
https://doi.org/10.1007/s00224-020-09987-4

On the Average Case of MergeInsertion

Florian Stober1 ·ArminWeiß1

© The Author(s) 2020

Abstract
MergeInsertion, also known as the Ford-Johnson algorithm, is a sorting algorithm
which, up to today, for many input sizes achieves the best known upper bound on the
number of comparisons. Indeed, it gets extremely close to the information-theoretic
lower bound. While the worst-case behavior is well understood, only little is known
about the average case. This work takes a closer look at the average case behavior.
In particular, we establish an upper bound of n log n − 1.4005n + o(n) comparisons.
We also give an exact description of the probability distribution of the length of the
chain a given element is inserted into and use it to approximate the average number
of comparisons numerically. Moreover, we compute the exact average number of
comparisons for n up to 148. Furthermore, we experimentally explore the impact of
different decision trees for binary insertion. To conclude, we conduct experiments
showing that a slightly different insertion order leads to a better average case and we
compare the algorithm to Manacher’s combination of merging and MergeInsertion
as well as to the recent combined algorithm with (1,2)-Insertionsort by Iwama and
Teruyama.

Keywords MergeInsertion · Minimum-comparison sort · Average case analysis.

1 Introduction

Sorting a set of elements is an important operation frequently performed by many
computer programs. Consequently there exist a variety of algorithms for sorting, each
of which comes with its own advantages and disadvantages.

This article belongs to the Topical Collection: Special Issue on International Workshop on
Combinatorial Algorithms (IWOCA 2019)
Guest Editors: Charles Colbourn, Roberto Grossi, Nadia Pisanti

The second author has been supported by the German Research Foundation (DFG) under grant DI
435/7-1.

� Armin Weiß
armin.weiss@fmi.uni-stuttgart.de

1 Universität Stuttgart, FMI, Universitätsstr. 38, D-70569, Stuttgart, Germany

Theory of Computing Systems (2020) 64:1197–1224

Published online: June 202030

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-020-09987-4&domain=pdf
http://orcid.org/0000-0002-7645-5867
mailto: armin.weiss@fmi.uni-stuttgart.de

Here we focus on comparison based sorting and study a specific sorting algorithm
known as MergeInsertion. It was discovered by Ford and Johnson in 1959 [5]. Before
D. E. Knuth coined the term MergeInsertion in his study of the algorithm in his book
“The Art of Computer Programming, Volume 3: Sorting and Searching” [8], it was
known only as Ford-Johnson Algorithm, named after its creators. The one outstand-
ing property of MergeInsertion is that the number of comparisons it requires is close
to the information-theoretic lower bound of log(n!) ≈ n log n − 1.4427n (for sorting
n elements). This sets it apart from many other sorting algorithms. MergeInsertion
can be described in three steps: first pairs of elements are compared; in the second
step the larger elements are sorted recursively; as a last step the elements belong-
ing to the smaller half are inserted into the already sorted larger half using binary
insertion.

In the worst case the number of comparisons ofMergeInsertion is quite well under-
stood [8] – it is n log n + b(n) · n + o(n) where b(n) oscillates between −1.415 and
−1.3289. Moreover, for many n MergeInsertion is proved to be the optimal algo-
rithm in the worst case (in particular, for n ≤ 15 [10, 11]). However, there are also n

where it is not optimal [2, 9]. One reason for this is the oscillating linear term in the
number of comparisons, which allowed Manacher [9] to show that for certain n it is
more efficient to split the input into two parts, sort both parts with MergeInsertion,
and then merge the two parts into one array.

Regarding the average case (with respect to a uniform distribution over all input
permutations) not much is known: in [8] Knuth calculated the number of comparisons
required on average for n ∈ {1, . . . , 8}; an upper bound of n log n − 1.3999n + o(n)

has been given in [3, Theorem 6] (the proof can be found in [4, Theorem 6.5]). Most
recently, Iwama and Teruyama [7] showed that in the average case MergeInsertion
can be improved by combining it with their (1,2)-Insertion algorithm resulting in an
upper bound of n log n − 1.4106n + O(log n). This reduces the gap to the lower
bound by around 25%. It is a fundamental open problem how close one can get to the
information-theoretic lower bound of n log n − 1.4427n (see e. g. [7, 12]).

The goal of this work is to study the number of comparisons required in the
average case. Usually, the average case of a sorting algorithm refers to a uniform
distribution of all permutations of distinct elements. Here, we follow this conven-
tion. In particular, we analyze the insertion step of MergeInsertion in greater detail.
In general, MergeInsertion achieves its good performance by inserting elements in a
specific order that in the worst case causes each element to be inserted into a sorted
list of 2k −1 elements (thus, using exactly k comparisons). When looking at the aver-
age case elements are often inserted into less than 2k − 1 elements which is slightly
cheaper. By calculating those small savings we seek to achieve our goal of a better
upper bound on the average case. Our results can be summarized as follows:

- We derive an exact formula for the probability distribution into how many ele-
ments a given element is inserted (Theorem 2). This is the crucial first step in
order to obtain better bounds for the average case of MergeInsertion.

- We experimentally examine different decision trees for binary insertion. We
obtain the best result when assigning shorter decision paths to positions located
further to the left (Section 3.1).

Theory of Computing Systems (2020) 64:1197–12241198

- We use Theorem 2 in order to compute quite precise numerical estimates for the
average number of comparisons for n up to roughly 15000 (Section 4.1).

- We compute the exact average number of comparisons for n up to 148 – thus,
going much further than [8] (Section 4.2).

- We improve the bound of [3, 4] to n log n − 1.4005n + o(n) (Theorem 3). This
partially answers a conjecture from [12] which asks for an in-place algorithm
with n log n − 1.4n comparisons on average and n log n − 1.3n comparisons in
the worst case. Although MergeInsertion is not in-place, the the techniques from
[3, 4] or [12] can be used to make it so.

- We evaluate a slightly different insertion order decreasing the gap between the
lower bound and the average number of comparisons of MergeInsertion by
roughly 30% for n ≈ 2k/3 (Section 5.2).

- Our experiments show that splitting the input into two parts, sorting them sep-
arately, and then merging the sorted parts – as proposed by [9] to improve the
worst case –, also leads to an improvement in the average-case for certain input
sizes (Section 5.3).

- We compare MergeInsertion to the recent combination by Iwama and Teruyama
[7] showing that, in fact, their combined algorithm is still better than the analysis
and with the different insertion order can be further improved (Section 5.4).

2 Preliminaries

Throughout, we assume that the input consists of n distinct elements. The average
case complexity is the mean number of comparisons over all input permutations of n

elements.
We use the notation falling factorial xn = x(x −1) · · · (x −n+1) =∏n−1

i=0 (x − i)

and rising factorial xn = x(x + 1) · · · (x + n − 1) = ∏n−1
i=0 (x + i) for x, n ∈ N.

Notice that we have xn = x!
(x−n)! for x ≥ n and xn = (x+n−1)!

(x−1)! .

2.1 Description of MergeInsertion

The MergeInsertion algorithm consists of three phases: pairwise comparison, recur-
sion, and insertion. Accompanying the explanations we give an example where
n = 21. We call such a set of relations between individual elements a configuration.

1. Pairwise comparison. The elements are grouped into
⌊

n
2

⌋
pairs. Each pair is

sorted using one comparison. After that, the elements are called a1 to a� n
2� and

b1 to b� n
2	 with ai > bi for all 1 ≤ i ≤ ⌊n2

⌋
.

Theory of Computing Systems (2020) 64:1197–1224 1199

2. Recursion. The
⌊

n
2

⌋
larger elements, i. e., a1 to a� n

2 � are sorted recursively. Then
all elements (the

⌊
n
2

⌋
larger ones as well as the corresponding smaller ones) are

renamed accordingly such that ai < ai+1 and ai > bi still holds.

3. Insertion. The
⌈

n
2

⌉
small elements, i. e., the bi , are inserted into the main chain

using binary insertion. The term “main chain” describes the set of elements
containing a1, . . . , atk as well as the bi that have already been inserted.

The elements are inserted in batches starting with b3, b2. In the k-th batch

the elements btk , btk−1, . . . , btk−1+1 where tk = 2k+1+(−1)k

3 are inserted in that
order. Elements bj where j >

⌈
n
2

⌉
(which do not exist) are skipped. Note that

technically b1 is the first batch; but inserting b1 does not need any comparison.
Because of the insertion order, every element bi which is part of the k-th batch

is inserted into at most 2k−1 elements; thus, it can be inserted by binary insertion
using at most k comparisons.

Regarding the average number of comparisons F(n)we make the following obser-
vations: the first step always requires

⌊
n
2

⌋
comparisons. The recursion step does not

do any comparisons by itself but depends on the other steps. The average number
of comparisons G(n) required in the insertion step is not obvious. It will be studied
closer in following chapters. Following [8], we obtain the recurrence (which is the
same as for the worst-case number of comparisons)

F(n) =
⌊n

2

⌋
+ F
(⌊n

2

⌋)
+ G
(⌈n

2

⌉)
. (1)

3 Average Case Analysis of the Insertion Step

The aim of this section is to compute the probability distributions where the elements
end up in the insertion step and into how many elements they are inserted. For this we
focus on the insertion of one batch of elements, i. e., the elements btk down to btk−1+1.
We assume that all elements of previous batches, i. e., b1 to btk−1 , have already been
inserted and together with the corresponding ai they constitute the main chain and
have been renamed to x1 to x2tk−1 such that xi < xi+1. The situation is shown in
Fig. 1.

We will look at the element btk+i and want to answer the following questions:
what is the probability of it being inserted between xj and xj+1? And what is the
probability of it being inserted into a specific number of elements?

Theory of Computing Systems (2020) 64:1197–12241200

Fig. 1 Configuration where a single batch of elements remains to be inserted

We can ignore batches that are inserted after the batch we are looking at since
those do not affect the probabilities we wish to obtain.

First we define a probability space for the process of inserting one batch of ele-
ments: let �k be the set of all possible outcomes (i. e., linear extensions) when
sorting the partially ordered elements shown in Fig. 1 by inserting btk to btk−1+1.
Each ω ∈ �k can be viewed as a function that maps an element e to its final posi-
tion, i. e., ω(e) ∈ {1, 2, . . . , 2tk}. While the algorithm mandates a specific order for
inserting the elements btk−1+1 to btk during the insertion step, using a different order
does not change the outcome, i. e., the elements are still sorted correctly. We will use
this observation frequently in order to simplify calculating the likelihood of relations
between individual elements.

Let us look at where an element will end up after it has been inserted. Unfortu-
nately, not all positions are equally likely. For this purpose we define the random
variable Xi as follows. To simplify notation we define xtk−1+j := aj for tk−1 < j ≤
tk (hence, the main chain consists of x1, . . . , x2k).

Xi : ω
→
⎧
⎨

⎩

0 if ω(btk−1+i) < ω(x1)

j if ω(xj) < ω(btk−1+i) < ω(xj+1) for j ∈ {1, . . . , 2k − 2}
2k − 1 if ω(x2k−1) < ω(btk−1+i).

Be aware that Xi actually also depends on k, but for a simpler notation we omit
a second index k. We are interested in the probabilities P(Xi = j). These values
follow a simple pattern. For k = 4 they are given in Table 1 and for k = 6 and
i = tk − tk−1 depicted in Fig. 2.

Theorem 1 The probability of btk−1+i being inserted between xj and xj+1 is given
by

P(Xi = j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

22i−2
(
(tk−1+i−1)!

(tk−1)!
)2 (2tk−1)!

(2tk−1+2i−1)! if 0 ≤ j ≤ 2tk−1

24tk−1−2j+2i−2
(
(tk−1+i−1)!
(j−tk−1)!

)2 (2j−2tk−1)!
(2tk−1+2i−1)! if 2tk−1 < j < 2tk−1+i

0 otherwise

Proof For an arbitrary k we can calculate the probabilities P(Xi = j) by induction
on i. The base cases for the induction are that i = 1 or i = j − 2tk−1. We start
with P(X1 = j). This corresponds to the insertion of btk−1+1 into x1, . . . , x2tk−1 . The
probability of all positions is uniformly distributed, so P(X1 = j) = 1

2tk−1+1 for
0 ≤ j ≤ 2tk−1.

Theory of Computing Systems (2020) 64:1197–1224 1201

Table 1 Values of P(Xi = j) for k = 4

i 1 2 3 4 5 6

P(Xi = 0) 1
11

1
11 · 12

13
1
11 · 12

13 · 14
15

1
11 · 12

13 · 14
15 · 16

17
1
11 · 12

13 · 14
15 · · · 18

19
1
11 · 12

13 · 14
15 · · · 20

21

P(Xi = 1) 1
11

1
11 · 12

13
1
11 · 12

13 · 14
15

1
11 · 12

13 · 14
15 · 16

17
1
11 · 12

13 · 14
15 · · · 18

19
1
11 · 12

13 · 14
15 · · · 20

21

P(Xi = 2) 1
11

1
11 · 12

13
1
11 · 12

13 · 14
15

1
11 · 12

13 · 14
15 · 16

17
1
11 · 12

13 · 14
15 · · · 18

19
1
11 · 12

13 · 14
15 · · · 20

21

P(Xi = 3) 1
11

1
11 · 12

13
1
11 · 12

13 · 14
15

1
11 · 12

13 · 14
15 · 16

17
1
11 · 12

13 · 14
15 · · · 18

19
1
11 · 12

13 · 14
15 · · · 20

21

P(Xi = 4) 1
11

1
11 · 12

13
1
11 · 12

13 · 14
15

1
11 · 12

13 · 14
15 · 16

17
1
11 · 12

13 · 14
15 · · · 18

19
1
11 · 12

13 · 14
15 · · · 20

21

P(Xi = 5) 1
11

1
11 · 12

13
1
11 · 12

13 · 14
15

1
11 · 12

13 · 14
15 · 16

17
1
11 · 12

13 · 14
15 · · · 18

19
1
11 · 12

13 · 14
15 · · · 20

21

P(Xi = 6) 1
11

1
11 · 12

13
1
11 · 12

13 · 14
15

1
11 · 12

13 · 14
15 · 16

17
1
11 · 12

13 · 14
15 · · · 18

19
1
11 · 12

13 · 14
15 · · · 20

21

P(Xi = 7) 1
11

1
11 · 12

13
1
11 · 12

13 · 14
15

1
11 · 12

13 · 14
15 · 16

17
1
11 · 12

13 · 14
15 · · · 18

19
1
11 · 12

13 · 14
15 · · · 20

21

P(Xi = 8) 1
11

1
11 · 12

13
1
11 · 12

13 · 14
15

1
11 · 12

13 · 14
15 · 16

17
1
11 · 12

13 · 14
15 · · · 18

19
1
11 · 12

13 · 14
15 · · · 20

21

P(Xi = 9) 1
11

1
11 · 12

13
1
11 · 12

13 · 14
15

1
11 · 12

13 · 14
15 · 16

17
1
11 · 12

13 · 14
15 · · · 18

19
1
11 · 12

13 · 14
15 · · · 20

21

P(Xi = 10) 1
11

1
11 · 12

13
1
11 · 12

13 · 14
15

1
11 · 12

13 · 14
15 · 16

17
1
11 · 12

13 · 14
15 · · · 18

19
1
11 · 12

13 · 14
15 · · · 20

21

P(Xi = 11) 0 1
13

1
13 · 14

15
1
13 · 14

15 · 16
17

1
13 · 14

15 · 16
17 · 18

19
1
13 · 14

15 · 16
17 · · · 20

21

P(Xi = 12) 0 0 1
15

1
15 · 16

17
1
15 · 16

17 · 18
19

1
15 · 16

17 · 18
19 · 20

21

P(Xi = 13) 0 0 0 1
17

1
17 · 18

19
1
17 · 18

19 · 20
21

P(Xi = 14) 0 0 0 0 1
19

1
19 · 20

21

P(Xi = 15) 0 0 0 0 0 1
21

Now let i > 1 and j = i + 2tk−1. As mentioned above, we can compute this
probability by looking at a different insertion order: we assume that the elements
btk−1+1, . . . , btk−1+i−1 have been already inserted into the main chain and we want to
insert btk−1+i . Now we have a uniform distribution over all positions where btk−1+i

can end up. There are 2tk−1+2i−2 elements known to be smaller than atk−1+i . These

Fig. 2 Probability distribution of Xtk−tk−1 (when inserting btk) for k = 6

Theory of Computing Systems (2020) 64:1197–12241202

are x1, . . . , x2tk−1 and atk−1+1, . . . , atk−1+i−1 as well as the corresponding b’s. The
number of elements known to be smaller than atk−1+i−1 is one less: 2tk−1 + 2i − 3.
As a result the probability that btk−1+i is inserted between atk−1+i−1 and atk−1+i is
P(Xi = 2tk−1 + i − 1) = 1

2tk−1+2i−1 . This constitutes the induction base for the case
2tk−1 < j .

For i > 1 and j < i + 2tk−1 we can express P(Xi = j) in terms of P(Xi−1 =
j). We know already that P(Xi = 2tk−1 + i − 1) = 1

2tk−1+2i−1 . The probability
that btk−1+i ends up in one of the positions in front of atk−1+i−1 is consequently

P(0 ≤ Xi < 2tk−1 + i − 1) = 2tk−1+2i−2
2tk−1+2i−1 . If we know that btk−1+i is inserted into

one of those other positions, then it is inserted into exactly the same elements as
btk−1+i−1 (i. e., the situation is completely symmetric in btk−1+i−1 and btk−1+i). Thus,
we have P(Xi = j | Xi < 2tk−1 + i − 1) = P(Xi−1 = j) and so we can write
P(Xi = j) = 2tk−1+2i−2

2tk−1+2i−1P(Xi−1 = j). This leads to

P(Xi = j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
i−1∏

l=1

2tk−1 + 2l

)

·
(

i∏

l=1

2tk−1 + 2l − 1

)−1

if 0 ≤ j ≤ 2tk−1

⎛

⎝
i−1∏

l=j−2tk−1+1

2tk−1 + 2l

⎞

⎠ ·
⎛

⎝
i∏

l=j−2tk−1+1

2tk−1 + 2l − 1

⎞

⎠

−1

if 2tk−1 < j < 2tk−1 + i

0 otherwise.

By simplifying this equation, we obtain Theorem 1.

Next, our aim is to compute the probability that bi is inserted into a particular
number of elements. This is of special interest because the difference between aver-
age and worst case comes from the fact that sometimes we insert into less than 2k −1
elements. For that purpose we define the random variable Yi :

Yi : ω
→ ∣∣{v ∈ { x1, . . . , x2k

} ∪ {btk−1+i+1, . . . , btk } | ω(v) < ω(atk−1+i)
}∣
∣ .

Thus, Yi describes the number of elements into which btk−1+i is inserted (for 1 ≤
i ≤ tk − tk−1), i. e., the length of the main chain up to atk−1+i at this point of time.
As for the Xi , we omit an additional index k to keep notation simple. The elements
in the main chain when inserting btk+i are x1 to x2tk−1+i−1 and those elements out
of btk−1+i+1, . . . , btk which have been inserted in front of atk−1+i (which is x2tk−1+i).
Let us start with an easy observation which we will use later.

Lemma 1 For q < u and arbitrary m, we have P(Yq < m) ≥ P(Yu < m).

Proof Consider the situation Yu < m meaning that btk−1+u is inserted into less than
m elements. We distinguish two cases: either btk−1+u is inserted in front of atk−1+u−1
or between atk−1+u−1 and atk−1+u. In the first case, we have Yu−1 = Yu, in the second
case we have Yu−1 = Yu − 1; thus, in any case Yu−1 < m. Therefore, we have
P(Yu−1 < m) ≥ P(Yu < m) and the lemma follows by induction.

Theory of Computing Systems (2020) 64:1197–1224 1203

Theorem 2 For 1 ≤ i ≤ tk − tk−1 and 2tk−1 + i − 1 ≤ j ≤ 2k − 1 the probability
P(Yi = j), that btk−1+i is inserted into j elements is given by

P(Yi =j)=2j−2tk−1−i+1 (2tk − i − j − 1)!
(j− 2tk−1− i+ 1)!(2k− j− 1)!

(i + j)!
(2tk− 1)!

(tk − 1)!
(tk−1 + i − 1)

.

Proof For the proof we introduce a set of random variables Ỹi,q counting the ele-
ments in {btk−1+i+1, . . . , btk−1+i+q} which are inserted in front of atk−1+i into the
main chain (see Fig. 3):

Ỹi,q : ω
→ ∣∣{v ∈ {btk−1+i+1, . . . , btk−1+i+q} | ω(v) < ω(atk−1+i)
}∣
∣ .

By setting q = tk − tk−1 − i, we obtain

Yi = Ỹi,tk−tk−1−i + 2tk−1 + i − 1. (2)

Clearly we have P
(
Ỹi,0 = j

) = 1 if j = 0 and P
(
Ỹi,0 = j

) = 0 otherwise. For
q > 0 there are two possibilities:

1. Ỹi,q−1 = j − 1 and Xi+q < 2tk−1 + i: out of {btk−1+i+1, . . . , btk−1+i+q−1} there
have been j −1 elements inserted before atk−1+i and btk−1+i+q is inserted before
atk−1+i .

2. Ỹi,q−1 = j and Xi+q ≥ 2tk−1+i: out of {btk−1+i+1, . . . , btk−1+i+q−1} there have
been j elements inserted before atk−1+i and btk−1+i+q is inserted after atk−1+i .

From these we can calculate P(Ỹi,q = j) via

P(Ỹi,q = j) = P(Xi+q < 2tk−1 + i ∧ Ỹi,q−1 = j − 1)

+ P(Xi+q ≥ 2tk−1 + i ∧ Ỹi,q−1 = j).

Using Bayes’ theorem we obtain the following recurrence:

P(Ỹi,q = j) = P(Xi+q < 2tk−1 + i | Ỹi,q−1 = j − 1) · P(Ỹi,q−1 = j − 1)

+ P(Xi+q ≥ 2tk−1 + i | Ỹi,q−1 = j) · P(Ỹi,q−1 = j)

The probability P(Xi+q < 2tk−1 + i | Ỹi,q−1 = j −1) can be obtained by looking at
Fig. 3 and counting elements. As we explained before (Theorem 1), we can compute
this probability by assuming a different insertion order: if all the b� for � < tk−1 +
i +q are already inserted into the main chain, then we have a uniform distribution for
the position where btk−1+i+q is inserted. In this situation, btk−1+i+q is inserted into
2tk−1+2i+2q−2 elements (namely a� and b� for 1 ≤ � < tk−1+i+q). On the other

Fig. 3 Configuration where one batch of tk − tk−1 elements remains to be inserted. The elements btk−1+i

and btk−1+i+q are drawn

Theory of Computing Systems (2020) 64:1197–12241204

hand, under the condition Ỹi,q−1 = j − 1, we know that 2tk−1 + 2i + j − 2 of these
are smaller than atk−1+i (namely, the a� and b� with 1 ≤ � < tk−1 + i, btk−1+i , and
j − 1 elements out of {btk−1+i+1, . . . , btk−1+i+q−1}). Thus, we obtain the probability
2tk−1+2i+j−1
2tk−1+2i+2q−1 . We can calculateP(Xi+q ≥ 2tk−1+i | Ỹi,q−1 = j) similarly leading to

P(Ỹi,q = j) = 2tk−1 + 2i + j − 1

2tk−1 + 2i + 2q − 1
· P(Ỹi,q−1 = j − 1)

+ 2q − j − 1

2tk−1 + 2i + 2q − 1
· P(Ỹi,q−1 = j). (3)

Resolving the recurrence leads to

P(Ỹi,q = j) = (2q − j)q

2q−j j ! · 2q (tk−1 + i)q

(2tk−1 + 2i + j)!2q−j
. (4)

By substituting q := tk − tk−1 − i and j := j + 2tk−1 + i − 1 according to (2), we
obtain the closed form for P(Yi = j) shown in Theorem 2.

In order to prove (4), notice that in the case j = 0 (respectively j = q), we have
P(Ỹi,q−1 = j − 1) = 0 (respectively P(Ỹi,q−1 = j) = 0). Hence, in these cases we
have only one term to consider and it is an easy exercise to show (4) by induction.
For the case 0 < j < q, we also proceed by induction 1:

P(Ỹi,q = j)

(3)+induction= 2tk−1 + 2i + j − 1

2tk−1 + 2i + 2q − 1
· (2q − j − 1)q−1

2q−j (j − 1)! · 2q−1(tk−1 + i)q−1

(2tk−1 + 2i + j − 1)2q−j−1

+ 2q − j − 1

2tk−1 + 2i + 2q − 1
· (2q − j − 2)q−1

2q−j−1j ! · 2q−1(tk−1 + i)q−1

(2tk−1 + 2i + j)!2q−j−2

= (2tk−1 + 2i + j − 1) · (2q − j − 1)q−1

2q−j (j − 1)! · 2q (tk−1 + i)q

(2tk−1 + 2i + j − 1)2q−j+1

+ (2q − j − 1) · (2q − j − 2)q−1

2q−j−1j ! · 2q (tk−1 + i)q

(2tk−1 + 2i + j)2q−j

=
(

(2q − j − 1)q−1

2q−j (j − 1)! + (q − j)(2q − j − 1)q−1

2q−j−1j !

)

· 2q (tk−1 + i)q

(2tk−1 + 2i + j)2q−j

=
(

j

2q − j
+ 2(q − j)

2q − j

)

· (2q − j)q−1

2q−j j ! · 2q (tk−1 + i)q

(2tk−1 + 2i + j)2q−j

= (2q − j)q−1

2q−j j ! · 2q (tk−1 + i)q

(2tk−1 + 2i + j)2q−j
.

1For a automated verification of the inductive step we computed the quotient of the first and the last line
in the following computation using the Mathematica query: FullSimplify[((2ˆj/j!) ((2
q - j)!/(q - j)!) ((2 t + 2 i + j - 1)!/(2 t + 2 i + 2 q - 1)!) ((t +
i - 1 + q)!/(t + i - 1)!)) / (((2 t + 2 i + j - 1)/(2 t + 2 i + 2 q
- 1)) ((2 q - j - 1)!/(2ˆ(q - j) (j - 1)! (q - j)!)) 2ˆ(q - 1) ((2 t +
2 i + j - 2)!/(2 t + 2 i + 2 q - 3)!) ((t + i + q - 2)!/(t + i - 1)!)
+ ((2 q - j - 1)/(2 t + 2 i + 2 q - 1)) ((2 q - j - 2)!/(2ˆ(q - j -1)
(j)! (q - j- 1)!)) 2ˆ(q - 1) ((2 t + 2 i + j - 1)!/(2 t + 2 i + 2 q -
3)!) ((t + i + q - 2)!/(t + i - 1)!))]

Theory of Computing Systems (2020) 64:1197–1224 1205

Fig. 4 Probability distribution
of Yi

Figure 4 shows the probability distribution for Y1, Y21 and Y42 where k = 7.
Y42 corresponds to the insertion of btk which is the first element of the batch and
thus is always inserted into 2k − 1 elements, in this case 127. Y1 corresponds to
the insertion of btk−1+1 (the last element of the batch). In addition to those three
probability distributions Fig 5 shows the mean of all Yi for k = 7. Looking at the
values from above, for i = 42 the mean (non-surprisingly) is 127 and for i = 1 it is
close to 120. In between we have what appears to be an exponential curve.

3.1 Binary Insertion and Different Decision Trees

The Binary Insertion step is an important part of MergeInsertion. In the average case
many elements are inserted in less than 2k −1 (which is the worst case). This leads to
ambiguous decision trees where at some positions inserting an element requires only
k − 1 instead of k comparisons. Since not all positions are equally likely (positions
on the left have a slightly higher probability, see Fig. 2 for an example), this results in
different average insertion costs. We compare four different strategies all satisfying
that the corresponding decision trees have their leaves distributed across at most two
layers. For an example with five elements see Fig. 6.

First there are the center-left and center-right strategies (the stan-
dard options for binary insertion): they compare the element to be inserted with
the middle element, rounding down(up) in case of an odd number. The left

Fig. 5 Mean of Yi for different
i. k = 7

Theory of Computing Systems (2020) 64:1197–12241206

Fig. 6 Different strategies for binary insertion

strategy chooses the element to compare with in a way such that the positions
where only k − 1 comparisons are required are at the very left. The right
strategy is similar, here the positions where one can insert with just k − 1
comparisons are at the right. To summarize, the element to compare with is
⌊

n+1
2

⌋
strategy center-left

⌈
n+1
2

⌉
strategy center-right

max{n − 2k + 1, 2k−1} strategy left
min{2k, n − 2k−1 + 1} strategy right

where k = �log n�. Notice that the left strategy is also used in [7], where it is
called right-hand-binary-search. Figure 7 shows experimental results comparing the
different strategies for binary insertion regarding their effect on the average-case of
MergeInsertion. As we can see the left strategy performs the best, closely followed
by center-left and center-right. right performs the worst. The left
strategy performing best is no surprise since the probability that an element is inserted
into one of the left positions is higher that it being inserted to the right. Therefore, in
all further experiments we use the left strategy.

Notice that the oscillating behavior in Fig. 7 can be explained as follows: Binary
insertion is most efficient when inserting into a list of length approximately a power
of two because this allows for a (almost) completely balanced decision tree. The

Fig. 7 Experimental results on the effect of different strategies for binary insertion on the number of
comparisons

Theory of Computing Systems (2020) 64:1197–1224 1207

Fig. 8 Comparing our upper bound with experimental data on the number of comparisons required by
MergeInsertion

points where MergeInsertion reaches its optimum are instances where the elements
of the last batch are inserted into a list of length approximately a power of two (for
all other batches this holds in any case).

4 Improved Upper Bounds for MergeInsertion

4.1 Numeric Upper Bound

The goal of this section is to combine the probability given by Theorem 2 that an
element btk−1+i is inserted into j elements with an upper bound for the number of
comparisons required for binary insertion.

By [4], the number of comparisons required for binary insertion when inserting

into m− 1 elements is TInsAvg(m) = �logm	+ 1− 2�logm	
m

. While only being exact in
case of a uniform distribution, this formula acts as an upper bound in our case, where
the probability is monotonically decreasing with the index.

This leads to an upper bound for the cost of inserting btk−1+i of TIns(i, k) =∑
j P (Yi = j) ·TInsAvg(j +1). From this we calculated an upper bound for MergeIn-

sertion. Figure 8 compares those results with experimental data on the number of
comparisons required by MergeInsertion. We observe that the bound is very accurate.

4.2 Computing the Exact Number of Comparisons

In this section we explore how to numerically calculate the exact number of com-
parisons required in the average case. The most straightforward way of doing this
is to compute the external path length of the decision tree (sum of lengths of all
paths from the root to leaves) and dividing by the number of leaves (n! when sorting
n elements), which unfortunately is only feasible for very small n. Instead we use
(1), which describes the number of comparisons. The only unknown in that formula

Theory of Computing Systems (2020) 64:1197–12241208

is G(n), the number of comparisons required in the insertion step of the algorithm.
Since the insertion step of MergeInsertion works by inserting elements in batches,
we write G(n) as the sum of the cost of those batches:

G(n) =
⎛

⎝
∑

1<k≤kn

Cost(tk−1, tk)

⎞

⎠+ Cost(tkn, n) where tkn ≤ n < tkn+1.

Here Cost(s, e) is the cost of inserting one batch of elements starting from bs+1
up to be. The idea for computing Cost(s, e) is to calculate the external path length
of the decision tree corresponding to the insertion of that batch of elements and then
dividing by the number of leaves.

Theory of Computing Systems (2020) 64:1197–1224 1209

Fig. 9 Computed values of
F(n) · n!

As this is still not feasible, we apply the following optimization: We collapse
“identical” branches of the decision tree. E.g. whether be is inserted between x1 and
x2 or between x2 and x3 does not influence the number of comparisons required to
insert the subsequent elements. So we can neglect that difference. However, if be is
inserted between ae−1 and ae, then the next element (and all thereafter) is inserted
into one less element. So this is a difference we need to acknowledge. Same if an
element is inserted between any ai and ai+1. By the time we insert bi the element
inserted between ai and ai+1 is known to be larger than bi and thus is no longer part
of the main chain, resulting in bi being inserted into one element less. In conclusion
that means that our algorithm needs to keep track of the elements inserted between
any ai and ai+1 as well as those inserted at any position before as+1 as two branches
of the decision tree that differ in any of these cannot be collapsed. Algorithm 1 shows
how this is implemented.

For n ∈ {1, . . . , 15} the computed values are shown in Fig. 9, for larger n

Fig. 10 shows the values we computed. The complete data set is provided in the file
exact.txt in [13]. Our results match up with the values for n ∈ {1, . . . , 8} calcu-
lated in [8]. Note that for these values the chosen insertion strategy does not affect
the average case (we use the left strategy).

4.3 Improved theoretical upper bounds

In this section we improve upon the upper bound from [3, 4] leading to the following
result:

Fig. 10 Computed values of
F(n)

Theory of Computing Systems (2020) 64:1197–12241210

Fig. 11 Plot of c(x)

Theorem 3 The number of comparisons required in the average case of MergeIn-
sertion is at most n log n + c(xn) · n ± O(log2 n) where xn is the fractional part of
log(3n), i. e., the unique value in [0, 1) such that n = 2k−log 3+xn for some k ∈ Z and
c : [0, 1) → R is given by the following formula:

c(x) = −(3−log 3)+(2−x−21−x)−(1−2−x)

(
3

2x + 1
− 1

)

−2log 3−x

2292
≤ −1.4005

Hence we have obtained a new upper bound for the average case of MergeInsertion
which is n log n − 1.4005n + O(log2 n). A visual representation of c(x) is provided
in Fig. 11. The worst case is near x = 0.6 (i. e., n roughly a power of two) where
c(x) is just slightly smaller than −1.4005. Figure 12 compares our upper bound with
experimental data on the number of comparisons – we see that there is still room to
improve the upper bound.

Fig. 12 Comparing the upper bound from Theorem 3 with experimental data

Theory of Computing Systems (2020) 64:1197–1224 1211

Proof The proof of Theorem 3 analyzes the insertion of one batch of elements more
carefully than in [4] (where simply the worst case is used as an upper bound of
the average case for all but the last batches). The exact probability that btk−1+i is
inserted into j elements is given by Theorem 2. We are especially interested in the
case of btk−1+u where u = � tk−tk−1

2 �, because, if we know P(Yu < m), then we
can use that for all q < u we have P(Yq < m) ≥ P(Yu < m) by Lemma 1.
With this we can obtain an upper bound on the average number of comparisons to
insert btk−1+i .

However, Theorem 2 is hard to work with, so we approximate it with a binomial
distribution. For a given k let d = tk − tk−1 be the number of elements that are
inserted as part of the batch. This configuration is illustrated in Fig. 13. Remember
u = tk−tk−1

2 = d
2 . To calculate into how many elements btk−1+u = b

tk−1+ d
2
is inserted,

we ask how many elements out of b
tk−1+
⌊
3
4 d
⌋ to btk (marked as section B in Fig. 13)

are inserted between a
tk−1+ d

2 +1 and a
tk−1+
⌊
3
4 d
⌋
−1

(marked as section A).

The rationale is that for each element from section B that is inserted into section
A, btk−1+u is inserted into one less element. As a lower bound for the probability that
an element from section B is inserted into one of the positions in section A we use
the probability that btk is inserted between atk−1 and atk , which is 1

2tk−1 .
That is because, if we assume that all bi with i < tk are inserted before inserting

btk , then btk is inserted into 2tk − 2 elements, so the probability for each position is
1

2tk−1 . Since none of the bi with i < tk can be inserted between atk−1 and atk because
they are all smaller than atk−1, the probability that btk is inserted between atk−1 and
atk does not change when we insert it first as the algorithm demands.

To calculate the probability that an element btk−q with q > 0 is inserted into the
rightmost position we assume that all bi with i < tk − q are inserted before inserting
btk−q . Then btk−q is inserted into at most 2tk − q − 2 elements, i. e., the elements x1
to x2tk−1 , atk−1+1 to atk−q−1, btk−1+1 to btk−q−1 and at most q elements out of btk−q+1
to btk .

Hence the probability for each position is greater than 1
2tk−q−1 which is greater

than 1
2tk−1 . Since none of the bi with i < tk−q can be inserted to the right of atk−q−1,

the probability that btk − q is inserted into any of the positions between atk−q−1 and
atk−q remains unchanged when inserting the elements in the correct order.

The probability that an element is inserted at a specific position is monotonically
decreasing with the index. This is because if an element bi is inserted to the left of an
element ai−h then bi−h is inserted into one more element than it would be if bi had

Fig. 13 Configuration where one batch is to be inserted

Theory of Computing Systems (2020) 64:1197–12241212

been inserted to the right of ai−h. As a result any position further to the left is more
likely than the right-most position, so we can use that as a lower bound.

There are
⌊

d
4

⌋ − 1 elements in section A, i. e., there are at least
⌊

d
4

⌋
positions

where an element can be inserted. Hence the probability that an element from section

B is inserted into section A is at least

⌊
d
4

⌋

2tk−1 and consequently the probability that it

is not inserted before btk−1+u is at least

⌊
d
4

⌋

2tk−1 . That is because all positions part of
section A are after atk−1+u.

Section B contains
⌈

d
2

⌉
elements. Using that and substituting u = d

2 we obtain the

binomial distribution with the parameters nB = ⌈u2
⌉
and pB =

⌊
d
4

⌋

2tk−1 . As a result we
have

p(j) =
(⌈u

2

⌉

q

)(�u
2 �

2tk − 1

)q (2tk − 1 − �u
2 �

2tk − 1

)� u
2 	−q

(5)

with q = 2k − 1 − j , that by construction fulfills the property given in (6) for all j0:

j0∑

j=0

p(j) ≤
j0∑

j=0

P(Yu = j) = P(Yu ≤ j0) (6)

Figure 14 compares our approximation p(j) with the real distribution P(Yu = j).
We observe that the maximum of our approximation is further to the right than the
one of the real distribution.

Fig. 14 Difference between the real distribution and our approximation for k = 8 and u = 43

Theory of Computing Systems (2020) 64:1197–1224 1213

By using the approximation P(Yu = j) ≈ p(j) we can calculate a lower bound
for the median of Y tk−tk−1

2

2k − 1 − �nB · pB�

= 2k − 1 −
⎢
⎢
⎢
⎣
⌈

tk − tk−1

4

⌉
⌊

tk−tk−1
4

⌋

2tk − 1

⎥
⎥
⎥
⎦

= 2k−1−
⌊(

2k−2 + (−1)k − 3

3
+ 1

2
(−1)k+ 1

2

)(
2k−2 + (−1)k − 3

3
+ 1

2
(−1)k− 1

2

)
1

2tk − 1

⌋

= 2k−1−
⌊(

2k−2

3
+ 1

6
(−1)k + 1

2

)(
2k−2

3
+ 1

6
(−1)k − 1

2

)
1

2tk − 1

⌋

= 2k−1−
⌊(

22k−4

9
+ 2k−2

9
(−1)k + 1

36
− 1

4

)
1

2tk − 1

⌋

= 2k−1−
⌊(

22k−4

9
+ 2k−2

9
(−1)k + 1

36
− 1

4

)(
1

2 2k+1+(−1)k
3 − 1

)⌋

= 2k − 1 −
⌊(

22k−4

9
+ 2k−2

9
(−1)k + 1

36
− 1

4

)(
1

2 2k+1

3

± O(2−k)

)⌋

= 2k−1−
⌊(

22k−4

9
+ 2k−2

9
(−1)k + 1

36
− 1

4

)
1

2 2k+1

3

± O(1)

⌋

= 2k−1−
⌊
2k−6

3
+ 1

3
(−1)k ± O(1)

⌋

= 2k−1 − 2k−6

3
± O(1)

This tells us that with a probability ≥ 50%, btk−1+u is inserted into 2k −1− 2k−6

3 ±
O(1) or less elements. In conclusion all bi with i ≤ u = tk−tk−1

2 are inserted into less

than 2k − 1 − 2k−6

3 ± O(1) elements with a probability ≥ 50%.
Using that result we can calculate a better upper bound for the average case

performance of the entire algorithm.
According to Knuth [8] in its worst case MergeInsertion requires Fwc(n) =

n log n − (3 − log 3)n + n(y + 1 − 2y) + O(log n) comparisons where y = y(n) =
�log(3n/4)	 − log(3n/4) ∈ [0, 1).

We calculate the number of comparisons Fav(n) required in the average case in
a similar fashion to [4]. Recall (1) which states that the number of comparisons
required by MergeInsertion is given by Fav(n) = ⌊n2

⌋+ Fav
(⌊

n
2

⌋)+ Gav
(⌈

n
2

⌉)
and

we have an analogous formula for Fwc(n). Here Gav(m) corresponds to the work
done in the insertion step and can be bounded as

Gav(m) ≤ (km − αm)(m − tkm−1) +
∑

1≤k<km

(k − βk) (tk − tk−1) (7)

Theory of Computing Systems (2020) 64:1197–12241214

where tkm−1 ≤ m < tkm and αm, β ∈ [0, 1]. Inserting an element bi with
tki−1 < i ≤ tki

requires at most ki comparisons. However, since we are looking at
the average case we need to consider that in some cases bi can be inserted using just
ki − 1 comparisons. This is reflected by αm and βk , the first of which has already
been studied by [4].

To estimate the cost of an insertion we use the formula TInsAvg(m) = �logm	+1−
2�logm	

m
by [4]. Technically this formula is only correct if the probability of an element

being inserted is the same for each position. This is not the case with MergeInsertion.
Instead the probability is monotonically decreasing with the index. Binary insertion
can be implemented to take advantage of this property, as explained in Section 3.1,
in which case TInsAvg(m) acts as an upper bound on the cost of an insertion.

Using our result from above that on average 1
4 of the elements are inserted in less

than 2k − 1− 2k−4

9 ±O(1) elements we can calculate βk as the difference of the cost
of an insertion in the worst-case (k comparisons) and in the average case:

βk ≥ k −
(
3

4
TInsAvg

(
2k
)

+ 1

4
TInsAvg

(

2k − 2k−6

3
± O(1)

))

= k −
(
3

4

(

k + 1 − 2k

2k

)

+ 1

4

(

k + 1 − 2k

2k − 2k−6

3 ± O(1)

))

= −1 + 3

4
+ 1

4
· 1

1 − 1

1− 2−6
3

± O(2−k)

= −1

4
+ 1

4
· 1

1 − 1
192

± O(2−k)

= −1

4
+ 1

4
· 1
191
192

± O(2−k)

= −1

4
+ 1

4
· 192
191

± O(2−k)

= 1

764
± O(2−k)

Combining this with (7) we calculate the difference between worst-case and
average-case as

Gwc(m) − Gav(m) ≥ km(m − tkm−1) +
∑

1≤k<km

k (tk − tk−1)

− (km − αm)(m − tkm−1) −
∑

1≤k<km

(k − βk) (tk − tk−1)

= αm(m − tkm−1) +
∑

1≤k<km

βk (tk − tk−1)

≥ αm(m − tkm−1) +
∑

1≤k<km

(
1

764
± O(2−k)

)

(tk − tk−1)

Theory of Computing Systems (2020) 64:1197–1224 1215

= αm(m − tkm−1) + 1

764
(tkm−1 − t1) ± O(logm)

= αm(m − tkm−1) + 1

764
tkm−1 ± O(logm)

= αm(m − tkm−1) + 1

764

2k
m + (−1)km−1

3
± O(logm)

= αm(m − tkm−1) + 1

764

2km

3
± O(logm) (8)

By writing m as m = 2lm−log 3+x with x ∈ [0, 1) we get lm = �log 3m�. To
approximate km with lm we need to show that km ≥ lm. Recall that tkm−1 ≤ m < tkm .
For all tkm−1 < m < tkm we have

2km + (−1)km−1

3
< m <

2km+1 + (−1)km

3
.

Since m ∈ N and tk ∈ N adding/subtracting 1
3 does not alter the relation, we obtain

2km

3
< m <

2km+1

3
,

which resolves to

km < log 3m < km + 1.

Thus, km = �log 3m� = lm. For m = tkm−1 we get

2km + (−1)km−1

3
= m

⇐⇒ 2km = 3m + (−1)km

⇐⇒ km = log
(
3m + (−1)km

)
.

If km = log (3m + 1), that resolves to km = log (3m + 1) > log (3m) > �log 3m� =
lm. If instead km = log (3m − 1), using km ∈ N, we have km = �log(3m − 1)� and
for all m ≥ 1 this is equal to �log 3m� = lm. Hence, in all cases lm ≤ km holds.
Therefore, we can replace km with lm in (8):

Gwc(m) − Gav(m) ≥ αm(m − tkm−1) + 1

764

2lm

3
± O(logm)

From [4] we know that the αm(m − tkm−1) term can be approximated with
(
m − 2lm−log 3

) (2lm

m+2lm−log 3 − 1
)
. Hence,

Gwc (m) − Gav(m)

≥
(
m − 2lm−log 3

)(2lm

m + 2lm−log 3
− 1

)

+ 1

764

2lm

3
± O(logm).

Theory of Computing Systems (2020) 64:1197–12241216

Now we calculate

S(n) = Fwc(m) − Fav(m)

=
⌊n

2

⌋
+ Fwc

(⌊n

2

⌋)
+ Gwc

(⌈n

2

⌉)
−
⌊n

2

⌋
− Fav

(⌊n

2

⌋)
− Gav

(⌈n

2

⌉)

= S(
⌊n

2

⌋
) + Gwc

(⌈n

2

⌉)
− Gav

(⌈n

2

⌉)

≥ S(
⌊n

2

⌋
) +
(
m − 2lm−log 3

)(2lm

m + 2lm−log 3
− 1

)

+ 1

764

2lm

3
± O(logm).

(9)

We split S(n) into Sα(n) + Sβ(n) with

Sα(n) ≥ Sα(
⌊n

2

⌋
) +
(
m − 2lm−log 3

)(2lm

m + 2lm−log 3
− 1

)

,

Sβ(n) ≥ Sβ(
⌊n

2

⌋
) + 1

764

2lm

3
± O(logm).

From [4] we know Sα(n) ≥ (n − 2ln−log 3
) (2ln

n+2ln−log 3 − 1
)

+ O(1). For Sβ(n)

we obtain

Sβ(n) ≥
ln−1∑

i=1

2i

764 · 3 ± O(log 2i) = 2ln

2292
± O(log2 n).

We can represent n as 2k−log 3+xn with xn ∈ [0, 1). This leads to
S(n)

n
= Sα(n) + Sβ(n)

n

≥ 2k−log 3+xn − 2k−log 3

2k−log 3+xn

(
2k

2k−log 3+xn + 2k−log 3
−1

)

+ 2k

2292 · 2k−log 3+xn
± O
(
log2 n

n

)

= (1 − 2−xn)

(
3

2xn + 1
− 1

)

+ 2log 3−xn

2292
± O
(
log2 n

n

)

.

Finally, we can combine our bound for S(n) with Knuth’s bound for Fwc(n) in order
to obtain a bound on Fav(n):

Fav(n) = Fwc(n) − S(n)

≤ n log n − (3 − log 3)n + n(y + 1 − 2y)

−
(

(1 − 2−xn)

(
3

2xn + 1
− 1

)

+ 2log 3−xn

2292

)

· n ± O(log2 n)

= n log n + c(xn) · n ± O(log2 n)

where y = 1 − xn and

c(xn) = −(3 − log 3) + (y + 1 − 2y) − (1 − 2−xn)

(
3

2xn + 1
− 1

)

− 2log 3−xn

2292
.

Thus, we have concluded the proof of Theorem 3.

Theory of Computing Systems (2020) 64:1197–1224 1217

5 Experiments

In this section we discuss our experiments, which consist of two parts: first, we evalu-
ate how increasing tk by some constant factor can reduce the number of comparisons,
then we examine how the combination with the (1,2)-Insertion algorithm as proposed
in [7] improves MergeInsertion.

All experiments use the left strategy for binary insertion (see Section 3.1). The
number of comparisons has been averaged over 10 to 10000 runs, depending on the
size of the input.

5.1 ImplementingMergeInsertion

We implementedMergeInsertion using a tree based data structure, similar to the Rope
data structure[1] used in text processing, resulting in a comparably “fast” imple-
mentation. The pseudo code is provided in Algorithm 2. For the purpose of our
implementation we assume that each element is unique. This condition is easy to
fulfill for synthetic test data. We now go over some of the key challenges when
implementing MergeInsertion.

1. MergeInsertion requires elements to be inserted into arbitrary positions. When
using a simple array to store the elements this operation requires moving O(n)

elements. Since MergeInsertion inserts each element exactly once this results in
a complexity of O(n2). To avoid this we store the elements in a custom data
structure inspired by the Rope data structure [1] used in text processing. Being
based on a tree it offers O(log n) performance for lookup, insertion and deletion
operations, thus putting our algorithm in O(n log2 n).

2. In the second step of the algorithm we need to rename the bi after the recursive
call. Our chosen solution is to store which ai corresponds to which bi in a hash
map (line 11) before the recursive call and use the information to reorder the
bi afterwards (line 13). The disadvantage of this solution is that it requires each
element to be unique and the hash map might introduce additional comparisons
(which we do not count as such in our experiments).

An alternative would be to have the recursive call generate the permuta-
tion it applies to the larger elements and then apply that to the smaller ones.
That is a cleaner solution as it does not require the elements to be unique and
it avoids potentially introducing additional comparisons. It is also potentially
faster, though not by much. Since we only are interested in the number of com-
parisons on random permutations, we chose to use a hash map as that solution is
easier to implement.

3. In the insertion step we need to know into how many elements a specific bi is
inserted. For btk this is 2

k −1 elements. However, for other elements that number
can be smaller depending on where the previous elements have been inserted. To
account for that, we create the variable u in line 21. It holds the position of the
ai corresponding to the element bi that is inserted next. Thus bi is inserted into

Theory of Computing Systems (2020) 64:1197–12241218

u−1 elements (since bi < ai). After the insertion of bi , we decrease u in line 25
until it matches the position of ai−1 so that the next element bi−1 can be inserted
into u − 1 elements again (with the new value for u).

Notice that this step also makes use of the requirement that each element is
unique. Also, at this point we have to be aware that testing whether the element
at position u is ai−1 might introduce additional comparisons to the algorithm.
This is acceptable because we do not count these comparisons. Also these are
not necessary. We could keep track of the positions of the elements ai ; however,
we chose not to, in order to keep the implementation simple.

Theory of Computing Systems (2020) 64:1197–1224 1219

Fig. 15 Effects of replacing tk with t̂k

5.2 Increasing tk by a Constant Factor

In this section we modify MergeInsertion by replacing tk with t̂k = �f · tk� – apart
from that the algorithm is the same. Originally, the numbers tk have been chosen such
that each element bi with tk−1 < i ≤ tk is inserted into at most 2k−1 elements (which
is optimal for the worst case). As we have seen in previous sections, many elements
are inserted into slightly less than 2k − 1 elements. The idea behind increasing tk
by a constant factor f is to allow more elements to be inserted into close to 2k − 1
elements.

Figure 15 shows how different factors f affect the number of comparisons
required by MergeInsertion. The different lines represent different input lengths.
For instance, n = 21845 is an input size for which MergeInsertion works best. An

Fig. 16 n used in Fig. 15

Theory of Computing Systems (2020) 64:1197–12241220

overview of the different input lengths and how original MergeInsertion performs for
these can be seen in Fig. 16. The chosen values are assumed to be representative for
the entire algorithm. We observe that for all shown input lengths, multiplying tk by a
factor f between 1.02 and 1.05, leads to an improvement.

Figure 17 compares different factors from 1.02 to 1.05. The factor 1.0 (i. e., the
original algorithm) is included as a reference. We observe that all the other factors
lead to a considerable improvement compared to 1.0. The difference between the
factors in the chosen range is rather small. However, 1.03 appears to be best out of the
tested values. At n ≈ 2k/3 the difference to the information-theoretic lower bound is
reduced to 0.007n, improving upon the original algorithm, which has a difference of
0.01n to the optimum.

Another observation we make from Fig. 17 is that the plot periodically repeats
itself with each power of two. Thus, we conclude that replacing tk with t̂k = �f · tk�
with f ∈ [1.02, 1.05] reduces the number of comparisons required per element by
some constant.

5.3 Merging

In this section we validate whether splitting the input into two parts, sorting them
separately and then merging the sorted parts leads to an improvement in the average
case of the algorithm. The idea was presented first in [9]. It relies on the fact that there

are specific points uk =
⌊(

4
3

)
2k
⌋
where MergeInsertion reaches its optimum. The

input is split into two parts with size m1 and m2 such that m1 = max {uk | uk ≤ n}
and m2 = n − m1. As a result we have m1 > m2 and m1 is of a size for with
MergeInsertion is optimal.

For merging the two lists we use the Hwang-Lin Algorithm [6], for it is a simple
general purpose merging algorithm. It merges two lists by comparing the first element

of the small list with the 2r -th element of the large list, where r =
⌊
log m1

m2

⌋
. If it

is larger, then the 2r first elements of the large list are removed and appended to the
result, and the process is repeated. If it is smaller, then it is inserted into the 2r − 1

Fig. 17 Comparison of different factors f for t̂k

Theory of Computing Systems (2020) 64:1197–1224 1221

first elements of the large list using binary insertion and then all elements up to the
freshly inserted one are removed from the large list and appended to the result. This
is repeated until one of the lists is exhausted.

To be precise, we actually use a variant of the Hwang-Lin Algorithm called Static

Hwang-Lin Algorithm presented in [9]. The difference is that r =
⌊
log m1

m2

⌋
is

only calculated once (hence “static”) instead of every iteration. This leads to slightly
improved performance in cases where m1

m2
is close to a power of 2.

Both [9] and [2] present more advanced merging algorithms which possibly could
yield better results than the ones we have obtained. Since our primary aim in this
section is to establish experimentally that merging also helps in the average case, we
do not bother to implement these more complicated algorithms. Even without using
those advanced merging algorithms our experiments show that this technique does
indeed improve upon MergeInsertion.

The results of our experiments are presented in Fig. 18. Here, F(n) denotes the
number of comparisons required by MergeInsertion in the average-case and T (n)

is the number of comparisons required when splitting the list into two parts sorting
them separately and merging them afterwards as explained above. As we can see
T (n) beats F(n) for some ranges of n, but for other values of n, pure MergeInsertion
is better. Also observe that the points where T (n) is best are not those where m2 is
optimal for MergeInsertion. Instead this happens where m2 is a bit smaller than what
would be optimal for MergeInsertion. From this we conclude that T (n) is defined
mostly by cost of merging m1 and m2 and that the cost of MergeInsertion for m2
plays only a minor role.

Fig. 18 Experimental results comparing MergeInsertion (red) to the combination (blue) with the Hwang-
Lin merging algorithm

Theory of Computing Systems (2020) 64:1197–12241222

Fig. 19 Experimental results comparing MergeInsertion, (1,2)-Insertion and the combined algorithm

5.4 Combination with (1,2)-Insertion

(1,2)-Insertion is a sorting algorithm presented in [7]. It works by inserting either
a single element or two elements at once into an already sorted list. On its own,
(1,2)-Insertion is worse than MergeInsertion; however, a combination of the two
improves upon both algorithms. The combined algorithm works by sorting m =
max {uk | uk ≤ n} elements with MergeInsertion; then the remaining elements are
inserted using (1,2)-Insertion.

Let uk =
⌊(

4
3

)
2k
⌋
denote a point where MergeInsertion is optimal. In Fig. 19

we can see that at the point uk MergeInsertion and the combined algorithm perform
the same. However, in the values following uk the combined algorithm surpasses
MergeInsertion until at one point close to the next optimum MergeInsertion is bet-
ter once again. In their paper Iwama and Teruyama calculated that for 0.638 ≤

n

2�log n	 ≤ 2
3 MergeInsertion is better than the combined algorithm. The fraction 2

3
corresponds to the point where MergeInsertion is optimal. They derived the con-
stant 0.638 from their theoretical analysis using the upper bound for MergeInsertion
from [3]. Comparing this to our experimental results we observe that the range where
MergeInsertion is better than the combined algorithm starts at n ≈ 217.242. This yields
217.242

218
= 217.242−18 = 2−0.758 ≈ 0.591. Hence the range where MergeInsertion is

better than the combined algorithm is 0.591 ≤ n

2�log n	 ≤ 2
3 , which is slightly larger

than the theoretical analysis suggested. Also shown in Fig. 19 is the number of com-
parisons of the combined algorithm where we additionally apply our suggestion of
replacing tk by t̂k = �f · tk� with f = 1.03. This leads to an additional improvement
and comes even closer to the lower bound of log(n!).

6 Conclusion and Outlook

We improved the previous upper bound of n log n − 1.3999n + o(n) to n log n −
1.4005n+ o(n) for the average number of comparisons of MergeInsertion. However,

Theory of Computing Systems (2020) 64:1197–1224 1223

there still is a gap between the number of comparisons required by MergeInsertion
and this upper bound.

In Section 4.3 we used a binomial distribution to approximate the probability of
an element being inserted into a specific number of elements during the insertion
step. However, the difference between our approximation and the actual probabil-
ity distribution is rather large. Finding an approximation which reduces that gap
while still being simple to analyze with respect to its mean would facilitate further
improvements to the upper bound.

Our suggestion of increasing tk by a constant factor f reduced the number of
comparisons required per element by some constant. However, we do not have a
proof for this. Thus, future research could try to determine the optimal value for the
factor f as well as to study how this suggestion affects the worst-case.

Funding Information Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

1. Boehm, H.J., Atkinson, R., Plass, M.: Ropes: an alternative to strings. Softw. Pract. Exper. 25(12),
1315–1330 (1995)

2. Bui, T., Thanh, M.: Significant improvements to the Ford-Johnson algorithm for sorting. BIT Numer.
Math. 25(1), 70–75 (1985)

3. Edelkamp, S., Weiß, A.: QuickXsort: Efficient Sorting with n log n − 1.399n + o(n) Comparisons on
Average. In: CSR 2014 Proc., pp. 139–152 (2014)

4. Edelkamp, S., Weiß, A., Wild, S.: Quickxsort: A, fast sorting scheme in theory and practice.
Algorithmica 82(3), 509–588 (2020). https://doi.org/10.1007/s00453-019-00634-0

5. Ford, L.R., Johnson, S.M.: A tournament problem. Am. Math. Mon. 66(5), 387–389 (1959)
6. Hwang, F.K., Lin, S.: A simple algorithm for merging two disjoint linearly ordered sets. SIAM J.

Comput. 1(1), 31–39 (1972)
7. Iwama, K., Teruyama, J.: Improved Average Complexity for Comparison-Based Sorting. In: Work-

shop on Algorithms and Data Structures, pp. 485–496. Springer, New York (2017)
8. Knuth, D.E.: The art of computer programming, volume 3: (2nd edn.) sorting and searching. Addison

wesley longman, redwood city (1998)
9. Manacher, G.K.: The Ford-Johnson sorting algorithm is not optimal. J. ACM 26(3), 441–456 (1979)

10. Peczarski, M.: New results in minimum-comparison sorting. Algorithmica 40(2), 133–145 (2004)
11. Peczarski, M.: The Ford-Johnson algorithm still unbeaten for less than 47 elements. Inf. Process. Lett.

101(3), 126–128 (2007)
12. Reinhardt, K.: Sorting In-Place with a Worst Case Complexity of N Log N-1.3N + O(logn) Compar-

isons and Epsilon N Log N + O(1) Transports. In: Algorithms and Computation, ISAAC ’92, Proc.,
pp. 489–498 (1992)

13. Stober, F.: Source code and generated data https://github.com/CodeCrafter47/merge-insertion (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Theory of Computing Systems (2020) 64:1197–12241224

http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1007/s00453-019-00634-0
https://github.com/CodeCrafter47/merge-insertion

	On the Average Case of MergeInsertion
	Abstract
	Introduction
	Preliminaries
	Description of MergeInsertion

	Average Case Analysis of the Insertion Step
	Binary Insertion and Different Decision Trees

	Improved Upper Bounds for MergeInsertion
	Numeric Upper Bound
	Computing the Exact Number of Comparisons
	Improved theoretical upper bounds

	Experiments
	Implementing MergeInsertion
	Increasing tk by a Constant Factor
	Merging
	Combination with (1,2)-Insertion

	Conclusion and Outlook
	References

