

Le Xuan Dung · Le Tuan Hoa

Erratum to: Dependence of Hilbert coefficients

Published online: 15 September 2017

Erratum to: manuscripta math. 149, 235-249 (2016) DOI 10.1007/s00229-015-0762-6

Unfortunately, there was a gap in the proof of Proposition 2.3, and we have to delete it. Keeping the notation in [2], then the proof of Proposition 2.3 only gives the following result.

Proposition A. Assume that $y_1, \ldots, y_d \in R_1$ is an *E*-filter-regular sequence of *R*, that is, $[0:_{E/(y_1,...,y_{i-1})E} y_i]_n = 0$ for all $n \gg 0$. Put $B^* = \ell_{R_0}(E/(y_1,...,y_d)E)$. Then, $|e_i(E)| \leq B^* (\operatorname{reg}^1(E) + 1)^i$, for all $1 \leq i \leq d - 1$.

These inequalities could be useful elsewhere. For the local case, we can only prove

Proposition B. Let $x_1, \ldots, x_d \in I$ be an M-superficial sequence for I and B = $\ell(M/(x_1, \ldots, x_d)M)$. Then, $|e_i(\mathbb{M})| < B(2 \operatorname{reg}(G(\mathbb{M})) + 2)^i$ for all 1 < i < d.

Proof. We do induction on d. Let $a = \operatorname{reg}(G(\mathbb{M}))$ and $e_i = e_i(\mathbb{M})$. By [2, Lemma 1.5],

$$H_{\mathbb{M}}(a) = P_{\mathbb{M}}(a) = \sum_{i=0}^{d} (-1)^{i} e_{i} \binom{a+d-i}{d-i}.$$

By [1, Lemma 1.7],

$$H_{\mathbb{M}}(a) = \ell(M/M_{a+1}) \le \ell(M/I^{a+1}M) \le B\binom{a+d}{d}.$$

Note that $\binom{a+j}{j} \leq (a+1)^j$ and $e_0 = e_0(I, M) \leq B$. If d = 1, then

$$|e_1| = |H_{\mathbb{M}}(a) - e_0(a+1)| \le \max\{B(a+1), e_0(a+1)\} = B(a+1).$$

The online version of the original article can be found under doi:10.1007/S00229-015-0762-6

L. X. Dung: Department of Natural Science, Hong Duc University, 307 Le Lai, Thanh Hoa, Vietnam. e-mail: lxdung27@gmail.com

L. T. Hoa (🖂): Institute of Mathematics Hanoi (VAST), 18 Hoang Quoc Viet, Hanoi 10307, Vietnam. e-mail: lthoa@math.ac.vn

Let $d \ge 2$. First, we prove the statement for $0 < i \le d - 1$. Assume that depth(M) > 0. Then, dim $(M/x_1M) = d - 1$, and by [3, Proposition 1.2], $e_i(\mathbb{M}) = e_i(\mathbb{M}/x_1M)$ for all $i \le d - 1$. By [2, Lemma 1.9], reg $(\mathbb{M}/x_1M) \le a$. Hence, by the induction hypothesis applied to \mathbb{M}/x_1M and the sequence x_2, \ldots, x_d , we get

$$|e_i(\mathbb{M})| < B(2 \operatorname{reg}(G(\mathbb{M}/x_1M)) + 2)^i \leq B(2a+2)^i.$$

We now assume that depth(M) = 0. Let $\overline{M} = M/H_{\mathfrak{m}}^{0}(M)$ and $\overline{\mathbb{M}} = \mathbb{M}/H_{\mathfrak{m}}^{0}(M)$. Note that $e_{i}\mathbb{M}$) = $e_{i}(\overline{\mathbb{M}})$ for all $i \leq d-1$ and $\ell(\overline{M}/(x_{1}, \ldots, x_{d})\overline{M}) \leq B$. In the proof of [1, Lemma 1.9], it was shown that there is an exact sequence

$$0 \to K \to G(\mathbb{M}) \to G(\overline{\mathbb{M}}) \to 0$$

where K has a finite length. Hence, $\operatorname{reg}(G(\overline{\mathbb{M}})) \leq \operatorname{reg} G(M) = a$, and

$$|e_i(\mathbb{M})| = e_i(\overline{\mathbb{M}}) < \ell(\overline{M}/(x_1, \dots, x_d)\overline{M})(2\operatorname{reg}(G(\overline{\mathbb{M}})) + 2)^i \le B(2a+2)^i.$$

Finally, we have

$$\begin{aligned} |e_d| &\leq H_{\mathbb{M}}(a) + \sum_{i=0}^{d-1} |e_i| {a+d-i \choose d-i} \\ &< B{a+d \choose d} + B \sum_{i=0}^{d-1} 2^i (a+1)^i {a+d-i \choose d-i} \\ &\leq B(a+1)^d + B \sum_{i=0}^{d-1} 2^i (a+1)^i (a+1)^{d-i} \\ &= B 2^d (a+1)^d. \end{aligned}$$

Using Proposition B instead of Proposition 2.3 in the proof of [2, Theorem 2.4], we can still derive the same bound, because there we used a very rough estimation $d + 1 < \omega^{d+1}$, and now instead of it, we only need to use the estimation $2^d \le \omega^d$. Also note that there were some misprints in establishing the inequality (8) in the proof of [2, Theorem 2.4], but the inequality is correct.

References

- Dung, L.X., Hoa, L.T.: Castelnuovo–Mumford regularity of associated graded modules and fiber cones of filtered modules. Commun. Algebra 40, 404–422 (2012)
- [2] Dung, L.X., Hoa, L.T.: Dependence of Hilbert coefficients. manuscripta math. 149, 235–249 (2016)
- [3] Rossi, M.E., Valla, G.: Hilbert functions of filtered modules. In: Lecture Notes of the Unione Matematica Italiana, vol. 9. Springer, Heidelberg (2010)