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Abstract. The objective of this paper is to introduce and study completions and local homol-
ogy of comodules over Hopf algebroids, extending previous work of Greenlees and May in
the discrete case. In particular, we relatemodule-theoretic to comodule-theoretic completion,
construct various local homology spectral sequences, and derive a tilting-theoretic interpre-
tation of local duality formodules. Our results translate to quasi-coherent sheaves over global
quotient stacks and feed into a novel approach to the chromatic splitting conjecture.

Introduction

Completion of non-finitely generatedmodules is pervasive throughout stable homo-
topy theory, as amply demonstrated in [13], for example. Its left derived functors
can be interpreted as a type of local homology, which in turn gives rise to a local
duality theory for modules over commutative rings [12]. On the other hand, the
theory of comodules over a Hopf algebroid arises naturally in the context of gener-
alized homology theories [28, Appendix A1]; the homology of a spectrum has the
structure of a comodule over the ring of cooperations. Moreover, in light of [25],
we can translate results about comodules into quasi-coherent sheaves over certain
algebraic stacks. The latter have shown to be fundamental in moduli problems
where the objects one wishes to parameterize have nontrivial automorphisms.

The goal of this paper is to generalize local homology from modules over com-
mutative rings to comodules over Hopf algebroids, which among other applications
plays a central role in an algebraic approach toHopkins’ chromatic splitting conjec-
ture [4]. Algebraically, this extends the work of Greenlees andMay [12] on derived
functors of completion, and in geometric terms it is akin to the passage from affine
schemes to quotient stacks. However, while local cohomology admits a canonical
and well-behaved extension from modules over commutative rings to comodules
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over Hopf algebroids, the corresponding generalization of local homology is con-
siderably more complicated.

This complication is already visible at the non-derived level: Unlike the case of
modules, for a Hopf algebroid (A, �) the naive completionC I (−) = limk(A/I k ⊗
−) at an ideal I ⊆ A does not usually define an endofunctor on the category of
comodules Comod� , but rather takes values in a category of completed comodules
[9]. To remedy this, one has to replace the limit limk of the underlying A-modules
by the inverse limit in comodules, which leads to a comodule completion functor
C I

� . We thus begin in Section 1 with an analysis of these non-derived completion
functors and in particular the relation between C I and C I

� .
Given an inverse system of �-comodules, the key problem thus becomes to

compare the comodule limit with the underlying module limit, and our first result
provides conditions under which the former can be computed from the latter. This
motivates the introduction of a class of Hopf algebroids which we call true-level
(with respect to the ideal I ), see Definition 1.9. We then use a theorem of Enochs to
deduce concrete conditions that imply the true-level property; a particular example
of a true-level Hopf algebroid highly relevant for applications to stable homotopy
theory is given by (A, �) = (E∗, E∗ E) for a variant E of Johnson–Wilson theory
due to Baker [1]. Note that we always write � for the underived tensor product.

Let N be a complete�-comodule. If (A, �) is a true-level Hopf algebroid with
respect to I , then we prove that the A-module ιN defined by the following pullback
square

ιN � � N

N C I (� � N )

acquires a natural structure as a �-comodule. Here the natural map ιN → N is
injective and ιN is the largest possible A-submodule of N that carries a natural
�-comodule structure. We note that ι roughly speaking plays the role of a (non-
existent) right adjoint to C I on the category of comodules.

Theorem A. (Theorem 1.12) If (A, �) is true-level, then for any �-comodule M,
there is an equivalence of �-comodules C I

�(M) � ιC I (M).

We thenmove on to a study of derived completion. For a suitableHopf algebroid
(A, �) and ideal I ⊆ A we construct a local homology functor for comodules �I .
Our construction is dictated by the general local duality framework of [6], and
Sect. 2 studies the properties of the resulting functors. In particular, we work with
a suitable enlargement Stable� of the derived category of comodules with some
desirable categorical properties; geometrically speaking, this corresponds to the
passage from quasi-coherent to ind-coherent sheaves.

One of the first new phenomena we encounter is that the local homology of
a comodule can be non-zero both in positive and negative degrees, which may be
interpreted as a measure of the stackiness of the Hopf algebroid under considera-
tion. Consequently, the relation between derived functors of completion and local
homology turns out to be more subtle.
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For an arbitrary Hopf algebroid we construct a spectral sequence of the form

E p,q
2 = lim p

�,k Tor
�
q (A/I k, M) �⇒ Hq−p(�

I (M))

computing the local homology of a comodule M in terms of more familiar functors.
In parallel to the equivalence of local homology with I -adic completion when
restricted to finitely presented modules, if A is Noetherian and M is a compact
comodule, we show that this spectral sequence collapses to yield

H−s(�
I M)

� lim s
�,kM � A/I k

for all s ≥ 0. Moreover, we give an example to show that, contrary to the case of
A-modules, the functors H∗(�I (M)) cannot, in general, be computed by the left
or right derived functors of C I

�(−).
In the case of a discrete Hopf algebroid (A, A) there is a natural equivalence

StableA � D(A). We can thus use the relationship between �I and the left derived
functors of completion (known as the derived functors of L-completion) to prove
some results about the derived functors ofC I onModA. We also produce a criterion
for when an A-module is L-complete, i.e., for when M is in the category ̂ModA
of L-complete A-modules, generalizing Bousfield and Kan’s Ext-p completeness
criterion.

Theorem B. (Ext-I completeness criterion, Theorem2.17)Let A be a commutative
ring and I ⊆ A an ideal generated by a regular sequence x1, x2, . . . , xn. If M is
an A-module, then

M is L-complete ⇐⇒ ExtqA(x−1
i A/(x1, . . . , xi−1), M) = 0 for all 1

≤ i ≤ n and all q ≥ 0.

In fact, this is a consequence of a more general result that characterizes those
M ∈ Stable� for which �I M � M , see Corollary 2.16.

In the final section, we turn to torsion and complete objects in derived categories
of comodules. A priori, there are at least three different notions of what it could
mean for an object M ∈ D(�) to be torsion with respect to an ideal I ⊆ A:

(1) M is in the smallest localizing ideal of D(�) generated by A/I , denoted
D I−tors(�).

(2) M is in the image of the canonical functor from the derived category of the
abelian category of I -torsion �-comodules, denoted D(Comod I−tors

� ).
(3) The homology groups HnM are I -torsion �-comodules for all n ∈ Z.

One gets analogous definitions for complete objects by replacing localizing with
colocalizing and I -torsion with I -complete where appropriate.

The goal of Sect. 3 is to compare these notions and use this to prove a tilting-
type equivalence between torsion and complete objects in D(�). When working
with comodules, the difficulties intrinsic to complete objects persist at the level of
the derived category; while we can show that the three notions above coincide in
the case of torsion objects, we can only conclude the same for complete objects
when working over a discrete Hopf algebroid.
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Theorem C. (Theorem 3.7) Let (A, �) be an Adams Hopf algebroid and I ⊆ A a
finitely generated invariant ideal.

1. Suppose I is generated by a weakly proregular sequence. If (A, �) = (A, A)

is discrete, then there is a canonical equivalence between the right completion
ofD−(̂ModA) andD I−cmpl(A). Moreover, an object M ∈ D(A) is I -complete
if and only if the homology groups H∗M are L-complete.

2. If I is generated by a regular sequence, then there is a canonical equivalence
D(Comod I−tors

� ) � D I−tors(�). Moreover, an object M ∈ D(�) is I -torsion
if and only if the homology groups H∗M are I -torsion.

There are a number of results in the literature closely related to Theorem C. For
example, in [27, Corollary 3.32] it is proven that M ∈ D(A) is cohomologically
I -torsion (that is, the canonical morphism from R�I M → M is an equivalence,
where R�I M denotes the total derived functor of I -torsion of M) if and only if
the homology groups H∗M are I -torsion. Moreover, in unpublished work Rezk
has constructed a version of the derived category of L-complete modules and has
proven a version of the second part of Theorem C(1), see [29, Theorem 9.2].

Recall that the abelian categories of torsion and L-complete modules are not
equivalent in general; for example, the former is Grothendieck while the latter is
not. On the other hand, the subcategoriesD I−cmpl(A) andD I−tors(A) are known to
be equivalent, see [6, Theorem 3.11] for example. Consequently, the latter together
with the previous theorem allow us to deduce the following tilting-theoretic inter-
pretation of local duality for commutative rings.

Corollary D. For any commutative ring A and I ⊆ A a finitely generated ideal,
local homology and local cohomology induce mutual inverse symmetric monoidal
equivalences

�I : D(ModI−tors
A )

∼ D(̂ModA) :�I∼

where D(̂ModA) denotes the right completion of D−(̂ModA).

Once again, in the case of a general Hopf algebroid we were unable to obtain
such a result. Indeed, there seems to be no good candidate for a derived category
fitting the right hand side in the equivalence above.

Finally, let us say a few words about the geometric interpretation of this work.
The equivalence between the categories of commutative rings and affine schemes
extends to an equivalence between the categories of Hopf algebroids and certain
algebraic stacks [25]. Prominent examples of these stacks in homotopy theory are
the moduli stack of 1-dimensional formal groups and its Lubin–Tate substacks.
Let X be the stack presented by an Adams Hopf algebroid (A, �). We will write
QCoh(X) for the category of quasi-coherent sheaves over X. Let I be the ideal
sheaf corresponding to an invariant ideal I ⊆ A. This determines a closed sub-
stack Z of X, along which we can consider both completion and torsion functors
on QCoh(X) together with their corresponding derived functors. In light of the
symmetric monoidal equivalence between Comod� and QCoh(X) [6, Proposition
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5.37], and the definition of Z in terms of I , we see that the corresponding subcate-
gories of complete objects, resp. torsion objects, are equivalent as well.

On the other hand, the category of quasi-coherent sheaves over X is a
Grothendieck abelian category, and so we can consider its derived category
D(X) = D(QCoh(X)). Following Definition 3.2, there is a subcategory of D(X)

of I-torsion objects, as well as a subcategory of I-complete objects inD(Spec(A))

in the case of a discrete Hopf algebroid. The equivalence between Comod� and
QCoh(X) yields a symmetric monoidal equivalence between their correspond-
ing derived categories that restricts to equivalences of subcategories of complete
objects, resp. torsion objects, at the derived level. We can therefore translate all the
results in this paper to the context of stacks and their abelian and derived categories
of quasi-coherent sheaves. Although for the sake of conciseness we keep the expo-
sition in the language of comodules over Hopf algebroids, our results should be of
independent interest in the aforementioned geometric setting. We end this section
with a dictionary between the algebraic and geometric contexts.

Commutative algebra Algebraic geometry

Hopf algebroid map (A, A) → (A, �) Stack presentation X → Spec(A)

Invariant ideal I ⊆ A Closed substack Z ⊆ X

Comod� , D(�) QCoh(X), D(X)

Stable� = Ind(Thick(G�)) IndCohX = Ind(Thick(GX))

Conventions

We always assume that our Hopf algebroids are flat. Moreover, we will write � for
the underived tensor product of comodules and ⊗ for the derived tensor product.
We will denote the internal hom-object in a category by Hom. For a cocomplete
category C, we let Cω denote the full subcategory of compact objects in C.

We work with ∞-categories throughout this document, specifically the quasi-
categories of Lurie and Joyal [22,24]. Unless otherwise noted, all functors between
stable ∞-categories are assumed to be exact and all subcategories of stable ∞-
categories are assumed to be stable subcategories. We follow the convention of [22]
and say that a functor between presentable stable ∞-categories is continuous if it
preserves filtered colimits. Given a collection of objects S in an ∞-category C, we
denote by Thick(S) the smallest thick subcategory of C containing S . Likewise,
we write Loc(S), resp. Loc⊗(S), for the smallest localizing subcategory, resp.
localizing tensor ideal, containing S.

1. Completion for comodules

In this section we study the completion functor for comodules. As we shall see, this
differs from the A-module completion functor, as in general the forgetful functor
to A-modules does not preserve limits. Nonetheless, under suitable conditions we
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show that the comodule completion functor is the composite of the A-module
completion functor and a functor ι that is defined by a certain pullback diagram,
which, informally speaking, extracts the largest possible subcomodule of the A-
module completion functor.

1.1. Limits

Let (A, �) be a Hopf algebroid. For an overview on the theory of comodules over
a Hopf algebroid we refer the reader to [28, Appendix A1]. Let ε∗ : Comod� →
ModA be the forgetful functor from comodules to modules; our notation indicates
that this is in fact the functor induced by the map of Hopf algebroids ε : (A, �) →
(A, A) which is the identity on A and the counit on �. Since ε∗ does not preserve
arbitrary limits (indeed, it does not even preserve products), the existence of limits
in the category of comodules is not immediate. Hovey has shown that the category
of comodules is complete [14, Proposition 1.2.2], by constructing the product of a
system of comodules. Following his argument, we explain briefly how to construct
the inverse limit of a system of comodules. The first step is to define inverse limits
for extended comodules, where an adjointness argument shows that, for an inverse
system (Nk) of A-modules, we must have

lim�,k(� � Nk) ∼= � � limk Nk, (1.1)

where we write lim�,k(−) for the limit in Comod� . One can then construct
lim�,k( f ), where f is a map of extended comodules. For a general inverse system
(Mk) of comodules, there are exact sequences of comodules

0 Mk � � Mk
fk

� � Tk,

where Tk is the cokernel of the coaction map of Mk . This enables us to construct
the inverse limit of (Mk) as lim�,k(Mk) = ker(lim�,k( fk)), see [6, Sect. 4.1] for
details.

Lemma 1.2. Let (Mk) be an inverse system of comodules, then the natural mor-
phism of A-modules

τ : ε∗ lim�,k(Mk) limk(ε∗Mk),

is an injection when � is a projective A-module.

Proof. From the discussion above we know that lim�,k(Mk) is given by the kernel

0 lim�,k(Mk) � � limk(Mk) � � limk(Tk),

where Tk is the cokernel of the coaction map of Mk . We then have a commutative
diagram of A-modules (where we omit writing ε∗ for simplicity)

0 lim�,k(Mk)

τ

� � limk(Mk) � � limk(Tk)

0 limk(Mk)limk (ψMk )
limk(� � Mk) limk(� � Tk),
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which induces the natural map τ . This is an injection provided the two right hand
vertical arrows are,whichwe claim is truewhen� is a projective A-module. Indeed,
it is not hard to check that the corresponding statement is true for products, and we
can then write the inverse limit as a kernel of maps between the product to deduce
the claimed result. ��

The next result shows that, under certain conditions, the inverse limit in comod-
ules can be determined by first taking the inverse limit of the underlying modules
and then extracting a subcomodule using a pullback.

Proposition 1.3. Suppose (Mk) is an inverse system of comodules such that the
canonical maps

� � limk (Mk ) limk (� � Mk ) � � limk (� � Mk ) limk (� � � � Mk )

are monomorphisms, then the inverse limit in comodules, lim�,k(Mk), can be com-
puted by the following pullback of A-modules:

lim�,k(Mk)
p

τ

� � limk(Mk)

j

limk(Mk) limk (ψMk )
limk(� � Mk).

(1.4)

Proof. Let P be the pullback of the span part of (1.4). We will omit the standard
verification that P naturally admits the structure of an�-comodule. Thus, it remains
to show that P satisfies the universal property of the limit. So, suppose we have a
comodule N , along with compatible comodule morphisms fk : N → Mk for all k.
By the universal property of the inverse limit in A-modules, we obtain an A-module
morphism f : N → limk(Mk), and a diagram:

N

f

(1� f )ψN

g

P
p

i

� � limk(Mk)

j

limk(Mk) limk (ψMk )
limk(� � Mk).

One can check that this diagram commutes, and so we obtain a (unique) morphism
g : N → P , which can be shown to be a morphism of comodules. The morphism
πi : P → Mk is the composite of i : P → limk(Mk) and the A-module projection
maps; once again, these can be checked to be comodule morphisms making the
required diagrams commute. ��
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Remark 1.5. Hovey realized that, under suitable conditions, the comodule product
can be defined as the largest possible subcomodule of the A-module product; see
the remark after Proposition 1.2.2 of [14]. An alternative proof (under slightly
more general conditions) is given in the thesis of Sitte [31, Lemma 3.5.12], and our
approach follows his closely. Similar ideas are contained in unpublished work of
Sadofsky.

1.2. Completion

Let (A, �) be a Hopf algebroid and fix a finitely generated invariant ideal I ⊆
A. Undecorated notation will usually refer to the module-theoretic as opposed to
comodule-theoretic constructions.

Definition 1.6. The I -adic completion C I
�(M) of a �-comodule M is defined as

C I
�(M) = lim�,k(M � A/I k). Note that C I

A(ε∗M) = limk(ε∗M � A/I k) is the
usual module-theoretic completion of M . For the sake of simplified notation, we
will often write C I (M) for the latter or just ̂M when the ideal is clear from the
context.

As an application of Lemma 1.2, we obtain the following coarse comparison
between the two notions of completion.

Lemma 1.7. For M ∈ Comod� there is a natural morphism of A-modules

τ : ε∗C I
�(M) C I (M).

This is an injection when � is a projective A-module.

If (A, �) is discrete, thenC I
� = C I

A, but they differ in general. In contrast toC
I
� ,

the functor C I does not in general take values in the category of comodules again,
because the completed coaction map takes values in a completed tensor product.
In [9], Devinatz introduced a category of complete comodules over a complete
Hopf algebroid to address this issue. Given M ∈ ModA let us denote its I -adic
completion by ̂M ; we write �̂ for the completed tensor product. Suppose now that
(A, �) is a Hopf algebroid, then for any finitely generated invariant ideal I , the
triple (̂A, ̂�, I · ̂A) is a complete Hopf algebroid.

Definition 1.8. A (left) complete ̂�-comodule M is a complete ̂A-module M
together with a left ̂A-linear map ̂ψ = ̂ψM : M → ̂��̂

̂AM which is counitary
and coassociative. A morphism of complete ̂�-comodules is, as usual, a morphism
of completemodules that commuteswith the structuremaps.WewillwriteComodc

̂�

for the category of complete ̂�-comodules.

Inspired by Proposition 1.3, we consider the functor ι : Comodc
̂�

→ ModA
defined on N ∈ Comodc

̂�
by the pullback diagram

ιN
p

i

� � N

j

N
̂ψN

̂��̂N .
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Informally speaking, ιN extracts the largest subcomodule of N ; however, it is not
clear that the map i : ιN → N is injective nor that ιN admits a natural�-comodule
structure.We therefore introduce a type of Hopf algebroid for which these problems
do not arise. In the next subsection, we exhibit a sufficient criterion for verifying
these conditions and provide an example.

Definition 1.9. A Hopf algebroid (A, �) is called true-level (with respect to the
fixed invariant ideal I ⊆ A) if, for any M ∈ Comodc

̂�
, the canonical maps

� � M ��̂M and � � (��̂M) ��̂��̂M

are monomorphisms.

Lemma 1.10. If (A, �) is true-level, then ι factors as Comodc
̂�

→ Comod�
ε∗−→

ModA. Furthermore, if N is a complete comodule, then the natural map ιN → N
is injective.

By abuse of notation, for a true-level Hopf algebroid (A, �), we will denote
the functor Comodc

̂�
→ Comod� given in Lemma 1.10 by ι as well.

Proof. Consider the following diagram of A-modules

ιN

ρ

(��1)p

p

� � ιN
1�p

1�i

� � � � N

1� j

� � N
1�̂ψN

� � ̂��̂N ,

(1.11)

and note that since � is flat, the square part is a pullback. Hence, to obtain a
candidate ρ for the coaction map of ιN it is enough to show that the outer part
of (1.11) commutes; we may do this after composing with the monomorphism
j ′ : � � ��̂N → ̂��̂̂��̂N . A routine diagram chase then yields the desired
commutativity. A further careful diagram chase, using the fact that N → ̂��̂N is
counital and coassociative, shows that ρ is indeed a coaction for ιN , so that ιN is a
�-comodule. Finally, since j is assumed to be injective, it follows that i : ιN → N
is injective. ��

We are now ready to prove the main result of this section.

Theorem 1.12. If (A, �) is true-level, then there is an isomorphism C I
� � ιC I of

�-comodules.
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Proof. Let M ∈ Comod� . Specializing Proposition 1.3 to the tower (Mk) = (M�
A/I k) yields the pullback diagram on the left

C I
�(M) � � C I (M) ιC I (M) � � C I (M)

C I (M) C I (� � M) C I (M) C I (̂� � C I (M)),

while the right square is a pullback diagram by definition of ι. Using the natural
maps between these diagrams, the natural isomorphism

C I (M � N )
∼

C I (C I (M) � C I (N ))

of A-modules then furnishes a natural isomorphism C I
�(M) ∼= ιC I (M) between

pullbacks of A-modules. Finally, the argument ofLemma1.10 shows that the canon-
ical comparison isomorphism is compatible with the�-coactions on both sides. ��

1.3. Examples of true-level Hopf algebroids

In order to provide examples of true-level Hopf algebroids, we will make use of
the following result.

Proposition 1.13. Let A be a regular local Noetherian ring, m the maximal ideal
of A, and N an A-module satisfying one of the following two conditions:

(1) N is a projective A-module.
(2) A is complete, N is flat, and N → ̂N is injective.

If M is a complete ̂A-module, then the natural completion map

N � M
η

N�̂M

is a monomorphism.

Proof. First assume Condition (1), i.e., that N is a projective A-module. We claim
that the map N � M → N�̂M is injective for all complete modules M . It suffices
to consider free modules, so let F = ⊕

A be free and consider the canonical map

F � M ∼= ⊕

M
∏

M.

This an injection, which can be checked by forgetting down to abelian groups.
Since M is complete by assumption and A/mk is finitely presented for all k ≥ 1,
the possibly infinite product

∏

M is complete as well. Hence, themap above factors
through a monomorphism F � M → F�̂M .

Now assume condition (2) of Proposition 1.13 holds. We first claim that N
is pure in

∏

A = ∏

J A for some indexing set J . Indeed, let E be the cotorsion
envelope [3] of N , which is flat because N is. As a special case of the main result
of [11], E is thus of the form

∏

p∈Spec(A) Tp, where Tp is the p-completion of
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a free Ap-module. It follows from [16, Theorem A.2(b)] that m-adic completion
and L0-completion with respect to m coincide on flat modules. Consequently, by
[5, Proposition A.15], we know that if N is flat, then ̂N is pro-free, i.e., ̂N =
Cm(

⊕

A). Furthermore, Cm(
⊕

A) → ∏

A is a split monomorphism by [16,
Proposition A.13], thus it suffices to show that N ⊆ ̂N is pure. Since A is complete,
it is cotorsion, and so is

∏

A, because Ext commutes with direct products in the
second variable if A is Noetherian. It follows that the monomorphism N → ∏

A
factors through E , i.e.,

N
∏

p∈Spec(A) Tp
∏

A.

Note that m
∏

p�=m Tp = ∏

p�=m Tp, so the only possible map from
∏

p�=m Tp into
∏

A is the zero map, as
∏

A is complete. It follows that Tp must be trivial for all
p �= m, i.e., Tm is the cotorsion envelope of N . Note that N is pure in Tm, and since
we have N ⊆ ̂N ⊆ Tm, N is also pure in ̂N .

Using [21, Proposition 4.44] and a colimit argument, we can verify that for all
A-modules M and any indexing set I , the canonical map

(∏

I A
)

� M → ∏

I M
is injective. It follows from purity that the composite N � M → (∏

A
)

� M →
∏

M is injective as well. But
∏

M is complete, so the map above factors through
N � M → N�̂M , which thus must be injective. ��

Applying the proposition to N = � and the complete comodules M or ��̂M
yields:

Corollary 1.14. Let (A, �) be a Hopf algebroid with A a regular local Noetherian
ring. If (A, �) satisfies one of the following two conditions:

(1) � is a projective A-module, or
(2) A is a complete ring, � is flat, and the completion map � → ̂� is injective,

then (A, �) is true-level.

Example 1.15. In [1] Baker studies the In-localization E(n) of Johnson–Wilson
theory E(n). In particular, E(n)∗ is local regular Noetherian and he proves that
the associated cooperations E(n)∗E(n) form a free module over E(n)∗. Therefore,
(E(n)∗, E(n)∗E(n)) is true-level. Moreover, using [17, Theorem C], it follows that
ComodE(n)∗E(n) is equivalent to the category of E(n)∗E(n)-comodules. By [25],
the category of comodules over any Hopf algebroid that is Landweber exact of
height n is a presentation for the category of quasi-coherent sheaves over the height
n Lubin–Tate stack. We thus have a true-level model for the latter category.

2. Derived completion

In the previous section we studied I -adic completion on the abelian category of
comodules. In this section, we work in the derived setting and consider torsion
and completion functors on suitable derived categories of comodules. In the case
of a discrete Hopf algebroid (i.e., in the case of A-modules) the derived functor
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of completion we construct has a well-known relationship with completion on the
abelian level, where it computes the left derived functors of completion. As we
shall see, this is not true for an arbitrary Hopf algebroid, and the situation is more
complicated in this case.

By applying our methods to the case of A-modules, we obtain alternative proofs
of some structural results of Hovey and Strickland [16] about derived functors of
completion for complete regular local Noetherian rings, and deduce a new criterion
for L-completeness.

2.1. The stable category of comodules and derived torsion and completion

In this section we briefly recall the stable category of comodules as well as the basic
features of derived torsion and completion that we need. We refer the reader to [6,
Sects. 4 and 5] for more details and for proofs.

The category of comodules Comod� over a flat Hopf algebroid (A, �) is a sym-
metric monoidal Grothendieck abelian category. As such, its derived ∞-category
D(�) = D(Comod�) exists; however, it has been noted [6,14,20] that it has some
undesirable properties— for example, the tensor unit A need not be compact. Based
on Hovey’s work [14], the authors constructed a stable ∞-category Stable� which
is amenable to the techniques in [6].

Given a small ∞-category C, one can construct the ind-category Ind(C) asso-
ciated to C which can be thought as the smallest ∞-category closed under filtered
colimits containing C; see [6, Sect. 2.2] or the references therein. Let G� be a set
representatives of isomorphism classes of dualizable �-comodules.

Definition 2.1. The stable ∞-category of �-comodules is defined as the ind-
category of the thick subcategory of D(�) generated by G� . In symbols,

Stable� = Ind(Thick(G�)).

The resulting stable ∞-category is closed symmetric monoidal and compactly
generated by G� . Following [14], we will need the following additional condition
to guarantee that the abelian category of �-comodules is generated by G� as well.

Definition 2.2. A Hopf algebroid (A, �) is said to be an Adams Hopf algebroid
if � = colimi �i for some filtered system {�i } of comodules, which are finitely
generated and projective over A.

The ring of cooperations of the ring spectraMU ,MSp, K , KO , HFp , and K (n)

are all examples of Adams Hopf algebroids [14, Lemma 1.4.6, Theorem 1.4.7].
SinceD(�) is cocomplete, the universal property of an ind-category guarantees

that the inclusion of Thick(G�) inD(�) extends to a symmetric monoidal functor
ω on Stable� . We summarize the relationship between Stable� and D(�) in the
following proposition.

Proposition 2.3. Let (A, �) be an AdamsHopf algebroid. Then, there is an adjunc-
tion

Stable�

ω D(�)
ι∗
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between Stable� and D(�), where ω is continuous and ι∗ is fully faithful. In the
case that (A, A) is a discrete Hopf algebroid, StableA is equivalent to D(A), the
usual derived category of A-modules.

Proof. Everything except that ι∗ is fully faithful is proven in [6, Sect. 4]. The fully
faithfulness is proved there under some further assumptions on the Hopf algebroid.
This conditions can be weakened by using the recent work of Pstrągowski. Indeed,
by [26, Theorem 3.7 and Corollary 3.8] we can identify Stable� with the ∞-
category of spherical sheaves of spectra on dualizable comodules, and D(�) with
the ∞-category of hypercomplete spherical sheaves of spectra. The functor ι∗ can
then be identified with the inclusion of hypercomplete sheaves into all spherical
sheaves. ��

Let I ⊆ A be an ideal which we assume to be generated by a invariant regular
sequence {x1, . . . , xn}. These conditions ensure that A/I is a�-comodule and that
its image in Stable� is compact and dualizable.

Definition 2.4. The subcategory StableI−tors
� ⊆ Stable� is defined as the localizing

tensor ideal of Stable� generated by the compact object A/I . The inclusion of the
category StableI−tors

� of I -torsion �-comodules into Stable� will be denoted ιtors.

The full subcategory StableI−tors
� is compactly generated, and hence ιtors admits

a right adjoint �I which is smashing, i.e.,

�I (M) � �I (A) ⊗ M

for any M ∈ Stable� . Therefore, we can apply the results of [6, Sect. 2] to obtain
localization and completion adjunctions

StableI−loc
�

ιloc
Stable�

L I

�I

StableI−comp
�ιcomp

with respect to the ideal I . When considered as endofunctors of Stable� , the func-
tors (�I ,�

I ) define an adjoint pair, so that we have a natural equivalence

HomStable� (�I X,Y ) � HomStable� (X,�I Y ) (2.5)

for all X,Y ∈ Stable� .Moreover,�I and�I inducemutually inverse equivalences

StableI−comp
�

�I

∼ StableI−tors
� .

�I

The next lemma is [6, Corollary 5.26] with slightly weakened hypotheses.

Lemma 2.6. Let (A, �) be an AdamsHopf algebroid and assume that I is a finitely
generated ideal, generated by a invariant regular sequence, then we have that

�I M � limψ,k A/I k ⊗ M,

for all M ∈ Stable� .
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Proof. By [26, Corollary 3.8] we can remove the Noetherian hypothesis from [6,
Proposition 5.24], of which [6, Corollary 5.26] is a direct corollary. ��

In the discrete case, there are spectral sequences computing the (co)homology of
the torsion and completion functors. These are given in terms of local cohomology
and local homology of A-modules with respect to an ideal I ⊆ A, denoted Hs

I
and H I

s respectively, for which we refer the reader to [12] or [6, Sect. 3.2]. The
following is then [6, Proposition 3.20].

Proposition 2.7. Let A be a commutative ring and I a finitely generated ideal. Let
X ∈ DA. There are strongly convergent spectral sequences of A-modules:

(1) Es,t
2 = Hs

I (H
t X) �⇒ Hs+t (�I X), and

(2) E2
s,t = H I

s (Ht X) �⇒ Hs+t (�
I X).

We finish this subsection with a couple of general remarks.

Remark 2.8. In the special case of a discrete Hopf algebroid (A, A) the conditions
on the ideal I can be weakened. Here, instead of A/I we can use a suitable Koszul
complex for the construction of �I and �I , see Remark 3.10 and Theorem 3.11 of
[6].

Remark 2.9. The theory of torsion and complete objects in a suitable category C
has previously been studied by Hovey–Palmieri–Strickland [15, Theorem 3.3.5]
and Dwyer–Greenlees [10] among others.

2.2. Derived completion for modules

In the previous section we introduced a derived version of completion for the stable
category associated to a suitableHopf algebroid. In this sectionwe focus on discrete
Hopf algebroids, i.e., the derived category of A-modules for a commutative ring
A. We will show how the derived completion functor �I is related to the derived
functors of ordinary I -adic completion.

To that end, let A be a commutative ring and I an ideal in A. Recall that the I -
adic completion, defined by C I (M) = lims M/I sM , is neither right nor left exact
in general for non-finitely generated A-modules, see [16, App. A] for example. We
are then led to consider either the left or right derived functors of completion. It
turns out that if A is an integral domain, then the higher right derived functors of
completion vanish [12, Sect. 5], and we hence focus on the left derived functors of
completion.

Definition 2.10. Let A and I be as above and M ∈ ModA. For s ≥ 0, let L I
s (M)

denote the s-th left derived functor of I -adic completion on M.

If the ideal I is clear from context, then we will usually just write Ls(M).
Note that L0M is in general not equivalent toC I (M), see Corollary 2.24. There

is a natural homomorphism η : M → L0M , and M is said to be L-complete when
η is an isomorphism. Let ̂ModA ⊆ ModA be the full subcategory of L-complete
A-modules. The following is proved under the assumption that A is a complete
local ring in [16].
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Proposition 2.11. The category ̂ModA of L-complete modules is an abelian sub-
category of ModA. There are enough projectives in ̂ModA, and each projective
object is a retract of a pro-free module, i.e., the completion of a free A-module.
Moreover, for all k ≥ 0, the modules LkM lie in ̂ModA.

Proof. The fact that̂ModA is an abelian subcategory ofModA is proved in the same
way as in [16, Theorem A.6(e)] — the proof only uses that L0 is right exact and
that for any short exact sequence M ′ → M → M ′′ there is a long exact sequence

Lk+1M
′′ → LkM

′ → LkM → LkM
′′ → Lk−1M

′.

Both of these follow from the definition of the functors Lk as the left derived
functors of I -adic completion.

Let F be a free A-module. Then L0F ∼= C I (F) is projective in ̂ModA since for
any M ∈ ̂ModA there is an adjunction Hom

̂ModA
(L0F, M) ∼= HomA(F, M) and

because epimorphisms in ̂ModA are epimorphisms in ModA. To see that ̂ModA has
enough projectives, let M ∈ ̂ModA, then there exists a free A-module F and an
epimorphism F → M . Since L0 is right exact, this gives rise to an epimorphism
L0F → M . If M is itself projective in ̂ModA, then this must have a section, and
we see that any projective in ̂ModA is a retract of a pro-free one.

The final statement can be proven precisely as in [12, Theorem 4.1]. ��

However, ̂ModA is not a Grothendieck category in general, because filtered
colimits are not necessarily exact. Despite the fact that̂ModA is not a Grothendieck
category, in Sect. 3 we will define a version of its derived category and show that
it is equivalent to a certain full subcategory of the usual derived category D(A).

In the previous subsection we introduced abstract local homology functors �I

for the stable category of �-comodules. In the case of A-modules �I acquires two
interpretations: First, it agrees with the total left derived functor of completion.
On the other hand, the homology L I

s (M) can be computed in terms of the local
homology groups H I

s (M). Both of these hold under a mild regularity assumption
on the ideal I called weakly proregularity, for example, if I is generated by a finite
regular sequence or for arbitrary ideals if A is Noetherian. We summarize these
results in the next theorem; for a proof of thefirst part, see [6, Proposition 3.16] - note
that we can remove the boundedness assumption there using [27, Corollary 5.25].
The second part was first proved by Greenlees and May [12, Theorem 2.5], and
then extended by Schenzel [30, Theorem 1.1] and Porta, Shaul, and Yekutieli [27,
Corollary 5.25].

Theorem 2.12. Let A be a commutative ring and I an ideal generated by a finite
weakly proregular sequence. Then:

(1) There is a natural equivalence �I � LC I .
(2) For all A-modules M, and all s ≥ 0, there is a natural isomorphism H I

s (M) ∼=
L I
s (M).
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We now establish a new criterion for L-completeness, generalizing the Ext-p-
completeness criterion due to Bousfield and Kan. We start with a general lemma
which the authors were unable to find in the literature as stated. We note that the
same argument works for ordinary categories as well and so it could be useful in a
variety of situations.

Lemma 2.13. Suppose f! : C → D is a continuous functor between presentable
∞-categories with right adjoint f ∗ and that C is generated by a set of objects G.
If f ∗ is conservative, then D is generated by f! G. If we assume additionally that
every element of G is compact and that f ∗ admits a further right adjoint f∗, then
D is compactly generated by f! G.
Proof. Suppose α : X → Y is a morphism in D such that HomD( f!G, α) is an
equivalence for all G ∈ G. By adjunction, HomC(G, f ∗α) is an equivalence as
well, so f ∗α is an equivalence because G generates. Since f ∗ is conservative, α

must be an equivalence, and it follows that f! G generates D. To see the last claim,
note that since f ∗ has a right adjoint, it preserves colimits, hence f! preserves
compact objects and thus f! G ⊆ Dω. ��

As they may be of independent interest, the next results are written for comod-
ules over a flat Hopf algebroid even though we will specialize to the discrete case
for the main theorem. To this end, we will need a stronger notion of an invariant
ideal, which we call strongly invariant.

Definition 2.14. Let (A, �) be a flat Hopf algebroid. We call the ideal I strongly
an invariant ideal if, for 1 ≤ k ≤ n and every comodule M which is (x1, . . . , xk−1)-
torsion as an A-module, there is a comodule structure on x−1

k M such that the natural
homomorphism M → x−1

k M is a comodule morphism.

Note that in the case of a discrete Hopf algebroid this condition is automatic.

Proposition 2.15. Let (A, �) be a flat Hopf algebroid and G� be a set of repre-
sentative of isomorphism classes of dualizable �-comodules. Suppose I ⊆ A is a
strongly invariant ideal in A generated by a regular sequence x1, . . . , xn, then

StableI−loc
� = Loc

(

n
⊕

i=1

x−1
i G/(x1, . . . , xi−1) : G ∈ G�

)

as subcategories of Stable� .

Proof. ByLemma2.13 and the fact that L I is smashing, StableI−loc
� is the localizing

subcategory in Stable� generated by L I G� . We therefore have to show that

Loc(L I G) = Loc

(

n
⊕

i=1

x−1
i G/(x1, . . . , xi−1) : G ∈ G�

)

.

To simplify notation, let G ∈ G� and write Gi = x−1
i G/(x1, . . . , xi−1). First

observe that �I Gi = 0, so Gi � L IGi for all i . Consequently, Gi ∈ Loc(L I G)
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and it remains to show the other inclusion. To this end, consider the following fiber
sequences of comodules

G/(x1, . . . , xi−1) Gi G/(x1, . . . , xi−1, x∞
i )

Applying L I to these sequences starting from the one for i = n, we see by down-
ward induction on i that L IG/(x1, . . . , xi−1) ∈ Loc(

⊕n
i=1 Gi : G ∈ G�): indeed,

the case i = n of the claim holds because L I (G/(x1, . . . , xi−1, x∞
i )) = 0. If

L IG/(x1, . . . , xi ) ∈ Loc(
⊕n

i=1 Gi : G ∈ G�), then passing to the colimit shows
that so is L IG/(x1, . . . , xi−1, x∞

i ). Since Gi � L IGi , we deduce from the i-
th fiber sequence that L IG/(x1, . . . , xi−1) ∈ Loc(

⊕n
i=1 Gi : G ∈ G�) as well.

Consequently, L IG ∈ Loc(
⊕n

i=1 Gi : G ∈ G�) for all G ∈ G� , as desired. ��

The next result is an immediate consequence of the characterization of �I -
acyclics.

Corollary 2.16. Let (A, �) be a flat Hopf algebroid and G� be a set of rep-
resentative of isomorphism classes of dualizable �-comodules. Then, for every
M ∈ Stable� ,

�I M � M ⇐⇒ Hom(x−1
i G/(x1, . . . , xi−1), M) � 0 for all 1 ≤ i ≤ n and G ∈ G� .

In [7], Bousfield and Kan define an abelian group A to be Ext-p complete if the
map A → Ext1

Z

(Z/p∞, A) is an isomorphism. They prove in [7, VI. 3.4(i)] that
this is equivalent to Hom

Z
(Z[p−1], A) = Ext1

Z

(Z[p−1], A) = 0. The following
result is thus the natural generalization of Ext-p completeness for modules over
any commutative ring.

Theorem 2.17. (Ext-I completeness criterion) Let A be a commutative ring and
I ⊆ A an ideal generated by a regular sequence x1, x2, . . . , xn. If M is an A-
module, then

M is L-complete ⇐⇒ ExtqA(x−1
i A/(x1, . . . , xi−1), M) = 0 for all 1

≤ i ≤ n and all q ≥ 0.

Proof. First note that we may take GA = {A}, because dualizable A-modules are
finitely generated and projective. By the spectral sequence of Proposition 2.7, a
module M is L-complete if and only if M is �I -local as a complex concentrated
in degree zero. But by Corollary 2.16 in the case of a discrete Hopf algebroid, M is
�I -local if and only if Hom(x−1

i A/(x1, . . . , xi−1), M) � 0 for all i = 1, . . . , n.
The result thus follows after applying homology to the latter equivalence. ��

Remark 2.18. Since the projective dimension of x−1
i A/(x1, . . . , xi−1) as an A-

module is atmost i , it suffices to check the vanishing ofExtqA(x−1
i A/(x1, . . . , xi−1),

M) for 0 ≤ q ≤ i .
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2.3. Derived completion for comodules

Suppose now that (A, �) is a flat Hopf algebroid and let I ⊆ A be a finitely
generated ideal generated by a invariant regular sequence. The following is inspired
by local homology in the case of a discrete Hopf algebroid.

Definition 2.19. Let M ∈ Stable� . We define the s-th local homology of M to be

�I
s (M) = Hs(�

I M).

In this section, we will construct a Grothendieck type spectral sequence calculating
local homology for any �-comodule M . However, the abutment of this spectral
sequence will not be related to the left or right derived functors of comodule com-
pletion C I

� as studied in Sect. 1. To see this we first need the following lemma,
which shows that the right derived functors of the completion functor on comodules
vanish under mild conditions on the ring A:

Lemma 2.20. If A is an integral domainand J ∈ Comod� is an injective comodule,
then lim �,k A/I k⊗J = 0. In particular, all right derived functors of lim �,k A/I k�
−: Comod� → Comod� are zero.

Proof. Since any injective comodule is a retract of an extended comodule on an
injective A-module J ′ [18, Lemma2.1(c)],we can assumewithout loss of generality
that J = � � J ′. Hence, by (1.1) there is an isomorphism

lim �,k A/I k ⊗ J ∼= � � limk A/I k � J ′

and we conclude by [12, Lemma 5.1] which gives that limk A/I k � J ′ = 0. ��
Remark 2.21. Recall that Theorem 2.12(1) says that, for A-modules, the homology
groups of �I compute the left derived functors of completion. For an arbitrary
Hopf algebroid, Example 2.26 below shows that, unlike the case of A-modules,
there exist negative local homology groups. This, along with Lemma 2.20, implies
that for comodules the homology groups of �I cannot, in general, be given by the
partial left or right derived functors of C I

� .

Proposition 2.22. Suppose (A, �) is an Adams Hopf algebroid, I is a finitely gen-
erated ideal of A generated by a invariant regular sequence, and M ∈ D� . There
is a conditionally and strongly convergent spectral sequence of comodules

E p,q
2

∼= lim p
�,k Tor

�
q (A/I k, M) �⇒ �I

q−p(M). (2.23)

Proof. LetA1 andA2 be abelian categories and assume thatA1 has enough injective
objects. Recall that there is a conditionally convergent spectral sequence

E p,q
2

∼= RpF(Hq(X)) �⇒ H p+q(RF(X))

for any left exact functor F : A1 → A2 and X ∈ Ch(A1), see [33, 5.7.9, Corol-
lary 10.5.7]. We apply this spectral sequence to the functor lim : ComodN

� →
Comod� and X = (A/I k ⊗ M)k∈N

∈ D(�)N, the category of towers of chain



Derived completion for comodules 427

complexes of �-comodules up to quasi-isomorphism. Switching the grading so
that the spectral sequence converges to Hq−pRF(X), the E2-page is readily iden-
tified as

E p,q
2

∼= lim p
�,k Hq(A/I k ⊗ M) ∼= lim p

�,k Tor
�
q (A/I k, M).

This spectral sequence then converges conditionally to

Hq−p(R lim �,k(A/I k ⊗ M)),

which is �I
q−p(M) by Lemma 2.6 and [6, Lemma 4.26]. The latter, which says

that lim �,k(A/I k ⊗ M) can be unambiguously interpreted as taken in eitherD(�)

or Stable� , is not stated in the generality we need here, but it holds under our
hypotheses in light of Proposition 2.3. Finally, since I is generated by a finite
regular sequence, this spectral sequence has a horizontal vanishing line at E2 and
hence converges strongly. ��

Since lim p = 0 for p > 1 for any discrete Hopf algebroid, this spectral
sequence degenerates to a short exact sequence. Hence we recover as a special
case:

Corollary 2.24. (Greenlees–May) If M ∈ ModA, then there is a short exact
sequence

0 lim1
k Tor

A
s+1(A/I k, M) LsM limk TorAs (A/I k, M) 0

for any s ≥ 0. In particular, there exists a natural epimorphism L0M → C I (M).

By the Artin–Rees lemma, local homology is concentrated in degree 0 for
finitely generated modules over Noetherian rings, where it simply agrees with I -
adic completion, see [16, Proposition A.4]. Although this is no longer the case for
comodules, the next proposition provides an appropriate comodule analogue where
one needs to use derived limits to capture local homology on the nonzero degrees.

Proposition 2.25. Suppose that A is Noetherian. For M ∈ Comodω
� the spectral

sequence (2.23) collapses, yielding an isomorphism

�I−sM
� lim s

�,kM � A/I k

of comodules for all s ≥ 0.

Proof. It is enough to show that

lim s
�,k Tor

�
t (M, A/I k) = 0

for all s ≥ 0 and all t ≥ 1, so that the strongly convergent spectral sequence (2.23)
collapses. In fact, wewill prove the stronger claim that the tower (Tor�t (M, A/I k))k
is pro-trivial for all t ≥ 1; see [19, Lemma 1.11] for a proof that this implies
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that all derived functors of lim vanish. On the one hand, using Lurie’s result [23,
Not. 5.2.18], it follows that the left derived functors LtC of the right exact functor

C : Comod� ComodN

�, M �→ (M �A A/I k)k

are pro-trivial on compact �-modules M whenever t ≥ 1. On the other hand, it is
easy to see that there is an isomorphism of towers

LtC(M) ∼= (Tor�t (M, A/I k))k

for all M ∈ Comod� , giving the claim. ��
Example 2.26. For p > 2, let K be p-complete K -theory and consider local homol-
ogy�(p) with respect to the ideal (p) ⊂ K0 = Zp. Let g be a topological generator
of Z

×
p ; using the fiber sequence

LK (1)S0 K
ψg−1

K

one can then calculate the local homology groups of K∗:

�
(p)
−s (K∗) ∼= lims

K∗K ,i K∗/pi ∼=
⎧

⎨

⎩

K∗ if s = 0
V

Q
if s = 1

0 otherwise,

where V
Q
is an uncountable rational vector space. For the details of this computa-

tion, see [4]. From this, one can formally deduce that

lims
K∗K (. . .

p−→ K∗
p−→ K∗

p−→ K∗) ∼=
{

V
Q

if s = 2
0 otherwise.

This example implies that even if the inverse limit of comodules can be computed in
terms of the inverse limit of the underlying modules and a functor ι as in Sect. 1, in
general there cannot exist a convergent Grothendieck spectral sequence associated
to the composite lim�

∼= ι ◦ limA. Indeed, using a graded version of the Ext-p-

completeness criterion of [7] or Theorem 2.17, we see that lims
K∗(. . .

p−→ K∗
p−→

K∗
p−→ K∗) = 0 for all s ≥ 0, because K∗ is p-complete. Therefore, the E2-page of

the composite functor spectral sequence would have to be zero, while the abutment
is nontrivial.

3. Tilting and t-structures

3.1. Derived categories and tilting

Throughout this section we let (A, �) be an Adams Hopf algebroid and D(�) =
D(Comod�) its derived ∞-category. We recall from Proposition 2.3 that the ∞-
category Stable� is related to D(�) via an adjunction

ω : Stable� D(�) : ι∗.
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Here the symmetricmonoidal, continuous functorω is given by inverting the homol-
ogy isomorphisms, and the right adjoint ι∗ is a fully faithful embedding. Given a
comodule M ∈ Comod� we can think of it as a complex in D(�) concentrated in
degree 0. Via ι∗ we can also consider M as an object of Stable� .

In contrast to Stable� , the dualizable comodules are not necessarily compact in
D(�). Nonetheless, we claim that the smallest localizing subcategory containing
them is all of D(�), so that they still form a suitable collection of generators.

Lemma 3.1. The smallest localizing subcategory of D(�) containing the set G�

of dualizable comodules is all of D(�), i.e., G� generates D(�).

Proof. Since D(�) is presentable, the statement of the lemma is equivalent to the
claim that Z ∈ D(�) � 0 if and only if HomD(�)(G, Z) is contractible for each
each G ∈ G� , or equivalently that a morphism φ : X → Y is an equivalence if
and only if HomD(�)(G, φ) is an equivalence of mapping spectra for all G ∈ G� .
To see this, apply Lemma 2.13 with f! = ω and f ∗ = ι∗ — note that ι∗ is fully
faithful, and so in particular conservative, so that the conditions of the lemma are
satisfied. ��

Recall that given I ⊆ A an invariant regular ideal, we defined the I -torsion
categoryStableI−tors

� asLoc⊗
Stable�

(A/I ).Wecanmake the samedefinition inD(�).

Definition 3.2. The categoryD I−tors(�) is defined as the localizing tensor ideal in
D(�) generated by A/I , i.e.,

D I−tors(�) = Loc⊗
D(�)

(A/I ).

Lemma 3.3. If M ∈ StableI−tors
� , then ωM ∈ D I−tors(�).

Proof. Wewill prove themore general statement that for any collection C of objects
in Stable� we have

ω Loc⊗
Stable�

(C) ⊆ Loc⊗
D(�)

(ωC).

To this end, first observe that Loc⊗
Stable�

(C) = LocStable� (C ⊗ ι∗ G�) where G�

denotes, as usual, the set of dualizable comodules. Since ω preserves colimits and
is symmetric monoidal, a standard argument shows that

ω LocStable� (C ⊗ ι∗ G�) ⊆ LocD(�)(ω(C ⊗ ι∗ G�)) = LocD(�)(ωC ⊗ G�).

By Lemma 3.1 we see that LocD(�)(ωC ⊗ G�) = Loc⊗
D(�)

(ωC). ��
In [6, Sect. 5] we studied the abelian category Comod I−tors

� of I -torsion comod-
ules. These are, by definition, those comodules whose underlying A-module is
I -torsion. Recall from [6, Proposition 5.10] that Comod I−tors

� is a Grothendieck
abelian category, so we can define its derived ∞-category D(Comod I−tors

� ). We
can also describe the generators in Comod I−tors

� . In what follows, we let T�
I denote

the I -torsion functor on Comod� and write T A
I for the corresponding functor on

ModA.
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Lemma 3.4. The collection {G ⊗ A/I k | G ∈ G�, k ≥ 1} is a set of generators
for Comod I−tors

� .

Proof. Let f : M → N be a morphism in Comod I−tors
� . We must show that if

HomComodI−tors
�

(G ⊗ A/I k, f ) = 0 for all G ∈ G� and k ≥ 1, then f = 0.

Since the inclusion is fully faithful, we have HomComod� (G ⊗ A/I k, f ) = 0, or
by adjunction that HomComod� (G,Hom�(A/I k, f )) = 0. Since the collection of
dualizable comodules generates Comod� we deduce that Hom�(A/I k, f ) = 0
for all k ≥ 1. Taking colimits, we see that colimk Hom�(A/I k, f ) = 0. But by
[6, Lemma 5.5] the I -torsion functor T�

I (−) ∼= colimk Hom�(A/I k,−). Since f
is a morphism between I -torsion comodules, we deduce that T�

I ( f ) = f = 0, as
required. ��

Consider then the thick subcategory ThickD(ComodI−tors
� )

({G� ⊗ A/I k |k ≥ 1}).
An argument similar to [6, Lemma 5.13] shows that if I is generated by a finite
invariant regular sequence, then ThickD(ComodI−tors

� )
({G� ⊗ A/I k |k ≥ 1}) =

ThickD(ComodI−tors
� )

(G� ⊗ A/I ). This justifies the following definition of the I -
torsion analogue of Stable� .

Definition 3.5. We define the stable category of I -torsion comodules by

Stable(Comod I−tors
� ) = Ind ThickD(ComodI−tors

� )
(G� ⊗A/I )

= Ind ThickD+(ComodI−tors
� )

(G� ⊗A/I ),

whereD+(Comod I−tors
� ) denotes the left bounded derived category of Comod I−tors

�

[24, Var. 1.3.2.8].

There is a version of the local cohomology spectral sequence for ��
I . Recall

that since the forgetful functor ε∗ : Comod� → ModA is exact, we obtain a functor
ε∗ : Stable� → D(A) which we also denote by ε∗. We stress that the following
construction only gives a spectral sequence of A-modules — we do not know if it
can be given the structure of a spectral sequence of comodules.

Lemma 3.6. For any X ∈ Stable� there is a strongly convergent spectral sequence
of A-modules

Es,t
2

∼= RsT�
I (Ht (X)) �⇒ Hs+t (��

I X).

Proof. For ε∗X there is a strongly convergent spectral sequence of A-modules

Es,t
2

∼= Hs
I (H

t (ε∗X)) �⇒ Hs+t (�A
I (ε∗X)),

see Proposition 2.7. We will identify this with the claimed spectral sequence.
The local cohomology groups Hs

I are equivalent to RsT A
I , the derived functor

of torsion in A-modules. We then have isomorphisms

RsT A
I (Ht (ε∗X)) ∼= RsT A

I (ε∗Ht (X)) ∼= ε∗RsT�
I (Ht (X)),

where the last equivalence is [6, Lemma 5.12]. This identifies the E2-page of the
spectral sequence of the lemma.

For the abutment, we have Hs+t (�A
I (ε∗X)) ∼= Hs+t (ε∗��

I (X)) ∼= ε∗Hs+t

(��
I (X)), where the first isomorphism follows from [6, Lemma 5.20]. ��
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After collecting this preliminary material, we can now state the main theorem
of this section.

Theorem 3.7. Let (A, �) be an Adams Hopf algebroid and I ⊆ A a finitely gen-
erated invariant ideal.

(1) Suppose that I is generated by a weakly proregular sequence. If (A, �) =
(A, A) is discrete, then there is a canonical equivalence between the right
completion of D−(̂ModA) and D I−cmpl(A). Moreover, an object M ∈ D(A)

is I -complete if and only if the homology groups H∗M are L-complete.
(2) If I is generated by a regular sequence, then there is a canonical equivalence

D(Comod I−tors
� ) � D I−tors(�). Moreover, an object M ∈ D(�) is I -torsion

if and only if the homology groups H∗M are I -torsion.

Combining this result with Sect. 2 yields the following tilting-theoretic inter-
pretation of local duality.

Corollary 3.8. For any commutative ring A and I ⊆ A a finitely generated ideal,
the functors

L I
0 : Mod I−tors

A
̂ModA :T A

I

induce mutual inverse symmetric monoidal equivalences

�I : D(ModI−tors
A )

∼ D(̂ModA) :�I ,∼

where D(̂ModA) denotes the right completion of D−(̂ModA).

Transferring the standard t-structure onD(̂ModA) via the equivalence of Corol-
lary 3.8 induces a nonstandard t-structure on D(ModI−tors

A ) whose heart is the
abelian category of L-complete A-modules. Since the latter category is usually not
equivalent to ModI−tors

A , Corollary 3.8 is a non-trivial instance of a tilting equiva-
lence.

Remark 3.9. Due to the phenomena discussed in Sect. 2 (see, for example Remark
2.21), we do not have an analogue of Theorem 3.7(1) for non-discrete Hopf alge-
broids, and thus are currently unable to prove a version of Corollary 3.8 in this
generality.

As we will see in the next subsections, the proof of Theorem 3.7(2) is actually
a consequence of an analogous statement for Stable� in place of the usual derived
category.

3.2. t-structures and complete modules

We start this subsection by recalling some material about t-structures. This concept
was introduced by Beilinson–Bernstein–Deligne [2]. We follow more closely the
treatment given by [24] — namely we work with homological indexing, so that
X [n] denotes the n-fold suspension �n X .

Definition 3.10. A t-structure on a triangulated categoryD consists of a pair of full
subcategories (D≥0,D≤0) such that
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(1) D≥0[1] ⊆ D≥0 and D≤0[−1] ⊆ D≤0.
(2) For X ∈ D≥0 and Y ∈ D≤0[−1], we have HomD(X,Y ) = 0.
(3) If X ∈ D, then there is a triangle

A → X → B → X [1]
with A ∈ D≥0 and B ∈ D≤0[−1].

A t-structure on a stable ∞-category C is then a t-structure on the associated
homotopy category of C.

Given a t-structure on a stable ∞-category C we can define the heart C♥ =
D≥0 ∩D≤0 ⊆ C. We let j : C♥ → C denote the inclusion functor and define
C≥n = C≥0[n] and C≤n = C0[n]. By [24, Corollary 1.2.1.6] the inclusion C≤n → C
has a left adjoint τ≤n and C≥n → C has a right adjoint τ≥n .

Given a stable category C equipped with a t-structure, the left completion of C
is defined to be the limit of the tower

· · · C≤2
τ≤1 C≤1

τ≤0 C≤0
τ≤−1 · · · .

We say that the t-structure on C is left complete if C is equivalent to its left comple-
tion. We can similarly define the right completion, and a right complete t-structure.

The following lemma, proved in [2, 1.3.19], will be useful for constructing
t-structures on full subcategories of C.
Lemma 3.11. Let (D≥0,D≤0) be a t-structure on C with heart C♥. Let S ⊆ C be
a full stable subcategory of C. If τ≥0M and τ≤0M are in S whenever M is, then
(S ∩ D≥0,S ∩ D≤0) defines a t-structure on S with heart S ∩ C♥. Moreover, the
truncation functors for the induced t-structure on S are the same as those for the
t-structure on D.

We now begin the proof of Theorem 3.7(1). We always assume that the ideal I
is generated by a weakly proregular sequence, so that Theorem 2.12 applies. The
categorŷModA of L-complete A-modules is abelian; however it is notGrothendieck
abelian in general because direct sums and filtered colimits are not exact. There
exist enough projectives in̂ModA by Proposition 2.11 and so by [24, Sect. 1.3.2] we
can associate to it the right bounded derived category D−(̂ModA). This category
comes equipped with a natural left complete t-structure whose heart is equivalent
to ̂ModA, see [24, Proposition 1.3.2.19] and [24, Proposition 1.3.3.16].

The following results show that the right completion of this bounded derived
category is naturally equivalent to the derived category D I−cmpl(A) of I -complete
A-modules constructed abstractly in Sect. 2.1. We assume that A and I satisfy the
conditions of Theorem 2.12 so that local homology computes the derived functors
of completion.

Proposition 3.12. There is a t-structure on D−(̂ModA) along with a fully faithful
t-exact inclusion θ : D−(̂ModA) ↪→ D I−cmpl(A), whose image consists of the
right bounded objects of D I−cmpl(A), i.e.,

⋃

(D I−cmpl(A))≥n.
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Proof. We begin by observing that the standard t-structure on D(A) is left and
right complete. Indeed,D(A) is right complete by [24, Proposition 1.3.5.21], while
left completeness follows, for example, from [24, Proposition 7.1.1.13] and the
equivalence ModH A � D(A) [24, Proposition 7.1.1.15 and Rem. 7.1.1.16]. The
local homology spectral sequence of Proposition 2.7 shows that if M ∈ D(A) is
I -complete, then so are the truncations τ≥nM and τ≤nM . It follows from Lemma
3.11 that there is an induced t-structure on D I−cmpl(A).

We claim this induced t-structure is both left and right complete. Indeed, recall
that the truncation functors on D I−cmpl(A) are the restriction of the truncation
functors of D(A). Since limits in D I−cmpl(A) are the same as those in D(A), we
easily see that left completeness of the induced t-structure follows from left com-
pleteness of the t-structure onD(A). On the other hand, the colimit inD I−cmpl(A)

is not the same as that in D(A) — it is given by first taking the colimit in D(A),
and then applying �I . However, by right completeness of the t-structure on D(A)

we already have that M � colimk τ≥kM , for any M ∈ D I−cmpl(A), where the

colimit is taken over the maps τ≥kM
τ≥(k−1)−−−−→ τ≥(k−1)M . It follows that the induced

t-structure on D I−cmpl(A) is right complete.
Since the induced t-structure on D I−cmpl(A) has heart ̂ModA, applying [24,

Proposition 1.3.3.7]we deduce the existence of a t-exact functor θ : D−(̂ModA) →
D I−cmpl(A). The same proposition shows that θ is fully faithful if and only if for
each pair X,Y ∈ ̂ModA with X projective, the groups ExtiD I−cmpl(A)

(X,Y ) = 0 for

i > 0. By the characterization of projectives in Proposition 2.11 we have that X is
a retract of L0F for some free A-module F , and so we can assume X has this form.
For a free module F , we have that Li F � 0 for i > 0, as Li can be computed by
taking a projective resolution. Thus, the local homology spectral sequence shows
that �I F � L0F , concentrated in degree 0. It follows that

ExtiD I−cmpl(A)
(X,Y ) ∼= ExtiD I−cmpl(A)

(�I F,Y ) ∼= ExtiD(A)(F,Y ) ∼= ExtiA(F,Y )

as F,Y are just A-modules. Since F is a free A-module, this is zero for i > 0. ��
Proof. (Proof of Theorem 3.7(1)) SinceD I−cmpl(A) is right complete, the previous
proposition and [24, Rem. 1.2.1.18] show that there is a canonical equivalence
between the right completion of D−(̂ModA) and D I−cmpl(A).

For the second part suppose that M ∈ D I−cmpl(A), i.e., that �I M � M . The
spectral sequence of Proposition 2.7 converging to H∗(�I M) has E2 page in̂ModA.
Since the spectral sequence has a horizontal vanishing line and ̂ModA is abelian by
Proposition 2.11, the abutment is in the latter category as well. For the converse,
let M ∈ D(A) be a complex whose homology is L-complete. The aforementioned
spectral sequence collapses to give an isomorphism H∗(�I M) ∼= H∗(M). This
implies that the natural map M → �I M is a quasi-isomorphism, from where it
follows that �I M � M .

��
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3.3. Torsion comodules

A similar argument as given in the previous section for complete modules
also works for torsion comodules using the left bounded derived category
D+(Comod I−tors

� ) [24, Var. 1.3.2.8]. By the dual of [24, Proposition 1.3.5.24]
the left bounded derived category of Comod I−tors

� can be identified as the full
subcategory of D(Comod I−tors

� ) spanned by the left bounded objects (where we
equip D(Comod I−tors

� ) with the standard t-structure [24, Def. 1.3.5.16 and Propo-
sition 1.3.5.18].)

In order to prove Theorem 3.7(2) we first need to introduce another category.

Definition 3.13. Wedenote byD I−tors
cohom (�) the subcategory of complexes of comod-

ules with cohomology in ComodI−tors
� .

In the case of a discrete Hopf algebroid (A, A) it is easy to identify D I−tors(A)

with D I−tors
cohom (A).

Proposition 3.14. Let A be a commutative ring and I a finitely generated ideal.
There is an equivalence of categories

D I−tors
cohom (A) � D I−tors(A).

Proof. Recalling again that Comod I−tors
� is Grothendieck abelian, this is the same

argument as in the second part of the proof of Theorem 3.7(1) given above. ��
The case of an arbitrary Hopf algebroid is more difficult, and involves passing

to the larger category Stable� . The reason for this is that we do not know how to
construct the local cohomology spectral sequence of Lemma 3.6 in D(�).

Proposition 3.15. There is an equivalence of categories

D I−tors
cohom (�) � D I−tors(�).

Proof. We first show thatD I−tors
cohom (�) is a localizing subcategory ofD(�). Indeed,

it is clear that it is closed under desuspension, and since Comod� is Grothendieck
abelian and Comod I−tors

� is closed under colimits, D I−tors
cohom (�) is also closed under

colimits.
Now suppose that M ∈ D I−tors

cohom (�). We claim that M ⊗ G ∈ D I−tors
cohom (�)

for each dualizable �-comodule G. First observe that H∗(M ⊗ G) ∼= H∗(M) ⊗
G. Then, since G is dualizable, we have (for example, using [6, Lemma 5.5])
T�
I (H∗M ⊗ G) ∼= T�

I (H∗M) ⊗ G ∼= H∗M ⊗ G. It follows that M ⊗ G ∈
D I−tors

cohom (�) as claimed.
Since A/I ∈ D I−tors

cohom (�) the previous paragraphs show that D I−tors
cohom (�) is a

localizing subcategory ofD(�) containing A/I ⊗G for each dualizable comodule
G; in particular, we deduce that D I−tors(�) ⊆ D I−tors

cohom (�)

Now suppose that X ∈ D I−tors
cohom (�), so that ι∗X ∈ Stable� . By the construction

of the category D I−tors
cohom (�) the local cohomology spectral sequence of Lemma 3.6

collapses for ι∗X to show that ��
I ι∗X → ι∗X is a cohomology equivalence. It
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follows that there is a quasi-isomorphism ω��
I ι∗X

∼−→ ωι∗X � X , where the last
equivalence followsbecause ι∗ is fully faithful. Bydefinition��

I ι∗X ∈ StableI−tors
� ,

so that ω��
I ι∗X � X ∈ D I−tors(�) by Lemma 3.3. ��

With this in mind, we can prove a bounded version of Theorem 3.7(2).

Proposition 3.16. There is a t-structure on D+(Comod I−tors
� ) along with a fully

faithful functor θ : D+(Comod I−tors
� ) ↪→ D I−tors(�), whose image consists of the

left bounded objects of D I−tors(�), i.e.,
⋃

(D I−tors(�))≤n.

Proof. Using Proposition 3.15 we see that if M ∈ D I−tors(�), then so are the
truncations τ≥0M and τ≤0M . It follows from Lemma 3.11 that there is an induced
t-structure onD I−tors(�)with heart equivalent to Comod I−tors

� , such that the inclu-
sion D I−tors(�) ↪→ D(�) is t-exact. The induced t-structure is right complete
because colimits in D I−tors(�) are computed in D(�), which is right complete.
By the duals of [24, Theorem 1.3.3.2 andRem. 1.3.3.6] we deduce the existence of a
t-exact functor θ : D+(Comod I−tors

� ) → D I−tors(�), see also [24, Rem. 1.3.5.23].
Let J be an injective object in the category of I -torsion �-modules. Dual-

izing [24, Proposition 1.3.3.7] we deduce that if πn HomD I−tors(�)
(X, J ) ∼=

πn HomD(�)(X, J ) = 0 for all n < 0 and each I -torsion �-comodule X , then
θ is fully faithful, with essential image the full subcategory of left bounded objects
of D I−tors(�). It is not hard to check that any such J is a retract of T�

I (L), for
some injective�-comodule L . Moreover, any such L is a retract of�⊗Q for some
injective A-module Q [18, Lemma 2.1(c)], and so we can assume that J has the
form T�

I (� ⊗ Q). But an adjointness argument shows that there is an equivalence
T�
I (� ⊗ Q) ∼= � ⊗ T A

I (Q). Since Q is an injective A-module, so is T A
I (Q) [8,

Proposition 2.1.4]. It follows that T�
I (� ⊗ Q) is an injective �-comodule. It is

then clear that πn HomD(�)(X, T�
I (� ⊗ Q)) = 0 for n < 0, because this group is

isomorphic to Ext−n
� (X, T�

I (� ⊗ Q)), and Ext in comodules can be computed via
an injective resolution of the second variable. ��

In order to prove an unbounded version of the previous proposition, we first
prove a stable analogue of Theorem 3.7(2).

Proposition 3.17. There is a canonical equivalence Stable(ComodI−tors
� ) �

StableI−tors
� .

Proof. Note that by Proposition 3.16 the natural functor D+(Comod I−tors
� ) →

D+(�) is fully faithful. It follows that there is an exact fully faithful functor

ThickD+(ComodI−tors
� )

(G� ⊗A/I ) ThickD+(�)(G�),

since A/I ∈ ThickD+(�)(G�). Passing to ind-categories thus gives a continuous
fully faithful functor

Stable(Comod I−tors
� ) Stable�.
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Since G� ⊗A/I ⊆ Stable(Comod I−tors
� ), we see that Loc(G� ⊗A/I ) =

StableI−tors
� is contained in the essential image of Stable(Comod I−tors

� ) under the
natural inclusion. To prove the converse, let X ∈ Stable(Comod I−tors

� )ω and con-

sider the canonical map ��
I X

i−→ X . The local cohomology spectral sequence of
Lemma 3.6 implies that ε∗(i) is an equivalence in D(A). By compactness of X ,
it suffices to show that i is an equivalence in Stable� , so that X ∈ StableI−tors,ω

� .
As both categories are compactly generated and the inclusions are continuous,
we obtain that (the essential image of) Stable(Comod I−tors

� ) is also contained in
StableI−tors

� , as desired. ��
We can now prove Theorem 3.7(2) in full generality.

Proof. (Proof of Theorem 3.7(2).) Let ω StableI−tors
� ⊂ D(�) denote the essential

image of StableI−tors
� under ω (the functor which inverts quasi-isomorphism). We

have shown in Lemma 3.3 that ω StableI−tors
� ⊆ D I−tors(�). For the converse, we

recall from [6, Proposition 5.24] that for any M ∈ Stable� we have

�I M � �I A ⊗ M � colimk D(A/I k) ⊗ M

where D(A/I k) = Hom�(A/I k, A) denotes the dual of A/I k in Stable� . Here
we can drop the assumption from [6] that A is Noetherian by using Pstrągowski’s
work again, see the proof of Proposition 2.3. In particular, since ω is symmetric
monoidal and commutes with colimits, any object in ω StableI−tors

� can be written
in the form colimωD(A/I k) ⊗ ωM . By [6, Lemma 5.13] A/I k is compact and
dualizable in Stable� , and so we can apply [6, Lemma 4.22] to see that

ωD(A/I k) = ωHomStable� (A/I k, A) � HomD(�)(A/I k, A).

We are thus reduced to showing that the dual HomD(�)(A/I k, A) is inD I−tors(�).
For brevity, let us denote the dual inD(�) by D�(−), so that we are trying to prove
that D�(A/I k) ∈ Loc⊗(A/I ). Since ω is symmetric monoidal, it preserves dual-
izable objects, so that A/I k is dualizable in D(�), and hence so is D�(A/I k). By
[15, LemmaA.2.6] we see that D�(A/I k) is a retract of D�(A/I k)⊗D2

�(A/I k)⊗
D�(A/I k). But D2

�(A/I k) � A/I k , so that D�(A/I k) ∈ Loc⊗(A/I k) as
required. It follows that ω StableI−tors

� � D I−tors(�).
On the other hand, it follows from the construction of Stable(Comod I−tors

� )

that after inverting quasi-isomorphisms we recover the usual derived category
D(Comod I−tors

� ) (compare to [6, Sect. 4.2]).
It follows that after inverting quasi-isomorphism in Proposition 3.17 we obtain

an equivalence D(Comod I−tors
� ) � D I−tors(�) as claimed. ��
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