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Abstract. Our research is motivated by recent work of Cook II, Harbourne, Migliore, and
Nagel on configurations of points in the projective plane with properties that are unexpected
from the point of view of the postulation theory. In this note, we revisit the basic configuration
of nine points appearing in work of Di Gennaro/Ilardi/Vallès and Harbourne, and we exhibit
some additional new properties of this configuration. We then pass to projective three-
space P

3 and exhibit a surface with unexpected postulation properties there. Such higher
dimensional phenomena have not been observed so far.

1. Introduction

Let P1, . . . , Ps be a set of s ≥ 1 generic points in P
N (C) and let m1, . . . ,ms be

positive integers. It is a classical problem in algebraic geometry to study the linear
systems LN (d;m1, . . . ,ms) of hypersurfaces of degree d passing through each
of the points Pi with multiplicity at least mi for i = 1, . . . , s. This linear system
is viewed as the projectivization of the vector space of homogeneous polynomi-
als of degree d vanishing at points P1, . . . , Ps to order m1, . . . ,ms respectively.
Determining its projective dimension is one of the fundamental questions in the
area.

Problem 1. Determine dimLN (d;m1, . . . ,ms).
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The expected dimension ofLN (d;m1, . . . ,ms) is the number given by the naive
conditions count

edimLN (d;m1, . . . ,ms) = max

{
−1,

(
N + d

N

)
−

s∑
i=1

(
N + mi − 1

N

)
− 1

}
.

(1)
We have always

dimLN (d;m1, . . . ,ms) ≥ edimLN (d;m1, . . . ,ms) . (2)

If equality holds in (2), then we say that the system LN (d;m1, . . . ,ms) is non-
special. Otherwise it is called special.

Remark 1. It is well known that a single point with arbitrary multiplicity (that is,
s = 1 and m1 arbitrary) is non-special for any d and N . Similarly, generic points
with multiplicity 1 (that is m1 = · · · = ms = 1) impose always independent
conditions on forms of arbitrary degree in projective spaces of arbitrary dimension.

Special linear systems with multiplicities m1 = · · · = ms = 2 have been
completely classified by Alexander and Hirschowitz [1]. The Segre–Harbourne–
Gimigliano–Hirschowitz Conjecture governs the speciality of planar systems with
points of arbitrary multiplicity, see [3] for a very nice survey. In P

3 the special
linear systems L3(d;m1, . . . ,ms) are the subject of a conjecture due to Laface and
Ugaglia [11]. In higher dimensions there are some partial results due to Alexander
and Hirschowitz [2] and scattered partial conjectures due to various authors, see
e.g. [8]. The complete picture remains however rather obscure.

In the groundbreaking article [4], Cook II, Harbourne, Migliore and Nagel
opened a new path of research. They propose to study systems

LN (d; Z ,m1, . . . ,ms), (3)

where Z is a finite set of points (with multiplicity 1) and P1, . . . , Ps are generic
fat points, i.e., m1, . . . ,ms ≥ 2. Thus the classical problem outlined above is the
case Z = ∅. In [4] the authors focus on the case N = 2 and s = 1. They show
that, somewhat unexpectedly in the view of Remark 1, there exist special linear
systems in this situation. They relate the existence of such systems to properties of
line arrangements determined by lines dual to points in Z . This leads to a very nice
geometric explanation of the existence of special curves.

In the present note we exhibit a new phenomenon: The existence of special
linear systems of type (3) in a higher dimensional projective space, namely in P

3.
In the subsequent paper [14], the last named author will show how our example can
be generalized to higher dimensional projective spaces.

Our main result is Theorem 1. Conjecture 1 proposes a geometric explanation
for the existence of the special surfaces in Theorem 1. Our research has been
accompanied by Singular [5] experiments.
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Fig. 1. The B3 arrangement of lines

2. Plane quartics with nine base points and a general triple point

We begin with a Coxeter arrangement of lines classically denoted by B3 (or A(9, 1)
in Grünbaum’s notation). This arrangement is given by the linear factors of the
polynomial

f = xyz(x + y)(x − y)(x + z)(x − z)(y + z)(y − z) .

It is depicted in Fig. 1, with the convention that the line at infinity z = 0 is indicated
by the circle.

We use the following convention for the duality between lines and points: A
point (A : B : C) corresponds to the line Ax + By +Cz = 0 and vice versa. Thus
the linear factors of f correspond to the points

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1),
P4 = (1 : 1 : 0), P5 = (1 : −1 : 0), P6 = (1 : 0 : 1),
P7 = (1 : 0 : −1), P8 = (0 : 1 : 1), P9 = (0 : 1 : −1).

It was observed in [4] that these points impose independent conditions on quartics
in P2.

Remark 2. There is some ambiguity in the choice of coordinates of the points
P1, . . . , P9. Harbourne introduced in [10, Example 4.1.10] some coordinates which
due to their lack of symmetry are not as convenient to work with as those used by
Dimca in [7, Example 3.6]. Therefore we prefer to work with Dimca’s coordinates.

Let V ⊂ H0(P2,OP2(4)) be the linear subspace of all quartics vanishing at
P1, . . . , P9. As we have dim V = 6 by [4], one expects that the system becomes
empty when 6 further conditions are imposed. Unexpectedly, however, there exists
for any choice of an additional point R = (a : b : c) a quartic QR ∈ V with a triple
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point at R. This quartic can be written down explicitly as

QR(x : y : z) = 3a(b2 − c2) · x2yz + 3b(c2 − a2) · xy2z + 3c(a2 − b2) · xyz2
+ a3 · y3z − a3 · yz3 + b3 · xz3
− b3 · x3z + c3 · x3y − c3 · xy3. (4)

It is elementary to check that QR indeed vanishes at the points P1, . . . , P9 and
vanishes at R to order 3.

The Eq. (4) can be viewed also as a cubic equation in the variables a, b, c with
parameter S = (x : y : z). Taking this dual point of view, it becomes

QS(a : b : c) = yz(y2 − z2) · a3 + xz(z2 − x2) · b3
+ xy(x2 − y2) · c3 + 3x2yz · ab2
− 3xy2z · a2b + 3xyz2 · a2c − 3x2yz · ac2 + 3xy2z · bc2 − 3xyz2 · b2c .

(5)

(Of course theEqs. (4) and (5) are the same, just treated fromadifferent perspective.)
Surprisingly, each of the cubic curves (5) has a triple point at S = (x : y : z). All the
cubics therefore split in a product of three lines – except for those with parameter
values (x : y : z) that correspond to the points P1, . . . , P9, in which cases the right
hand side of Eq. (5) vanishes identically. Currently we do not have a theoretical
explanation for this property.

The family of cubics QS parameterized by S = (x : y : z) ∈ P
2 has no addi-

tional base points. This can be easily verified for specific and sufficiently general
values of (x : y : z).
Remark 3. Recently, Farnik,Galuppi, Sodomaco andTrok have announced an inter-
esting result to the effect that the quartic curve discussed in this section is, up to
projective equivalence, the only unexpected curve of this degree, see [9].

3. Quartic surfaces with 31 base points and a general triple point

Let F be the Fermat-type ideal in C[x, y, z, w] generated by

x3 − y3, y3 − z3, z3 − w3.

Its zero locus Z consists of the 27 points

P(α,β,γ ) = (1 : εα : εβ : εγ )

where ε is a primitive root of unity of order 3 and 1 ≤ α, β, γ ≤ 3. Let I be the
ideal of the union W of Z with the 4 coordinate points, that is,

I = F ∩ (x, y, z) ∩ (x, y, w) ∩ (x, z, w) ∩ (y, z, w).

Lemma 1. The ideal I is generated by the following 8 binomials of degree 4:

x(y3 − z3), x(z3 − w3), y(x3 − z3), y(z3 − w3) ,

z(x3 − y3), z(y3 − w3), w(x3 − y3), w(y3 − z3) .
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Proof. Let J be the ideal generated by the 8 binomials. We show first the contain-
ment J ⊂ I . Since I is a radical ideal by definition, it is enough to check that
Zeroes(I ) ⊂ Zeroes(J ). To this end it is enough to verify that every binomial gen-
erating J vanishes alongW . This is obvious because the vanishing in the coordinate
points is guaranteed by the fact that every binomial involves 3 different variables
and vanishing along Z is provided by the cubic term in brackets.

For the reverse containment let f be an element of I . In particular, f vanishes
at all points of Z , so we may write f in the following way

f = gy · (x3 − y3) + gz · (x3 − z3) + gw · (x3 − w3) , (6)

with homogeneous polynomials gy, gz, gw. From now on we work modulo J . We
want to show that f = 0. Since z(x3 − y3), w(x3 − y3) ∈ J , we may assume that
gy depends only on x and y. By the same token, we may assume that gz depends
only on x and z, and gw respectively on x and w.

We have

xy(x3 − y3) = −y · x(y3 − z3) + x · y(x3 − z3) ,

so that xy(x3 − y3) ∈ J . Thus gy = ayxd + by yd for some ay, by ∈ C and d ≥ 0.
Similarly gz = azxd + bzzd and gw = awxd + bwwd .

Evaluating (6) at (0 : 1 : 0 : 0) we obtain

0 = f (0 : 1 : 0 : 0) = gy(0 : 1 : 0 : 0) = by .

Similarly, bz = bw = 0. Thus

f = xd
(
ay(x

3 − y3) + az(x
3 − z3) + aw(x3 − w3)

)
. (7)

If d = 0, then evaluating again in the coordinate points (0 : 1 : 0 : 0), (0 : 0 : 1 : 0)
and (0 : 0 : 0 : 1) we obtain ay = az = aw = 0 and we are done.

If d > 0, then evaluating at (1 : 0 : 0 : 0) we get from (7)

ay + az + aw = 0 . (8)

Since xy3 = xw3 and xz3 = xw3 modulo J , we get from (7) and (8)

f = xd−1
(
ayx(x

3 − w3) + azx(x
3 − w3) + awx(x

3 − w3)
)

= 0

and we are done. �	
Let V ⊂ H0(P3,OP3(4)) be the linear space of quartics vanishing along W .

It follows from Lemma 1 that dim(V ) = 8. As vanishing to order 3 at a point in
P
3 imposes 10 conditions on forms of arbitrary degree, we do not expect that for a

general point R = (a : b : c : d) there exists a quartic QR ∈ V vanishing to order
three at R. However this is the case, as we now show:
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Theorem 1. The system L3(4;W, 3) is special, i.e., for any point R = (a : b : c :
d) in P3 \ W there exists a quartic QR vanishing to order 3 at R and vanishing at
all points from the set W . Moreover, the quartic QR has 4 additional singularities
at

R1 = (−2a : b : c : d) , R2 = (a : −2b : c : d) ,

R3 = (a : b : −2c : d) , R4 = (a : b : c : −2d) .

These singularities are double points.

Proof. Sincewe know fromLemma 1 that V is of dimension 8, it is enough to prove
the existence of a quartic as claimed. It can be checked by elementary calculations
that the quartic

QR(x : y : z : w) = b2(c3 − d3) · x3y + a2(d3 − c3) · xy3 + c2(d3 − b3) · x3z
+ c2(a3 − d3) · y3z + a2(b3 − d3) · xz3 + b2(d3 − a3) · yz3
+ d2(b3 − c3) · x3w + d2(c3 − a3) · y3w + d2(a3 − b3) · z3w
+ a2(c3 − b3) · xw3 + b2(a3 − c3) · yw3 + c2(b3 − a3) · zw3 (9)

satisfies the assertion. �	
As before, the equation in (9) can be viewed as a quintic polynomial QS in

variables a, b, s, d. Let S = (x : y : z : w), then we have

QS(a : b : c : d) = y(w3 − z3) · a3b2 + x(z3 − w3) · a2b3 + z(y3 − w3) · a3c2
+ z(w3 − x3) · b3c2 + x(w3 − y3) · a2c3 + y(x3 − w3) · b2c3
+ w(z3 − y3) · a3d2 + w(x3 − z3) · b3d2 + w(y3 − x3) · c3d2
+ x(y3 − z3) · a2d3 + y(z3 − x3) · b2d3 + z(x3 − y3) · c2d3.

It can be checked by elementary computation that QS has a triple point at S.

4. Geometry of the unexpected quartic

It is well known that a quartic surface X in P
3 with a triple point is rational. (This

is easily seen by projecting X from the triple point.) More importantly, X is the
image of P2 under the rational mapping ϕ defined by the linear system of plane
quartics vanishing along a complete intersection 0-dimensional subscheme U of
length 12, see [12]. In this section, for X = QR , we identify the subscheme U and
the mappings explicitly.

We begin with the projection. Let π : P
3 ��� P

2 be the projection from
R = (a : b : c : d) onto the plane P2 with coordinates (p : q : r), which is defined
by

π : (x : y : z : w) 
→ (p : q : r) = (dz − cw : cy − bz : bx − ay).
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Let Li be the line joining R and Ri for i = 1, . . . , 4 (where the Ri are the points
from Theorem 1). By Bezout’s theorem, these lines are contained in QR . They get
contracted under π onto points Fi respectively, where

F1 = (0 : 0 : 1), F2 = (0 : −c : a), F3 = (−d : b : 0), F4 = (1 : 0 : 0).
Taking some generic sections of QR and their images in P2 we determine 4 points

B1 = (dc : −cb : ab), B2 = (dc : 0 : −ab),

B3 = (a2b2(c3 − d3) : a2d2(b3 − c3) : c2d2(a3 − b3)), B4 = (0 : 1 : 0).
which will be additional assigned base points of the linear series of quartics that
we will consider. Let ΓR be the plane cubic given by the equation

ΓR(p : q : r) = bc2d(a3 − b3) · p2q + c2d2(a3 − b3) · pq2
+ a2bd(c3 − b3) · p2r + 2a2d2(c3 − b3) · pqr
+ a2b2(c3 − d3) · q2r + acd2(c3 − b3) · pr2 + ab2c(c3 − d3) · qr2

and let Δ be the plane quartic defined by the equation

ΔR(p : q : r) = a2bc2(a3 − b3)(c3 − d3) · pq2r
+ a2c2d(a3 − b3)(c3 − d3) · q3r
− ab2d2(a3 − c3)(b3 − c3) · p2r2 + b3cd(a3 − c3)(c3 − d3) · qr3
+ ad(c3 − d3)(a3b3 + a3c3 − 2b3c3) · q2r2 − bcd3(a3 − c3)(b3 − c3) · pr3
− ab(b3c6 − a3c6 + 2a3b3d3 − a3c3d3 − 3b3c3d3 + 2c6d3) · pqr2.

Let UR be the scheme-theoretic complete intersection of ΓR and ΔR . Then U has
length 12 and it is supported on the 8 points B1, . . . , B4 and F1, . . . , F4. The points
Bi for i = 1, . . . , 4 are reduced in U . The points Fi for i = 1, . . . , 4 support each
a structure of length 2. In these points the curves ΓR and ΔR are tangent to each
other.

The linear system |OP2(4)⊗IU | has (projective) dimension 3. It is spanned by
f0 = pΓR , f1 = qΓR , f2 = rΓR , and f3 = ΔR . In order to recover the original
coordinates of all points, it is however necessary to define ϕ = (g0 : g1 : g2 : g3) :
P
2 ��� P

3 in the following basis:

g0 = abc2(a3 − b3) f0 + 2ac2d(a3 − b3) f1 + d(a3b3 + 2a3c3 − 3b3c3) f2 − ab2 f3,

g1 = b2c2(a3 − b3) f0 + 2bc2d(a3 − b3) f1 + a2bd(b3 − c3) f2 − b3 f3,

g2 = bc3(a3 − b3) f0 − c3d(a3 − b3) f1 + a2cd(b3 − c3) f2 − b2c f3,

g3 = −2bc2d(a3 − b3) f0 − c2d2 f1 + a2d2(b3 − c3) f2 − b2d f3.

Note that the mapping ϕ contracts the cubic curve Γ to the triple point R.
All claims in this section can be in principle checked by tedious hand calcula-

tions. In order to allow a more convenient verification, we provide a Singular code
in [13].
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5. General geometric considerations

Cook et al. establish in [4, Prop. 5.10] amethod that allows to determine unexpected
curves from syzygies. We propose here a conjecture that generalizes their idea to
the surface case. To set it up, we need to generalize the notions ofmultiplicity index
and speciality index that were introduced in [4] for the case of P2.

Definition 1. Let Z be a reduced 0-dimensional subscheme of Pn . The multiplicity
index of Z is the number

mZ = min
{
j ∈ Z dim[IZ+ j P ] j+1 > 0

}
where P is a general point in Pn .

The speciality index uZ of Z is the least integer j such that, for a general
point P ∈ P

n , the scheme Z + j P imposes independent conditions on the system
|OPn ( j + 1)|, i.e., the smallest j such that

dim[IZ+ j P ] j+1 =
(
j + 1 + n

n

)
−

(
n − 1 + j

n

)
− |Z | .

Consider now a reduced scheme Z ⊂ P
3 of d points Pi . For each point Pi let 
i ∈

K[x, y, z, w] be a linear form defining the plane dual to Pi , and set f = 
1 · . . . ·
d .
Further, let 
 be a linear form defining a general plane in P3.

Conjecture 1. Assume that the characteristic of K does not divide |Z | and that
mZ ≤ uZ . Let

s0 fx + s1 fy + s2 fz + s3 fw + s4
 = 0

s′
0 fx + s′

1 fy + s′
2 fz + s′

3 fw + s′
4
 = 0

be linearly independent syzygies of least degree of the ideal

Jac( f ) + (
) = ( fx , fy, fz, fw, 
),

and consider the rational maps P3 ��� P
3 given as

σ = (s0 : s1 : s2 : s3) and σ ′ = (s′
0 : s′

1 : s′
2 : s′

3) .

Further, consider the rational map

Φ : P3 ��� (P3)∗

Q 
→ the plane through Q, σ(Q), σ ′(Q)

Then the image of the restriction of Φ to 
 is an unexpected surface for Z .

Remark 4. The conjecture above is supported by the following considerations:

(1) For each i , all points on the line 
∩ 
i are mapped to the point Pi (i.e., the line
goes through Z , as desired).
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Proof. Let Q be a point on 
∩ 
i . One shows first that σ(Q) ∈ 
i (this works as in
[4, Prop. 5.10]). But we also have σ ′(Q) ∈ 
i by the same argument. Thus, the three
points Q, σ(Q), σ ′(Q) all lie on 
i . By definition of Φ, this implies Φ(Q) = 
i . �	
(2) The points in 
 ∩ σ(
) ∩ σ ′(
) map to the general point P .

Proof. Let Q be a point in 
∩σ(
)∩σ ′(
). As above, we have then σ(Q) ∈ 
 and
σ ′(Q) ∈ 
. By definition of Φ it follows that Φ(Q) = 
. �	
To prove the conjecture, one would need to show:

(a) The image of Φ is a surface.
(b) Φ is undefined only in certain points of the lines 
∩
i . (This would follow from

the following condition: For every point Q on 
, the points σ(Q) and σ ′(Q)

are not collinear. In other words, the syzygy vectors (s0, s1, s2) and (s′
0, s

′
2, s

′
2)

are linearly independent in all points of 
.)
(c) The multiplicity of the point P in (2) is high enough.

Acknowledgements. This research has been initiated while the three last authors visited the
University of Marburg. It is a pleasure to thank the Department of Mathematics in Marburg
for hospitality and István Heckenberger and Volkmar Welker for helpful conversations.

Open Access This article is distributed under the terms of the Creative Commons Attribu-
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

References

[1] Alexander, J., Hirschowitz, A.: Polynomial interpolation in several variables. J. Alge-
braic Geom. 4(2), 201–222 (1995)

[2] Alexander, J., Hirschowitz, A.: An asymptotic vanishing theorem for generic unions of
multiple points. Invent. Math. 140(2), 303–325 (2000)

[3] Ciliberto, C.: Geometric aspects of polynomial interpolation in more variables and of
Waring’s problem. In: European Congress of Mathematics, Vol. I (Barcelona, 2000),
Progress in Mathematics, vol. 201, pp. 289–316. Birkhäuser, Basel (2001)

[4] Cook II, D., Harbourne, B., Migliore, J., Nagel, U.: Line arrangements and configura-
tions of pointswith an unusual geometric property. Compos.Math. 154(10), 2150–2194
(2018)

[5] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 4-1-0—a computer
algebra system for polynomial computations. http://www.singular.uni-kl.de. Accessed
15 Nov 2018 (2016)

[6] Di Gennaro, R., Ilardi, G., Vallès, J.: Singular hypersurfaces characterizing the Lef-
schetz properties. J. Lond. Math. Soc. (2) 89(1), 194–212 (2014)

[7] Dimca, A.: Curve arrangements, pencils, and Jacobian syzygies. Mich. Math. J. 66,
347–365 (2017)

[8] Emsalem, J., Iarrobino, A.: Inverse system of a symbolic power. I. J. Algebra 174(3),
1080–1090 (1995)

http://creativecommons.org/licenses/by/4.0/
http://www.singular.uni-kl.de


292 T. Bauer et al.

[9] Farnik, Ł., Galuppi, F., Sodomaco, L., Trok, W.: On the unique unexpected quartic in
P
2. arXiv:1804.03590

[10] Harbourne, B.: Asymptotics of linear systems, with connections to line arrangements.
Banach Center Publications Banach. Cent. Publ. 116, 87–135 (2018)

[11] Laface, A., Ugaglia, L.: On a class of special linear systems of P3. Trans. Am. Math.
Soc. 358(12), 5485–5500 (2006)

[12] Rohn, K.: Ueber die Flächen vierter Ordnungmit dreifachemPunkte.Math. Ann. 24(1),
55–151 (1884)

[13] Singular script. http://szpond.up.krakow.pl/quartic. Accessed 15 Nov 2018
[14] Szpond, J.: Unexpected hypersurfaces with multiple fat points (in preparation)

http://arxiv.org/abs/1804.03590
http://szpond.up.krakow.pl/quartic

	Quartic unexpected curves and surfaces
	Abstract.
	1 Introduction
	2 Plane quartics with nine base points and a general triple point
	3 Quartic surfaces with 31 base points and a general triple point
	4 Geometry of the unexpected quartic
	5 General geometric considerations
	Acknowledgements.
	References




