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Abstract
Reef-dwelling Christmas tree worms (Spirobranchus spp.) are common coral associates. Their calcareous tubes are usually 
embedded in the coral skeleton and can be closed by an operculum. Tubes not overgrown by coral tissue either remain bare 
or become covered by algae. Despite their widespread distribution, high abundance and striking appearance, little is known 
about the impact of these worms on their hosts. We quantified visible coral damage caused by Spirobranchus in Curaçao 
(Southern Caribbean) and found that 62.6% of worm opercula (n = 1323) caused abrasions and tissue loss in their hosts. 
Filamentous turf algae, known to be potentially harmful to corals, covered 76.9% of the opercula. Examination of the six 
most frequently inhabited host species showed a variation in the damage percentages, although this was independent of the 
presence of epibiotic algae on 78.4% of all opercula. Since injured corals are more susceptible to diseases, the overall nega-
tive impact of Spirobranchus worms on their hosts may be more severe than previously assumed.

Introduction

Coral-dwelling tubeworms of the genus Spirobranchus 
(Polychaeta: Serpulidae), known popularly as Christmas 
tree worms because of their twin-conispiral branchiae, are 
commonly found on coral reefs. They live as associates of a 
large number of host coral species, on which they can form 
aggregations (Hunte et al. 1990; Hoeksema and Ten Hove 
2017a; Hoeksema et al. 2017; Martin and Britayev 2018). 
Their planktonic larvae usually settle on abraded coral sur-
face (Hutchings 1986) and, more occasionally, on rubble and 
shells of giant clams (Nygaard 2008; Van der Schoot et al. 
2016). The calcareous worm tube is usually overgrown by 
the host coral and remains embedded within its coral skel-
eton, except for its opening (Hoeksema and Ten Hove 2014). 
In this way, the worms can survive over 40 years (Nishi 

and Nishihira 1996), even if the host becomes overgrown by 
sponges and octocorals, which in turn can act as replacement 
hosts (Hoeksema et al. 2015, 2016; García-Hernández and 
Hoeksema 2017).

When threatened, the worms rapidly retract inside their 
tubes, closing them by the calcified operculum, which is 
attached to a fleshy stalk (Hoeksema and Ten Hove 2014; 
Pezner et al. 2017). Failing to retract in time entails risk of 
predation by fish (Nishi and Kikuchi 1996; Hoeksema and 
Ten Hove 2017b). Probably as extra protection, many Christ-
mas tree worms have a sharp spike on the margin of their 
tube opening as illustrated by Hoeksema et al. (2017: Fig. 1) 
and antler-shaped spines on their operculum (Hoeksema 
and Ten Hove 2014: Fig. 1). Moreover, the operculum may 
become covered by various kinds of epibionts, such as algae, 
corals, sponges and other serpulids (Hoeksema et al. 2018; 
Perry et al. 2018a).

The presence of Spirobranchus can be of disadvantage 
to the host corals when incorporated tubes undermine the 
structural integrity of corals, causing them to break more 
easily (Hutchings 2011). Dead worms leave empty holes 
behind, which can become inhabited by cryptofauna (e.g., 
hermit crabs, fish) and turf algae (Schuhmacher 1977; 
Hutchings 1986; Clarke and Tyler 2003; Böhm and Hoek-
sema 2017), which may prevent corals to regenerate and 
heal. Spirobranchus worms can also irritate and stress the 
surrounding polyps (Borger 2005; Hoeksema et al. 2018, 
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2019) and even smother and kill their hosts when they occur 
in high densities (Samimi Namin et al. 2010).

In fact, the opercula can serve as a substrate for epibi-
otic turf algae and, when the worms are extended, oper-
cula with or without algae can cause damage to the coral 
surface, as demonstrated in Indo-Pacific reefs (Hoeksema 
et al. 2018, 2019). Turf algae are known to cause stress and 
partial mortality in corals (McCook et al. 2001; Vermeij 
et al. 2010; Longo and Hay 2017). Therefore, we surveyed 
reefs at Curaçao to assess whether Spirobranchus could be 
harmful to Caribbean host corals with special emphasis on 
the possible involvement of opercula and the relationship 
with epibiotic turf algae on the opercula. Additionally, we 
analysed whether damage varied among host species.

Materials and methods

Fieldwork on worm-inflicted coral injuries took place in 
February–March 2015 on fringing reefs along the leeward 
coast of Curaçao. The presence of worms on their host corals 
was recorded by scuba diving in belt transects, each 30 m2 in 
surface area (ntot = 52.8). The records were from four differ-
ent sites (Sites 1–4) that were at least 10 km apart (Fig. 1), 
and at 5, 10, and 15 m depth (Table 1). The worms and 
their hosts were photographed to document damages vis-
ible as tissue discoloration or loss on the adjacent coral sur-
face. Only worms for which could be determined that their 
opercula were harmful or not were included in the analy-
ses (i.e., 1323 of the total number of 2625 worms found; 
Table 2). In the remaining 1302 cases, damages were not 
determined either due to the critical spot where an opercu-
lum may touch the coral surface being obscured by worm’s 
branchiae or by the coral’s tentacles, but also by a wrong 

angle of the pictures. Even though many encountered coral 
colonies hosted more than one worm, each specimen of 
Spirobranchus was counted as representing a single associa-
tion (Table 2). Host corals were identified based on Humann 
and DeLoach (2013) and the identity of the Spirobranchus 
specimens was confirmed according to Ten Hove (1970) and 
partly verified by the last author.

The six most frequently encountered host species, each 
harbouring > 50 worms, were selected to analyse the inter-
specific variation in the occurrence of damages; only 1150 
worms of these six species together could be used in the 
analysis (Table 2). The mean number of worms per host 
coral colony varied from 1.4 to 3.9 among these six spe-
cies (Table 2). Damage variability among host species, as 
well as the relationships between opercula with and without 
algae and damages, was examined with the Fisher’s exact 
test of independence in R (McDonald 2014). Coral damage 
caused by algae on worm tubes was not quantified because 
the latter were unequally embedded in the coral, so that the 
exposed parts varied much in size (Fig. 2).

Results

Twenty-one host coral species were infested by Christmas 
tree worms, all of them belonging to Spirobranchus gigan-
teus (Pallas, 1766) (Table 2). Worm tubes showed various 
degrees of coral overgrowth (Fig. 2a), including some not 
overgrown that were situated in depressions on the colony 
surface, suggesting that coral growth had slowed down 
beneath and around them (Fig. 2c, d). Exposed tubes could 
become covered by crustose coralline algae (Fig. 2b) or fila-
mentous turf algae, which harmed the coral surface along-
side the tubes (Fig. 2d, e).

Curaçao
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Fig. 1   Reef sites at Curaçao used to survey coral damage caused by 
Spirobranchus. 1 = Playa Kalki, 12°22′30″N 69°09′28″W; 2 = Daai-
booi, 12°12′43″N 69°05′06″W; 3 = Water Factory, 12°06′33″N 
68°57′15″W; 4 = Director’s Bay, 12°03′58″N 68°51′36″W

Table 1   Number of 30-m2 transects (ntot = 52.8) and worms 
(ntot = 1323) used for the analysis distributed over four sites and three 
depths

The four sites are not similar in the number of worms (χ2 = 51.902; 
p < 0.05) but the three depths are (χ2 = 2136; p > 0.05; chi square for 
goodness of fit)

Transects (n) Worms (n)

Site
 Site 1 18.5 270
 Site 2 12.0 409
 Site 3 10.0 382
 Site 4 12.3 262

Depth
 5 m 16.8 416
 10 m 18.0 452
 15 m 18.0 455
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Of all 1323 worms analysed, 829 (62.6%) injured adja-
cent coral tissues with their opercula (Fig. 3; Table 2). 
The six host species with the highest numbers of asso-
ciated worms, varied significantly in the proportions 
of worms causing operculum-induced injuries (n = 6, 
p < 0.0001, Fisher’s exact test), ranging from 24% in the 
hydrocoral Millepora complanata to 87% in the sclerac-
tinian Pseudodiploria strigosa (Table 2), which showed, 
respectively, the lowest and highest damage levels (p < 0. 
0001, Post hoc tests with Bonferroni correction; Fig. 4, 
Table 3).  

A large portion (78%) of the opercula in worms infest-
ing the six host species was covered by filamentous turf 
algae (Fig. 3), which did not differ significantly in dam-
age level compared with those without algae (Fig.  4; 
Fisher’s exact test).

Discussion

Five scleractinian coral species and one milleporid showed 
a strong interspecific variation in damage caused by the 
opercula of Spirobranchus worms. The lowest damage 
shown by Millepora complanata (Fig. 3a) in comparison 
with the scleractinians may be related to its thin coenosarc, 
as well as to its different skeleton anatomy (pores instead 
of protruding calices), thereby showing a higher tolerance 
to physical disturbance (Lewis 1989, 2006). Pseudodiplo-
ria strigosa, a common host for S. giganteus (Hunte et al. 
1990; Marsden et al 1990), shows the highest frequency of 
worm-induced injuries. This coral species is much under 
attack by corallivorous Coralliophila snails in Curaçao 
(Potkamp et al. 2017a, b), which also cause abrasions on 
the coral surface. Since Spirobranchus larvae settle most 
easily on abraded coral surface (Hutchings 1986), this may 
facilitate further damage caused by the worms.

Table 2   Coral species acting as host for Spirobranchus giganteus at Curaçao, with for each: numbers of host coral colonies, worms present, 
occurrence and absence of distinct damage, total analysed, and unknowns

Six species (bold script) with the highest numbers of worms analysed (each n > 50; ntot present = 2011; ntot analysed = 1150) were selected for 
inter- and intraspecific comparisons of the occurrence of damage

Host species Host coral Worms Mean ± SD Total Damage No damage Unknown
Colonies, n Present, n n/host coral Analysed, n n (%) n n

Agaricia agaricites (Linnaeus, 1758) 133 185 1.4 ± 0.9 117 61 (52) 56 68
Agaricia lamarcki Milne Edwards & Haime, 1851 1 2 2 1 (50) 1 0
Colpophyllia natans (Houttuyn, 1772) 5 7 1.4 ± 0.5 6 4 (67) 2 1
Diploria labyrinthiformis (Linnaeus, 1758) 4 4 2 2 (100) 0 2
Eusmilia fastigiata (Pallas, 1766) 4 4 2 1 (50) 1 2
Madracis auretenra Locke, Weil & Coates, 2007 79 221 2.9 ± 2.9 15 6 (40) 9 206
Madracis decactis (Lyman, 1859) 6 9 1.5 ± 0.8 6 5 (83) 1 3
Madracis pharensis (Heller, 1868) 12 21 1.8 ± 0.8 10 10 (100) 0 11
Meandrina meandrites (Linnaeus, 1758) 2 2 2 1 (50) 1 0
Millepora alcicornis Linnaeus, 1758 1 1 0 0 (0) 0 1
Millepora complanata Lamarck, 1816 114 272 2.4 ± 2.7 146 35 (24) 111 126
Montastraea cavernosa (Linnaeus, 1767) 19 27 1.4 ± 0.7 13 11 (85) 2 14
Orbicella annularis (Ellis & Solander, 1786) 245 414 1.7 ± 1.3 290 189 (65) 101 124
Orbicella faveolata (Ellis & Solander, 1786) 38 96 2.5 ± 3.2 29 20 (69) 9 67
Orbicella franksi (Gregory, 1895) 69 149 2.2 ± 1.8 74 45 (61) 29 75
Porites astreoides Lamarck, 1816 274 559 2.0 ± 1.8 341 213 (62) 128 218
Porites porites (Pallas, 1766) 21 50 2.4 ± 2.5 15 10 (67) 5 35
Pseudodiploria clivosa (Ellis & Solander, 1786) 3 6 2.0 ± 1.0 0 0 (0) 0 6
Pseudodiploria strigosa (Dana, 1846) 110 432 3.9 ± 5.2 182 159 (87) 23 250
Siderastraea siderea (Ellis & Solander, 1768) 33 102 3.1 ± 4.0 41 30 (73) 11 61
Stephanocoenia intersepta (Lamarck, 1816) 30 62 2.1 ± 2.1 27 26 (87) 4 32
Total 1203 2625 1323 829 (63) 494 1302
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The lack of influence of the epibiotic algae on Spiro-
branchus opercula is not consistent with previous studies 
on the impact of turf algae on corals (McCook et al 2001; 
Swierts and Vermeij 2016; Longo and Hay 2017). It is 
partly consistent with observations on Indo-Pacific reefs, 
in which such epibiotic algae increase damage in corals of 
two species of Porites but not in two of Montipora (Hoek-
sema et al. 2018, 2019). Therefore, our results suggest 
that the opercula themselves are the single cause of coral 
damage in Curaçao, although this does not imply that turf 
algae by themselves cannot cause damage to corals in the 
Caribbean (Vermeij et al. 2010; Wild et al. 2014).

Regeneration of coral wounds depends on their size, 
shape and position, but also on the coral species, shape, 
size and depth (Bak et al. 1977; Bak and Steward-Van Es 
1980; Meesters et al. 1996, 1997a, b). Damage in corals 
caused by Spirobranchus may be difficult to heal, which 
becomes obvious when worm tubes cannot be overgrown 
by coral tissues (Fig. 2) or when vacated tubes become 
inhabited by other organisms (Schuhmacher 1977; Hutch-
ings 1986; Böhm and Hoeksema 2017). Such damage may 
also cause the corals to become more susceptible to dis-
eases (Katz et al. 2014; Lamb et al. 2014).

Fig. 2   Spirobranchus giganteus tubes on corals of various host spe-
cies (arrows) at Curaçao. a Agaricia agaricites: tube (1) completely 
embedded (2) mostly embedded (3) largely exposed and partly cov-
ered by algae. b Porites porites: tubes covered by red crustose cor-

alline algae. c Orbicella annularis: high density of exposed worm 
tubes. Pseudodiploria strigosa (d) and Tubastraea coccinea (e): 
exposed worm tube with turf algae. Worm tubes not overgrown by the 
host may be situated in coral surface depressions (c, d)
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Coral-associated Spirobranchus are often reported as 
being beneficious for the host, by providing protection 
against predators or by enhancing water circulation around 
the coral polyps (DeVantier et al. 1986; Ben-Tzvi et al. 
2006). Each of these advantages appear to be small in scale 
and reported once, with the first one being cited repeatedly 
(Nygaard 2008; Rowley 2008; Montano et al. 2017; Perry 
et al. 2018a; Montalbetti et al. 2019). Conversely, our pre-
sent study and previous results (Borger 2005; Samimi Namin 
et al. 2010; Hoeksema et al. 2018, 2019) reveal a relevant 
and widespread negative impact of Spirobranchus worms 
on their hosts. It is remarkable that damage caused by worm 
opercula at Curaçao in the Caribbean (63%, n = 1323) was 
found to be much more frequent than at Koh Tao in the Gulf 
of Thailand (21%, n = 749; Hoeksema et al. 2019). This con-
stitutes a significant difference (p < 0.0001, Fisher’s exact 
test), for which various hypotheses can be given that are 
either related to environmental differences or to the various 
worm and coral species involved. For instance, opercula in 

the Caribbean Spirobranchus giganteus are generally larger 
and more heavily branched than those of S. corniculatus 
(Grube, 1862), the species most commonly found in the 
Indo-Pacific (ten Hove 1970; Willette et al. 2015; Perry et al. 
2018b). Polyp morphology and the position of the worm in 
relation to the coral’s surface may be factors that can affect 
the damaging effect of the opercula (Hoeksema et al. 2019).

Therefore, further studies must address the balance 
between positive and negative impacts of Spirobranchus 
worms on their host corals, enabling a decision whether 
their relation must be considered amensalistic, in which the 
worms harm the coral but are not harmed themselves, or 
mutualistic, in which both partners eventually benefit, and/or 
in which circumstances these two strategies prevail. Such a 
knowledge may be relevant for the management and preser-
vation of coral reefs if, for instance, external circumstances 
(e.g., pollution, turbidity) may weaken the coral’s resistance, 
thus inclining the response of the worms towards a more 
parasitic behaviour.

Fig. 3   Coral injuries beneath S. giganteus opercula on various host species (arrows) at Curaçao. a Millepora complanata. b Agaricia lamarcki. c 
Orbicella faveolata. d Orbicella annularis. e Siderastrea siderea 
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Fig. 4   Comparison of propor-
tions of Spirobranchus opercula 
causing coral damage with or 
without algae (Fisher’s exact 
test) across six host coral 
species at Curaçao (ns not 
significant)

Table 3   Post hoc results with Bonferroni correction of the Fisher’s exact test for differences in opercula-induced damage between two host coral 
species

Species Millepora complanata Agaricia agaricites Orbicella annularis Orbicella franksi Porites astreoides

Agaricia agaricites p < 0.0001
Orbicella annularis p < 0.0001 ns
Orbicella franksi p < 0.0001 ns ns
Porites astreoides p < 0.0001 ns ns ns
Pseudodiploria strigosa p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001
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