̂) − R)2 = (ρ̂ + R)2 − (ρ̂ + R)R − R(ρ̂ + R).

so that

(ρ̂ + R)−1(â − 1)−1(R + ρ̂)−1 = 1

2
(−1 + (ρ̂ + R)−1R + R(ρ̂ + R)−1)

commutes with R, and so does its inverse (ρ̂ + R)(â − 1)(R + ρ̂). This shows by
(19) that

Rh = (â − 1)−1(ρ̂ + R)−1R(ρ̂ + R)(â − 1) = (ρ̂ + R)R(ρ̂ + R)−1. (20)

We show next that Rh is not constant in our situation. Using dRR = −RdR we
obtain

dRh = (ρ̂ − (ρ̂ + R)R(ρ̂ + R)−1)dR(ρ̂ + R)−1

and since dR 
= 0, the right normal Rh is constant if and only if

ρ̂(ρ̂ + R) = (ρ̂ + R)R.

But ρ̂ = m i(1+μ)
1−μ

m−1 with μ 
= 0 so that ρ̂2 
= −1. Thus, Rh is not constant and

we can define, see Theorem 4.1, the associated Willmore surface h� of h: using the
conjugate surface

h∗ = 1

2
( f (â − 1) − f ∗b̂)

of the minimal surface h = − 1
2 ( f b̂ + f ∗(â − 1)) a straight forward computation,

using â2 + b̂2 = 1 and (20), gives

h� = hRh − h∗ = ( f R − f ∗)(ρ̂ + R)−1.
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Fig. 5. μ-Darboux transforms of the catenoid with μ = − i
2 , m = 1

2 (1 + i − j − k) and

μ = i,m = 1, orthogonally projected into R3

In other words, h� is by (18) a μ-Darboux transform f μ of f . By Theorem 5.3
every non-constant μ-Darboux transform arises this way. Moreover, since the right
normal of the associated Willmore surface h� of h is given by Theorem 4.1 as
R�
h = −Rh and Rh is not constant, the μ-Darboux transform f μ is not minimal by

Proposition 3.3. ��

Since f− b̂
2 ,− â−1

2
= f 5

8 , 12+ 3 j
8
for μ = − i

2 and m = 1
2 (1 + i − j − k) and

f− b̂
2 ,− â−1

2
= f− 1

2 , 12
for μ = i,m = 1, the μ-Darboux transforms in Fig. 5 are also

the associated Willmore surfaces of the minimal surfaces of the right associated
family of the catenoid in Fig. 1.

Remark 5.7. Every μ-Darboux transform f μ of a minimal surface, which is not
holomorphic, is a twistor projection of a holomorphic curve with vanishing Hopf
field, see Theorem 2.5. Therefore, the family of flat connections of f μ is trivial
and every μ-Darboux transform of f μ is constant. This shows that the μ-Darboux
transformation on minimal surfaces trivially satisfies Bianchi permutability.

By construction, all μ-Darboux transforms are (generalised) Darboux trans-
forms. In particular, T = αβ−1 satisfies the generalised Riccati equation (6). Since
dβ = dRm by (16) the generalised Riccati equation becomes, away from the zeros
of α,

dT = −d f + TdR(−mα−1)T

with mα−1 non-constant. In particular, if f : M → R
3 is minimal in R

3 then
the Gauss map N is the right normal of f , and the above equation generalizes the
classical Ricatti equation (4) since f d = N is a dual surface of f . Note however
that non-constant μ-Darboux transforms of a minimal surface f : M → R

3 are
never classical: one can show that −dNmα−1 is not a closed 1-form.
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5.3. CP1 family

We conclude this paper by investigating the limits of μ-Darboux transforms at
μ = 1 and μ = 0,∞. In the first case, the dμ=1 = d is the trivial connection and
all parallel sections give rise to constant Darboux transforms. However, the limit of
appropriately scaled and rotated μ-Darboux transforms is the associated Willmore
surface of f (Fig. 6). In the second case, the family dμ of flat connections does not
extend to μ = 0,∞, however the pointwise limit of μ-Darboux transforms is still
a Darboux transform (Fig. 7).

Theorem 5.8. After rescaling and rigid motion, the pointwise limit of μ-Darboux
transforms f μ of f is the associated Willmore surface f �, that is,

lim
μ→1

f μρ̂ = f �.

Proof. First f μρ̂ is a rigid motion of f μ in R4 up to scaling [7] since ˆρ ∈ H∗. But
then ρ̂−1 = mi μ−1

μ+1m
−1 gives limμ→1 ρ̂−1 = 0 and we obtain

lim
μ→1

(R + ρ̂)−1ρ̂ = lim
μ→1

( ˆρ−1R + 1)−1 = 1.

This shows the claim since f μ = ( f R − f ∗)(R + ρ̂)−1 and f � = f R − f ∗. ��

Fig. 6. Associated Willmore surface of the catenoid (first row), and μ-Darboux transforms
of the catenoid withμ = cos(0.3)+ i sin(0.3),m = 1 andμ = 1.3,m = 1+ j√

2
, orthogonally

projected into R
3
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Fig. 7. f 0, m = 1, different orthogonal projections into R3

We recall that f μ = ( f R − f ∗)(R + ρ̂)−1 for m ∈ H∗, μ ∈ C \ {0, 1}. Since
ρ̂ = m i(1+μ)

1−μ
has a well-define limit as μ approaches 0 and ∞ respectively, we can

extend the μ-Darboux transformation to μ ∈ CP
1, at least away from the isolated

zeros of R ± mim−1.

Theorem 5.9. Let f : M → R
4 be minimal (and not holomorphic).

• The pointwise limit f 0 = limμ→0 f μ of the μ-Darboux tranforms of f is a
Darboux transform of f . More precisely, f 0 : M → S4 is a Willmore surface
and is given in affine coordinates by the minimal surface

f 0 = ( f R − f ∗)(R + mim−1)−1

which has its ends at the isolated zeros of R + mim−1, m ∈ H∗.
• The pointwise limit f ∞ = limμ→∞ f μ of the μ-Darboux tranforms of f is a
Darboux transform of f . More precisely, f ∞ : M → S4 is a Willmore surface
and is given in affine coordinates by the minimal surface

f ∞ = ( f R − f ∗)(R − mim−1)−1

which has its ends at the isolated zeros of R − mim−1, m ∈ H∗.

Proof. We prove the statement for f 0, the second claim follows similarly.
Denote by ρ̂0 = mim−1 and consider the section ϕ = eα + ψβ ∈ �(H2)

where

α = −( f ∗m + f mi), β = Rm + mi.

Note that dμ is not defined at μ = 0 so ϕ is not a parallel section of our family
of flat connections, but eα is still by (5) a holomorphic section with prolongation
ϕ since as before dα = −d fβ and dϕ ∈ �1(L). Thus, ϕ defines a (generalised)
Darboux transform f � of f . Since R is conformal with ∗dR = −RdR we see
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that e(Rm + mi) = eβ is a holomorphic section with respect to the quaternionic
holomorphic structure D(eγ ) := 1

2e(dγ − R ∗ dγ ). Thus, by [14] the zeros of β

are isolated, and away from these zeros f � has affine coordinate

f � = f + T = ( f R − f ∗)(R + ρ̂0)
−1

where T = αβ−1 = −( f ∗ + f ρ̂0)(R+ ρ̂0)
−1. Thus, f 0 = f � and f 0 is a Darboux

transformof f . Since ρ̂0 = limμ→0 m
i(1+μ)
1−μ

m−1 we see that theDarboux transform

f 0 is the pointwise limit f 0 = limμ→0 f μ of μ-Darboux transforms. It remains to
show that f 0 is minimal. For this, we observe that

d f 0 = −TdR(R + ρ̂0)
−1

so that the right normal of f 0 is

R0 = −(R + ρ̂0)R(R + ρ̂0)
−1

since ∗dR = dRR. Since ρ̂2
0 = −1 we have (R + ρ̂0)R = ρ̂0(ρ̂0 + R) and then

R0 = −ρ̂0 is constant. Therefore, by Proposition 3.3 the surface f 0 is bothminimal
and a twistor projection of a holomorphic curve in CP3. ��
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