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Abstract. Let G be a transitive permutation group on a finite set of size at least 2. By
a well known theorem of Fein, Kantor and Schacher, G contains a derangement of prime
power order. In this paper, we study the finite primitive permutation groups with the extremal
property that the order of every derangement is an r -power, for some fixed prime r . First we
show that these groups are either almost simple or affine, and we determine all the almost
simple groupswith this property.We also prove that an affine groupG has this property if and
only if every two-point stabilizer is an r -group. Here the structure of G has been extensively
studied in work of Guralnick and Wiegand on the multiplicative structure of Galois field
extensions, and in later work of Fleischmann, Lempken and Tiep on r ′-semiregular pairs.

1. Introduction

Let G be a transitive permutation group on a finite set � of size at least 2. An
element x ∈ G is a derangement if it acts fixed-point-freely on �. An easy appli-
cation of the orbit-counting lemma shows that G contains derangements (this is
originally a classical theorem of Jordan [36]), and we will write �(G) for the set
of derangements in G. Note that if H is a point stabilizer, then x is a derangement
if and only if xG ∩ H is empty, where xG denotes the conjugacy class of x in G,
so we have

�(G) = G\
⋃

g∈G
Hg. (1)

The existence of derangements in transitive permutation groups has interesting
applications in number theory and topology (see Serre’s article [48], for example).

Various extensions of Jordan’s theorem on the existence of derangements have
been studied in recent years. For example, if δ(G) = |�(G)|/|G| denotes the
proportion of derangements in G, then a theorem of Cameron and Cohen [13]
states that δ(G) � |�|−1, with equality if and only if G is sharply 2-transitive.
More recently, Fulman and Guralnick have established the existence of an absolute
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constant ε > 0 such that δ(G) > ε for any simple transitive group G (see [21–24]).
This latter result confirms a conjecture of Boston et al. [4] and Shalev.

The study of derangements with special properties has been another major
theme in recent years. By a theorem of Fein et al. [18], �(G) contains an element
of prime power order (their proof requires the classification of finite simple groups),
and this result has important number-theoretic applications. For instance, it implies
that the relative Brauer group of any finite extension of global fields is infinite. In
most cases,�(G) contains an element of prime order, but there are some exceptions,
such as the 3-transitive action of the smallest Mathieu group M11 on 12 points. The
transitive permutation groups with this property are called elusive groups, and they
have been investigated by many authors; see [14,26,27], for example.

In this paper, we are interested in the permutation groups with the special
property that every derangement is an r -element (that is, has order a power of r ) for
some fixed prime r . One of our main motivations stems from a theorem of Isaacs
et al. [35], which describes the finite transitive groups in which every derangement
is an involution; by [35, Theorem A], such a group is either an elementary abelian
2-group, or a Frobenius group with kernel an elementary abelian 2-group. In [9],
this result is used to classify the finite groups whose irreducible characters vanish
only on involutions. It is natural to consider the analogous problem for odd primes,
and more generally for prime powers. As noted in [35], it is easy to see that such
a generalization will involve a wider range of examples. For instance, if p is an
odd prime then every derangement in the affine group ASL2(p) = SL2(p):p2 (of
degree p2) has order p (if p = 2, the derangements have order 2 or 4).

Our first result is a reduction theorem.

Theorem 1. Let G be a finite primitive permutation group such that every derange-
ment in G is an r-element for some fixed prime r. Then G is either almost simple
or affine.

Our next result, Theorem 2 below, describes all the almost simple primitive
groups that arise in Theorem 1. Notice that in Table 1, we write P1 for a maximal
parabolic subgroup of L2(q) or L3(q), which can be defined as the stabilizer of a
1-dimensional subspace of the natural module (similarly, P2 is the stabilizer of a
2-dimensional subspace). In addition, we define

E(G) = {|x | : x ∈ �(G)}.
Theorem 2. Let G be a finite almost simple primitive permutation group with point
stabilizer H. Then every derangement in G is an r-element for some fixed prime r if
and only if (G, H, r) is one of the cases in Table 1. In particular, every derangement
has order r if and only if |E(G)| = 1.

Remark 3. Let us make a couple of comments on the cases arising in Table 1.

(i) Firstly, notice that the groupG is recorded up to isomorphism. For example, the
case (G, H) = (A6, (S3 �S2)∩A6) is listed as (L2(9),P1), (G, H) = (A5,A4)

appears as (L2(4),P1), and we record (G, H) = (L2(7),S4) as (L3(2),P1),
etc.



Derangements of prime power order 257

Table 1. The cases (G, H, r) in Theorem 2

G H r E(G) Conditions
L3(q) P1, P2 r r q2 + q + 1 = (3, q − 1)r

r r, r2 q2 + q + 1 = 3r2

�L2(q) NG(D2(q+1)) r r r = q − 1 Mersenne prime
�L2(8) NG(P1),NG(D14) 3 3,9
PGL2(q) NG(P1) 2 2i , 1 � i � e + 1 q = 2e+1 − 1 Mersenne prime
L2(q) P1 r r i , 1 � i � e q = 2re − 1

P1,D2(q−1) r r r = q + 1 Fermat prime
D2(q+1) r r r = q − 1 Mersenne prime

L2(8) P1,D14 3 3,9
M11 L2(11) 2 4,8

(ii) In the first two rows of the table we have G = L3(q) and H = P1 or P2. Here
q2 + q + 1 ∈ {r, 3r, 3r2}, which implies that either q = 4, or q = p f for a
prime p and f is a 3-power (see Lemma 2.9).

Now let us turn our attention to the affine groups that arise in Theorem1. In order
to state Theorem 4 below, we need to introduce some additional terminology. Let
F be a field and let V be a finite dimensional vector space over F. Let H � GL(V )

be a finite group and let r be a prime. Recall that x ∈ H is an r ′-element if the
order of x is indivisible by r . Following Fleischmann et al. [19], the pair (H, V ) is
said to be r ′-semiregular if every nontrivial r ′-element of H has no fixed points on
V \{0} (equivalently, no nontrivial r ′-element of H has eigenvalue 1 on V ).

Theorem 4. Let G = HV � AGL(V ) be a finite affine primitive permutation
group with point stabilizer H = G0 and socle V = (Zp)

k , where p is a prime and
k � 1. Then every derangement in G is an r-element for some fixed prime r if and
only if r = p and the pair (H, V ) is r ′-semiregular.

Let G = HV be an affine group as in Theorem 4 and notice that (H, V ) is r ′-
semiregular if and only if every two-point stabilizer inG is an r -group. As a special
case, observe that if G is a Frobenius group then every two-point stabilizer is trivial
and it is clear that every derangement in G has order r . Therefore, it is natural to
focus our attention on the non-Frobenius affine groups arising in Theorem 4, which
correspond to r ′-semiregular pairs (H, V ) such that r divides |H |. In this situation,
Guralnick andWiegand [33, Section 4] obtain detailed information on the structure
of H , which they use to investigate the multiplicative structure of finite Galois field
extensions. Similar results were established in later work of Fleischmann et al. [19].
We refer the reader to the end of Sect. 5 for further details (see Propositions 5.4
and 5.5).

Transitive groups with the property in Theorem 1 arise naturally in several
different contexts. For instance, let us recall that the existence of a derangement of
prime power order in any finite transitive permutation group implies that the relative
Brauer group B(L/K ) of any finite extension L/K of global fields is infinite. More
precisely, let L = K (α) be a separable extension of K , let E be a Galois closure of
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L over K , and let� be the set of roots in E of the minimal polynomial of α over K .
Then the r -primary component B(L/K )r is infinite if and only if the Galois group
Gal(E/K ) contains a derangement of r -power order on � (see [18, Corollary 3]).
In this situation, it follows that the relative Brauer group B(L/K ) has a unique
infinite primary component if and only if every derangement in Gal(E/K ) is an
r -element for some fixed prime r .

In a different direction, our property arises in the study of permutation groups
with bounded movement. To see the connection, let G � Sym(�) be a transitive
permutation group of degree n and set

m = max{|�x \�| : � ⊆ �, x ∈ G} ∈ N,

where �x = {γ x : γ ∈ �}. Following Praeger [47], we say that G has movement
m. If G is not a 2-group and n = �2mp/(p − 1)�, where p � 5 is the least odd
prime dividing |G|, then p divides n and every derangement in G has order p (see
[34, Proposition 4.4]). Moreover, the structure of these groups is described in [34,
Theorem 1.2].

Some additional related results are established byMann and Praeger in [43]. For
instance, [43, Proposition 2] states that if G is a transitive p-group, where p = 2
or 3, then every derangement in G has order p only if G has exponent p. It is still
not known whether or not the same conclusion holds for any prime p (see [43, p.
905]), although [34, Proposition 6.1] does show that the exponent of such a group
is bounded in terms of p only.

Remark 5. Let G = HV � AGL(V ) be a finite affine primitive permutation group
as above, and assume that every derangement in G is an r -element for some fixed
prime r . Let P be a Sylow r -subgroup of G and set K = H ∩ P . As explained in
Proposition 5.6, P is a transitive permutation group on P/K with E(G) = E(P),
so E(G) = {r} if and only if E(P) = {r}, and we will show that E(P) = {r} if and
only if P has exponent r (see Theorem 5.7).

There is also a connection between our property and 2-coverings of abstract
groups. First notice that Jordan’s theorem on the existence of derangements is
equivalent to the well known fact that no finite group G can be expressed as the
union of G-conjugates of a proper subgroup (see (1)). However, it may be possible
to express G as the union of the G-conjugates of two proper subgroups; if H and
K are proper subgroups such that

G =
⋃

g∈G
Hg ∪

⋃

g∈G
K g,

then G is said to be 2-coverable and the pair (H, K ) is a 2-covering for G. This
notion has been widely studied in the context of finite simple groups. For instance,
Bubboloni [8] proves that An is 2-coverable if and only if 5 � n � 8, and similarly
Ln(q) is 2-coverable if and only if 2 � n � 4 (see [10]). We refer the reader to [11]
and [46] for further results in this direction. The connection between 2-coverable
groups and the property in Theorem 1 is transparent. Indeed, if G is a transitive
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permutation group with point stabilizer H , then every derangement in G is an r -
element (for some fixed prime r ) if and only if (H, K ) is a 2-covering for G, where
K is a Sylow r -subgroup of G.

Finally, some words on the organisation of this paper. In Sect. 2 we record
several preliminary results that we will need in the proofs of our main theorems.
The proof of Theorem1 is given in Sect. 3, and the almost simple groups are handled
in Sect. 4, where we prove Theorem 2. Finally, in Sect. 5 we turn to affine groups
and we establish Theorem 4.
Notation Our group-theoretic notation is standard, and we adopt the notation of
Kleidman and Liebeck [38] for simple groups. For instance,

PSLn(q) = L+
n (q) = Ln(q), PSUn(q) = L−

n (q) = Un(q).

If G is a simple orthogonal group, then we write G = P�ε
n(q), where ε = +

(respectively −) if n is even and G has Witt defect 0 (respectively 1), and ε = ◦
if n is odd (in the latter case, we also write G = �n(q)). Following [38], we
will sometimes refer to the type of a subgroup H , which provides an approximate
description of the group-theoretic structure of H .

For integers a and b, we use (a, b) to denote the greatest common divisor of a
and b. If p is a prime number, then we write a = ap · ap′ , where ap is the largest
power of p dividing a. Finally, if X is a finite set, then π(X) denotes the set of
prime divisors of |X |.

2. Preliminaries

In this section we record several preliminary results that will be useful in the proofs
of our main theorems. Let H be a proper subgroup of a finite group G and set

�H (G) = G\
⋃

g∈G
Hg.

Notice that if G is a transitive permutation group with point stabilizer H , then
�(G) = �H (G) is the set of derangements in G (see (1)).

It will be convenient to define the following property:

Every element in �H (G) is an r - element for some fixed prime r. (
)

Lemma 2.1. Let H be a proper subgroup of a finite group G. If (
) holds, then

(i) π(G) = π(H) ∪ {r}; and
(ii) CG(x) is an r-group for every x ∈ �H (G).

Proof. If s ∈ π(G)\π(H), then�H (G) contains an s-element, so (i) follows. Now
consider (ii). Let x ∈ �H (G) and assume s �= r is a prime divisor of |CG(x)|. Let
y ∈ CG(x) with |y| = s and let z = xy = yx , so zs = xs and 〈x〉 � 〈z〉. Then
z ∈ �H (G), but this is incompatible with property (
). ��
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Lemma 2.2. Let H be a proper subgroup of a finite group G, let N be a normal
subgroup of G such that G = NH, and let K be a proper subgroup of N containing
H ∩ N. Then �K (N ) ⊆ �H (G).

Proof. Let x ∈ �K (N ) and assume that x �∈ �H (G). Then xg ∈ H for some
g ∈ G. Since g ∈ G = NH , we may write g = nh for some n ∈ N and h ∈ H .
Then xg = (xn)h ∈ H which implies that xn ∈ Hh−1 = H . Since both x and
n are in N , we deduce that xn ∈ H ∩ N � K , contradicting the fact that x ∈
�K (N ). ��
Remark 2.3. Recall that the prime graph (or Gruenberg–Kegel graph) of a finite
group G is the graph �(G) with vertex set π(G) and the property that two distinct
vertices p and q are adjacent if and only ifG contains an element of order pq. Now,
a transitive permutation group G with point stabilizer H has property (
) only if
one of the following holds:

(a) r is an isolated vertex in �(G);
(b) π(G) = π(H).

The finite simple groups with a disconnected prime graph are recorded in [39,
Tables 1–3], and a similar analysis for almost simple groups is given in [41,42].
In particular, one could use these results to study the almost simple permutation
groups for which (a) holds. Similarly, if G is almost simple and (b) holds, then the
possibilities for G and H can be read off from [40, Corollary 5]. However, this is
not the approach that we will pursue in this paper.

The next result is a special case of [31, Lemma 3.3].

Lemma 2.4. Let G be a finite permutation group and let N be a transitive normal
subgroup of G such that G/N = 〈Ng〉 is cyclic. Then Ng ∩ �(G) is empty if and
only if every element of Ng has a unique fixed point.

We will also need several number-theoretic lemmas. Given a positive integer
n we write n2 for the largest power of 2 dividing n. In addition, recall that (a, b)
denotes the greatest common divisor of the positive integers a and b. The following
result is well known.

Lemma 2.5. Let q � 2 be an integer. For all integers n,m � 1 we have

(qn − 1, qm − 1) = q(n,m) − 1

(qn − 1, qm + 1) =
{
q(n,m) + 1 if 2m2 � n2
(2, q − 1) otherwise

(qn + 1, qm + 1) =
{
q(n,m) + 1 if m2 = n2
(2, q − 1) otherwise

Let q = p f be a prime power, let e � 2 be an integer and let r be a prime
dividing qe − 1. We say that r is a primitive prime divisor (ppd for short) of qe − 1
if r does not divide qi −1 for all 1 � i < e. A classical theorem of Zsigmondy [53]
states that if e � 3 then qe − 1 has a primitive prime divisor unless (q, e) = (2, 6).
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Primitive prime divisors also exist when e = 2, provided q is not aMersenne prime.
Note that if r is a ppd of qe −1 then r ≡ 1 (mod e). Also note that if n is a positive
integer, then r divides qn − 1 if and only if e divides n. If a pdd of qe − 1 exists,
then we will write �e(q) to denote the largest pdd of qe − 1. Note that �e(q) > e.

Lemma 2.6. Let r, s be primes, and let m, n be positive integers. If rm + 1 = sn,
then one of the following holds:

(i) (r, s,m, n) = (2, 3, 3, 2);
(ii) (r, n) = (2, 1), m is a 2-power and s = 2m + 1 is a Fermat prime;
(iii) (s,m) = (2, 1), n is a prime and r = 2n − 1 is a Mersenne prime.

Proof. This is a straightforward application of Zsigmondy’s theorem [53]. For
completeness, we will give the details.

First assume that m = 1, so r = sn − 1 is a prime. If s is odd, then r is even, so
r = 2 and sn = 3, which implies that n = 1 and s = 3. This case appears in (ii).
Now assume s = 2, so r = 2n − 1 is prime. It follows that n must also be a prime
and thus r is a Mersenne prime. This is (iii).

For the remainder,wemay assume thatm � 2.Notice that r2m−1 = sn(rm−1).
If (m, r) = (3, 2), then sn = 23 + 1 = 32 and thus (s, n) = (3, 2) as in (i). Now
assume that (m, r) �= (3, 2). By Zsigmondy’s theorem [53], the ppd �2m(r) exists
and divides r2m − 1 = sn(rm − 1), but not rm − 1, hence s = �2m(r) > 2m � 4.
Therefore s � 5 is an odd prime and rm = sn − 1 is even, so r = 2. We now
consider three cases.

If n = 1, then s = rm + 1 = 2m + 1 is an odd prime, which implies that m is a
2-power as in case (ii). Next assume that n = 2. Here 2m = s2−1 = (s−1)(s+1)
and thus s − 1 = 2a and s + 1 = 2b for some positive integers a and b. Then
2b − 2a = (s + 1) − (s − 1) = 2 and thus 2b−1 = 2a−1 + 1, which implies that
(a, b) = (1, 2), so s = 3 and thus m = 3. Therefore, (r, s,m, n) = (2, 3, 3, 2) as
in case (i). Finally, let us assume that n � 3. Now 2m = sn − 1 and Zsigmondy’s
theorem implies that the ppd �n(s) > n � 3 exists and divides 2m , which is
absurd. ��
Lemma 2.7. Let q be a prime power and let (a, ε), (b, δ) ∈ N × {±1}, where
b > a � 2 and (a, ε) �= (2,−1). Let N = (qa + ε)(qb + δ). Then one of the
following holds:

(i) N has two distinct prime divisors that do not divide q2 − 1;
(ii) (a, ε) = (2, 1), (b, δ) = (4,−1) and q2 + 1 = (2, q − 1)re for some prime

r and positive integer e;
(iii) q = 3, (a, ε) = (2, 1) and (b, δ) = (3, 1);
(iv) q = 2, (a, ε) = (3, 1) and 2b + δ is divisible by at most two distinct primes,

one of which is 3;
(v) q = 2, a = 3 and (b, δ) = (6,−1).

Proof. There are four cases to consider, according to the possibilities for the pair
(ε, δ).

First assume that (ε, δ) = (1, 1). Suppose that neither (a, q) nor (b, q) is equal
to (3, 2). Then the primitive prime divisors �2a(q) and �2b(q) exist, and they both
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Table 2. The integers N in Lemma 2.8

N (ε, q)

(q6 − 1)/(7, q − ε) none
(q6 − 1)/(q − ε)(6, q − ε) (−, 2)
(q5 − ε)/(6, q − ε) (+, 2), (+, 3), (+, 7), (−, 2), (−, 5)
(q4 − 1)/(5, q − ε) none
(q4 − 1)/(q − ε)(4, q − ε) (−, 2), (−, 3)
(q3 − ε)/(4, q − ε) (+, 2), (+, 3), (+, 5), (−, 2), (−, 3)
(q3 − 1)(q + 1)/(5, q − ε) none

divide N . Moreover, these primes are distinct since 2a < 2b, and neither of them
divides q2 − 1 since 2b > 2a � 4. If (a, q) = (3, 2) then b � 4, N = 32(2b + 1)
and either (i) or (iv) holds. If (b, q) = (3, 2), then a = 2, N = 32 ·5 and (iii) holds.

Next suppose that (ε, δ) = (−1,−1), so a � 3. If neither (a, q) nor (b, q) is
equal to (6, 2), then N is divisible by the distinct primes �a(q) and �b(q), neither
of which divide q2 − 1. If (a, q) = (6, 2), then N = 32 · 7(2b − 1) is divisible by
7 and �b(2) > b � 7. Finally, suppose that (b, q) = (6, 2), so N = 32 · 7(2a − 1)
and 3 � a � 5. It is easy to check that (i) holds if a = 4 or 5, and that (v) holds if
a = 3.

Now assume that (ε, δ) = (1,−1). If (a, q) = (3, 2) then (i) or (iv) holds, so
we may assume that (a, q) �= (3, 2). If (b, q) = (6, 2) then N = 32 · 7(2a + 1),
a ∈ {2, 4, 5} and (i) holds. In each of the remaining cases, the primitive prime
divisors �2a(q) and �b(q) exist, and they divide N , but not q2−1. Clearly, if b �= 2a
then these two primes are distinct and (i) holds, so let us assume that b = 2a, so
N = (qa + 1)2(qa − 1). If (a, q) = (6, 2) then (i) holds. If (a, q) �= (6, 2) and
a � 3 then we can take the primitive prime divisors �a(q) and �2a(q), so once
again (i) holds. Finally, if a = 2 and b = 4 then N = (q2 − 1)(q2 + 1)2 and either
(i) or (ii) holds.

Finally, let us assume that (ε, δ) = (−1, 1). Here we may assume that a � 3.
If (a, q) �= (6, 2) then take �a(q) and �2b(q), otherwise N = 32 · 7(2b + 1) is
divisible by 7 and �2b(2). In both cases, (i) holds. ��
Lemma 2.8. Let q be a prime power and let N be one of the integers in Table 2,
where ε = ±1. Then N is a prime power if and only if (ε, q) is one of the cases
recorded in the second column of the table.

Proof. This is entirely straightforward. For example, suppose that N = (q5 −
1)/(6, q − 1). Let d = (6, q − 1) and suppose that N = re for some prime number
r and positive integer e. Then r = �5(q) and

(q − 1)(q4 + q3 + q2 + q + 1) = dre.

Since r does not divide q−1, we must have q−1 = d and thus q−1 ∈ {1, 2, 3, 6}.
If q = 4 then N = 341 = 11 · 31 is not a prime power, but one checks that N is a
prime power if q ∈ {2, 3, 7}. The other cases are very similar. ��

Wewill also need the following result, which follows from a theorem of Nagell
[44].
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Lemma 2.9. Let q = p f be a prime power and let r be a prime.

(i) If e is a positive integer such that q2 + q + 1 = re, then q �≡ 1 (mod 3) and
e = 1.

(ii) If e is a positive integer such that q2 + q + 1 = 3re, then q ≡ 1 (mod 3) and
e ∈ {1, 2}.

(iii) If q2+q+1 = (3, q−1)re for some positive integer e, then either (q, r, e) =
(4, 7, 1), or f = 3a for some integer a � 0.

Proof. Parts (i) and (ii) follow from [44]. For (iii), let d = (3, q − 1) and write
f = 3am with (3,m) = 1 and a � 0. We may assume that q �= 4. Seeking a
contradiction, suppose that m > 1. Notice that

re = p3
a+1m − 1

d(p3am − 1)
.

Since q �= 4, the ppd �3 f (p) exists and divides q2 + q + 1, so r = �3 f (p). Let
s = �3a+1(p). Since f = 3am is indivisible by 3a+1, it follows that (s, q − 1) = 1,
so s does not divide d(q − 1) and thus s divides re, so r = s. But m > 1, so
3 f > 3a+1 and thus r �= s. This is a contradiction and the result follows. ��
Remark 2.10. By a theorem of van der Waall [50], the Diophantine equation x2 +
x + 1 = 3y2 has infinitely many integer solutions; the smallest nontrivial solution
is (x, y) = (313, 181). Here x and y are both primes, and another solution in the
primes is (x, y) = (2288805793, 1321442641).

3. A reduction theorem

The following theorem reduces the study of primitive permutation groups with
property (
) to almost simple and affine groups.

Theorem 3.1. Let G � Sym(�) be a primitive permutation group with point sta-
bilizer H. If (
) holds, then either

(i) G is almost simple; or
(ii) G = HN is an affine group with socle N ∼= (Zr )

k for some integer k � 1.

Moreover, if (ii) holds and |H | is indivisible by r , then G is a Frobenius group with
kernel N and complement H.

Proof. Let N be a minimal normal subgroup of G, so N ∼= S1 × S2 × · · · × Sk ,
where Si ∼= S for some simple group S and integer k � 1. Then G = HN and N
is transitive on �. Let us assume that (
) holds.

First assume that H ∩ N = 1, so N is regular and every nontrivial element in
N is a derangement. If N is abelian, then we are in case (ii). Moreover, if |H | is
indivisible by r , then N is a Sylow r -subgroup of G and thus �(G) ⊆ N . In this
situation, [12, Lemma 4.1] implies that G is a Frobenius group with kernel N and
complement H . Now, if N is nonabelian then S is a nonabelian simple group and
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thus |S| is divisible by at least three distinct primes, whence S (and thus N ) contains
derangements of distinct prime orders, which is incompatible with property (
).

For the remainder, we may assume that H ∩ N is nontrivial. It follows that
N ∼= Sk , where S is a nonabelian simple group and k � 1. If k = 1, then G is
almost simple and (i) holds. Therefore, we may assume that k � 2.

Let T � N be a maximal subgroup of N containing H ∩ N . By Lemma 2.2,
we have �T (N ) ⊆ �H (G). Since k � 2, there exist integers i and j such that
1 � i < j � k and L := Si × S j �� T . By relabelling the S�, if necessary, we may
assume that L = S1 × S2. Now L � N , so N = T L and thus

�K (L) ⊆ �T (N ) ⊆ �H (G) = �(G), (2)

where K is a maximal subgroup of L containing L ∩ T . Therefore, every derange-
ment of L = S1 × S2 on the right cosets L/K is an r -element.

By [49, Lemma 1.3], there are essentially two possibilities for K ; either K
is a diagonal subgroup of the form {(s, φ(s)) : s ∈ S1} for some isomorphism
φ : S1 → S2, or K is a standard maximal subgroup, i.e., K = S1 × K2 or
K1 × S2, where Ki < Si is maximal. In the diagonal case, every element in L of
the form (s, 1) with 1 �= s ∈ S1 is a derangement on L/K . Clearly, this situation
cannot arise. Now assume K is a standard maximal subgroup. Without loss of
generality, we may assume that K = K1 × S2, where K1 is maximal in S1. Let
s ∈ S1 be a derangement on S1/K1 of prime power order, say pe for some prime
p and integer e � 1 (such an element exists by the main theorem of [18]). Since
|π(S)| � 3, choose t ∈ S2 of prime order different from p. Then (s, t) ∈ L is a
derangement on L/K of non-prime power order, so once again we have reached a
contradiction. ��

This completes the proof of Theorem 1.

4. Almost simple groups

In this section we prove Theorem 2. We fix the following notation. Let r be a prime
and let G � Sym(�) be an almost simple primitive permutation group with socle
G0 and point stabilizer H . Set H0 = H ∩ G0 and let M be a maximal subgroup
of G0 containing H0. As before, let �(G) be the set of derangements in G, and let
E(G) be the set of orders of elements in �(G). By Lemma 2.2, we have

�M (G0) ⊆ �H0(G0) ⊆ �H (G) = �(G). (3)

Recall that if X is a finite set, then π(X) denotes the set of prime divisors of |X |.
Let us assume that (
) holds, so every derangement in G is an r -element, for

some fixed prime r . Clearly, every derangement of G0 on � is also an r -element.
Now, if s ∈ π(G0)\π(M) then every nontrivial s-element in G0 is a derangement,
so π(G0) = π(M) or π(M) ∪ {r}. In particular, if we set π0 := π(G0)\π(M),
then |π0| � 1.
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4.1. Sporadic groups

Proposition 4.1. Theorem 2 holds if G0 is a sporadic group or the Tits group.

Proof. First assume that G0 is not the Monster. The maximal subgroups of G0 are
available in GAP [25], and it is easy to identify the cases (G0, M) with |π0| � 1.
For the reader’s convenience, the cases that arise are listed in Table 3. We now
consider each of these cases in turn. With the aid of GAP [25], we can compute
the permutation character χ = 1G0

M , noting that

�M (G0) = {x ∈ G0 : χ(x) = 0}.
In this way, we deduce that property (
) holds if and only if (G0, M) =
(M11,L2(11)). Here π(M) = π(G0), G = M11, H = L2(11) and E(G) = {4, 8}.
This case is recorded in Table 1.

Now assume G = M is the Monster. As noted in [6,45], there are 44 conju-
gacy classes of known maximal subgroups of M (these subgroups are conveniently
listed in [6, Table 1], together with L2(41)). Moreover, it is known that any addi-
tional maximal subgroup of M is almost simple with socle L2(13),U3(4),U3(8)
or 2B2(8). It is routine to check that |π0| � 2 in each of these cases. ��

4.2. Alternating groups

Proposition 4.2. Theorem 2 holds if G0 = An is an alternating group.

Proof. If n < 12 then the result can be checked directly using GAP [25]; the only
cases (G, H) with property (
) are the following:

(A6, 3
2:4), (A5,D10), (A5,A4), (A5,S3),

which are recorded in Table 1 as

(L2(9),P1), (L2(4),D10), (L2(4),P1), (L2(4),D6)

respectively (see Remark 3). For the remainder, we may assume that n � 12.
Seeking a contradiction, let us assume that there is a fixed prime r such that every
derangement in G is an r -element.

Let s be a prime such that n/2 < s < n − 2 and let x ∈ G0 be an s-cycle (such
a prime exists by Bertrand’s postulate). Since CG(x) is not an r -group, Lemma
2.1(ii) implies that x has fixed points and thus H contains s-cycles. By applying
a well known theorem of Jordan (see [52, Theorem 13.9]), we deduce that H is
either intransitive or imprimitive, and we can rule out the latter possibility since s
divides |H |. Therefore, H is the stabilizer of a k-set for some k with 1 < k < n/2.

Suppose n is even and let xi ∈ G0 be an element with cycles of length i
and n − i for i ∈ {3, 5, 7}. Then at least two of the xi are derangements, so
we have reached a contradiction. Now assume n is odd. An n-cycle does not fix
a k-set, so n must be an r -power. Therefore, any element with cycles of length
(n − 1)/2, (n − 1)/2 and 1 must fix a k-set (since its order is not an r -power),
so k = 1 or (n − 1)/2. It follows that any element with cycles of length 2, 3 and
n − 5 is a derangement, and this final contradiction completes the proof of the
proposition. ��
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Table 3.Maximal subgroups of sporadic simple groups, |π0| � 1

G0 M π0
M11 A6.23,S5 11

L2(11) −
M12 M11,L2(11) −

A6.22, 2 × S5 11
M22 A7,L3(4) 11

L2(11) 7
M23 M22 23
M24 M23 −

M22.2 23
J2 L3(2).2,U3(3) 5

3.A6.22, 21+4:A5,A4 × A5,A5 × D10, 52:D12,A5 7
J3 L2(16).2 19

L2(19) 17
Co1 3.Suz.2 23

Co2,Co3, 211:M24 13
Co2 M23 −

McL,HS.2,U6(2).2, 210:M22.2 23
Co3 M23 −

McL.2,HS 23
Fi22 2.U6(2), 210:M22 13

�7(3) 11
Fi′24 Fi23 29
HS M22 −

U3(5).2,L3(4).21, S8 11
M11 7

McL M22 −
U4(3),U3(5),L3(4).22, 2.A8, 24:A7 11
M11 7

Suz G2(4) 11
He Sp4(4).2 7

22.L3(4).S3, 3.S7 17
HN 2.HS.2,A12 19
O′N J1 31
Ru (22 × 2B2(8)):3 29

L2(29) 13
2F4(2)′ L2(25) −

L3(3).2 5
A6.22, 52:4A4 13

4.3. Exceptional groups

Now let us assume thatG0 is a simple exceptional group of Lie type over Fq , where
q = p f and p is a prime. For x ∈ G0, let M(x) be the set of maximal subgroups
of G0 containing x . We will write �i for the i th cyclotomic polynomial evaluated
at q, so qn − 1 = ∏

d|n �d . Recall that if e � 2 and qe − 1 has a primitive prime
divisor, then we use the notation �e(q) to denote the largest such divisor of qe − 1.
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Proposition 4.3. Theorem 2 holds if G0 is a simple exceptional group of Lie type.

Proof. Recall the notational set-up introduced at the beginning of Sect. 4: H is a
point stabilizer in G, and H0 = H ∩ G0. In view of (3), in order to show that (
)
does not hold we may assume that G = G0. Seeking a contradiction, suppose that
every derangement in G is an r -element, for some fixed prime r . We will consider
each possibility for G in turn.
Case 1 G = 2B2(q), with q = 22m+1 and m � 1.

Let �′
4 = q + √

2q + 1 and �′′
4 = q − √

2q + 1 (note that �′
4�

′′
4 = q2 + 1).

By inspecting [2, Table II], [29, Table 6] and [30, Table 1], we see that G has two
cyclic maximal tori Ti = 〈xi 〉, i = 1, 2, of order �′

4 and �′′
4, respectively, such

that |NG(Ti )/Ti | = 4, (|x1|, |x2|) = 1 and M(xi ) = {NG(Ti )}. Since no maximal
subgroup of G can contain conjugates of both x1 and x2, it follows that xGi ∩ H
is empty for some i = 1, 2. Therefore, xi ∈ �(G) and thus |xi | is a power of r .
Let j = 3 − i . Then |x j | is indivisible by r , so H contains a conjugate of x j and
thus H = NG(Tj ) is the only possibility (up to conjugacy). Now G has a cyclic
maximal torus of order q −1, so let x ∈ G be an element of order q −1 � 7. Since
|H | is indivisible by q − 1, it follows that x ∈ �(G). But r does not divide q − 1,
so we have reached a contradiction.
Case 2 G = 2G2(q), with q = 32m+1 and m � 1.

This is very similar to the previous case. Here we take two cyclic maximal
tori Ti = 〈xi 〉, i = 1, 2, of order �′

6 = q + √
3q + 1 and �′′

6 = q − √
3q + 1,

respectively, such that |NG(Ti )/Ti | = 6, (|x1|, |x2|) = 1 and M(xi ) = {NG(Ti )}.
Note that �′

6�
′′
6 = q2 − q + 1. By arguing as in Case 1, we deduce that |xi | is

a power of r and H = NG(Tj ) for some distinct i, j . Let x ∈ G be an element
of order 9 (see part (2) in the main theorem of [51], for example). Since |H | is
indivisible by 9, it follows that x is a derangement, but this is a contradiction since
r �= 3.
Case 3 G = 2F4(q), with q = 22m+1 and m � 1.

Again, we proceed as in Case 1. Here G has two cyclic maximal tori Ti = 〈xi 〉,
i = 1, 2, where

|T1| = �′
12 = q2 +

√
2q3 + q + √

2q + 1

|T2| = �′′
12 = q2 −

√
2q3 + q − √

2q + 1

and |NG(Ti )/Ti | = 12, (|x1|, |x2|) = 1 and M(xi ) = {NG(Ti )}. Note that
�′

12�
′′
12 = q4 − q2 + 1. As in Case 1, we see that |xi | is a power of r and

H = NG(Tj ) for some distinct i, j . Let x ∈ G be an element of order �4(q). Since
|H | is indivisible by �4(q), it follows that x ∈ �(G), but this is a contradiction
since r �= �4(q).
Case 4 G = E8(q).

Again, we can proceed as in the previous cases, working with cyclic maximal
tori T1, T2 and an element x ∈ G of order �24(q), where

|T1| = �15 = q8 − q7 + q5 − q4 + q3 − q + 1

|T2| = �30 = q8 + q7 − q5 − q4 − q3 + q + 1
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and |NG(Ti )/Ti | = 30, i = 1, 2. We omit the details (note that �24(q) ∈ π(G)\
π(NG(Ti ))).
Case 5 G = 3D4(q).

As indicated in [29, Table 6], G has a maximal torus T = 〈x〉 of order �12 =
q4 − q2 + 1 such that |NG(T )/T | = 4 and M(x) = {NG(T )}.

Suppose that x �∈ �(G). Then xG ∩ H is non-empty, and without loss of
generality we may assume that x ∈ H and thus H = NG(T ). If q = 2 then
|H | = 52 and |π(G)\π(H)| = 2, so we must have q > 2. Let yi ∈ G (i = 1, 2)
be elements of order �i := �mi (q) � 5, where m1 = 3 and m2 = 6. Since |H | is
indivisible by �1 and �2, it follows that y1, y2 ∈ �(G). But this is a contradiction
since �1, �2 are distinct primes.

Now assume that x ∈ �(G), so |x | = �12 is a power of r . If q = 2 then
r = 13 and H must contain elements of order 7, 8, 9, 14, 18, 21 and 28, but no
maximal subgroup ofG has this property (see [15], for example). Therefore, q > 2.
Following [30, p. 698], let y ∈ G be an element of order �3 such that |CG(y)|
divides �2

3 and

M(y) = {G2(q),PGL3(q), (�6 ◦ SL3(q)).2d,�2
3.SL2(3)},

whered = (3,�3).Now (�12,�3) = 1, so y �∈ �(G) and thuswemayassume that
H ∈ M(y). Let z ∈ G be an element of order �1�2�6 = (q2 − 1)(q2 − q + 1).
Then |H | is indivisible by |z|, so z ∈ �(G). But this is a contradiction since
(�12,�1�2�6) = 1.
Case 6 G = 2E6(q).

Let d = (3, q + 1). As indicated in [29, Table 6] and [30, Table 1], G has two
cyclic maximal tori Ti = 〈xi 〉, i = 1, 2, of order�18/d and�6�12/d, respectively.
Then (|x1|, |x2|) = 1 and

M(x1) = {SU3(q
3).3}, M(x2) =

{ {�6.
3D4(q).3/d} if q > 2

{�6.
3D4(2),F4(2),Fi22} if q = 2.

No maximal subgroup of G contains both x1 and x2 (see [40, Table 10.5]), so
xi ∈ �(G) for some i , and thus |xi | is a power of r .

First assume that q = 2, so |x1| = 19, |x2| = 13 and thus r ∈ {13, 19}. If
r = 13, then H contains a conjugate of x1, so H = SU3(8).3 is the only option, but
this is not possible since |π(G)\π(H)| = 4. Similarly, if r = 19 then H ∈ M(x2)
must contain elements of order 11, 13 and 17, but it is easy to check that this is not
the case.

Now assume that q > 2. Let x ∈ G be an element of order �10(q). Both
|SU3(q3).3| and |�6.

3D4(q).3/d| are indivisible by �10(q), so x ∈ �(G). However,
this is not possible since �10(q) and |xi | are coprime.
Case 7 G = G2(q), q � 3.

We can useGAP [25] to rule out the cases q � 5, so wemay assume that q � 7.
First assume that q = 7. By inspecting [29, Table 6] and [30, Table 1], we

see that G has two cyclic maximal tori Ti = 〈xi 〉, i = 1, 2, of order �6 = 43 and
�3 = 57, respectively, withM(x1) = {SU3(7).2} andM(x2) = {SL3(7).2}. From
[40, Table 10.5], it follows that xi ∈ �(G) for some i , so H contains a conjugate
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of x j , where j = 3 − i . Therefore, H = SLε
3(7).2 for some ε = ±. As noted in

[37, Table A.7], G contains elements of order 72 + 7 = 56 and 72 + 7 + 1 = 57.
Now SU3(7).2 contains no element of order 57, and SL3(7).2 has no element of
order 56. Therefore, G always contains a derangement of non-prime power order,
which is a contradiction.

For the remainder, we may assume that q > 7. We use the set-up in [17,
Section 5.7]. Choose a 4-tuple (k1, k2, k3, k6) such that (k1, k2) = 1, ki divides
�i for i ∈ {1, 2}, k3 = �3/(3,�3) and k6 = �6/(3,�6). Note that the numbers
k1, k2, k3 and k6 are pairwise coprime. Let y1 ∈ G be an element of order k6, and
fix a regular semisimple element y2 ∈ G of order k1. Similarly, fix zi ∈ G, i = 1, 2,
where |z1| = k3 and z2 is a regular semisimple element of order k2.

From [40, Table 10.5], it follows that either y1 or z1 is a derangement. Suppose
that y1 ∈ �(G). Then H contains a conjugate of z1, so [17, Lemma 5.27] implies
that H = SL3(q).2 is the only possibility. If H also contains a conjugate of z2, then
H = G by [17, Corollary 5.28], a contradiction. Therefore z2 ∈ �(G), but once
again we reach a contradiction since (k2, k6) = 1. An entirely similar argument
applies if z1 ∈ �(G).
Case 8 G ∈ {E6(q),E7(q)}.

First assume that G = E7(q). Let d = (2, q − 1). As in [17, Section 5.2], let
y1, y2 ∈ G be elements of order�18 and�2�14/d = (q7+1)/d, respectively, and
let z1, z2 ∈ G be elements of order �9 and �1�7/d = (q7 − 1)/d, respectively.
From [17, Corollary 5.6], we deduce that yi , z j ∈ �(G) for some i, j ∈ {1, 2}.
However, it is easy to check that (|yi |, |z j |) = 1 for all i, j , so this is a contradiction.

The caseG = E6(q) is entirely similar, using [17, Corollary 5.11] and elements
yi , zi ∈ G with |y1| = �9/d, |y2| = �4, |z1| = �3�12 and |z2| = �5 (where
d = (3, q − 1)).
Case 9 G = F4(q).

For q > 2, we can proceed as in Case 8, using the information in [17, Section
5.5]. The reader can check the details.

Now assume that q = 2. By inspecting [29, Table 6] and [30, Table 1], we
see that G has two cyclic maximal tori Ti = 〈xi 〉, i = 1, 2, of order �12 = 13
and �8 = 17, respectively, such that M(x1) = {3D4(2).3, 2F4(2),L4(3).22} and
M(x2) = {Sp8(2)}. Therefore, r ∈ {13, 17}. If r = 13, then H contains a conjugate
of x2, so H = Sp8(2). However, [15] indicates that G has an element of order 28,
but Sp8(2) does not, so this case is ruled out. Therefore, r = 17 and H contains a
conjugate of x1, so H ∈ M(x1). However, in each case one can check that H does
not contain an element of order 30, but G does. This final contradiction eliminates
the case G = F4(q).

This completes the proof of Proposition 4.3. ��

4.4. Classical groups

In order to complete the proof of Theorem 2, we may assume that G0 is a classical
group over Fq . Due to the existence of certain exceptional isomorphisms involving
low-dimensional classical groups (see [38, Proposition 2.9.1], for example), and in
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Table 4. Finite simple classical groups

G0 Conditions
Ln(q) n � 2, (n, q) �= (2, 2), (2, 3), (2, 4), (2, 5), (2, 9), (3, 2), (4, 2)
Un(q) n � 3, (n, q) �= (3, 2)
PSpn(q) n � 4 even, (n, q) �= (4, 2), (4, 3)
P�ε

n(q) n � 7

view of our earlier work in Sects. 4.1, 4.2 and 4.3, we may assume that G0 is one
of the groups listed in Table 4.

Wewill focus initially on the low-dimensional classical groupswith socle L2(q)

and Lε
3(q), which require special attention. As before, if a primitive prime divisor of

qe −1 exists, then �e(q) denotes the largest such prime divisor (as noted in Sect. 2,
if e � 2, then �e(q) exists unless (q, e) = (2, 6), or e = 2 and q is a Mersenne
prime).

Lemma 4.4. Theorem 2 holds if G = L2(q) and q is even.

Proof. Write q = 2 f , where f � 3 (since L2(4) ∼= A5, we may assume that
f � 3). The maximal subgroups of G were originally classified by Dickson [16]
(also see [5, Tables 8.1 and 8.2]); the possibilities for H are as follows:

(a) H = (Z2)
f :Zq−1 = P1 is a maximal parabolic subgroup of G;

(b) H = D2(q±1);
(c) H = L2(q0) with q = qe0, where e is a prime and q0 �= 2.

The case f = 3 can be handled using GAP [25], and we find that (
) holds if and
only if (H, r, E(G)) is one of the following (recall that E(G) denotes the set of
orders of derangements in G):

(P1, 3, {3, 9}), (D18, 7, {7}), (D14, 3, {3, 9}).
For the remainder, we may assume that f � 4.

Note that a Sylow 2-subgroup of G is self-centralizing and elementary abelian.
In particular, if x ∈ G then either |x | = 2, or |x | divides q ± 1. Also note that G
contains elements of order q ± 1, and it has a unique class of involutions.
Case 1 H = P1.

We claim that (
) holds if and only if r = q + 1 is a Fermat prime. To see this,
first observe that |G : H | = q + 1 and |H | = q(q − 1) are relatively prime, so
any element x ∈ G of order q + 1 is a derangement. Therefore, if (
) holds then
q + 1 = re for some e � 1, and thus Lemma 2.6 implies that f is a 2-power and
e = 1 (so r = q + 1 is a Fermat prime).

For the converse, suppose that q + 1 is a Fermat prime. We need to show that
every derangement in G has order r = q + 1. Let y ∈ �(G), so |y| divides 2 or
q ± 1. But q + 1 = r is a prime, so either |y| ∈ {2, r} or |y| divides q − 1. Every
involution has fixed points since G has a unique class of involutions, so |y| > 2.
If |y| divides q − 1, then y belongs to a maximal torus that is G-conjugate to the
subgroupZq−1 < H . Again, this implies that y has fixed points. Therefore, |y| = r
is the only possibility and the result follows.
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Case 2 H = D2(q±1).
The case H = D2(q−1) is identical to the previous one, and the same conclusion

holds. A very similar argument also applies if H = D2(q+1). Here any element of
order q − 1 is a derangement and by applying Lemma 2.6 we deduce that (
) holds
if and only if r = q − 1 is a Mersenne prime.
Case 3 H = L2(q0), where q = qe0, e prime, q0 �= 2.

Finally, observe that subfield subgroups are easily eliminated since elements of
order q ± 1 are derangements. ��
Lemma 4.5. Theorem 2 holds if G0 = L2(q) and q is even.

Proof. As before, write q = 2 f , where f � 3. In view of Lemma 4.4, we may
assume that

G = G0.〈φ〉 � �L2(q) = Aut(G0),

where φ is a nontrivial field automorphism of G0, so the order of φ divides f . The
case f = 3 can be handled directly, using [25] for example. Here G = �L2(8) and
we find that (
) holds if and only if (H, r, E(G)) is one of the following:

(NG(P1), 3, {3, 9}), (NG(D18), 7, {7}), (NG(D14), 3, {3, 9}).
For the remainder, we may assume that f � 4.

Since G0 �� H , we have G = G0H . Set H0 = H ∩ G0 and note that H0 is
a maximal subgroup of G0 (see [5, Table 8.1]). As in (3), we have �H0(G0) ⊆
�H (G), whence Lemma 4.4 implies that (
) holds only if one of the following
holds:

(a) H0 = P1, r = q + 1 is a Fermat prime;
(b) H0 = D2(q+1), r = q − 1 is a Mersenne prime;
(c) H0 = D2(q−1), r = q + 1 is a Fermat prime.

We consider each of these cases in turn.
Case 1 H0 = D2(q+1), r = q − 1 is a Mersenne prime.

Here f � 5 is a prime, so G = �L2(q) = G0.〈φ〉 and H = H0.〈φ〉 is the only
possibility, where φ has order f . Note that

CG(φ) = L2(2) × 〈φ〉 ∼= S3 × Z f ,

so if x ∈ G then either |x | ∈ {2, r, f, 2 f, 3 f }, or |x | divides q + 1. We claim that
E(G) = {r}. Note that 〈φ〉 is a Sylow f -subgroup of G.

Let y ∈ G be a nontrivial element. If |y| ∈ {2, f }, or if |y| divides q + 1,
then y is conjugate to an element of H and thus y has fixed points. Next suppose
that |y| = k f and k ∈ {2, 3}. Then |yk | = f and thus yk is G-conjugate to φi

for some 1 � i < f . Without loss of generality, we may assume that yk = φ,
so y ∈ CG(φ). Since |H | = 2(q + 1) f , H has a Sylow 2-group R = 〈u〉 ∼= Z2
and a normal 2-complement V 〈φ〉 of order (q + 1) f , where V ∼= Zq+1. Since φ

normalizes H0 = V R, we deduce that φ centralizes R. Now q + 1 is divisible by
3, so V has a unique subgroup of order 3, say 〈x〉. Then the involution u inverts
x , and φ centralizes x since |φ| = f � 5 is odd. Thus S3 ∼= 〈u, x〉 � CG0(φ),
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which implies that CG(φ) = 〈u, x〉 × 〈φ〉 � H . Therefore, y ∈ H . We conclude
that every derangement in G has order r , as required.

In the two remaining cases, r = q + 1 is a Fermat prime and f = 2m for
some integer m � 2. In both cases, we claim that (
) does not hold. In order to
see this, we may assume that the index of G0 in G is a prime number, which in
this case implies that |G : G0| = 2, so G = G0.〈φ〉 and φ is an involutory field
automorphism of G0. Indeed, if G0 � G1 � G then G = HG1 and Lemma 2.2
implies that �L(G1) ⊆ �(G) for any subgroup L of G1 containing G1 ∩ H .
Case 2 H0 = D2(q−1), r = q + 1 is a Fermat prime.

By the above comments, we may assume that G = G0.〈φ〉 and H =
D2(q−1).〈φ〉, where φ has order 2. Note thatCG(φ) = L2(2 f/2)×〈φ〉. SinceCG(φ)

does not contain a Sylow 2-subgroup of G, we deduce that the Sylow 2-subgroups
of G are nonabelian. Therefore G contains an element z of order 4. However, the
Sylow 2-subgroups of H are isomorphic to C2 × C2, so z ∈ �(G). We conclude
that G contains derangements of order r and 4, so (
) does not hold.
Case 3 H0 = P1, r = q + 1 is a Fermat prime.

Finally, let us assume that H = NG(P1) = P1.〈φ〉 = H0.〈φ〉, where |φ| = 2.
As above, we haveCG(φ) = L2(2 f/2)×〈φ〉, soCG(φ) contains an element of order
2(q0 + 1), where q0 = 2 f/2. We claim that H does not contain such an element.
Seeking a contradiction, suppose x ∈ H has order 2(q0+1). Since H = H0∪H0φ

and H0 = P1 has no element of order 2(q0 + 1), we deduce that x ∈ H0φ and we
may write x = uφ with u ∈ H0. In terms of matrices (and a suitable basis for the
natural L2(q)-module), we have

u =
(

λ a
0 λ−1

)

where λ, a ∈ Fq and λ �= 0. Then x2 = (uφ)(uφ) = uuφ has order q0 + 1. We
may assume that φ is the standard field automorphism of order 2 with respect to
this basis, so

x2 = uuφ =
(

λ a
0 λ−1

) (
λq0 aq0

0 λ−q0

)
=

(
λ1+q0 b
0 λ−1−q0

)

with b = λq0 + aλ−q0 . Since x2 has order q0 + 1 we deduce that λ2(q0+1) = 1,
which implies that λq0+1 = 1 since Fq has characteristic 2. Therefore

x2 =
(
1 b
0 1

)

has order q0+1, which is absurd. This justifies the claim, and we deduce that�(G)

contains elements of order 2(q0 + 1). In particular, (
) does not hold. ��
Lemma 4.6. Theorem 2 holds if G0 = L2(q) and q is odd.

Proof. Write q = p f , where p is an odd prime. In view of the isomorphisms
L2(5) ∼= A5 and L2(9) ∼= A6, we may assume that q � 7 and q �= 9. The case
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q = 7 can be checked directly usingGAP, and we find that (
) holds if and only if
(G, H, r, E(G)) is one of the following:

(L2(7),P1, 2, {2, 4}), (L2(7),S4, 7, {7}), (PGL2(7),NG(P1), 2, {2, 4, 8}).
For the remainder, we may assume that q � 11.
Case 1 G = G0.

First assume that G = L2(q). The maximal subgroups of G are well known
(see [5, Tables 8.1 and 8.2]); the possibilities for H are as follows:

(a) H = (Zp)
f :Z(q−1)/2 = P1 is a maximal parabolic subgroup of G;

(b) H = Dq−ε , where q � 13 if ε = 1;
(c) H = L2(q0), where q = qe0 for some odd prime e;
(d) H = PGL2(q0), where q = q20 ;
(e) H = A5, where q ≡ ±1 (mod 10) and either q = p, or q = p2 and p ≡ ±3

(mod 10);
(f) H = A4, where q = p ≡ ±3 (mod 8) and q �≡ ±1 (mod 10);
(g) H = S4, where q = p ≡ ±1 (mod 8).

Note that G contains elements of order (q ± 1)/2, and a unique conjugacy class of
involutions.

If H is a subfield subgroup (as in (c) or (d) above), then it is clear that any
element of order (q ± 1)/2 is a derangement, so property (
) does not hold in this
situation. Similarly, it is straightforward to handle the cases H ∈ {A5,A4,S4}. For
example, suppose H = A5, so q ≡ ±1 (mod 10) and either q = p, or q = p2

and p ≡ ±3 (mod 10). Note that every nontrivial element of H has order 2, 3 or
5. If q � 19 then any element of order (q ± 1)/2 is a derangement; if q = 11, then
elements of order 6 are derangements. The cases H = A4 and S4 are just as easy.

If H = Dq−1 then any element in G of order p or (q + 1)/2 is a derangement,
and the dihedral groups of order q + 1 can be eliminated in a similar fashion.

Finally, let us assume that H = P1 = (Zp)
f :Z(q−1)/2, so |H | = q(q − 1)/2

and |G : H | = q + 1. We claim that (
) holds if and only if q = 2re − 1 for some
positive integer e.

First observe that any element of order (q + 1)/2 is a derangement, so if (
)
holds then q = 2re−1 for some e ∈ N. For the converse, suppose that q = 2re−1.
We claim that

E(G) = {r i : 1 � i � e}.
Since |H | is indivisible by r , the inclusion {r i : 1 � i � e} ⊆ E(G) is clear. To
see that equality holds, let y ∈ G be a nontrivial element, and suppose that |y| is
divisible by a prime s �= r . Since a Sylow p-subgroup of G is self-centralizing, it
follows that either |y| = p, or |y| = 2 and r is odd, or |y| is a divisor of (q−1)/2. In
the first two cases, it is clear that y has fixed points, so let us assume that |y| divides
(q − 1)/2. Then y is conjugate to an element of the maximal torus Z(q−1)/2 < H ,
so once again y has fixed points. This justifies the claim.
Case 2 G �= G0.

To complete the proof of the lemma, we may assume that G �= G0, q � 11
and H0 = H ∩ G0 = P1, in which case (
) holds only if q = 2re − 1 for some
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positive integer e (note that H∩G0 is a maximal subgroup ofG0). There are several
possibilities for G.

First assume that G = PGL2(q), so H = (Zp)
f :Zq−1. We claim that (
) holds

if and only if r = 2 and q = 2e+1 − 1 is a Mersenne prime. As above, any element
of order (q + 1)/2 is a derangement. Now G also contains elements of order q + 1,
and they are also derangements. Therefore, if (
) holds then r = 2 is the only
possibility, so p f + 1 = 2e+1 and Lemma 2.6 implies that q = p = 2e+1 − 1 is a
Mersenne prime.

For the converse, suppose that q = p = 2e+1 − 1 is a Mersenne prime. We
claim that

E(G) = {2i : 1 � i � e + 1}.
As above, any involution inG0 is a derangement, and so is any element inG of order
2i with 1 < i � e+ 1 since |H |2 = 2, hence {2i : 1 � i � e+ 1} ⊆ E(G). To see
that equality holds, suppose that y ∈ G has order divisible by an odd prime. Then
either |y| = p, or y is conjugate to an element of the maximal torus Zq−1 < H ; in
both cases, y has fixed points. The result follows.

To complete the proof of the lemma, we may assume that G = G0.〈φ〉 or
G0.〈δφ〉, where φ is a nontrivial field automorphism of G0 of order e (so e divides
f ) and δ = diag(ω1, ω2) ∈ PGL2(q) (modulo scalars) is a diagonal automorphism
of G0. Recall that (q+1)/2 = re for some prime r and positive integer e. Our goal
is to show that (
) does not hold.

First observe that r is odd. Indeed, if r = 2 then p f + 1 = 2e+1 and thus
Lemma 2.6 implies that f = 1, which is false. Next we claim that f is a 2-power.
To see this, first assume that f is odd and p = 2t − 1 is a Mersenne prime. Then
re = (p f + 1)/2 is divisible by (p + 1)/2 = 2t−1, but r is odd so this is not
possible. For the general case, suppose that f = 2am where a � 0 and m > 1 is
odd (and we may assume that a > 0 if p is a Mersenne prime). We now proceed
as in the proof of Lemma 2.9(iii). We have

re = q2 − 1

2(q − 1)
= p2

a+1m − 1

2(p2am − 1)

and thus r = �2 f (p). Set s = �2a+1(p) (note that s exists since a > 0 if p is a
Mersenne prime). Now f = 2am is indivisible by 2a+1, so (s, q − 1) = 1 and thus
s does not divide 2(q − 1). Therefore, r = s is the only possibility, but this is a
contradiction since 2 f = 2a+1m > 2a+1. This justifies the claim.

Therefore, in order to show that (
) does not hold, we may assume that |G :
G0| = 2. Write G = G0 ∪ G0γ .

If we identify � with the set of 1-dimensional subspaces of the natural L2(q)-
module, then φ and δφ fix the 1-spaces 〈(1, 0)〉 and 〈(0, 1)〉. Therefore, Lemma 2.4
implies that the coset G0γ contains derangements. But every element in this coset
has even order, which is incompatible with property (
). ��

To summarize, we have now established the following result. (Note that the
case appearing in the final row of Table 5 is recorded as (G, H) = (L3(2),P1) in
Table 1).
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Table 5. The cases (G, H, r) in Proposition 4.7

G H r E(G) Conditions
�L2(q) NG(D2(q+1)) r r r = q − 1 Mersenne prime
�L2(8) NG(P1),NG(D14) 3 3,9
PGL2(q) NG(P1) 2 2i , 1 � i � e + 1 q = 2e+1 − 1 Mersenne prime
L2(q) P1 r r i , 1 � i � e q = 2re − 1

P1,D2(q−1) r r r = q + 1 Fermat prime
D2(q+1) r r r = q − 1 Mersenne prime

L2(9) P1 5 5
L2(8) P1,D14 3 3,9
L2(7) S4 7 7

Proposition 4.7. Let G be a finite almost simple primitive permutation group with
point stabilizer H and socle L2(q), where q � 4 and q �= 5. Then (
) holds if and
only if (G, H, r) is one of the cases in Table 5.

Lemma 4.8. Theorem 2 holds if G0 = L3(q).

Proof. Set d = (3, q−1) and note thatG0 contains elements of order (q2+q+1)/d
and (q2 − 1)/d. We may assume that q � 3 since L3(2) ∼= L2(7). If 3 � q � 7,
then we can useGAP to verify the desired result; we find that (
) holds if and only if
G = L3(q), H ∈ {P1,P2} and r = (q2+q+1)/d, in which case E(G) = {r} (note
that (q2 + q + 1)/d is a prime number for all q ∈ {3, 4, 5, 7}). For the remainder,
we will assume that q � 8. In particular, note that (q2 − 1)/d is not a prime power
(indeed, it is easy to check that (q2 − 1)/d is a prime power if and only if q = 3
or 7).
Case 1 G = G0.

First assume that G = L3(q). The possibilities for H are given in [5, Tables 8.3
and 8.4]. We can immediately eliminate any subgroup H that does not contain an
element of order (q2 − 1)/d, so this implies that H is either a maximal parabolic
subgroup, or H = SO3(q) (with q odd).

Suppose that H is a maximal parabolic subgroup. Without loss of generality,
we may assume that H = P1 (the actions of G on 1-spaces and 2-spaces are
permutation isomorphic), so |H | = q3(q − 1)(q2 − 1)/d. We claim that G has
property (
) if and only if one of the following holds:

(a) d = 1 and q2 + q + 1 = r ; or

(b) d = 3 and q2 + q + 1 ∈ {3r, 3r2}. (4)

To see this, first notice that any element x ∈ G of order (q2 + q + 1)/d is a
derangement. Therefore, if (
) holds then (q2 + q + 1)/d = re for some positive
integer e, and by applying Lemma 2.9 we deduce that (a) or (b) holds. Conversely,
suppose that (a) or (b) holds. We claim that

E(G) =
{ {r, r2} if d = 3 and q2 + q + 1 = 3r2

{r} otherwise.
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To see this, we use the fact that the action of G on 1-spaces is doubly transitive,
so the corresponding permutation character has the form 1GH = 1 + χ for some
irreducible character χ ∈ Irr(G) of degree q(q + 1). By inspecting the character
table of G (see [20, Table 2], for example), we see that χ(x) = −1 if and only if x
has order r (or r2 if d = 3 and q2 + q + 1 = 3r2). This justifies the claim.

Now assume that H = SO3(q), so q is odd. Here elements of order (q2 + q +
1)/d are derangements, and so is any unipotent element with Jordan form [J2, J1]
(where Ji denotes a standard unipotent Jordan block of size i). Therefore, (
) does
not hold in this situation.
Case 2 G �= G0.

To complete the proof of the lemma, we may assume that G �= G0 and q � 8.
LetM be amaximal subgroup ofG0 containing H0 := H∩G0. From the analysis in
Case 1, wemay assume thatM = P1, in which case H0 is either equal to P1, or it is a
non-maximal subgroup of type P1,2 (a Borel subgroup ofG0) or GL2(q)×GL1(q).
We can quickly eliminate the latter two possibilities. For instance, if H0 is a Borel
subgroup then �H0(G0) contains all elements of order (q2 − 1)/d, so (
) does not
hold (see (3)). Similarly, if H0 is of type GL2(q)×GL1(q) then �H0(G0) contains
elements of order (q2+q+1)/d, and also unipotent elementswith Jordan form [J3].

Therefore, we may assume that H0 = P1, with q � 8. To show that (
) does not
hold, we may as well assume that we are in one of the two cases (a) and (b) in (4)
above (otherwise the conclusion is clear). Note that the condition H0 = P1 implies
thatG � �L3(q) (that is,G does not contain a graph or graph-field automorphism).
Also note that we may identify � with the set of 1-dimensional subspaces of the
natural L3(q)-module. Note that r > 3.

First assume that G = PGL3(q), so d = 3 since we are assuming that G �=
G0. Here G has a cyclic maximal torus 〈x〉 of order q2 + q + 1. Then x is a
derangement and thus (
) does not hold since q2 +q +1 is not a prime power (note
that (q2 + q + 1)3 = 3).

For the remainder, we may assume that q = p f and f � 2 (also recall that
q � 8). In viewof (4), Lemma2.9(iii) implies that f is a 3-power. To deduce that (
)
does not hold, we may assume that |G : G0| is a prime number. Since G � �L3(q)

and f is a 3-power, we may assume that |G : G0| = 3 and thus G = G0.〈φ〉 or
G0.〈δφ〉, whereφ is a field automorphismof order 3 and δ is an appropriate diagonal
automorphism diag(ω1, ω2, ω3) ∈ PGL3(q) (modulo scalars). In both cases, the
result follows by applying Lemma 2.4. For example, δφ has more than one fixed
point on �, so Lemma 2.4 implies that the coset G0δφ contains derangements,
none of which has r -power order. In view of this final contradiction, we conclude
that (
) does not hold if G �= G0. ��

Lemma 4.9. Theorem 2 holds if G0 = U3(q).

Proof. Set d = (3, q + 1) and observe that G0 contains elements of order (q2 −
q + 1)/d and (q2 − 1)/d. Note that (q2 − 1)/d is a prime power if and only if
q ∈ {3, 5}. In order to show that (
) does not hold, we may assume that G = G0.

The cases q ∈ {3, 4, 5} can be handled directly, usingGAP, so for the remainder
wewill assume that q � 7. Let V be the naturalG0-module, and let P1 (respectively
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N1) be the G0-stabilizer of a 1-dimensional totally isotropic (respectively, non-
degenerate) subspace of V . Note that N1 is a subgroup of type GU1(q) ×GU2(q).

We can immediately rule out any subgroup H that does not contain elements of
order (q2 − 1)/d, which means that we may assume H is of type P1, N1 or O3(q)

(q odd). In all three cases, elements of order (q2 − q + 1)/d are derangements. In
addition, if H = N1 (respectively, SO3(q)) then unipotent elements with Jordan
form [J3] (respectively, [J2, J1]) are derangements. Finally, suppose that H = P1.
Let ω ∈ Fq2 be an element of order q + 1 and set x = diag(1, ω, ω−1) ∈ G
(modulo scalars) with respect to an orthonormal basis for V . Then x does not fix a
totally isotropic 1-space, whence x is a derangement of order q + 1. ��

Having handled the low-dimensional groups, we are now in a position to com-
plete the proof of Theorem 2 for linear and unitary groups.

Lemma 4.10. Theorem 2 holds if G0 = Lε
n(q).

Proof. We may assume that n � 4. Set d = (n, q − ε) and e = (q − ε)d. Let
V be the natural G0-module. Let Pi be the G0-stabilizer of a totally isotropic i-
dimensional subspace of V (so Pi is a maximal parabolic subgroup of G0, and
we can take any i-space if ε = +). Similarly, if ε = − then let Ni denote the
G0-stabilizer of an i-dimensional non-degenerate subspace of V (so Ni is of type
GUi (q)×GUn−i (q)). In order to show that (
) does not hold, we may assume that
G = G0. There are several cases to consider.
Case 1 n = 2m and m � 4 − ε is odd.

First assume thatm � 5. As in the proof of [12, Proposition 3.11], let x ∈ G be
an element of order (qm+2 − ε)(qm−2 − ε)/e. Then |x | is not a prime power (see
Lemma 2.7), and [28, Table II] indicates that x is a derangement unless one of the
following holds:

(a) ε = + and H = Pm−2 (or Pm+2);
(b) ε = − and H = Nm−2.

In (a), any element of order �n(q) or �n−1(q) is a derangement, and elements of
order �n(q) and �2(n−1)(q) are derangements in case (b).

Now assume m = 3, so (ε, n) = (+, 6). Let x ∈ G be an element of order
(q6 − 1)/e, which is not a prime power by Lemma 2.8. Here x is a Singer element,
and the main theorem of [3] implies that x is a derangement, unless H is a field
extension subgroup, so we have reduced to the case where H is of type GL3(q2)
or GL2(q3). In this situation, elements of order �5(q) are derangements, and so are
unipotent elements with Jordan form [J2, J 41 ].
Case 2 n = 2m and m � 3 − ε is even.

First assume thatm � 4. Let x ∈ G be an element of order (qm+1 −ε)(qm−1 −
ε)/e. Then Lemma 2.7 implies that |x | is not a prime power, and from [28, Table
II] we deduce that x is a derangement unless one of the following holds:

(a)′ ε = + and H = Pm−1 (or Pm+1);
(b)′ ε = − and H = Nm−1.
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To deal with these cases, we can repeat the argument in Case 1.
Now assume m = 2, so (ε, n) = (+, 4). By applying the main theorem of [3],

we deduce that elements of order (q4 − 1)/e are derangements unless H is a field
extension subgroup of type GL2(q2). Moreover, since (q4 − 1)/e is not a prime
power (see Lemma 2.8), we can assume that H is of type GL2(q2). Here elements
of order �3(q) and unipotent elements with Jordan form [J2, J 21 ] are derangements.
Case 3 ε = +, n = 2m + 1 and m � 2.

If G = L11(2), then any element of order 211 − 1 = 23 · 89 is a derangement,
unless H is a field extension subgroup of type GL1(211), in which case elements of
order 210 − 1 are derangements. For the remainder, we may assume that (n, q) �=
(11, 2).

Let x ∈ G be an element of order (qm+1 − 1)(qm − 1)/e. By Lemmas 2.7 and
2.8, |x | is not a prime power, so we may assume that H = Pm (see [28, Table II]).
If m � 3, then elements of order �n(q) or �n−2(q) are derangements. Similarly, if
m = 2 then we can take elements of order �5(q) or �4(q).
Case 4 ε = −, n = 2m + 1 and m � 4.

Fix x ∈ G, where

|x | =
{

(qm+1 + 1)(qm − 1)/e m even
(qm+2 + 1)(qm−1 − 1)/e m odd.

By Lemma 2.7, |x | is not a prime power, and [28, Table II] indicates that x has
fixed points only if H stabilizes a subspaceU of V with dimU � 2. Therefore, we
may assume that H has this property, in which case any element of order �2n(q) or
�n−1(q) is a derangement.
Case 5 ε = − and n ∈ {4, 5, 6, 7}.

First assume that n = 7. Let x ∈ G be an element of order (q6 − 1)/d. Since
|x | is not a prime power, by inspecting the list of maximal subgroups of G (see [5,
Tables 8.37 and 8.38]) it follows that we can assume that H ∈ {P3,N1,SO7(q)}. In
all three cases, any element of order �14(q) is a derangement. Similarly, elements
of order �10(q) are derangements, unless H = N1, in which case any unipotent
element with Jordan form [J7] is a derangement. The case n = 5 is entirely similar.

Next assume that n = 6. For now, let us assume that q �∈ {2, 5}. Let x ∈ G be
an element of order (q5+1)/d. Then |x | is not a prime power (see Lemma 2.8) and
H = N1 is the only maximal subgroup of G containing such an element (see [28,
p. 767]). Now, if H = N1 then any element of order (q6 − 1)/e is a derangement
of non-prime power order.

Suppose that n = 6 and q ∈ {2, 5}. The case q = 2 can be checked directly,
using GAP for example, so let us assume that q = 5. Let x ∈ G be an element of
order (56 − 1)/e = 434. By inspecting the list of maximal subgroups of G (see
[5, Tables 8.26 and 8.27]), we deduce that x is a derangement unless H is of type
P3, GL3(52) or GU2(53), so we may assume that H is one of these subgroups,
in which case any element of order �10(5) = 521 is a derangement. Suppose that
H = P3. Fix an orthonormal basis for V and let y = diag(1, 1, ω, ω−1, ω2, ω−2)

(modulo scalars), whereω ∈ F25 is an element of order 6. Then y is a derangement.
Similarly, if H is of type GL3(52) or GU2(53), then any unipotent element with
Jordan form [J2, J 41 ] is a derangement. This eliminates the case G = U6(5).
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A very similar argument applies if n = 4. Here the cases q ∈ {2, 3} can be
checked directly, so let us assume that q � 4. Let x ∈ G be an element of order
(q3 + 1)/d. Then |x | is not a prime power (see Lemma 2.8) and again we reduce
to the case H = N1 (see [28, p. 767]). We can now take any element of order
(q4 − 1)/e, which will be a derangement of non-prime power order. ��

Next, we turn our attention to symplectic groups. Let G0 = PSpn(q) be a
symplectic group with natural module V . As before, we will write Pi (respectively,
Ni ) for the G0-stabilizer of an i-dimensional totally isotropic (respectively, non-
degenerate) subspace of V . We will also use n = m ⊥ (n − m) to denote an
orthogonal decomposition of V of the form V = V1 ⊥ V2, where V1 is a non-
degenerate m-space. Further, we will say that a semisimple element x ∈ G0 is
of type m ⊥ (n − m) if it fixes such an orthogonal decomposition of V , acting
irreducibly on V1 and V2. Similar notation is used in [7,12,28].

To begin with, we will assume that n � 6; the special case G0 = PSp4(q) will
be handled separately in Lemma 4.12.

Lemma 4.11. Theorem 2 holds if G0 = PSpn(q) and n � 6.

Proof. Set d = (2, q − 1) and write n = 2m with m � 3. As before, we may
assume that G = G0.
Case 1 m odd.

The case (n, q) = (6, 2) can be handled directly (using GAP, for example), so
let us assume that (n, q) �= (6, 2). Let x ∈ G be an element of order (qm + 1)/d.
If q is even, then Lemma 2.6 implies that |x | is not a prime power, and it is easy to
see that the same conclusion also holds if q is odd. By the main theorem of [3], x
is a derangement unless one of the following holds:

(a) H is a field extension subgroup of type Spn/k(q
k) for some prime divisor k of

n;
(b) q is even and H = O−

n (q).

In (a), elements of order �n−2(q) are derangements, and so are unipotent ele-
ments with Jordan form [J2, Jn−2

1 ]. Similarly, if (b) holds then elements of order
�m(q) are derangements, and so are semisimple elements of type (n − 2) ⊥ 2 and
order (qm−1 + 1)(q + 1).
Case 2 m � 6 even.

First assume that q is odd. Let x ∈ G be a semisimple element of type (n−4) ⊥
4, so

|x | =
{
qm−2 + 1 if m ≡ 0 (mod 4)
(qm−2 + 1)(q2 + 1)/2 if m ≡ 2 (mod 4).

Clearly, if m ≡ 2 (mod 4) then |x | is divisible by �4(q) and �n−4(q), so |x | is not
a prime power. The same conclusion also holds if m ≡ 0 (mod 4) (see Lemma
2.6). By [7, Proposition 5.10], we may assume that H is of type N4 or Spn/2(q

2).
In both cases, elements of order �n−2(q) are derangements. In addition, unipotent
elements with Jordan form [Jn] (respectively, [J2, Jn−2

1 ]) are derangements if H
is of type N4 (respectively, Spn/2(q

2)).
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Now assume that q is even. Let x ∈ G be a semisimple element of type (n−2) ⊥
2 and order qm−1 + 1. Now Lemma 2.6 implies that |x | is not a prime power,
and by applying the main theorem of [32] we deduce that x is a derangement
unless H ∈ {N2, O+

n (q)}. In both cases, elements of order �n(q) are derangements.
Also, unipotent elements with Jordan form [Jn] are derangements if H = N2.
Now, if H = O+

n (q) then let y ∈ G be a block-diagonal element of the form
y = [y1, y2] (with respect to an orthogonal decomposition n = (n − 2) ⊥ 2),
where y1 ∈ Spn−2(q) has order �m−1(q) and y2 ∈ Sp2(q) has order q + 1. Then y
is a derangement and the result follows.
Case 3 m = 4.

The case q = 2 can be checked directly, so we may assume that q � 3. If q is
even, then we can repeat the relevant argument in Case 2. Now assume q is odd.
Let x ∈ G be a semisimple element of type 6 ⊥ 2 and order q3+1. By Lemma 2.6,
|x | is not a prime power. The maximal subgroups of G are listed in [5, Tables 8.48
and 8.49], and we deduce that x is a derangement unless H is of type N2, GU4(q)

or L2(q3) (in the terminology of [5,38], the latter possibility is an almost simple
irreducibly embedded subgroup in the collection S). In each of these exceptional
cases, any element of order (q4 + 1)/2 is a derangement. In addition, if H =
N2 then unipotent elements with Jordan form [J8] are derangements. Similarly,
if H is of type GU4(q) or L2(q3) then elements with Jordan form [J2, J 61 ] are
derangements. ��
Lemma 4.12. Theorem 2 holds if G0 = PSpn(q).

Proof. We may assume that n = 4. The result can be checked directly if q � 7, so
let us assume that q � 8.

First assume that q is odd. In terms of an orthogonal decomposition 4 = 2 ⊥ 2,
let x = [x1, x2] ∈ G (modulo scalars) be an element of order p(q + 1), where
x1 ∈ Sp2(q) is a unipotent element of order p, and x2 ∈ Sp2(q) is irreducible
of order q + 1. By inspecting the list of maximal subgroups of G (see [5, Tables
8.12 and 8.13]), we deduce that x is a derangement unless H is of type P1 or
Sp2(q) � S2. In both of these cases, any element of order �4(q) is a derangement.
Similarly, unipotent elementswith Jordan form [J4] are derangements if H is of type
Sp2(q)�S2. Finally, suppose that H = P1.NowSp2(q) has preciselyϕ(q+1)/2 � 2
distinct classes of elements of order q +1 (where ϕ is the Euler totient function); if
y1, y2 ∈ Sp2(q) represent distinct classes, then y = [y1, y2] ∈ G (modulo scalars)
is a derangement since it does not fix a totally isotropic 1-space.

Now assume q is even. As above, let x ∈ G be an element of order 2(q + 1).
The maximal subgroups of G are listed in [5, Table 8.14], and we see that x is a
derangement unless H is of type P1, Sp2(q) � S2 ∼= O+

4 (q) or O−
4 (q). For H = P1,

we can repeat the argument in the q odd case, so let us assume that H = Oε
4 (q).

If ε = + then any element of order �4(q) is a derangement, and we can also find
derangements of order 4 (with Jordan form [J4]), since there are two conjugacy
classes of such elements in G, but only one in H . Finally, if ε = − then we can
find derangements of order 2 (with Jordan form [J 22 ]; these are a2-type involutions
in the sense of Aschbacher and Seitz [1]), and also derangements of order q + 1 of
the form [y1, y2] as above. ��
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To complete the proof of Theorem 2, we may assume that G0 = P�ε
n(q) is

an orthogonal group, where n � 7. The low-dimensional groups with n ∈ {7, 8}
require special attention. We extend our earlier notation for orthogonal decompo-
sitions by writing m± to denote a non-degenerate m-space of type ± (when m is
even). Similarly, we write N±

m for the G0-stabilizer of such a subspace of the nat-
ural G0-module V . If q is even, we will also adopt the standard Aschbacher–Seitz
notation for involutions (see [1]).

Lemma 4.13. Theorem 2 holds if G0 = �7(q).

Proof. We may assume that G = G0. The case q = 3 can be checked directly, so
we may assume that q � 5 (recall that q is odd). Let x ∈ G be an element of order
(q3+1)/2, which is not a prime power. By [7, Proposition 5.20], x is a derangement
unless H = N−

6 , in which case any element of order �3(q) is a derangement, and
so are unipotent elements with Jordan form [J7]. ��
Lemma 4.14. Theorem 2 holds if G0 = P�+

8 (q).

Proof. As usual, we may assume that G = G0. Let V be the natural module for
G0. The case q = 2 can be checked directly, usingGAP. Next suppose that q = 3.
Let x ∈ G be an element of order 20, fixing a decomposition of V of the form
8 = 4− ⊥ 4−. As indicated in [7, Table 3], x is a derangement unless the type of
H is one of the following:

P4, O7(3), O
−
4 (3) � S2,GU4(3),Sp4(3) ⊗ Sp2(3)

where O7(3) is irreducible and P4 is the stabilizer inG of amaximal totally singular
subspace of V.

By considering elements of order 14, we can immediately eliminate the cases
P4, O

−
4 (3) � S2 and Sp4(3) ⊗ Sp2(3). Similarly, G contains derangements of order

15 if H is of type GU4(3). Finally, suppose that H is an irreducible subgroup of
type O7(3). To see that (
) does not hold, we may replace H by a conjugate H τ ,
where τ ∈ Aut(G) is an appropriate triality graph automorphism such that H τ is the
stabilizer in G of a non-degenerate 1-space. For this reducible subgroup, elements
with Jordan form [J 42 ] are derangements, and so are elements y ∈ G of order 5 of
the form y = ŷ Z , where Z = Z(�+

8 (3)) and CV (ŷ) is trivial (the eigenvalues of ŷ
(in F34 ) are the nontrivial fifth roots of unity, each occurring with multiplicity 2).

For the remainder, we may assume that q � 4. Let x ∈ G be an element of
order (q3 +1)/(2, q −1), fixing an orthogonal decomposition 8 = 6− ⊥ 2−. Then
|x | is not a prime power, and x is a derangement unless H is of type N−

2 or GU4(q)

(see [28, p. 767]). In both of these cases, elements of order �3(q) are derangements.
Similarly, if q is odd then unipotent elements with Jordan form [J7, J1] are also
derangements. Finally, if q is even and H is of type N−

2 (respectively, GU4(q)) then
unipotent elements with Jordan form [J 24 ] (respectively, [J 22 , J 41 ]; c2-involutions in
the terminology of [1]) are derangements. The result follows. ��
Lemma 4.15. Theorem 2 holds if G0 = P�−

8 (q).
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Proof. Again, we may assume that G = G0. If q � 3 then we can use GAP to
verify the result, so let us assume that q � 4. Themaximal subgroups ofG are listed
in [5, Tables 8.52 and 8.53]. By considering elements of order �8(q) and �6(q), we
can eliminate subfield subgroups, together with the reducible subgroups of type P2,
P3, N

−
2 , N3 and N

+
4 . Similarly, elements of order �8(q) and �4(q) are derangements

if H is a non-geometric subgroup of type Lε
3(q). Therefore, to complete the proof,

we may assume that H is either a field extension subgroup of type O−
4 (q2), or a

reducible subgroup of type P1, N
+
2 , O7(q) (q odd) or Sp6(q) (q even).

If H is of type O−
4 (q2), then elements of order �6(q) are derangements, as

well as unipotent elements with Jordan form [J7, J1] if q is odd, and unipotent
elements with Jordan form [J 22 , J 41 ] (a2-type involutions) if q is even. Similarly, if
H = P1 or N

+
2 then elements of order �8(q) and �3(q) are derangements (note that

an element of order �3(q) fixes a 2−-space, but not a 2+-space). Finally, suppose H
is of type O7(q) (q odd) or Sp6(q) (q even). In both cases, elements of order �8(q)

are derangements. In addition, there are derangements with Jordan form [J5, J3]
(q odd) and [J 24 ] (q even). ��
Lemma 4.16. Theorem 2 holds if G0 = P�ε

n(q).

Proof. We may assume that G = G0 and n � 9. We have three cases to consider.
Case 1 G0 = P�+

n (q) and n � 10.
Write n = 2m and first assume thatm is odd. Let x ∈ G be an element of order

(q(m−1)/2 + 1)(q(m+1)/2 + 1)/(4, q − 1), fixing an orthogonal decomposition of
the form (m + 1)− ⊥ (m − 1)−. Then Lemma 2.7 implies that |x | is not a prime
power, so by [7, Proposition 5.13] wemay assume that H = N−

m−1. In this situation,
elements of order �n−2(q) are derangements, and so are unipotent elements with
Jordan form [Jn−1, J1] (q odd) or [Jn−2, J2] (q even).

A similar argument applies if m is even. Here we take an element x ∈ G of
order (q(m−2)/2 +1)(q(m+2)/2 +1)/(4, q−1), fixing a decomposition (m+2)− ⊥
(m − 2)−. Then |x | is not a prime power, and [7, Proposition 5.14] implies that x
is a derangement unless H is of type N−

m−2 or O+
n/2(q

2). In the former case, we

complete the argument as above, so let us assume that H is of type O+
n/2(q

2). Any
element of order �n−2(q) is a derangement, and so are unipotent elements with
Jordan form [Jn−1, J1] if q is odd. Finally, if q is even then a2-type involutions are
derangements.
Case 2 G0 = P�−

n (q) and n � 10.
Again, write n = 2m. First assume that m � 11. Let x ∈ G be an element of

order

lcm(qm−5 + 1, q3 + 1, q2 + 1)/(2, q − 1)

fixing a decomposition (n − 10)− ⊥ 6− ⊥ 4−. Then |x | is not a prime power, and
[7, Proposition 5.16] implies that x is a derangement unless H is of type N−

4 , N
−
6

or N+
10. In each of these cases, it is clear that elements of order �n(q) and �n−2(q)

are derangements.
Next suppose that m ∈ {5, 6, 7, 9, 10}. Let x ∈ G be an irreducible element

of order (qm + 1)/(2, q − 1). We claim that |x | is not a prime power (here we
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require m �= 8). If q is even, this follows immediately from Lemma 2.6, so let us
assume that q is odd. Suppose m = 5 and q5 + 1 = 2re for some prime r and
positive integer e. Then (q + 1)(q4 − q3 + q2 − q + 1) = 2re and r = �10(q).
Therefore, q + 1 = 2 is the only possibility, which is absurd. Similarly, if m = 6
and q6+1 = (q2 +1)(q4 −q2 +1) = 2re, then r = �12(q) and q2 +1 = 2, which
is not possible. The other cases are entirely similar. Now, by the main theorem of
[3], x is a derangement unless H is a field extension subgroup of type O−

n/k(q
k) (k

a prime divisor of n, n/k � 4 even) or GUn/2(q) (n/2 odd). In both cases, elements
of order �n−2(q) are derangements. In addition, there are unipotent derangements;
take [Jn−1, J1] if q is odd, an a2-involution if q is even and H is of type O−

n/k(q
k),

and a c2-involution if q is even and H is of type GUn/2(q).
Finally, let us assume that m = 8. As in [28, Table II], let x ∈ G be an element

of order lcm(q5 +1, q2 +1, q+1)/(2, q−1), fixing an orthogonal decomposition
of the form 10− ⊥ 4− ⊥ 2−. Note that |x | is divisible by �10(q) and �4(q), so it is
not a prime power. As indicated in [28, Table II], x is a derangement unless H is
of type N−

2 , N
−
4 or N+

6 . In each of these cases, elements of order �16(q) and �14(q)

are derangements.
Case 3 G0 = �n(q) and n � 9 is odd.

Write n = 2m + 1 and note that q is odd. First assume m is odd. Let x ∈ G be
an element of order

lcm(q(m+1)/2 + 1, q(m−1)/2 + 1)/2 = (q(m+1)/2 + 1)(q(m−1)/2 + 1)/4,

fixing an orthogonal decomposition (m + 1)− ⊥ (m − 1)− ⊥ 1. Note that |x |
is divisible by �m+1(q) and �m−1(q), so |x | is not a prime power. Let H be a
maximal subgroup of G containing x . By carefully applying the main theorem
of [32], we deduce that H ∈ {N−

m+1,N
−
m−1,N

+
2m}. For example, the order of x

rules out subfield subgroups and imprimitive subgroups of type O1(q) � Sn (see
[7, Remark 5.1(i)]), and the dimensions of the irreducible constituents of x are
incompatible with field extension subgroups of type On/k(qk). Now, if H is one
of these reducible subgroups, then elements of order �n−1(q) and �n−3(q) are
derangements. The result follows.

A similar argument applies if m is even. Here we take x ∈ G to be an element
of order

lcm(q(m+2)/2 + 1, q(m−2)/2 + 1)/2 = (q(m+2)/2 + 1)(q(m−2)/2 + 1)/4,

fixing a decomposition (m + 2)− ⊥ (m − 2)− ⊥ 1. We claim that |x | is not a
prime power. This is clear if m � 6, or if m = 4 and q is not a Mersenne prime,
since |x | is divisible by �m±2(q). Suppose that m = 4 and q is a Mersenne prime.
If q = 3 then |x | = 28 and the claim holds, and if q > 3 then |x | is divisible by 2
and �6(q). This justifies the claim. Using [32] one can check that the only maximal
subgroups of G containing x are of type N−

m+2, N
−
m−2 or N

+
2m , so we may assume

that H is one of these subgroups. Here we observe that elements of order �n−1(q)

are derangements, and so are unipotent elements with Jordan form [Jn]. ��
This completes the proof of Theorem 2.
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5. Affine groups

Let G be a finite primitive permutation group. By Theorem 1, if (
) holds then G is
either almost simple or affine. In the previous section, we determined all the almost
simple examples, and we now turn our attention to the affine groups with property
(
). Our main aim is to prove Theorem 4.

Let G = HV � AGL(V ) be a finite affine primitive permutation group with
point stabilizer H = G0 and socle V = (Zp)

k . As an abstract group, G is a
semidirect product of V by H . Therefore, we will begin our analysis by studying
the structure of a general semidirect product G = H � N with property (
), so G
is a finite group, H is a proper subgroup and N is a normal subgroup of G such
that G = HN and H ∩ N = 1.

We will need some additional notation. If K is a subgroup of G and g ∈ G,
then we set

[K , g] = {[k, g] = k−1g−1kg : k ∈ K }.
We also write K ∗ for the set of all nontrivial elements of K .

Lemma 5.1. Let G = H � N. The following hold:

(i) CG(x) = CH (x)CN (x) for all x ∈ H.
(ii) If K � H, then K ∩ Kn = CK (n) for all n ∈ N∗.
(iii) If N is abelian, then �H (G) = {tv : t ∈ H, v ∈ N \[N , t]}.
(iv) If property (
) holds, then N is an r-group.

Proof. First consider part (i). The result is clear if x = 1, so assume that x ∈ H∗.
The inclusion CH (x)CN (x) ⊆ CG(x) is clear. Conversely, suppose that g = hn ∈
CG(x) where h ∈ H , n ∈ N . Then hnx = xhn. Multiplying both sides by
(xh)−1 = h−1x−1, we obtain

hnxh−1x−1 = (xh)n(xh)−1

which implies that

(hnh−1)(hxh−1x−1) = (xh)n(xh)−1.

Since n ∈ N � G and h, x ∈ H , we deduce that

hxh−1x−1 = (hn−1h−1)(xh)n(xh)−1 ∈ H ∩ N = 1

so h ∈ CH (x). Since hnx = xhn = hxn, we deduce that nx = xn and thus
n ∈ CN (x). Therefore, g = hn ∈ CH (x)CN (x) and part (i) follows.

For part (ii), let K � H and let n ∈ N∗. Assume that y ∈ K ∩ Kn . Then
y = kn ∈ K for some k ∈ K , so

k−1y = k−1n−1kn = (k−1n−1k)n ∈ K ∩ N = 1,

which implies that kn = nk and y = k, or equivalently y ∈ CK (n). Therefore,
K ∩ Kn � CK (n). Conversely, if y ∈ CK (n) then y ∈ K and y = n−1yn ∈ Kn ,
so y ∈ K ∩ Kn and thus CK (n) � K ∩ Kn . The result follows.
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Now consider part (iii). Assume that N is abelian. Set

� := {tv : t ∈ H, v ∈ N \[N , t]}.
First we claim that � ⊆ �H (G). Let g ∈ �, say g = hn with h ∈ H and
n ∈ N \[N , h]. Seeking a contradiction, suppose that g �∈ �H (G). Then g ∈ Ht

for some t ∈ G. Since t ∈ G = HN , we may write t = h1m1 with h1 ∈ H and
m1 ∈ N . It follows that g ∈ Ht = Hm1 , so m1gm

−1
1 ∈ H . Let m := m−1

1 ∈ N .
Then m−1gm = m−1hnm = hmn ∈ H (note that nm = mn since N is abelian)
and thus h−1hmn = [h,m]n ∈ H . We also have [h,m]n = (h−1m−1h)mn ∈ N ,
so [h,m]n ∈ H ∩ N = 1 and we deduce that n = [m, h] ∈ [N , h], contradicting
our choice of n. We have now shown that � ⊆ �H (G). Conversely, suppose that
g = hn ∈ �H (G) with h ∈ H , n ∈ N . We claim that n ∈ N \[N , h]. Seeking
a contradiction, suppose that n ∈ [N , h], say n = [m, h] for some m ∈ N . Then
m−1(hn)m = h, or equivalently gm ∈ H , which is a contradiction.

Finally, let us turn to part (iv). If x ∈ N∗ then xG ⊂ N , so xG∩H ⊆ N∩H = 1
and thus xG ∩ H = ∅ since x �= 1. Therefore N∗ ⊆ �H (G). In particular, if every
element of �H (G) is an r -element (for some fixed prime r ), then every element of
N is also an r -element and thus N is an r -group. ��
Lemma 5.2. Let G = H � N, where N is an r-group for some prime r. Then the
following are equivalent:

(i) Property (
) holds.
(ii) CH (n) = H ∩ Hn is an r-group for all n ∈ N∗.
(iii) CN (x) = 1 for every nontrivial r ′-element x ∈ H. In other words, every

nontrivial r ′-element of H induces a fixed-point-free automorphism of N via
conjugation.

Proof. First we will show that (i) implies (ii). Suppose that (
) holds. Let n ∈ N∗.
We claim that CH (n) is an r -group. Notice that CH (n) = H ∩ Hn by Lemma
5.1(ii). Seeking a contradiction, suppose that |CH (n)| is divisible by a prime s �= r .
Choose y ∈ CH (n) with |y| = s and let g := ny = yn ∈ G. We claim that
g ∈ �H (G), which would be a contradiction since |g| = |n|s is not a power of r .
Assume that g �∈ �H (G), so g ∈ Ht for some t ∈ G. Since G = HN , we may
assume that t ∈ N . Then

gs = (ny)s = ns ys = ns ∈ Ht

and ns ∈ N � G, so t (ns)t−1 ∈ H ∩N = 1 and thus ns = 1, which is not possible
since n is a nontrivial r -element. Therefore, g = ny ∈ �H (G) as required.

Next we will show that (ii) implies (i). Suppose that CH (n) is an r -group for
all n ∈ N∗. Let g ∈ �H (G), say g = hn with h ∈ H and n ∈ N∗. We claim that
g is an r -element. Seeking a contradiction, suppose that m := |g| is divisible by
a prime s �= r . Set x := gm/s ∈ G and let S be a Sylow s-subgroup of H . Then
|x | = s and S is also a Sylow s-subgroup of G since |G : H | = |N | is coprime
to s. By Sylow’s theorem, xt ∈ S � H for some t ∈ G. Since gG ⊆ �H (G),
replacing g by gt

−1
we may assume that x ∈ H . Then g ∈ CG(x) = CH (x)CN (x)

by Lemma 5.1(i).
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Suppose that CN (x) �= 1, say 1 �= n ∈ CN (x). Then x ∈ CH (n), but this
is a contradiction since |x | = s and we are assuming that CH (n) is an r -group.
Therefore, CN (x) = 1 and thus CG(x) = CH (x). Hence g ∈ CH (x) � H , which
contradicts the fact that g ∈ �H (G). This final contradiction shows that g is an
r -element, so (
) holds.

Now let us show that (ii) implies (iii). Suppose that CH (n) is an r -group for
all n ∈ N∗. Let x ∈ H∗ be an r ′-element. We claim that CN (x) = 1. Seeking
a contradiction, suppose that 1 �= n ∈ CN (x). Then x ∈ CH (n), so |CH (n)|
is divisible by |x |, which is not an r -power. This contradicts the assumption that
CH (n) is an r -group.

To complete the proof, it remains to show that (iii) implies (ii). Suppose that
CN (x) = 1 for every nontrivial r ′-element x ∈ H . Let n ∈ N∗. If CH (n) is not an
r -group, then there exists an element x ∈ CH (n) with |x | = s, where s �= r is a
prime. Therefore, 1 �= n ∈ CN (x), which is not possible since CN (x) = 1. ��

We are now in a position to prove Theorem 4.

Proof of Theorem 4. Let G = HV � AGL(V ) be a finite affine primitive per-
mutation group with point stabilizer H = G0 and socle V = (Zp)

k , where p is
a prime and k � 1. If property (
) holds, then r = p and Lemma 5.2 implies
that no nontrivial r ′-element of H has fixed points on V \{0}. Therefore, the pair
(H, V ) is r ′-semiregular in the sense of [19]. Conversely, if r = p and (H, V ) is
r ′-semiregular, then CV (x) = 0 for every nontrivial r ′-element x ∈ H , so Lemma
5.2 implies that G has property (
). ��
Remark 5.3. Note that the equivalence of (i) and (ii) in Lemma 5.2 implies that an
affine group G = HV � AGL(V ) has property (
) if and only if every two-point
stabilizer in G is an r -group.

If G = HV � AGL(V ) is an affine group (with V = (Zr )
k) and r �∈ π(H),

thenG is a Frobenius group and property (
) clearly holds. Therefore, wemay focus
on the case where r ∈ π(H). As noted in the Introduction, detailed information on
r ′-semiregular pairs (H, V ) was initially obtained by Guralnick and Wiegand in
[33, Section 4], where this notion arises naturally in their study of the multiplica-
tive structure of field extensions. Similar results were established in later work by
Fleischmann et al. [19]. In both papers, the main aim is to determine the structure
of H . For solvable affine groups, we have the following result (in the statement,
Or ′(Y ) denotes the largest normal r ′-subgroup of Y ):

Proposition 5.4. Let G = HV � AGL(V ) be a finite affine primitive permutation
group with point stabilizer H = G0 and socle V = (Zr )

k . Assume that H is
solvable and r ∈ π(H). Then G has property (
) only if H ∼= X ×Y or (X ×Y ):2,
where X ∈ {1,SL2(3)}, Y = Or ′(Y )R and R is a Sylow r-subgroup of Y .

Proof. This follows from [19, Theorem 2.1]. ��
Themain result for a perfect group H is Proposition 5.5 below (see [19, Theorem

4.1]; also see [33, Theorem 4.2]). In part (iv), S = {5, 13, 37, 73, . . .} is the set of
all primes s satisfying the following conditions:
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(a) s = 2a3b + 1, where a � 2 and b � 0;
(b) (s + 1)/2 is a prime.

It is not known whether or not S is finite.

Proposition 5.5. Let G = HV � AGL(V ) be a finite affine primitive permutation
group with point stabilizer H = G0 and socle V = (Zr )

k . Assume that H is perfect
and r ∈ π(H). Then G has property (
) only if one of the following holds:

(i) H ∼= SL2(ra), where a � 1 and ra > 3;
(ii) H ∼= 2B2(22a+1), r = 2 and a � 1;
(iii) H ∼= 2B2(22a+1) × SL2(22b+1), r = 2 and a, b � 1 such that (2a + 1, 2b +

1) = 1;
(iv) H ∼= SL2(s), r = 3 and s ∈ S ∪ {7, 17}.

For instance, H = SL2(7) has a 12-dimensional faithful, irreducible module
V over F3, and the corresponding affine group G = HV has property (
) (with
E(G) = {3, 9}). In the general case, we refer the reader to [19, Theorem 6.1] for a
detailed description of the structure of H .

Finally, let us suppose that G = HV � AGL(V ) is a finite affine primitive
permutation group with property (
). Set

E(G) = EH (G) = {|x | : x ∈ �H (G)}.
Can we determine when E(G) = {r}? In order to address this question, let P be a
Sylow r -subgroup of G. Then V � P since V is a normal r -subgroup of G, and we
have P = (H ∩ P)V = KV with K := H ∩ P . Note that P = KV is a semidirect
product.

Proposition 5.6. Let G = HV � AGL(V ) be a finite affine primitive permutation
group with point stabilizer H = G0 and socle V = (Zr )

k . Assume that property (
)
holds. Let P be a Sylow r-subgroup of G and set K = H ∩ P. Then the following
hold:

(i) P = KV is a transitive permutation group on P/K.
(ii) �(G) = ⋃

g∈G �K (P)g and E(G) = EK (P).

Proof. As above, P = KV is a semidirect product. For part (i), it suffices to
show that the core L of K in P is trivial. We have L � K � H and L � P , so
[L , V ] � L ∩ V � K ∩ V = 1 and thus L � CK (V ) � CH (V ) = 1 (here we are
using the fact that V is a faithful irreducible H -module). This proves (i).

Now consider part (ii). Clearly, it suffices to show that the first equality holds.
By applying Lemma 5.1(iii) we have

�K (P) = {tv : t ∈ K , v ∈ V \[V, t]}.
Since K � H , a further application of Lemma 5.1(iii) (this time for G = HV )
shows that �K (P) ⊆ �(G). As �(G) is a normal subset of G, it follows that

⋃

g∈G
�K (P)g ⊆ �(G).
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Since property (
) holds, every g ∈ �(G) is an r -element, so someG-conjugate
of g is in P . Without loss of generality, we may assume that g ∈ P = KV . By
Lemma 5.1(iii) we have g = hn, with h ∈ H and n ∈ V \ [V, h]. Moreover,
since V � P and g ∈ P , we have h = gn−1 ∈ H ∩ P = K . Therefore, by
applying Lemma 5.1(iii) once again, we conclude that g = hn ∈ �K (P), so
�(G) = ⋃

g∈G �K (P)g and the proof is complete. ��
Now, if we assume that G = HV has property (
), then part (ii) of Proposition

5.6 implies that E(G) = {r} if and only if EK (P) = {r}. Clearly, if P has exponent
r , then EK (P) = {r}. Conversely, if EK (P) = {r} with r = 2 or 3, then a theorem
of Mann and Praeger [43, Proposition 2] implies that P has exponent r . In fact, for
this specific transitive group P we can show that the same conclusion holds for any
prime r (we thank an anonymous referee for pointing this out).

Theorem 5.7. Let G = HV � AGL(V ) be a finite affine primitive permutation
group with point stabilizer H = G0 and socle V = (Zp)

k , where p is a prime and
k � 1. Then every derangement in G has order r , for some fixed prime r, if and
only if r = p and the following two conditions hold:

(i) Every two-point stabilizer in G is an r-group;
(ii) A Sylow r-subgroup of G has exponent r .

Proof. Let P be a Sylow r -subgroup of G. First assume that r = p and (i) and (ii)
hold. By (i), the pair (H, V ) is r ′-semiregular so Theorem 4 implies that property
(
) holds. Therefore, E(G) = EK (P) by Proposition 5.6(ii) (with K = H ∩ P) and
thus condition (ii) implies that E(G) = {r} as required.

Conversely, let us assume that E(G) = {r}, so r = p and property (
) holds. By
Theorem 4, every two-point stabilizer in G is an r -group and so it remains to show
that P has exponent r . Seeking a contradiction, suppose that exp(P) � r2. Note
that r divides |H |. Let Q be a Sylow r -subgroup of H . Let x ∈ P be an element
of order r2 and observe that x belongs to a conjugate of H (since E(G) = {r}), so
exp(Q) � r2. We may assume x ∈ H and we choose an element v ∈ V \[V, x].
Then xv ∈ G is a derangement by Lemma 5.1(iii), but |xv| � r2 so we have
reached a contradiction. ��
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