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Abstract
We investigate the complexity of three optimization problems in Boolean proposi-
tional logic related to information theory: Given a conjunctive formula over a set of
relations, find a satisfying assignment with minimal Hamming distance to a given
assignment that satisfies the formula (NearestOtherSolution, NOSol) or that does
not need to satisfy it (NearestSolution, NSol). The third problem asks for two sat-
isfying assignments with a minimal Hamming distance among all such assignments
(MinSolutionDistance, MSD). For all three problems we give complete classifica-
tions with respect to the relations admitted in the formula. We give polynomial time
algorithms for several classes of constraint languages. For all other cases we prove
hardness or completeness regarding APX, poly-APX, or equivalence to well-known
hard optimization problems.
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1 Introduction

We investigate the solution spaces of Boolean constraint satisfaction problems built
from atomic constraints by means of conjunction and variable identification. We
study three minimization problems in connection with Hamming distance: Given an
instance of a constraint satisfaction problem in the form of a generalized conjunctive
formula over a set of atomic constraints, the first problem asks to find a satisfying
assignment with minimal Hamming distance to a given assignment (NearestSolution,
NSol). Note that for this problem we assume neither that the given assignment
satisfies the formula nor that the solution is different from the assignment. The
second problem is similar to the first one, but this time the given assignment has
to satisfy the formula and we look for another solution with minimal Hamming
distance (NearestOtherSolution, NOSol). The third problem is to find two satisfy-
ing assignments with minimal Hamming distance among all satisfying assignments
(MinSolutionDistance, MSD). Note that the dual problem MaxHammingDistance has
been studied in [14].

The NSol problem appears in several guises throughout literature. E.g., a com-
mon problem in Artificial Intelligence is to find solutions of constraints close to an
initial configuration; our problem is an abstraction of this setting for the Boolean
domain. Bailleux and Marquis [4] describe such applications in detail and introduce
the decision problem DistanceSAT: Given a propositional formula ϕ, a partial inter-
pretation I , and a bound k, is there a satisfying assignment differing from I in no
more than k variables? It is straightforward to show that DistanceSAT corresponds to
the decision variant of our problem with existential quantification (called NSoldpp later
on). While [4] investigates the complexity of DistanceSAT for a few relevant classes
of formulas and empirically evaluates two algorithms, we analyze the decision and
the optimization problem for arbitrary semantic restrictions on the formulas.

Hamming distance also plays an important role in belief revision. The result of
revising/updating a formula ϕ by another formula ψ is characterized by the set of
models of ψ that are closest to the models of ϕ. Dalal [15] selects the models of ψ

having a minimal Hamming distance to models of ϕ to be the models that result from
the change.

As is common, we analyze the complexity of our optimization problems modulo
a parameter that specifies the atomic constraints allowed to occur in the constraint
satisfaction problem. We give a complete classification of the approximation com-
plexity with respect to this parameterization. It turns out that our problems can either
be solved in polynomial time, or they are complete for a well-known optimization
class, or else they are equivalent to well-known hard optimization problems.

Our study can be understood as a continuation of the minimization problems
investigated by Khanna et al. in [22], especially that of MinOnes. The MinOnes opti-
mization problem asks for a solution of a constraint satisfaction problem with the
minimal Hamming weight, i.e., minimal Hamming distance to the 0-vector. Our work
generalizes these results by allowing the given vector to be also different from zero.

Our work can also be seen as a generalization of questions in coding theory. In fact,
our problem MSD restricted to affine relations is the well-known problem MinDis-
tance of computing the minimum distance of a linear code. This quantity is of central
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importance in coding theory, because it determines the number of errors that the code
can detect and correct. Moreover, our problem NSol restricted to affine relations is the
problem NearestCodeword of finding the nearest codeword to a given word, which is
the basic operation when decoding messages received through a noisy channel. Thus
our work can be seen as a generalization of these well-known problems from affine
to general relations.

In the case of NearestSolution we are able to apply methods from clone theory,
even though the problem turns out to be more intricate than pure satisfiability. The
other two problems, however, cannot be shown to be compatible with existential
quantification easily, which makes classical clone theory inapplicable. Therefore we
have to resort to weak co-clones that require only closure under conjunction and
equality. In this connection, we apply the theory developed in [28, 29] as well as the
minimal weak bases of Boolean co-clones from [23].

This paper is structured as follows. Section 2 recalls basic definitions and notions.
Section 3 introduces the trilogy of optimization problems studied in this paper,
namely Nearest Solution (denoted by NSol), Nearest Other Solution (denoted by
NOSol), and Minimum Solution Distance (denoted by MSD), as well as their deci-
sion versions. It also states our three main results, i.e., a complete classification of
complexity for these optimization problems, depicted in Figs. 1, 2, and 3. Section 4
investigates the (non-)applicability of clone theory to our problems. It also provides
a duality result for the constraint languages used as parameters. Section 5 contains
the proofs of complexity classification results for NearestSolution, Section 6 for
NearestOtherSolution, and Section 7 for MinSolutionDistance. Finally, the conclud-
ing remarks in Section 8 compare our theorems to previously existing similar results
and put our results into perspective.

2 Preliminaries

2.1 Boolean Relations and Relational Clones

An n-ary Boolean relation R is a subset of {0, 1}n; its elements (b1, . . . , bn) are
also written as b1 · · · bn. Let V be a set of variables. An atomic constraint, or an
atom, is an expression R(x), where R is an n-ary relation and x is an n-tuple of
variables from V . Let � be a non-empty finite set of Boolean relations, also called
a constraint language. A (conjunctive) �-formula is a finite conjunction of atoms
R1(x1) ∧ · · · ∧ Rk(xk), where the Ri are relations from � and the xi are variable
tuples of suitable arity. For technical reasons in connection with reductions we also
allow empty conjunctions (k = 0) here. Such formulas elegantly take care of certain
marginal cases at the cost of adding only one additional trivial problem instance.

An assignment is a mapping m : V → {0, 1} assigning a Boolean value m(x) to
each variable x ∈ V . In a given context we can assume V to be finite, by restrict-
ing it e.g. to the variables occurring in a formula. If we impose an arbitrary but
fixed order on the variables, say x1, . . . , xn, then the assignments can be identified
with elements from {0, 1}n. The i-th component of a tuple m ∈ {0, 1}n is denoted
by m[i] and corresponds to the value of the i-th variable, i.e., m[i] = m(xi). The
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Fig. 1 Lattice of co-clones with complexity classification for NSol

Hamming weight hw(m) = |{i|m[i] = 1}| of m is the number of 1s in the tuple m.
The Hamming distance hd(m, m′) = |{i|m[i] �= m′[i]}| of m and m′ is the number
of coordinates on which the tuples disagree. The complement m of a tuple m is its
pointwise complement, m[i] = 1 − m[i].
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Fig. 2 Lattice of co-clones with complexity classification for NOSol

An assignment m satisfies a constraint R(x1, . . . , xn) if (m(x1), . . . , m(xn)) ∈ R

holds. It satisfies the formula ϕ if it satisfies all its atoms; m is said to be a model or
solution of ϕ in this case. We use [ϕ] to denote the set of models of ϕ. For a term t ,
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Fig. 3 Lattice of co-clones with complexity classification for MSD

[t] is the set of assignments for which t evaluates to 1. Note that [ϕ] and [t] represent
Boolean relations. If the variables of ϕ are not explicitly enumerated in parentheses as
parameters, they are implicitly considered to be ordered lexicographically. In sets of
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relations represented this way we usually omit the brackets. A literal is a variable v,
or its negation ¬v. Assignments are extended to literals by defining m(¬v) = 1 −
m(v).

Table 1 defines Boolean functions and relations needed later on, in particular
exclusive or [x ⊕ y], not-all-equal nae3, k-ary disjunction ork , and k-ary negated
conjunction nandk .

Throughout the text we refer to different types of Boolean constraint relations fol-
lowing Schaefer’s terminology [27] (see also the monograph [11] and the survey [9]).
A Boolean relation R is (1) 1-valid if 1 · · · 1 ∈ R and 0-valid if 0 · · · 0 ∈ R, (2) Horn
(dual Horn) if R can be represented by a formula in conjunctive normal form (CNF)
with at most one unnegated (negated) variable per clause, (3) monotone if it is both
Horn and dual Horn, (4) bijunctive if it can be represented by a CNF formula with
at most two literals per clause, (5) affine if it can be represented by an affine system
of equations Ax = b over Z2, (6) complementive if for each m ∈ R also m ∈ R, (7)
implicative hitting set-bounded+ with bound k (denoted by k-IHS-B+) if R can be
represented by a CNF formula with clauses of the form (x1 ∨ · · · ∨ xk), (¬x ∨ y), x,
and ¬x, (8) implicative hitting set-bounded− with bound k (denoted by k-IHS-B−)
if R can be represented by a CNF formula with clauses of the form (¬x1 ∨· · ·∨¬xk),
(¬x ∨ y), x, and ¬x. A set � of Boolean relations is called 0-valid (1-valid, Horn,
dual Horn, monotone, affine, bijunctive, complementive, k-IHS-B+, k-IHS-B−) if
every relation in � is 0-valid (1-valid, Horn, dual Horn, monotone, affine, bijunctive,
complementive, k-IHS-B+, k-IHS-B−).

A formula constructed from atoms by conjunction, variable identification, and
existential quantification is called a primitive positive formula (pp-formula). If ϕ is
such a formula, we write again [ϕ] for its set of models, i.e., the Boolean relation
defined by ϕ. As above the coordinates of this relation are understood to be the vari-
ables of ϕ in lexicographic order, unless otherwise stated by explicit enumeration.
We denote by 〈�〉 the set of all relations that can be expressed using relations from
� ∪ {≈}, conjunction, variable identification (and permutation), cylindrification, and
existential quantification, i.e., the set of all relations that are primitive positively
definable from � and equality. The set 〈�〉 is called the co-clone generated by �.
A base of a co-clone B is a set of relations � such that 〈�〉 = B, i.e., just a gener-
ating set with regard to primitive positive definability including equality. Note that
traditionally (e.g. [18]), the notion of base also involves minimality with respect to
set inclusion. Our use of the term base is in accordance with [10], where finite bases

Table 1 List of some Boolean functions and relations

x ⊕ y = x + y (mod 2) ork = {0, 1}k � {0 · · · 0} for k ≥ 1

≈ = {00, 11} nandk = {0, 1}k � {1 · · · 1} for k ≥ 1

dup3 = {0, 1}3
� {010, 101} evenk = {(a1, . . . , ak) ∈ {0, 1}k | ∑k

i=1 ai even}
nae3 = {0, 1}3

� {000, 111} oddk = {(a1, . . . , ak) ∈ {0, 1}k | ∑k
i=1 ai odd}

S0 = [(x1 ∧ x4) ≈ (x2 ∧ x3)] S1 = [S0(¬x1,¬x2,¬x3,¬x1)]
S2 = [(¬x1 ∨ ¬x2) → ¬x3]

evenk
k �= = {(a1, . . . , a2k) ∈ {0, 1}2k | evenk(a1, . . . , ak) ∧ ∧k

i=1 (ak+i ≈ ¬ai)}
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Table 2 Some relevant Boolean co-clones with bases

iSk
0 {ork} iL {even4} iN {dup3}

iSk
1 {nandk} iL2 {even4,¬x, x} iN2 {nae3}

iSk
00 {ork, x → y,¬x, x} iV {x ∨ y ∨ ¬z} iI {even4, x → y}

iSk
10 {nandk,¬x, x, x → y} iV2 {x ∨ y ∨ ¬z,¬x, x} iI0 {even4, x → y,¬x}

iD1 {x ⊕ y, x} iE {¬x ∨ ¬y ∨ z} iI1 {even4, x → y, x}
iD2 {x ⊕ y, x → y} iE2 {¬x ∨ ¬y ∨ z,¬x, x} iM2 {x → y,¬x, x}

for all Boolean co-clones have been determined. Some of these are listed in Table 2.
The sets of relations being 0-valid, 1-valid, complementive, Horn, dual Horn, affine,
bijunctive, 2affine (both bijunctive and affine), monotone, k-IHS-B+, and k-IHS-B−
each form a co-clone denoted by iI0, iI1, iN2, iE2, iV2, iL2, iD2, iD1, iM2, iSk

00,
and iSk

10, respectively; see Table 3.
We will also use a weaker closure than 〈�〉, called conjunctive closure and denoted

by 〈�〉∧, where the constraint language � is closed under conjunctive definitions, but
not under existential quantification or addition of explicit equality constraints.

Sets of relations of the form W = 〈W ∪ {≈}〉∧ are called weak systems and are
in a one-to-one correspondence with so-called strong partial clones [26]. It is a well-
known consequence of the Galois theory developed in [26] that for every co-clone
〈�′〉 whose corresponding clone is finitely generated (this presents no restriction in
the Boolean case), there is a largest partial clone whose total part coincides with that
clone, cf. [24, Theorem 20.7.2] or see [28, Theorems 4.6, 4.7, 4.11] for a proof in
the Boolean case. This largest partial clone even is a strong partial clone, and hence,
there is a least weak system W under inclusion such that 〈W 〉 = 〈�′〉. Any finite
weak generating set � of this weak system W , i.e., W = 〈� ∪ {≈}〉∧, is called a
weak base of 〈�′〉, see [28, Definition 4.2]. Such a set �, in particular, is a finite base
of the co-clone 〈�′〉. Finally, to get from the closure operator 〈� ∪ {≈}〉∧ (which is
hard to handle in the context of our problems) to 〈�〉∧ (which is easy to handle),
one needs the notion of irredundancy. A relation R is called irredundant, if it has
neither duplicate nor fictitious coordinates. It can be observed from the proofs of
Proposition 5.2 and Corollary 5.6 in [28] or from [29, Proposition 3.11], that R ∈
〈� ∪ {≈}〉∧ implies R ∈ 〈�〉∧ for any irredundant relation R. Following Schnoor
[29, p. 30], we call a weak base of 〈�′〉 consisting exclusively of irredundant relations
an irredundant weak base. Thus, if � is an irredundant weak base of 〈�′〉, then the

Table 3 Sets of Boolean relations with their names determined by co-clone inclusions

� ⊆ iI0 ⇔ � is 0-valid � ⊆ iI1 ⇔ � is 1-valid

� ⊆ iE2 ⇔ � is Horn � ⊆ iV2 ⇔ � is dual Horn

� ⊆ iM2 ⇔ � is monotone � ⊆ iD2 ⇔ � is bijunctive

� ⊆ iL2 ⇔ � is affine � ⊆ iD1 ⇔ � is 2affine

� ⊆ iN2 ⇔ � is complementive � ⊆ iI ⇔ � is both 0- and 1-valid

� ⊆ iSk
00 ⇔ � is k-IHS-B+ � ⊆ iSk

10 ⇔ � is k-IHS-B−
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minimality of the weak system W = 〈� ∪ {≈}〉∧ implies that � ⊆ W ⊆ 〈�′ ∪ {≈}〉∧
(cf. [28, Corollary 4.3]), and thus � ⊆ 〈�′〉∧ because of irredundancy. Hence, we
obtain the following useful tool.

Theorem 1 (Schnoor [29, Corollary 3.12]) If � is an irredundant weak base of a
co-clone iC, e.g. a minimal weak base of iC, then � ⊆ 〈�′〉∧ holds for any base �′
of iC.

According to Lagerkvist [23], a minimal weak base is an irredundant weak base
satisfying an additional minimality property that ensures small cardinality. The utility
of Theorem 1 comes in particular from the fact that Lagerkvist determined minimal
weak bases for all finitely generated Boolean co-clones in [23]. For our purposes we
note that each of the co-clones iV, iV0, iV1, iV2, iN, iN2, and iI is generated by a
minimal weak base consisting of a single relation (Table 4).

Another source of weak base relations without duplicate coordinates comes from
the following construction: let χn be the 2n-ary relation that is given by the value
tables (in some chosen enumeration) of the n distinct n-ary projection functions.
More formally, let β : 2n → {0, 1}n be the reader’s preferred bijection between the
index set 2n = {0, . . . , 2n−1} and the set of all arguments of an n-ary Boolean
function—often lexicographic enumeration is chosen here for presentational pur-
poses, but the order of enumeration of the n-tuples does not matter as long as it
remains fixed. Then χn = {ei ◦ β | 1 ≤ i ≤ n} where ei : {0, 1}n → {0, 1} denotes
the projection function onto the i-th coordinate. Let C be a clone with corresponding
co-clone iC. Since iC is closed with respect to intersection of relations of identical
arity, for any k-ary relation R, there is a least k-ary relation in iC containing R, scil-
icet C ◦ 〈R〉 := ⋂{R′ ∈ iC | R′ ⊇ R, R′ k-ary}. Traditionally, e.g. [24, Sect. 2.8,
p. 134] or [25, Definition 1.1.16, p. 48], this relation is denoted by �C(R), but here
we have chosen a different notation to avoid confusion with constraint languages. It
is well known, e.g. [25, Satz 1.1.19(i), p. 50], and easy to see that C ◦ 〈R〉 is com-
pletely determined by the �-ary part of C whenever � ≥ |R|: given any enumeration
of ∅ �= R = {r1, . . . , r�} (for technical reasons we have to exclude the case � = 0
in this presentation because we do not consider clones with nullary operations here)
we have C ◦ 〈R〉 = {f ◦ (r1, . . . , r�)|f ∈ C, f �-ary}, where f ◦ (r1, . . . , r�) denotes
the row-wise application of f to a matrix whose columns are formed by the tuples
r1, . . . , r�. Relations of the form C ◦ 〈χn〉 represent the n-ary part of the clone C

Table 4 Minimal weak bases for some co-clones

RiL = even4 RiV = (S1 × {0, 1}) ∩ ({0, 1} × S2)

RiL0 = even3 × {0} RiV0 = S1 × {0}
RiL1 = odd3 × {1} RiV1 = RiV × {1}
RiL2 = even3

3�= × {0} × {1} RiV2 = S1 × {0} × {1}
RiL3 = even4

4�= RiN2 = [RiN(x1, . . . , x4) ∧ ∧4
i=1 xi+4 ≈ ¬xi ]

RiN = even4 ∩ S0 RiI = [S1(¬x1,¬x2,¬x3) ∧ S1(x4, x2, x3)]
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as a 2n-ary relation and are called n-th graphic of C (cf. e.g. [24, p. 133 and Theo-
rem 2.8.1(b)]). Indeed, the previous characterization of C ◦ 〈χn〉 yields C ◦ 〈χn〉 =
{f ◦ (e1◦β, . . . , en◦β) | f ∈ C, f n-ary} = {f ◦ (e1, . . . , en) ◦ β | f ∈ C, f n-ary} =
{f ◦ β | f ∈ C, f n-ary}. With the help of this description of C ◦ 〈χn〉 and standard
clone theoretic manipulations, one can easily verify the following result, identifying
possible candidates for irredundant singleton weak bases.

Theorem 2 ([28, Theorem 4.11]) Let C be a clone and R = C ◦ 〈{r1, . . . , rn}〉
with n ≥ 1, then C ◦ 〈χn〉 gives a singleton weak base of 〈{R}〉 without duplicate
coordinates.

2.2 Approximability, Reductions, and Completeness

We assume that the reader has a basic knowledge of approximation algorithms and
complexity theory. We recall some basic notions of approximation algorithms and
complexity theory; for details see the monographs [3, 11].

A combinatorial optimization problem P is a quadruple (I, sol, obj, goal), where:

• I is the set of admissible instances of P .
• sol(x) denotes the set of feasible solutions for every instance x ∈ I .
• obj(x, y) denotes the non-negative integer measure of y for every instance x ∈ I

and every feasible solution y ∈ sol(x); obj is also called objective function.
• goal ∈ {min, max} denotes the optimization goal for P .

A combinatorial optimization problem is said to be an NP-optimization problem
(NPO-problem) if

• the instances and solutions are recognizable in polynomial time,
• the size of the solutions in sol(x) is polynomially bounded in the size of x, and
• the objective function obj is computable in polynomial time.

The optimal value of the objective function for the solutions of an instance x is
denoted by OPT(x). In our case the optimization goal will always be minimization,
i.e., OPT(x) will be the minimum.

Given an instance x ∈ I with a feasible solution y ∈ sol(x) and a real number
r ≥ 1, we say that y is r-approximate if obj(x, y) ≤ r OPT(x) holds and our goal is
minimization, or obj(x, y) ≥ OPT(x)/r and we consider a maximization problem.

Let A be an algorithm that for any instance x of P such that sol(x) �= ∅ returns
a feasible solution A(x) ∈ sol(x). Given an arbitrary function r : N → [1, ∞), we
say that A is an r(n)-approximate algorithm for P if for any instance x ∈ I having
feasible solutions the algorithm returns an r(|x|)-approximate solution, where |x| is
the size of x. If an NPO problem P admits an r(n)-approximate polynomial-time
algorithm, we say that P is approximable within r(n).

An NPO problem P is in the class PO if the optimum is computable in polynomial
time (i.e. if P admits a 1-approximate polynomial-time algorithm). P is in the class
APX (poly-APX) if it is approximable within a constant (polynomial) function in the
size of the instance x. NPO is the class of all NPO problems and NPOPB is the class
of all NPO problems where the objective function is polynomially bounded. The
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following inclusions hold for these approximation complexity classes: PO ⊆ APX ⊆
poly-APX ⊆ NPO. All inclusions are strict unless P = NP.

For reductions among decision problems we use the polynomial-time many-one
reduction denoted by ≤m. Many-one equivalence between decision problems is
denoted by ≡m. For reductions among optimization problems we use approximation
preserving reductions, also called AP-reductions, denoted by ≤AP. AP-equivalence
between optimization problems is denoted by ≡AP.

We say that an optimization problem P AP-reduces to another optimization prob-
lem Q, denoted P ≤AP Q, if there are two polynomial-time computable functions f

and g and a real constant α ≥ 1 such that for all r > 1 and all P-instances x the
following conditions hold.

• f (x) is a Q-instance or the generic unsolvable instance ⊥ (which is not part
of Q).

• If x admits feasible solutions, then f (x) is different from ⊥ and also admits
feasible solutions.

• For any feasible solution y′ of f (x), g(x, y′) is a feasible solution of x.
• If y′ is an r-approximate solution of the Q-instance f (x), then g(x, y′) is an

(1+(r−1)α+o(1))-approximate solution of the P-instance x, where o(1) refers
to the size of x.

Our definition of AP-reducibility slightly extends the one in [3] by introducing a
generic unsolvable instance ⊥. This extension allows us to reduce problems with
unsolvable instances to such without as long as the unsolvable instances can be
detected in polynomial time, by making f map the unsolvable instances to ⊥. This
practice has been implicit in previous work, e.g. [22].

We also need a slightly non-standard variation of AP-reductions. We say that an
optimization problem P AP-Turing-reduces to another optimization problem Q if
there is a polynomial-time oracle algorithm A and a constant α ≥ 1 such that for all
r > 1 on any input x for P
• if all oracle calls with a Q-instance x′ are answered with a feasible Q-solution y

for x′, then A outputs a feasible P-solution for x, and
• if for every call the oracle answers with an r-approximate solution, then A

computes a (1 + (r − 1)α + o(1))-approximate solution for the P-instance x.

It is straightforward to check that AP-Turing-reductions are transitive. Moreover, if P
AP-Turing-reduces to Q with constant α and Q has an r(n)-approximation algorithm,
then there is an αr(n)-approximation algorithm for P .

We will relate our problems to well-known optimization problems, by calling the
problem P under investigation Q-complete if P ≡AP Q. This notion of completeness
is stricter than the one in [22], since the latter relies on A-reductions. For Q, we will
consider the following optimization problems analyzed in [22].

Problem MinOnes(�)

Input: A conjunctive formula ϕ over relations from �.
Solution: An assignment m satisfying ϕ.
Objective: Minimum Hamming weight hw(m).
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ProblemWeightedMinOnes(�)

Input: A conjunctive formula ϕ over relations from � and a weight function
w : V → N assigning non-negative integer weights to the variables of ϕ.
Solution: An assignment m satisfying ϕ.
Objective: Minimum value

∑
x:m(x)=1 w(x).

We now define some well-studied problems to which we will relate our problems.
Note that these problems do not depend on any parameter.

Problem NearestCodeword
Input: A matrix A ∈ Z

k×l
2 and a vector m ∈ Z

l
2.

Solution: A vector x ∈ Z
k
2.

Objective: Minimum Hamming distance hd(xA, m).

Problem MinDistance
Input: A matrix A ∈ Z

k×l
2 .

Solution: A non-zero vector x ∈ Z
l
2 with Ax = 0.

Objective: Minimum Hamming weight hw(x).

Problem MinHornDeletion
Input: A conjunctive formula ϕ over relations from {x ∨ y ∨ ¬z, x, ¬x}.
Solution: An assignment m to ϕ.
Objective: Minimum number of unsatisfied conjuncts of ϕ.

NearestCodeword, MinDistance and MinHornDeletion are known to be NP-hard
to approximate within a factor 2	(log1−ε(n)) for every ε > 0 [1, 16, 22]. Thus if a
problem P is equivalent to any of these problems, it follows that P /∈ APX unless
P = NP.

2.3 Satisfiability

We also use the classic problem SAT(�) asking for the satisfiability of a given con-
junctive formula over a constraint language �. Schaefer [27] completely classified its
complexity. SAT(�) is polynomial-time decidable if � is 0-valid (� ⊆ iI0), 1-valid
(� ⊆ iI1), Horn (� ⊆ iE2), dual Horn (� ⊆ iV2), bijunctive (� ⊆ iD2), or affine
(� ⊆ iL2); otherwise it is NP-complete. Moreover, we need the decision problem
AnotherSAT(�): Given a conjunctive formula over � and a satisfying assignment m,
is there another satisfying assignment m′ different from m? The complexity of this
problem was completely classified by Juban [20]. AnotherSAT(�) is polynomial-time
decidable if � is both 0- and 1-valid (� ⊆ iI), complementive (� ⊆ iN2), Horn
(� ⊆ iE2), dual Horn (� ⊆ iV2), bijunctive (� ⊆ iD2), or affine (� ⊆ iL2);
otherwise it is NP-complete.

2.4 Linear and Integer Programming

A unimodular matrix is a square integer matrix having determinant +1 or −1. A
totally unimodular matrix is a matrix for which every square non-singular subma-
trix is unimodular. A totally unimodular matrix need not be square itself. Any totally
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unimodular matrix has only 0, +1 or −1 entries. If A is a totally unimodular matrix
and b is an integral vector, then for any given linear functional f such that the linear
program min{f (x) | Ax ≥ b} has a real minimum x, it also has an integral minimum
point x. That is, the feasible region {x | Ax ≥ b} is an integral polyhedron. For this
reason, linear programming methods can be used to obtain the solutions for inte-
ger linear programs in this case. Linear programs can be solved in polynomial time,
hence so can integer programs with totally unimodular matrices. For details see the
monograph by Schrijver [30].

3 Results

This section presents the problems we consider and our results; the proofs follow
in subsequent sections. The input to all our problems is a conjunctive formula over
a constraint language. The satisfying assignments of the formula, i.e. its models or
solutions, form a Boolean relation that can be understood as an associated generalized
binary code. As for linear codes, the minimization target is always the Hamming dis-
tance between the codewords or models. Our three problems differ in the information
additionally available for computing the required Hamming distance.

Given a formula and an arbitrary assignment, the first problem asks for a solution
closest to the given assignment.

Problem NearestSolution(�), NSol(�)

Input: A conjunctive formula ϕ over relations from � and an assignment m to the
variables occurring in ϕ, which is not required to satisfy ϕ.
Solution: An assignment m′ satisfying ϕ (i.e. a codeword of the code described
by ϕ).
Objective: Minimum Hamming distance hd(m, m′).

Note that the problem generalizes the MinOnes problem from [22]. Indeed, if we
take the all-zero assignment m = 0 · · · 0 as part of the input, we get exactly the
MinOnes problem as a special case.

Theorem 3 (illustrated in Fig. 1) For a given Boolean constraint language � the
optimization problem NSol(�) is

(i) in PO if � is

(a) 2affine (� ⊆ iD1) or
(b) monotone (� ⊆ iM2);

(ii) APX-complete if

(a) � generates iD2 (〈�〉 = iD2), or
(b) [x ∨ y] ∈ 〈�〉 and � is k-IHS-B+ (iS2

0 ⊆ 〈�〉 ⊆ iSk
00) for some k ∈ N,

k ≥ 2, or
(c) [¬x ∨¬y] ∈ 〈�〉 and � is k-IHS-B− (iS2

1 ⊆ 〈�〉 ⊆ iSk
10) for some k ∈ N,

k ≥ 2;
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(iii) NearestCodeword-complete if � is exactly affine (iL ⊆ 〈�〉 ⊆ iL2);
(iv) MinHornDeletion-complete if � is

(a) exactly Horn (iE ⊆ 〈�〉 ⊆ iE2) or
(b) exactly dual Horn (iV ⊆ 〈�〉 ⊆ iV2);

(v) poly-APX-complete if � does not contain an affine relation and it is

(a) 0-valid (iN ⊆ 〈�〉 ⊆ iI0) or
(b) 1-valid (iN ⊆ 〈�〉 ⊆ iI1); and

(vi) otherwise (iN2 ⊆ 〈�〉) it is NP-complete to decide whether a feasible solution
for NSol(�) exists.

Proof The proof is split into several propositions presented in Section 5.

(i) See Propositions 17 and 18.
(ii) See Propositions 20, 21, and 22.

(iii) See Corollary 25 and Proposition 26.
(iv) See Propositions 29 and 30.
(v) See Proposition 31.

(vi) See Proposition 19.

Given a constraint and one of its solutions, the second problem asks for another
solution closest to the given one.

Problem NearestOtherSolution(�), NOSol(�)

Input: A conjunctive formula ϕ over relations from � and a satisfying assign-
ment m (to the variables mentioned in ϕ).
Solution: An assignment m′ �= m satisfying ϕ.
Objective: Minimum Hamming distance hd(m, m′).

The difference between the problems NearestSolution and NearestOtherSolution
is the knowledge, or its absence, whether the input assignment satisfies the constraint.
Moreover, for NearestSolution we may output the given assignment if it satisfies the
formula while for NearestOtherSolution we have to output an assignment different
from the one given as the input.

Theorem 4 (illustrated in Fig. 2) For every constraint language � the optimization
problem NOSol(�) is

(i) in PO if

(a) � is bijunctive (� ⊆ iD2) or
(b) � is k-IHS-B+ (� ⊆ iSk

00) for some k ∈ N, k ≥ 2 or
(c) � is k-IHS-B− (� ⊆ iSk

10) for some k ∈ N, k ≥ 2;

(ii) MinDistance-complete if � is exactly affine (iL ⊆ 〈�〉 ⊆ iL2);
(iii) MinHornDeletion-complete under AP-Turing-reductions if � is

(a) exactly Horn (iE ⊆ 〈�〉 ⊆ iE2) or
(b) exactly dual Horn (iV ⊆ 〈�〉 ⊆ iV2);
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(iv) in poly-APX if � is

(a) exactly both 0-valid and 1-valid (〈�〉 = iI) or
(b) exactly complementive (iN ⊆ 〈�〉 ⊆ iN2),

where NOSol(�) is n-approximable but not (n1−ε)-approximable for any ε >

0 unless P = NP;
(v) and otherwise (iI0 ⊆ 〈�〉 or iI1 ⊆ 〈�〉) it is NP-complete to decide whether a

feasible solution for NOSol(�) exists.

Proof The proof is split into several propositions presented in Section 6.

(i) See Propositions 33 and 34.
(ii) See Proposition 44.

(iii) See Corollary 47.
(iv) See Propositions 35 and 39.
(v) See Proposition 35.

The third problem does not take any assignments as input, but asks for two solu-
tions which are as close to each other as possible. We optimize once more the
Hamming distance between the solutions.

Problem MinSolutionDistance(�), MSD(�)

Input: A conjunctive formula ϕ over relations from �.
Solution: Two satisfying truth assignments m �= m′ to the variables occurring in ϕ.
Objective: Minimum Hamming distance hd(m, m′).

The MinSolutionDistance problem enlarges the notion of minimum distance of an
error correcting code. The following theorem is a more fine-grained analysis of the
result published by Vardy in [31], extended to an optimization problem.

Theorem 5 (illustrated in Fig. 3) For any constraint language � the optimization
problem MSD(�) is

(i) in PO if � is

(a) bijunctive (� ⊆ iD2) or
(b) Horn (� ⊆ iE2) or
(c) dual Horn (� ⊆ iV2);

(ii) MinDistance-complete if � is exactly affine (iL ⊆ 〈�〉 ⊆ iL2);
(iii) in poly-APX if dup3 ∈ 〈�〉 and � is both 0-valid and 1-valid (iN ⊆ 〈�〉 ⊆ iI),

where MSD(�) is n-approximable but not (n1−ε)-approximable for any ε > 0
unless P = NP; and

(iv) otherwise (iN2 ⊆ 〈�〉 or iI0 ⊆ 〈�〉 or iI1 ⊆ 〈�〉) it is NP-complete to decide
whether a feasible solution for MSD(�) exists.

Proof The proof is split into several propositions presented in Section 7.

(i) See Propositions 48 and 49.
(ii) See Proposition 55.
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(iii) For � ⊆ iI, every formula ϕ over � has at least two solutions since it is
both 0-valid and 1-valid. Thus TwoSolutionSAT(�) is in P, and Proposition 54
yields that MSD(�) is n-approximable. By Proposition 56 this approximation
is indeed tight.

(iv) According to [20], AnotherSAT(�) is NP-hard for iI0 ⊆ 〈�〉, or iI1 ⊆ 〈�〉. By
Lemma 51 it follows that TwoSolutionSAT(�) is NP-hard, too. For iN2 ⊆ 〈�〉
we can reduce the NP-hard problem SAT(�) to TwoSolutionSAT(�). Hence it
is NP-complete to decide whether a feasible solution for MSD(�) exists in all
three cases.

The three optimization problems can be transformed into decision problems in
the usual way. We add an integer bound k to the input and ask if the Hamming dis-
tance satisfies the inequality hd(m, m′) ≤ k. This way we obtain the corresponding
decision problems NOSold, NSold, and MSDd, respectively. Their complexity follows
immediately from the theorems above. All cases in PO become polynomial-time
decidable, whereas the other cases, which are APX-hard, become NP-complete. This
way we obtain dichotomy theorems classifying the decision problems as polynomial
or NP-complete for all sets � of relations. We obtain the following dichotomies for
each of the respective decision problems.

Corollary 6 For each constraint language �

– NSold(�) is in P if � is 2affine or monotone, and it is NP-complete otherwise.
– NOSold(�) is in P if � is bijunctive, k-IHS-B+, or k-IHS-B−,

and it is NP-complete otherwise.
– MSDd(�) is in P if � is bijunctive, Horn, or dual-Horn, and it is NP-complete

otherwise.

4 Applicability of Clone Theory and Duality

We show that clone theory is applicable to the problem NSol, as well as a possibility
to exploit inner symmetries between co-clones, which shortens several proofs in the
following sections.

4.1 Nearest Solution

There are two natural versions of NSol(�). In one version the formula ϕ is quantifier
free while in the other one we do allow existential quantification. We call the former
version NSol(�) and the latter NSolpp(�) and show that both versions are equivalent.

Let NSold(�) and NSoldpp(�) be the decision problems corresponding to NSol(�)

and NSolpp(�), asking whether there is a satisfying assignment within a given bound.

Proposition 7 For any constraint language �, we have NSold(�) ≡m NSoldpp(�)

and NSol(�) ≡AP NSolpp(�).
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Proof The reduction from left to right is trivial in both cases. For the other direction,
consider first an instance of NSoldpp(�) with formula ϕ, assignment m, and bound k.
Let x1, . . . , xn be the free variables of ϕ and let y1, . . . , y� be the existentially quan-
tified ones, which we can assume to be disjoint. By discarding variables yi while not
changing [ϕ], we can assume that each variable yi occurs in at least one atom of ϕ.
We construct a quantifier-free formula ϕ′, where the non-quantified variables of ϕ get
duplicated by a factor λ := (n + � + 1)2 such that the effect of quantified variables
becomes negligible. For each variable z we define the set B(z) as follows:

B(z) =
{ {x1

i , . . . , xλ
i } if z = xi for some i ∈ {1, . . . , n},

{yi} if z = yi for some i ∈ {1, . . . , �}.

For every atom R(z1, . . . , zs) in ϕ, the quantifier-free formula ϕ′ over the variables⋃n
i=1 B(xi) ∪ ⋃�

i=1 B(yi) contains the atom R(z′
1, . . . , z

′
s) for every (z′

1, . . . , z
′
s)

from B(z1) × · · · × B(zs). Moreover, we construct an assignment B(m) of ϕ′ by
assigning to every variable x

j
i the value m(xi) and to yi the value 0. Note that because

there is an upper bound on the arities of relations from �, this is a polynomial time
construction.

We claim that ϕ has a solution m′ with hd(m, m′) ≤ k if and only if ϕ′ has a
solution m′′ with hd(B(m), m′′) ≤ kλ + �. First, observe that if m′ with the desired
properties exists, then there is an extension m′

e of m′ to the yi that satisfies all atoms.

Define m′′ by setting m′′(xj
i ) := m′(xi) and m′′(yi) := m′

e(yi) for all i and j .
Then m′′ is clearly a satisfying assignment of ϕ′. Moreover, m′′ and B(m) differ in
at most kλ variables among the x

j
i . Since there are only � other variables yi , we get

hd(m′′, B(m)) ≤ kλ + � as desired.
Now suppose m′′ satisfies ϕ′ with hd(B(m), m′′) ≤ kλ + �. We may assume for

each i that m′′(x1
i ) = · · · = m′′(xλ

i ). Indeed, if this is not the case, then setting

all x
j
i to B(m)(x

j
i ) = m(xi) will result in a satisfying assignment closer to B(m).

After at most n iterations we get some m′′ as desired. Now define an assignment m′
for ϕ by setting m′(xi) := m′′(x1

i ). Then m′ satisfies ϕ, because the variables yi

can be assigned values as in m′′. Moreover, whenever m(xi) differs from m′(xi), the
inequality B(m)(x

j
i ) �= m′′(xj

i ) holds for every j . Thus we obtain λhd(m, m′) ≤
hd(B(m), m′′) ≤ kλ+�. Therefore, we have the inequality hd(m, m′) ≤ k +�/λ and
hence hd(m, m′) ≤ k, since �/λ < 1. This completes the many-one reduction.

To see that the construction above is also an AP-reduction, let m′′ be an
r-approximation for ϕ′ and B(m), i.e., hd(B(m), m′′) ≤ r · OPT(ϕ′, B(m)). Con-
struct m′ as before, so λhd(m, m′) ≤ hd(B(m), m′′) ≤ r · OPT(ϕ′, B(m)).
Since OPT(ϕ′, B(m)) ≤ λ OPT(ϕ, m) + � as above, we get λhd(m, m′) ≤
r(λ OPT(ϕ, m)+�). This implies hd(m, m′) ≤ r ·OPT(ϕ, m)+ r ·�/λ = (r +o(1)) ·
OPT(ϕ, m) and shows that the construction is an AP-reduction with α = 1.

Remark 8 Note that in the reduction from NSoldpp(�) to NSold(�) we construct the
assignment B(m) as an extension of m by setting all new variables to 0. In particular,
if m is the constant 0-assignment, then so is B(m). We use this observation as we
continue.
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The following four technical results are the missing theoretical backbone of [8],
which had to be omitted from [8] due to page limitations. The first of these lemmas
allows us to consider constraints with disjoint variables independently.

Lemma 9 Let ϕ(x, y) = ψ(x)∧χ(y) be a �-formula over a constraint language �

and m an assignment over disjoint variable blocks x and y. Let (ϕ, m) be an instance
of NSol(�). Then OPT(ϕ, m) = OPT(ψ, m�x) + OPT(χ, m�y).

Proof If s ∈ [ϕ], then s�x∈ [ψ] and s�y∈ [χ ]. Conversely, if sψ ∈ [ψ] and sχ ∈ [χ ],
then s := sψ ∪ sχ is a model of ϕ. If s ∈ [ϕ] is optimal, i.e. hd(s, m) = OPT(ϕ, m),
then

OPT(ϕ, m) = hd(s, m) = hd(s�x, m�x) + hd(s �y, m�y)

≥ OPT(ψ, m�x) + OPT(χ, m�y).

Conversely, if sψ ∈ [ψ] and sχ ∈ [χ ] are optimal solutions for their respective
problems, then s := sψ ∪ sχ satisfies

OPT(ϕ, m) ≤ hd(s, m) = hd(s�x, m�x) + hd(s�y, m�y)

= OPT(ψ, m�x) + OPT(χ, m�y).

We can also show that introducing explicit equality constraints does not change
the complexity of our problem. We need two introductory lemmas. The first one deals
with equalities that do not interfere with the other atoms of the given formula.

Lemma 10 For constraint languages �, NSol(� ∪ {≈}) and NSold(� ∪ {≈}) reduce
to particular cases of the respective problem, where for each constraint x ≈ y in the
given formula ϕ at least one of x, y occurs also in some �-atom of ϕ.

Proof Let (ϕ, m) be an instance of NSol(� ∪ {≈}). Without loss of generality we
assume ϕ to be of the form ψ ∧ ε, where ψ is a �-formula and ε is a {≈}-formula.
Let (Vi)i∈I be the unique finest partition of the variables in ε satisfying that variables
x, y are in the same partition class if x ≈ y occurs in ε.

For each index i ∈ I we designate a specific variable xi ∈ Vi . Let ψ ′ be the
formula obtained from ψ by substituting all occurrences of variables y ∈ Vi by xi .
Moreover, let I ′ be the set of indices i ∈ I such that xi actually occurs in ψ ′, and let
I ′′ := I � I ′ be the set of indices without this property. We set ε′ := ∧

i∈I ′ εi and
ε′′ := ∧

i∈I ′′ εi , where the formula εi := ∧
y∈Vi

(xi ≈ y) expresses the equivalence
of the variables in Vi . Note that the formulas ψ ∧ ε and χ := ψ ′ ∧ ε′ ∧ ε′′ contain
the same variables and have identical sets of models.

Now consider the formula ϕ′ := ψ ′ ∧ε′ and the assignment m′ := m�V ′ , where V ′
is the set of variables occurring in ϕ′. The pair (ϕ′, m′) is an NSol(� ∪ {≈})-instance
with the additional properties stated in the lemma. By construction we have χ =
ϕ′∧ε′′, where the set V ′ of variables in ϕ′ and the set V ′′ of variables in ε′′ are disjoint.
By Lemma 9 we obtain OPT(ϕ, m) = OPT(χ, m) = OPT(ϕ′, m′)+OPT(ε′′, m�V ′′).

An optimal solution sε′′ of ε′′ and the optimal value d := OPT(ε′′, m�V ′′) can
obviously be computed in polynomial time. Therefore the instance (ϕ, m, k) of
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NSold(� ∪ {≈}) corresponds to the instance (ϕ′, m′, k − d) of the restricted decision
problem in the polynomial-time many-one reduction.

Moreover, if s′ is an r-approximate solution of (ϕ′, m′) for some r ≥ 1, then
s := s′ ∪ sε′′ is a solution of ϕ, and we have

hd(s, m)=hd(s′, m′)+d ≤ r OPT(ϕ′, m′)+d ≤ r OPT(ϕ′, m′)+rd =r OPT(ϕ, m),

so the constructed solution s of ϕ is also r-approximate. This concludes the proof of
the AP-reduction with factor α = 1.

When dealing with NSol(� ∪ {≈}), the previous lemma enables us to concentrate
on instances where the formula ϕ has the form

ψ(z1, . . . , zn, x1, . . . , xt ) ∧
t∧

i=1

∧

x∈Vi

(xi ≈ x),

where V1, . . . , Vt are disjoint sets of variables, being also disjoint from the variables
of the �-formula ψ . For each 1 ≤ i ≤ t the given assignment m can have equal
distance to the zero vector and the all-ones vector on the variables in Vi ∪ {xi}, or
it can be closer to one of the constant vectors. It is convenient to group the equality
constraints according to these three cases. The following lemma discusses how to
remove those equality constraints, on whose variables m is not equidistant from 0
and 1.

Lemma 11 Let � be a constraint language and

ψ(z1, . . . , zn, x1, . . . , xα, v1, . . . , vβ, w1, . . . , wγ )

be any �-formula containing precisely the distinct variables z1, . . . , zn, x1, . . . , xα ,
v1, . . . , vβ and w1, . . . , wγ . Consider a formula

ϕ := ψ ∧
α∧

a=1

∧

x∈I ′
a

(xa ≈ x) ∧
β∧

b=1

∧

x∈J ′
b

(vb ≈ x) ∧
γ∧

c=1

∧

x∈K ′
c

(wc ≈ x)

where I ′
1, . . . , I

′
α , J ′

1, . . . , J
′
β and K ′

1, . . . , K
′
γ are non-empty sets of variables that

are pairwise disjoint and disjoint from the variables in ψ . For 1 ≤ a ≤ α, 1 ≤ b ≤ β

and 1 ≤ c ≤ γ we put Ia := I ′
a ∪ {xa}, Jb := J ′

b ∪ {vb} and Kc := K ′
c ∪ {wc}.

Moreover, let m be an assignment for ϕ, such that for 1 ≤ a ≤ α, 1 ≤ b ≤ β and
1 ≤ c ≤ γ

d0,Ia := hd(m�Ia , 0), d1,Ia := hd(m�Ia , 1), d1,Ia − d0,Ia = 0

d0,Jb
:= hd(m�Jb

, 0), d1,Jb
:= hd(m�Jb

, 1), satisfy eb := d1,Jb
− d0,Jb

> 0

d0,Kc := hd(m�Kc, 0), d1,Kc := hd(m�Kc, 1), fc := d0,Kc − d1,Kc > 0

It is possible to construct a formula ψ ′, whose size is polynomial in the size of ϕ, and
an assignment M for ϕ′ := ψ ′ ∧ ∧α

a=1
∧

x∈I ′
a
(xa ≈ x) such that the following holds

– ψ , ϕ, ϕ′ and ψ ′ are equisatisfiable;



1150 Theory of Computing Systems (2019) 63:1131–1184

– if ψ is satisfiable, then OPT(ϕ, m) = OPT(ϕ′, M)+ d where d = ∑β

b=1 d0,Jb
+

∑γ

c=1 d1,Kc ;
– for every r ∈ [1, ∞), one can produce an (r-approximate) solution of (ϕ, m)

from any (r-approximate) solution of (ϕ′, M) in polynomial time.

Proof First, we describe how to construct the formula ψ ′. In the following we use the
abbreviations Z := {z1, . . . , zn, x1, . . . , xα}, Z′ := Z ∪ ⋃α

a=1 Ia , V := {v1, . . . , vβ}
and W := {w1, . . . , wγ }. For every variable u ∈ Z ∪ V ∪ W define a set B(u) of
variables as follows:

B(u) =
⎧
⎨

⎩

{u} if u ∈ Z

{u1, . . . , ueb } if u = vb ∈ V

{u1, . . . , ufc } if u = wc ∈ W .

For each atom R(u1, . . . , uq) of ψ define a set of atoms
{R(u′

1, . . . , u
′
q)|(u′

1, . . . , u
′
q) ∈ ∏q

i=1 B(ui)}, take the union over all these sets
and define ψ ′ as the conjunction of all its members, giving a formula over
Z ∪ V ′ ∪ W ′ where V ′ = ⋃

u∈V B(u) and W ′ = ⋃
u∈W B(u). Adding again

the equality constraints, where m has equal distance from 0 and 1 we get
ϕ′ = ψ ′ ∧ ∧α

a=1
∧

x∈I ′
a
(xa ≈ x) over Z′ ∪ V ′ ∪ W ′. This is a polynomial time

construction since the arities of relations in � are bounded.
Moreover, we define an assignment M to the variables u of ϕ′ as follows:

M(u) =
⎧
⎨

⎩

m(u) if u ∈ Z′
0 if u ∈ V ′
1 if u ∈ W ′.

Let S′ be a solution of (ϕ′, M). If S′ is constant on B(u), for each u ∈ V ∪W , then put
S′′ := S′. Otherwise, by letting S′′(u) := S′(u) for u ∈ Z′ and for u ∈ B(u′) where
u′ ∈ V ∪W is such that S′ is constant on B(u′), and by defining S′′(u) := M(u) = 0
for the remaining variables u ∈ V ′ and S′′(u) := M(u) = 1 for the remaining
variables u ∈ W ′, we obtain a model S′′ of ϕ′ satisfying hd(S′′, M) ≤ hd(S′, M) and
being constant on B(u) for each u ∈ V ∪ W . From S′′ we construct an assignment S

of ϕ by defining S(u) := S′′(u) for u ∈ Z′, S(u) := S′′(v1
b) for u ∈ Jb and 1 ≤ b ≤

β, and S(u) := S′′(w1
c ) for u ∈ Kc and 1 ≤ c ≤ γ . It satisfies ϕ as eb, fc > 0 for

1 ≤ b ≤ β and 1 ≤ c ≤ γ . From these definitions, it follows

hd(S ′′, M) =

= hd(S′′ �Z′ , M �Z′) +
β∑

b=1

hd(S′′�B(vb), M �B(vb)) +
γ∑

c=1

hd(S′′�B(wc), M�B(wc))

= hd(S′′�Z′ , m�Z′) +
β∑

b=1

S′′(v1
b) · eb +

γ∑

c=1

(1 − S′′(w1
c )) · fc,
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because S′′ is constant on B(u) for u ∈ V ∪ W and |B(vb)| = eb, |B(wc)| = fc for
1 ≤ b ≤ β and 1 ≤ c ≤ γ ; and

hd(S, m) =

= hd(S �Z′ , m�Z′) +
β∑

b=1

hd(S �Jb
, m�Jb

) +
γ∑

c=1

hd(S �Kc, m�Kc)

= hd(S′′ �Z′, m�Z′)+
β∑

b=1

(
S′′(v1

b) · eb+ d0,Jb

)
+

γ∑

c=1

(
(1−S′′(w1

c )) · fc+d1,Kc

)
.

Consequently, hd(S, m) = hd(S ′′, M) + d, where d = ∑β

b=1 d0,Jb
+ ∑γ

c=1 d1,Kc .
Using this, we shall prove below that OPT(ϕ′, M) + d = OPT(ϕ, m). Thus, if S′

now takes the role of an r-approximate solution of (ϕ′, M) for some r ≥ 1, then it
follows that

hd(S, m) = hd(S′′, M) + d ≤ hd(S′, M) + d ≤ r OPT(ϕ′, M) + d

≤ r OPT(ϕ′, M) + rd =r OPT(ϕ, m).

Let subsequently S′ be such that OPT(ϕ′, M) = hd(S′, M), and let s be a model
of ϕ. Construct a model s′ of ϕ′ by putting s′(u) := s(u) for u ∈ Z′ and s′(u) :=
s(u′) for u ∈ B(u′) and u′ ∈ V ∪ W . As above we get hd(s, m) = hd(s′, M) + d

because the definitions imply

hd(s′, M) =

= hd(s′�Z′ , M �Z′) +
β∑

b=1

hd(s′�B(vb), M�B(vb)) +
γ∑

c=1

hd(s′�B(wc), M �B(wc))

= hd(s�Z′ , m�Z′) +
β∑

b=1

s(vb) · eb +
γ∑

c=1

(1 − s(wc)) · fc ;

hd(s, m) =

= hd(s�Z′ , m�Z′) +
β∑

b=1

hd(s�Jb
, m�Jb

) +
γ∑

c=1

hd(s�Kc, m�Kc)

= hd(s�Z′ , m�Z′) +
β∑

b=1

(
s(vb) · eb + d0,Jb

) +
γ∑

c=1

(
(1 − s(wc)) · fc + d1,Kc

)
.

By minimality of S′, we obtain hd(S′′, M) ≤ hd(S′, M) ≤ hd(s′, M). If we addition-
ally require that s be an optimal solution of (ϕ, m), then hd(s′, M) = hd(s, m)−d ≤
hd(S, m)−d = hd(S′′, M). Thus, the distances hd(S′′, M), hd(S′, M) and hd(s′, M)

coincide, which implies the desired equality OPT(ϕ, m) = hd(s, m) = hd(s′, M) +
d = hd(S′, M) + d = OPT(ϕ′, M) + d.

The previous lemma, in fact, describes an AP-reduction from the specialized
version of the problem NSol(� ∪ {≈}) discussed in Lemma 10 to an even more spe-
cialized variant (the analogous statement is true for the decision version—instances
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(ϕ, m, k) can be decided by considering (ϕ′, M, k − d) instead): namely all equality
constraints touch variables in �-atoms and the given assignment has equal distance
from the constant tuples on each variable block connected by equalities. In the next
result we show how to remove also these equality constraints.

Proposition 12 For constraint languages �, we have NSold(�) ≡m NSold(� ∪ {≈})
and NSol(�) ≡AP NSol(� ∪ {≈}).

Proof The reduction from left to right is trivial. For the other direction, consider first
an instance of NSold(�∪{≈}) with formula ϕ, assignment m, and bound k. Applying
the reductions indicated in Lemmas 10 and 11, we can assume (also for NSol(� ∪ {≈
})) that ϕ is of the form ψ ∧ ∧α

a=1
∧

x∈I ′
a
(xa ≈ x) with a �-formula ψ containing

the distinct variables z1, . . . , zn, x1, . . . , xα (n ≥ 0, α ≥ 1) and non-empty disjoint
(from each other and from ψ) variable sets I ′

a for 1 ≤ a ≤ α. Moreover, we can
suppose that hd(m �Ia , 0) = hd(m �Ia , 1) =: ca for all 1 ≤ a ≤ α, where Ia denotes
the set I ′

a ∪ {xa}.
We define c := ∑α

a=1 ca , and we choose some �-element index set I such that
α/� < 1, that is, � ≥ α + 1 (we shall place another condition on � at the end). We
construct a formula ϕ′ as follows: For each atom R(u1, . . . , uq) of ψ we introduce the

set {R(u
i1
1 , . . . , u

iq
q )|(i1, . . . , iq) ∈ I q} of atoms where for 1 ≤ ν ≤ q and i ∈ I we

let ui
ν := zj,i if uν = zj for some 1 ≤ j ≤ n and ui

ν = uν if else uν ∈ {x1, . . . , xα}.
Take the union over all these sets and let ϕ′ be the conjunction of all atoms in this
union. This construction can be carried out in polynomial time since there is a bound
on the arities of relations in �. Define an assignment M by M(xa) := m(xa) for
1 ≤ a ≤ α and M(zj,i) := m(zj ) for 1 ≤ j ≤ n and i ∈ I . We claim that existence
of solutions for (ϕ, m, k) can be decided by checking for solutions of (ϕ′, M, �(k −
c) + α). The argument is similar to that of Proposition 7: ψ is (un)satisfiable if and
only if ϕ and ϕ′ are, so we have a correct answer in the unsatisfiable case. Otherwise,
consider a solution s to (ϕ, m, k). Letting Z := {z1, . . . , zn}, we have

hd(s, m) = hd(s�Z, m�Z) +
α∑

a=1

hd(s�Ia , m�Ia ) = hd(s�Z, m�Z) +
α∑

a=1

ca

= hd(s�Z, m�Z) + c,

i.e. hd(s�Z, m�Z) ≤ k − c. Putting s′(xa) := s(xa) for 1 ≤ a ≤ α and s′(zj,i) :=
s(zj ) for 1 ≤ j ≤ n and i ∈ I we get a model of ϕ′, and it follows that hd(s′�Z′ ,
M�Z′) = � · hd(s�Z, m�Z) ≤ � · (k − c), where Z′ := {zj,i | 1 ≤ j ≤ n, i ∈ I }.
Therefore, abbreviating X := {x1, . . . , xα}, we obtain hd(s′, M) = hd(s′�Z′ , M�Z′)
+hd(s′�X, M�X) ≤ � · (k − c) + α.

Conversely, let S′ be a solution of (ϕ′, M, �(k−c)+α). As in Proposition 7 we can
construct a solution S′′ being constant on {zj,i | i ∈ I } for each 1 ≤ j ≤ n. Letting
S(x) := S ′′(xa) for x ∈ Ia and 1 ≤ a ≤ α and S(zj ) := S′′(zj,i) for some fixed
index i ∈ I and all 1 ≤ j ≤ n, one obtains a model of ϕ. If S(zj ) �= m(zj ) for some
1 ≤ j ≤ n, then we have S ′′(zj,i) = S(zj ) �= m(zj ) = M(zj,i) for all i ∈ I . Hence,
we have � · hd(S�Z, m�Z) ≤ hd(S′′�Z′, M�Z′) ≤ hd(S′′, M) ≤ hd(S′, M). Division
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by � implies hd(S�Z, m�Z) ≤ hd(S′, M)/� ≤ k − c + α/� < k − c + 1, i.e. hd(S�Z,

m�Z) ≤ k − c. From this we finally infer that hd(S, m) = hd(S �Z, m�Z) + c ≤ k.
Suppose now that S′ is an r-approximate solution for (ϕ′, M) for some r ≥ 1,

i.e. we have hd(S′, M) ≤ r OPT(ϕ′, M). Constructing a model S of ϕ as before, we
obtain � hd(S�Z, m�Z) ≤ hd(S′, M) ≤ r OPT(ϕ′, M). Furthermore, from an optimal
solution of ϕ, we get a model s′ of ϕ′ satisfying

OPT(ϕ′, M) ≤ hd(s′, M) = hd(s′�Z′, M�Z′) + hd(s′�X, M�X)

= �(OPT(ϕ, m) − c) + hd(s′�X, M�X)

≤ �(OPT(ϕ, m) − c) + α.

Multiplying this inequality by r , combining it with previous inequalities and dividing
by � we thus have hd(S�Z, m�Z) ≤ r OPT(ϕ, m)− rc+ rα/�. Note that OPT(ϕ, m) >

0, because if OPT(ϕ, m) = 0, then we would have a unique optimal model of ϕ,
namely m. Then m�I1 would have to be constant, implying hd(m�I1 , 0) �= hd(m�I1 , 1),
as one distance would be zero and the other one |I1| > 0. Therefore, for � ∈ 	(|ϕ|2)
we have hd(S, m) = hd(S �Z, m�Z) + c ≤ hd(S�Z, m�Z) + rc ≤ r OPT(ϕ, m) +
rα/� ≤ OPT(ϕ, m)(r + rα/�) = OPT(ϕ, m)(r + o(1)). This demonstrates an AP-
reduction with factor 1.

Propositions 7 and 12 allow us to switch freely between formulas with quan-
tifiers and equality and those without. Hence we may derive upper bounds in the
setting without quantifiers and equality while using the latter in hardness reduc-
tions. In particular, we can use pp-definability when implementing a constraint
language � by another constraint language �′. Hence it suffices to consider Post’s lat-
tice of co-clones to characterize the complexity of NSol(�) for every finite constraint
language �.

Corollary 13 For constraint languages � and �′, for which the inclusion �′ ⊆ 〈�〉
holds, we have the reductions NSold(�′) ≤m NSold(�) and NSol(�′) ≤AP NSol(�).
Thus, if 〈�′〉 = 〈�〉 is satisfied, then the equivalences NSold(�) ≡m NSold(�′) and
NSol(�) ≡AP NSol(�′) hold.

Next we prove that, in certain cases, unit clauses in the formula do not change the
complexity of NSol.

Proposition 14 Let � be a constraint language such that feasible solutions of
NSol(�) can be found in polynomial time. Then we have NSol(�) ≡AP NSol(� ∪
{[x], [¬x]}).
Proof The direction from left to right is obvious. For the other direction, we give
an AP-reduction from NSol(� ∪ {[x], [¬x]}) to NSol(� ∪ {≈}). The latter is AP-
equivalent to NSol(�) by Proposition 12.

The idea of the construction is to introduce two sets of variables y1, . . . , yn2 and
z1, . . . , zn2 such that in any feasible solution all yi and all zi take the same value.
By setting m(yi) = 1 and m(zi) = 0 for each i, any feasible solution m′ of small
Hamming distance to m will have m′(yi) = 1 and m′(zi) = 0 for all i as well,



1154 Theory of Computing Systems (2019) 63:1131–1184

because deviating from this would be prohibitively expensive. Finally, we simulate
the unary relations x and ¬x by x ≈ y1 and x ≈ z1, respectively. We now describe
the reduction formally.

Consider a formula ϕ over � ∪ {[x], [¬x]} with the variables x1, . . . , xn and an
assignment m. If (ϕ, m) fails to have feasible solutions, i.e., if ϕ is unsatisfiable, we
can detect this in polynomial time by the assumption of the lemma and return the
generic unsatisfiable instance ⊥. Otherwise, we construct a (�∪{≈})-formula ϕ′ over
the variables x1, . . . xn, y1, . . . , yn2 , z1, . . . , zn2 and an assignment m′. We obtain ϕ′
from ϕ by replacing every occurrence of a constraint [x] by x ≈ y1 and every
occurrence of [¬x] by x ≈ z1. Finally, we add the atoms yi ≈ y1 and zi ≈ z1
for all i ∈ {2, . . . , n2}. Let m′ be the assignment of the variables of ϕ′ given by
m′(xi) = m(xi) for each i ∈ {1, . . . , n}, and m′(yi) = 1 and m′(zi) = 0 for all
i ∈ {1, . . . , n2}. To any feasible solution m′′ of ϕ′ we assign g(ϕ, m, m′′) as follows.

1. If ϕ is satisfied by m, we define g(ϕ, m, m′′) to be equal to m.
2. Else if m′′(yi) = 0 holds for all i ∈ {1, . . . , n2} or m′′(zi) = 1 for all i ∈

{1, . . . , n2}, we define g(ϕ, m, m′′) to be any satisfying assignment of ϕ.
3. Otherwise, we have m′′(yi) = 1 and m′′(zi) = 0 for all i ∈ {1, . . . , n2}. In this

case we define g(ϕ, m, m′′) to be the restriction of m′′ onto x1, . . . , xn.

Observe that all variables yi and all zi are forced to take the same value in any feasible
solution, respectively, so g(ϕ, m, m′′) is always well-defined. The construction is
an AP-reduction. Assume that m′′ is an r-approximate solution. We will show that
g(ϕ, m, m′′) is also an r-approximate solution.

Case 1 g(ϕ, m, m′′) computes the optimal solution, so there is nothing to show.
Case 2 Observe first that ϕ has a solution because otherwise it would have been

mapped to ⊥ and m′′ would not exist. Thus, g(ϕ, m, m′′) is well-defined and feasi-
ble by construction. Observe that m′ and m′′ disagree on all yi or on all zi , so we
have hd(m′, m′′) ≥ n2. Moreover, since ϕ has a feasible solution, it follows that
OPT(ϕ′, m′) ≤ n. Since m′′ is an r-approximate solution, we have that

n OPT(ϕ′, m′) ≤ n2 ≤ hd(m′, m′′) ≤ r OPT(ϕ′, m′) .

If OPT(ϕ′, m′) = 0, then m′ would have to be a model of ϕ′, and so would be its
restriction to the xi , i.e. m, a model of ϕ. This is handled in the first case, which
is disjoint from the current one; hence, we infer n ≤ r . Consequently, the distance
hd(m, g(ϕ, m, m′′)) is bounded above by n ≤ r ≤ r · OPT(ϕ, m), where the last
inequality holds because ϕ is not satisfied by m and thus the distance of any optimal
solution from m is at least 1.

Case 3 The variables xi , for which [xi] is a constraint, all satisfy
g(ϕ, m, m′′)(xi) = 1 by construction. Moreover, we have g(ϕ, m, m′′)(xi) = 0 for
all xi for which [¬xi] is a constraint of ϕ. Consequently, g(ϕ, m, m′′) is feasible.
Again, OPT(ϕ′, m′) ≤ n, so any optimal solution to (ϕ′, m′) must set all variables yi

to 1 and all zi to 0. It follows that OPT(ϕ, m) = OPT(ϕ′, m′). Thus we get

hd(m, g(ϕ, m, m′′)) = hd(m′, m′′) ≤ r · OPT(ϕ′, m′) = r · OPT(ϕ, m),

which completes the proof.
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4.2 Inapplicability of Clone Closure

Corollary 13 shows that the complexity of NSol is not affected by existential quantifi-
cation by giving an explicit reduction from NSolpp to NSol. It does not seem possible
to prove the same for NOSol and MSD. However, similar results hold for the con-
junctive closure; thus we resort to minimal or irredundant weak bases of co-clones
instead of usual bases.

Proposition 15 Let � and �′ be constraint languages. If �′ ⊆ 〈�〉∧ holds then we
have the reductions NOSold(�′) ≤m NOSold(�) and NOSol(�′) ≤AP NOSol(�), as
well as MSDd(�′) ≤m MSDd(�) and MSD(�′) ≤AP MSD(�).

Proof We prove only the part that �′ ⊆ 〈�〉∧ implies NOSol(�′) ≤AP NOSol(�).
The other results will be clear from that reduction since the proof is generic and
therefore holds for both NOSol and MSD, as well as for their decision variants.

Let a �′-formula ϕ be an instance of NOSol(�′). Since �′ ⊆ 〈�〉∧, every con-
straint R(x1, . . . , xk) of ϕ can be written as a conjunction of constraints over relations
from �. Substitute the latter into ϕ, obtaining ϕ′. Now ϕ′ is an instance of NOSol(�),
where ϕ′ is only polynomially larger than ϕ. As ϕ and ϕ′ have the same variables and
hence the same models, also the closest distinct models of ϕ and ϕ′ are the same.

4.3 Duality

Given a relation R ⊆ {0, 1}n, its dual relation is dual(R) = {m | m ∈ R}, i.e., the
relation containing the complements of tuples from R. Duality naturally extends to
sets of relations and co-clones. We define dual(�) = {dual(R) | R ∈ �} as the set of
dual relations to �. Since taking complements is involutive, duality is a symmetric
relation. If a relation R′ (a set of relations �′) is a dual relation to R (a set of dual
relations to �), then R (�) is also dual to R′ (to �′). By a simple inspection of the
bases of co-clones in Table 2, we can easily see that many co-clones are dual to
each other. For instance iE2 is dual to iV2. The following proposition shows that it is
sufficient to consider only one half of Post’s lattice of co-clones.

Proposition 16 For any constraint language � we have

NSold(�) ≡m NSold(dual(�)) and NSol(�) ≡AP NSol(dual(�)),

NOSold(�) ≡m NOSold(dual(�)) and NOSol(�) ≡AP NOSol(dual(�)),

as well as

MSDd(�) ≡m MSDd(dual(�)) and MSD(�) ≡AP MSD(dual(�)).

Proof Let ϕ be a �-formula and m an assignment to ϕ. We construct a dual(�)-
formula ϕ′ by substitution of every atom R(x) by dual(R)(x). The assignment m

satisfies ϕ if and only if m satisfies ϕ′, where m is the pointwise complement of m.
Moreover, hd(m, m′) = hd(m, m′).
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5 Finding the Nearest Solution

This section contains the proof of Theorem 3. We first consider the polynomial-time
cases followed by the cases of higher complexity.

5.1 Polynomial-Time Cases

Proposition 17 If a constraint language � is both bijunctive and affine (� ⊆ iD1),
then NSol(�) can be solved in polynomial time.

Proof Since � ⊆ iD1 = 〈�′〉 with �′ := {[x ⊕ y], [x]}, we have NSol(�) ≤AP
NSol(�′) by Corollary 13. Every �′-formula ϕ is equivalent to a linear system of
equations over the Boolean ring Z2 of type x ⊕ y = 1 and x = 1. Substitute the
fixed values x = 1 into the equations of the type x ⊕ y = 1 and propagate. If a
contradiction is found thereby, reject the input. After an exhaustive application of
this rule only equations of the form x ⊕ y = 1 remain. For each of them put an
edge {x, y} into E, defining an undirected graph G = (V , E), whose vertices V are
the unassigned variables. If G is not bipartite, then ϕ has no solutions, so we can
reject the input. Otherwise, compute a bipartition V = L∪̇R. We assume that G is
connected; if not perform the following algorithm for each connected component (cf.
Lemma 9). Assign the value 0 to each variable in L and the value 1 to each variable
in R, giving the satisfying assignment m1. Swapping the roles of 0 and 1 w.r.t. L and
R we get a model m2. Return min{hd(m, m1), hd(m, m2)}.

Proposition 18 If a constraint language � is monotone (� ⊆ iM2), then the problem
NSol(�) can be solved in polynomial time.

Proof We have iM2 = 〈�′〉 where �′ := {[x → y], [¬x], [x]}. Thus Corollary 13
and � ⊆ 〈�′〉 imply NSol(�) ≤AP NSol(�′). The relations [¬x] and [x] determine a
unique value for the respective variable, therefore we can eliminate unit clauses and
propagate the values. If a contradiction occurs, we reject the input. It thus remains to
consider formulas ϕ containing only binary implicative clauses of type x → y.

Let V be the set of variables in ϕ, and for i ∈ {0, 1} let Vi = {x ∈ V | m(x) = i}
be the variables mapped to value i by assignment m. We transform the formula ϕ

to a linear programming problem as follows. For each clause x → y we add the
inequality y ≥ x, and for each variable x ∈ V we add the constraints x ≥ 0 and
x ≤ 1. As linear objective function we use f (x) = ∑

x∈V0
x + ∑

x∈V1
(1 − x). For

an arbitrary solution m′, it returns the number of variables that change their parity
between m and m′, i.e., f (m′) = hd(m, m′). This way we obtain the (integer) linear
programming problem (f, Ax ≥ b), where A is a totally unimodular matrix and b is
an integral column vector.

The rows of A consist of the left-hand sides of inequalities y − x ≥ 0, x ≥ 0, and
−x ≥ −1, which constitute the system Ax ≥ b. Every entry in A is 0, +1, or −1.
Every row of A has at most two non-zero entries. For the rows with two entries, one
entry is +1, the other is −1. According to Condition (iv) in Theorem 19.3 in [30], this
is a sufficient condition for A being totally unimodular. As A is totally unimodular
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and b is an integral vector, f has integral minimum points, and one of them can be
computed in polynomial time (see e.g. [30, Chapter 19]).

5.2 Hard Cases

We start off with an easy corollary of Schaefer’s dichotomy.

Proposition 19 Let � be a finite set of Boolean relations. If iN2 ⊆ 〈�〉, then it
is NP-complete to decide whether a feasible solution exists for NSol(�); otherwise,
NSol(�) ∈ poly-APX.

Proof If iN2 ⊆ 〈�〉 holds, checking the existence of feasible solutions for NSol(�)-
instances is NP-hard by Schaefer’s theorem [27].

Let (ϕ, m) be an instance of NSol(�). We give an n-approximate algorithm for the
other cases, where n denotes the number of variables in ϕ. If m satisfies ϕ, return m.
Otherwise compute an arbitrary solution m′ of ϕ, which can be done in polyno-
mial time by Schaefer’s theorem. This algorithm is n-approximate: If m satisfies ϕ,
the algorithm returns the optimal solution; otherwise we have OPT(ϕ, m) ≥ 1 and
hd(m, m′) ≤ n, hence the answer m′ of the algorithm is n-approximate.

5.2.1 APX-Complete Cases

We start with reductions from the optimization version of vertex cover. Since the rela-
tion [x ∨ y] is a straightforward Boolean encoding of vertex cover, we immediately
get the following result.

Proposition 20 NSol(�) is APX-hard for every constraint language � satisfying
iS2

0 ⊆ 〈�〉 or iS2
1 ⊆ 〈�〉.

Proof We have iS2
0 = 〈{[x ∨ y]}〉 and iS2

1 = 〈{[¬x ∨ ¬y]}〉. We discuss the
former case, the latter one being symmetric and provable from the first one by
Proposition 16.

We encode VertexCover into NSol({[x ∨ y]}). For each edge {x, y} ∈ E of a graph
G = (V , E) we add the clause (x ∨ y) to the formula ϕG. Every model m′ of ϕG

yields a vertex cover {v ∈ V | m′(v) = 1}, and conversely, the characteristic function
of any vertex cover satisfies ϕG. Moreover, we choose m = 0. Then hd(0, m′) is
minimal if and only if the number of 1s in m′ is minimal, i.e., if m′ is a minimal
model of ϕG, i.e., if m′ represents a minimal vertex cover of G. Since VertexCover is
APX-complete (see e.g. [3]) and NSol({[x ∨ y]}) ≤AP NSol(�) (see Corollary 13),
the result follows.

Proposition 21 We have NSol(�) ∈ APX for constraint languages � ⊆ iD2.

Proof �′ := {[x ⊕ y], [x → y]} is a base of iD2. By Corollary 13 it suffices to show
that NSol(�′) is in APX. Let (ϕ, m) be an instance of this problem. Feasibility for ϕ

can be encoded as an integer program as follows: Every constraint x ⊕ y induces an
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equation x + y = 1, every constraint x → y an inequality x ≤ y. If we restrict all
variables to {0, 1} by the appropriate inequalities, it is clear that an assignment m′ sat-
isfies ϕ if it satisfies the linear system with inequality side conditions. As objective
function we use f (x) := ∑

x∈V0
x + ∑

x∈V1
(1 − x), where Vi is the set of vari-

ables mapped to i by m. Clearly, for every solution m′ we have f (m′) = hd(m, m′).
The 2-approximation algorithm from [17] for integer linear programs, where every
inequality contains at most two variables, completes the proof.

Proposition 22 We have NSol(�) ∈ APX for constraint languages � ⊆ iS�
00 with

� ≥ 2.

Proof �′ := {[x1 ∨· · ·∨x�], [x → y], [¬x], [x]} is a base of iS�
00. By Corollary 13 it

suffices to show that NSol(�′) is in APX. Let (ϕ, m) be an instance of this problem.
We use an approach similar to the one for the corresponding case in [22], again
writing ϕ as an integer program. We write constraints x1∨· · ·∨x� as inequalities x1+
· · · + x� ≥ 1, constraints x → y as x ≤ y, ¬x as x = 0, and x as x = 1. Moreover,
we add x ≥ 0 and x ≤ 1 for each variable x. It is easy to check that the feasible
Boolean solutions of ϕ and of the linear system coincide. As objective function we
use f (x) := ∑

x∈V0
x + ∑

x∈V1
(1 − x), where Vi is the set of variables mapped

to i by m. Clearly, for every solution m′ we have f (m′) = hd(m, m′). Therefore it
suffices to approximate the optimal solution for the integer linear program.

To this end, let m′′ be a (generally non-integer) solution to the relaxation of the
linear program, which can be computed in polynomial time. We construct m′ by
setting m′(x) = 0 if m′′(x) < 1/� and m′(x) = 1 if m′′(x) ≥ 1/�. As � ≥ 2, we
get hd(m, m′) = f (m′) ≤ �f (m′′) ≤ � · OPT(ϕ, m). It is easy to check that m′ is a
feasible solution, which completes the proof.

5.2.2 NearestCodeword-Complete Cases

This section essentially uses the facts thatMinOnes isNearestCodeword-complete for
the co-clone iL2 and that it is a special case of NSol. The following result was stated
by Khanna et al. for completeness via A-reductions [22, Theorem 2.14]. A closer
look at the proof reveals that it also holds for the stricter notion of completeness via
AP-reductions that we use. In this respect the proofs of Propositions 23 and 27 spell
out the missing details from [8, Propositions 15 and 18].

Proposition 23 MinOnes(�) is NearestCodeword-complete by AP-reductions for
constraint languages � satisfying 〈�〉 = iL2.

Proof According to [22, Lemma 8.13], MinOnes(�) is NearestCodeword-hard for
iL ⊆ 〈�〉. This proof uses AP-reductions, i.e., NearestCodeword ≤AP MinOnes(�).

Regarding the other direction, MinOnes(�) ≤AP NearestCodeword, we
first observe that odd3 = {(a1, a2, a3) ∈ {0, 1}3 | ∑

i ai odd} and
even3 = {(a1, a2, a3) ∈ {0, 1}3 | ∑

i ai even} perfectly implement every
constraint in iL2, i.e., 〈{odd3, even3}〉 = iL2 as shown in [22, Lemma 7.6].
Therefore, for � ⊆ iL2, the problem WeightedMinOnes(�) AP-reduces to
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WeightedMinOnes({odd3, even3}) [22, Lemma 3.9]. The latter problem AP-reduces
to WeightedMinCSP({odd3, even3, [¬x]}) [22, Lemma 8.1], which further AP-
reduces to WeightedMinCSP({odd3, even3}) because of [¬x] = [even3(x, x, x)].
In total we thus have that the problem WeightedMinOnes(�) AP-reduces to the
problem WeightedMinCSP({odd3, even3}). We conclude by observing that MinOnes
is a particular case of the WeightedMinOnes problem and that NearestCode-
word is the same as WeightedMinCSP({odd3, even3}), yielding MinOnes(�) ≤AP
NearestCodeword.

Lemma 24 We have MinOnes(�) ≤AP NSol(�) for any constraint language �.

Proof MinOnes(�) is a special case of NSol(�) where m is the 0-assignment.

Corollary 25 NSol(�) is NearestCodeword-hard for constraint languages � satis-
fying iL ⊆ 〈�〉.
Proof �′ := {even4, [x], [¬x]} is a base of iL2. By Proposition 23, MinOnes(�′)
is NearestCodeword-complete. By Lemma 24, MinOnes(�′) reduces to NSol(�′).
By Proposition 14, NSol(�′) is AP-equivalent to NSol({even4}). Finally, because of
even4 ∈ iL ⊆ 〈�〉 and Corollary 13, NSol({even4}) reduces to NSol(�).

Proposition 26 We have NSol(�) ≤AP MinOnes({even4, [¬x], [x]}) for constraint
languages � ⊆ iL2.

Proof �′ := {even4, [¬x], [x]} is a base of iL2. By Corollary 13 it suffices to show
NSol(�′) ≤AP MinOnes(�′).

We proceed by reducing NSol(�′) to a subproblem of NSolpp(�
′), where

only instances (ϕ, 0) are considered. Then, using Proposition 7 and Remark 8,
this reduces to a subproblem of NSol(�′) with the same restriction on the
assignments, which is exactly MinOnes(�′). Note that [x ⊕ y] is equal to[∃z∃z′(even4(x, y, z, z′) ∧ ¬z ∧ z′)

]
so we can freely use [x ⊕ y] in any �′-formula.

Let formula ϕ and assignment m be an instance of NSol(�′). We copy all clauses of ϕ

to ϕ′. For each variable x of ϕ for which m(x) = 1, we take a new variable x ′ and
add the constraint x ⊕ x′ to ϕ′. Moreover, we existentially quantify x. Clearly, there
is a bijection I between the satisfying assignments of ϕ and those of ϕ′: For every
solution s of ϕ we get a solution I (s) of ϕ′ by setting for each x′ introduced in the
construction of ϕ′ the value I (s)(x′) to the complement of s(x). Moreover, we have
that hd(m, s) = hd(0, I (s)). This yields a trivial AP-reduction with α = 1.

5.2.3 MinHornDeletion-Complete Cases

Proposition 27 (Khanna et al. [22]) We haveMinHornDeletion-completeness for the
problems MinOnes({x ∨y ∨¬z, x, ¬x}) andWeightedMinOnes({x ∨y ∨¬z, x ∨y})
via AP-reductions.

Proof These results are stated in [22, Theorem 2.14] for completeness via A-
reductions. The actual proof in [22, Lemma 8.7 and Lemma 8.14], however, uses
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AP-reductions, hence the results also hold for our stricter notion of complete-
ness.

Lemma 28 NSol({x ∨ y ∨ ¬z}) ≤AP WeightedMinOnes({x ∨ y ∨ ¬z, x ∨ y}).

Proof Let formula ϕ and assignment m be an instance of NSol({x ∨y ∨¬z}) over the
variables x1, . . . , xn. Let V1 be the set of variables xi with m(xi) = 1. We construct
a {x ∨ y ∨ ¬z, x ∨ y}-formula ϕ′ by adding to ϕ for each xi ∈ V1 the constraint
xi ∨x′

i where x′
i is a new variable. We set the weights of the variables of ϕ′ as follows.

For xi ∈ V1 we set w(xi) = 0, all other variables get weight 1. To each satisfying
assignment m′ of ϕ′ we construct the assignment m′′ which is the restriction of m′ to
the variables of ϕ. This construction is an AP-reduction.

Note that m′′ is feasible if m′ is. Let m′ be an r-approximation of OPT(ϕ′). Note
that whenever for xi ∈ V1 we have m′(xi) = 0 then m′(x′

i ) = 1. The other way
round, we may assume that whenever m′(xi) = 1 for xi ∈ V1 then m′(x′

i ) = 0. If this
is not the case, then we can change m′ accordingly, decreasing the weight that way.
It follows that w(m′) = n0 + n1 where we have

n0 = |{i | xi ∈ V1, m
′(xi) = 0}| = |{i | xi ∈ V1, m

′(xi) �= m(xi)}|
n1 = |{i | xi /∈ V1, m

′(xi) = 1}| = |{i | xi /∈ V1, m
′(xi) �= m(xi)}|,

which means that w(m′) equals hd(m, m′′). Analogously, any model s ∈ [ϕ] can be
extended to a model m′ ∈ [ϕ′] by putting m′(x′

i ) = 1 if xi ∈ V1 and s(xi) = 0, and
m′(x′

i ) = 0 for the remaining xi ∈ V1; thereby w(m′) = hd(m, s). Consequently, the
optima in both problems correspond, that is, we get OPT(ϕ′) = OPT(ϕ, m). Hence
we deduce hd(m, m′′) = w(m′) ≤ r OPT(ϕ′) = r OPT(ϕ, m).

Proposition 29 For every dual Horn constraint language � ⊆ iV2 we have the
reduction NSol(�) ≤AP WeightedMinOnes({x ∨ y ∨ ¬z, x ∨ y}).

Proof Since {x ∨y ∨¬z, x, ¬x} is a base of iV2, by Corollary 13 it suffices to prove
the reduction NSol({x ∨ y ∨ ¬z, x, ¬x}) ≤AP WeightedMinOnes({x ∨ y ∨ ¬z, x ∨
y}). To this end, first reduce NSol({x ∨ y ∨ ¬z, x, ¬x}) to NSol(x ∨ y ∨ ¬z) by
Proposition 14 and then use Lemma 28.

Proposition 30 NSol(�) is MinHornDeletion-hard for finite � with iV2 ⊆ 〈�〉.

Proof For �′ := {x ∨ y ∨ ¬z, x, ¬x} we have MinHornDeletion ≡AP MinOnes(�′)
by Proposition 27. Now it follows MinOnes(�′) ≤AP NSol(�′) ≤AP NSol(�) using
Lemma 24 and Corollary 13 on the assumption �′ ⊆ iV2 ⊆ 〈�〉.

5.2.4 Poly-APX-Hardness

Proposition 31 The problem NSol(�) is poly-APX-hard for constraint languages �

satisfying iN ⊆ 〈�〉 ⊆ iI0 or iN ⊆ 〈�〉 ⊆ iI1.
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Proof The constraint language �1 := {even4, [x → y], [x]} is a base of iI1.
MinOnes(�1) is poly-APX-hard by Theorem 2.14 of [22] and reduces to NSol(�1)

by Lemma 24. Since [x → y] = [dup3(x, y, 1)] = [∃z(dup3(x, y, z) ∧ z)], as well
as 〈{even4}〉 = iL, 〈{dup3}〉 = iN, and iL ⊆ iN, we have the reductions

NSol(�1) ≤AP NSol(�1 ∪{dup3}) ≤AP NSol({even4, dup3, x}) ≡AP NSol({dup3, x})
by Corollary 13. The problem of finding feasible solutions of NSol(�), where iN ⊆
〈�〉 ⊆ iI0 or iN ⊆ 〈�〉 ⊆ iI1, is polynomial-time decidable. Indeed, such � is 0- or 1-
valid, therefore the all-zero or all-one tuple is always guaranteed to exist as a feasible
solution. Therefore Proposition 14 implies NSol({dup3, x}) ≡AP NSol({dup3}); the
latter problem reduces to NSol(�) because dup3 ∈ iN ⊆ 〈�〉 and Corollary 13.

6 Finding Another Solution Closest to the Given One

In this section we study the optimization problem NearestOtherSolution. We first
consider the polynomial-time cases and then the cases of higher complexity.

6.1 Polynomial-Time Cases

Since we cannot take advantage of clone closure, we must proceed differently. We
use the following result based on a theorem by Baker and Pixley [5].

Proposition 32 (Jeavons et al. [19]) Every bijunctive constraint R(x1, . . . , xn) is
equivalent to the conjunction

∧
1≤i≤j Rij (xi, xj ), where Rij is the projection of R to

the coordinates i and j .

Proposition 33 If � is bijunctive (� ⊆ iD2) then NOSol(�) is in PO.

Proof According to Proposition 32 we may assume that the formula ϕ is a conjunc-
tion of atoms R(x, y) or a unary constraint R(x, x) of the form [x] or [¬x].

Unary constraints fix the value of the constrained variable and can be eliminated
by propagating the value to the other clauses. For each of the remaining variables, x,
we attempt to construct a model mx of ϕ with mx(x) �= m(x) such that hd(mx, m) is
minimal among all models with this property. This can be done in polynomial time
as described below. If the construction of mx fails for every variable x, then m is
the sole model of ϕ and the problem is not solvable. Otherwise choose one of the
variables x for which hd(mx, m) is minimal and return mx as second solution m′.

It remains to describe the computation of mx . Initially we set mx(x) to 1 − m(x)

and mx(y) := m(y) for all variables y �= x, and mark x as flipped. If mx satisfies
all atoms we are done. Otherwise let R(u, v) be an atom falsified by mx . If u and v

are marked as flipped, the construction fails, a model mx with the property mx(x) �=
m(x) does not exist. Otherwise R(u, v) contains a uniquely determined variable v

not marked as flipped. Set mx(v) := 1 − m(v), mark v as flipped, and repeat this
step. This process terminates after flipping every variable at most once.
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Proposition 34 If � ⊆ iSk
00 or � ⊆ iSk

10 for some k ≥ 2 then NOSol(�) is in PO.

Proof We perform the proof only for iSk
00. Proposition 16 implies the same result

for iSk
10.

The co-clone iSk
00 is generated by �′ := {ork, [x → y], [x], [¬x]}. In fact, �′ is

even a plain base of iSk
00 [12], meaning that every relation in � can be expressed

as a conjunctive formula over relations in �′, without existential quantification
or explicit equalities. Hence we may assume that ϕ is given as a conjunction of
�′-atoms.

Note that x ∨ y is a polymorphism of �′, i.e., for any two solutions m1, m2 of
ϕ their disjunction m1 ∨ m2 – defined by (m1 ∨ m2)(x) = m1(x) ∨ m2(x) for
all x – is also a solution of ϕ. Therefore we get the optimal solution m′ of an instance
(ϕ, m) by flipping in m either some ones to zeros or some zeros to ones, but not
both. To see this, assume the optimal solution m′ flips both ones and zeros. Then
m′ ∨ m is a solution of ϕ that is closer to m than m′, which contradicts the optimality
of m′.

Unary constraints fix the value of the constrained variable and can be eliminated
by propagating the value to the other clauses (including removal of disjunctions
containing implied positive literals and shortening disjunctions containing implied
negative literals). This propagation does not lead to contradictions since m is a model
of ϕ. For each of the remaining variables, x, we attempt to construct a model mx

of ϕ with mx(x) �= m(x) such that hd(mx, m) is minimal among all models with this
property. This can be done in polynomial time as described below. If the construction
of mx fails for every variable x, then m is the sole model of ϕ and the problem is not
solvable. Otherwise choose one of the variables x for which hd(mx, m) is minimal
and return mx as second solution m′.

It remains to describe the computation of mx . If m(x) = 0, we flip x to 1 and
propagate this change iteratively along the implications, i.e., if x → y is a con-
straint of ϕ and m(y) = 0, we flip y to 1 and iterate. This kind of flip never
invalidates any disjunctions, it could only lead to contradictions with conditions
imposed by negative unit clauses (and since their values were propagated before
such a contradiction would be immediate). For m(x) = 1 we proceed dually, flip-
ping x to 0, removing x from disjunctions if applicable, and propagating this change
backward along implications y → x where m(y) = 1. This can possibly lead
to immediate inconsistencies with already inferred unit clauses, or it can produce
contradictions through empty disjunctions, or it can create the necessity for fur-
ther flips from 0 to 1 in order to obtain a solution (because in a disjunctive atom
all variables with value 1 have been flipped, and thus removed). In all these three
cases the resulting assignment does not satisfy ϕ, and there is no model that dif-
fers from m in x and that can be obtained by flipping in one way only. Otherwise,
the resulting assignment satisfies ϕ, and this is the desired mx . Our process ter-
minates after flipping every variable at most once, since we flip only in one way
(from zeros to ones or from ones to zeros). Thus, mx is computable in polynomial
time.
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6.2 Hard Cases

Proposition 35 Let � be a constraint language. If iI1 ⊆ 〈�〉 or iI0 ⊆ 〈�〉 holds
then it is NP-complete to decide whether a feasible solution for NOSol(�) exists.
Otherwise, NOSol(�) ∈ poly-APX.

Proof Finding a feasible solution to NOSol(�) corresponds exactly to the decision
problem AnotherSAT(�) which is NP-hard if and only if iI1 ⊆ 〈�〉 or iI0 ⊆ 〈�〉
according to Juban [20]. If AnotherSAT(�) is polynomial-time decidable, we can
always find a feasible solution for NOSol(�) if it exists. Obviously, every feasible
solution is an n-approximation of the optimal solution, where n is the number of
variables in the input.

6.2.1 Tightness Results

It will be convenient to consider the following decision problem asking for another
solution that is not the complement, i.e., that does not have maximal distance from
the given one.

Problem: AnotherSATnc(�)

Input: A conjunctive formula ϕ over relations from � and an assignment m

satisfying ϕ.
Question: Is there another satisfying assignment m′ of ϕ, different from m, such
that hd(m, m′) < n, where n is the number of variables in ϕ?

Remark 36 AnotherSATnc(�) is NP-complete for iI0 ⊆ 〈�〉 and iI1 ⊆ 〈�〉, since
already AnotherSAT(�) is NP-complete for these cases, as shown in [20]. Moreover,
AnotherSATnc(�) is polynomial-time decidable if � is Horn (� ⊆ iE2), dual Horn
(� ⊆ iV2), bijunctive (� ⊆ iD2), or affine (� ⊆ iL2), for the same reason as
for AnotherSAT(�): For each variable xi we flip the value of m[i], substitute m(xi)

for xi , and construct another satisfying assignment if it exists. Consider now the solu-
tions which we get for every variable xi . Either there is no solution for any variable,
then AnotherSATnc(�) has no solution; or there are only the solutions which are the
complement of m, then AnotherSATnc(�) has no solution as well; or else we get a
solution m′ with hd(m, m′) < n, leading also to a solution for AnotherSATnc(�).
Hence, taking into account Proposition 38 below, we obtain a dichotomy result also
for AnotherSATnc(�).

Note that AnotherSATnc(�) is not compatible with existential quantification. Let
ϕ(y, x1, . . . , xn) with model m be an instance of AnotherSATnc(�) and let m′ be a
solution satisfying hd(m, m′) < n + 1. Now consider the formula ϕ1(x1, . . . , xn) =
∃y ϕ(y, x1, . . . , xn), obtained by existentially quantifying the variable y, and the
tuples m1 and m′

1 obtained from m and m′ by omitting the first component. Both, m1
and m′

1, are still solutions of ϕ′, but we cannot guarantee hd(m1, m
′
1) < n. Hence we

need the equivalent of Proposition 15 for this problem, whose proof is analogous.
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Proposition 37 The reduction AnotherSATnc(�′) ≤m AnotherSATnc(�) holds for all
constraint languages � and �′ satisfying �′ ⊆ 〈�〉∧.

Proposition 38 If a constraint language � satisfies 〈�〉 = iI or iN ⊆ 〈�〉 ⊆ iN2,
then AnotherSATnc(�) is NP-complete.

Proof Containment in NP is clear, it remains to show hardness. Since the problem
AnotherSATnc is not compatible with existential quantification, we cannot use clone
theory, but have to consider the three co-clones iN2, iN, and iI separately and make
use of minimal weak bases.

Case 〈�〉 = iN Putting R := {000, 101, 110}, we present a reduction from
the problem AnotherSAT({R}), which is NP-hard [20] as 〈{R}〉 = iI0. The prob-
lem remains NP-complete if we restrict it to instances (ϕ, 0), since R is 0-valid
and any given model m other than the constant 0-assignment admits the triv-
ial solution m′ = 0. Thus we can perform a reduction from this restricted
problem.

Consider the relation RiN = {0000, 1010, 1100, 1111, 0101, 0011}. Given a for-
mula ϕ over R, we construct a formula ψ over RiN by replacing every constraint
R(x, y, z) with a new constraint RiN(x, y, z, w), where w is a new global variable.
Moreover, we set m to the constant 0-assignment. This construction is a many-one
reduction from the restricted version of AnotherSAT({R}) to AnotherSATnc({RiN}).

To see this, observe that the tuples in RiN that have a 0 in the last coordinate
are exactly those in R × {0}. Thus any solution of ϕ can be extended to a solu-
tion of ψ by assigning 0 to w. Conversely we observe that any solution m′ of the
AnotherSATnc({RiN})-instance (ψ, 0) is different from 0 and 1. As RiN is comple-
mentive, we may assume m′(w) = 0. Then m′ restricted to the variables of ϕ solves
the AnotherSAT({R})-instance (ϕ, 0).

Finally, observe that RiN is a minimal weak base and � is a base of the
co-clone iN, therefore we have RiN ∈ 〈�〉∧ by Theorem 1. Now the NP-
hardness of AnotherSATnc(�) follows from the one of AnotherSATnc({RiN}) by
Proposition 37.

Case 〈�〉 = iN2 We give a reduction from AnotherSATnc({RiN}), which is NP-
hard by the previous case. By Theorem 1, 〈�〉∧ contains the relation RiN2 = {mm |
m ∈ RiN}. For an RiN-formula ϕ(x1, . . . , xn), we construct a corresponding RiN2-
formula ψ(x1, . . . , xn, x

′
1, . . . , x

′
n) by replacing every constraint RiN(x, y, z, w) with

a new constraint RiN2(x, y, z, w, x′, y′, z′, w′). Assignments m for ϕ extend to
assignments M for ψ by setting M(x ′) := m(x). Conversely, assignments for ψ yield
assignments for ϕ by restricting them to the variables in ϕ. Because every variable
x1, . . . , xn assigned by models of ϕ actually occurs in some RiN-atom in ϕ and hence
in some RiN2-atom of ψ , and because of the structure of RiN2 , any model of ψ distinct
from M and M restricts to a model of ϕ other than m or m. Consequently, this con-
struction is again a reduction from AnotherSATnc({RiN}) to AnotherSATnc({RiN2}),
reducing itself to AnotherSATnc(�) by Proposition 37.
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Case 〈�〉 = iI We proceed as in Case 〈�〉 = iN, but use RiI =
{0000, 0011, 0101, 1111} instead of RiN, and {000, 011, 101} for R. Note that the
RiI-tuples with first coordinate 0 are exactly those in {0} × R. The relation RiI is not
complementive, but (as every variable assigned by any model of ψ occurs in some
atomic RiI-constraint) the only solution m′ such that m′(w) = 1 is the constant 1-
assignment, which is ruled out by the requirement hd(m, m′) < n. Hence we may
again assume m′(w) = 0.

Proposition 39 For a constraint language � satisfying 〈�〉 = iI or iN ⊆ 〈�〉 ⊆
iN2 and any ε > 0 there is no polynomial-time n1−ε-approximation algorithm for
NOSol(�), unless P = NP.

Proof Assume there is a constant ε > 0 with a polynomial-time n1−ε-
approximation algorithm for NOSol(�). We show how to use this algorithm to solve
AnotherSATnc(�) in polynomial time. Proposition 38 completes the proof.

Let (ϕ, m) be an instance of AnotherSATnc(�) with n variables. If n = 1,
then we reject the instance. Otherwise, we construct a new formula ϕ′ and a new
assignment m′ as follows. Let k be the smallest integer greater than 1/ε. Choose
a variable x of ϕ and introduce nk − n new variables xi for i = 1, . . . , nk − n.
For every i ∈ {1, . . . , nk − n} and every constraint R(y1, . . . , y�) in ϕ, such that
x ∈ {y1, . . . , y�}, construct a new constraint R(zi

1, . . . , z
i
�) by zi

j = xi if yj = x

and zi
j = yj otherwise; add all the newly constructed constraints to ϕ in order to

get ϕ′. Moreover, we extend m to a model of ϕ′ by setting m′(xi) = m(x). Now run
the n1−ε-approximation algorithm for NOSol(�) on (ϕ′, m′). If the answer is m′ then
reject, otherwise accept.

We claim that the algorithm described above is a correct polynomial-time
algorithm for the decision problem AnotherSATnc(�) when � is complementive.
Polynomial runtime is clear. It remains to show its correctness. If the only solu-
tions to ϕ are m and m, then, as n > 1, the only models of ϕ′ are m′ and m′.
Hence the approximation algorithm must answer m′ and the output is correct. Now
assume that there is a satisfying assignment ms different from m and m. The rela-
tion [ϕ] is complementive, hence we may assume that ms(x) = m(x). It follows
that ϕ′ has a satisfying assignment m′

s for which 0 < hd(m′
s , m

′) < n holds. But
then the approximation algorithm must find a satisfying assignment m′′ for ϕ′ with
hd(m′, m′′) < n · (nk)1−ε = nk(1−ε)+1. Since the inequality k > 1/ε holds, it follows
that hd(m′, m′′) < nk . Consequently, m′′ is not the complement of m′ and the output
of our algorithm is again correct.

When � is not complementive but both 0-valid and 1-valid (〈�〉 = iI), we per-
form the expansion algorithm described above for each variable of the formula ϕ

and reject if the result is the complement for each run. The runtime remains poly-
nomial. If [ϕ] = {m,m}, then indeed every run results in the corresponding m′,
and we correctly reject. Otherwise, we have a model ms ∈ [ϕ] � {m,m}, so there
is a variable x of ϕ, where ms(x) �= m(x), i.e. ms(x) = m(x). For this instance
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(ϕ′, m′) the approximation algorithm does not return m′, wherefore we correctly
accept.

6.2.2 MinDistance-Equivalent Cases

In this section we show that affine co-clones lead to problems equivalent to MinDis-
tance. We thereby add the missing details to the rather superficial treatment of this
matter given in [6].

Lemma 40 For affine constraint languages � (� ⊆ iL2) we have NOSol(�) ≤AP
MinDistance.

Proof Let the formula ϕ and the satisfying assignment m be an instance of NOSol(�)

over the variables x1, . . . , xn. The input ϕ can be written as Ax = b, with m being
a solution of this affine system. A tuple m′ is a solution of Ax = b if and only if it
can be written as m′ = m + m0 where m0 is a solution of Ax = 0. The Hamming
distance is invariant with respect to affine translations: namely we have hd(m′, m) =
hd(m′ + m′′, m + m′′) for any tuple m′′, in particular, for m′′ = −m we obtain
hd(m′, m) = hd(m′ −m, 0). Therefore m′ �= m is a solution of Ax = b with minimal
Hamming distance to m if and only if m0 = m′ − m is a non-zero solution of the
homogeneous system Ax = 0 with minimum Hamming weight. Hence, the problem
NOSol(�) for affine languages � is equivalent to computing the non-trivial solutions
of homogeneous systems with minimal weight, which is exactly the MinDistance
problem.

We need to express an affine sum of even number of variables by means of the
minimal weak base for each of the affine co-clones. In the following lemma, the
existentially quantified variables are uniquely determined, therefore the existential
quantifiers serve only to hide superfluous variables and do not pose any problems as
they were mentioned before.

Lemma 41 For every n ∈ N, n ≥ 1, the constraint x1 ⊕ x2 ⊕ · · · ⊕ x2n = 0 can be
equivalently expressed by each of the following formulas:

1. ∃y0, . . . , yn

⎛

⎝
y0 = 0 ∧ yn = 0 ∧
RiL(y0, x1, x2, y1) ∧
RiL(y1, x3, x4, y2) ∧ · · · ∧ RiL(yn−1, x2n−1, x2n, yn)

⎞

⎠,

2. ∃y0, . . . , y2n

(
RiL0(y0, x1, y1, y0) ∧
RiL0(y1, x2, y2, y0) ∧ · · · ∧ RiL0(y2n−1, x2n, y2n, y2n)

)

,

3. ∃y0, . . . , y2n

(
RiL1(y0, x1, y1, y0) ∧
RiL1(y1, x2, y2, y0) ∧ · · · ∧ RiL1(y2n−1, x2n, y2n, y2n)

)

,

4. ∃y0, . . . , yn, z0, . . . , zn, w1, . . . , w2n⎛

⎜
⎜
⎝

y0 = 0 ∧ yn = 0 ∧
RiL3(y0, x1, x2, y1, z0, w1, w2, z1) ∧
RiL3(y1, x3, x4, y2, z1, w3, w4, z2) ∧ · · · ∧
RiL3(yn−1, x2n−1, x2n, yn, zn−1, w2n−1, w2n, zn)

⎞

⎟
⎟
⎠,
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5. ∃y0, . . . , y2n, z0, . . . , z2n, w1, . . . , w2n⎛

⎝
RiL2(y0, x1, y1, z0, w1, z1, y0, z0) ∧
RiL2(y1, x2, y2, z1, w2, z2, y0, z0) ∧ · · · ∧
RiL2(y2n−1, x2n, y2n, z2n−1, w2n, z2n, y2n, z2n)

⎞

⎠,

where the number of existentially quantified variables is linearly bounded in the
length of the constraint. Note moreover that in each case any model of x1 ⊕x2 ⊕· · ·⊕
x2n = 0 uniquely determines the values of the existentially quantified variables.

Proof Write out the constraint relations following the existential quantifiers as (con-
junctions of) equalities. From this uniqueness of valuations for the existentially
quantified variables is easy to see, and likewise that any model of

⊕2n
i=1 xi = 0

also satisfies each of the formulas 1. up to 5. Adding up the equalities behind the
existential quantifiers shows the converse direction.

The following lemma shows that MinDistance is AP-equivalent to a restricted ver-
sion, containing only constraints generating the minimal weak base, for each co-clone
in the affine case.

Lemma 42 For each co-clone B ∈ {iL, iL0, iL1, iL2, iL3} we haveMinDistance ≤AP
NOSol({RB, [¬x]}).
Proof Consider a co-clone B ∈ {iL, iL0, iL1, iL2, iL3} and a MinDistance-instance
represented by a matrix A ∈ Z

k×l
2 . If one of the columns of A, say the i-th, is zero,

then the i-th unit vector is an optimal solution to this instance with optimal value 1.
Hence, we assume from now on that none of the columns equals a zero vector.

Every row of A expresses the fact that a sum of n ≤ l variables equals zero. If
n is odd, we extend this sum to one with n + 1 summands, thereby introducing a
new variable v, which we existentially quantify and confine to zero using a unary
[¬x]-constraint. Then we replace the expanded sum by the existential formula from
Lemma 41 corresponding to the co-clone B under consideration. This way we have
introduced only linearly many new variables in l for every row, and for any feasible
solution for the MinDistance-problem the values of the existential variables needed
to encode it are uniquely determined. Thus, taking the conjunction over all these
formulas we only have a linear growth in the size of the instance.

Next, we show how to deal with the existential quantifiers: First we transform the
expression to prenex normal form getting a formula ψ of the form

∃y1, . . . , yp ϕ(y1, . . . , yp, x1, . . . , xl),

which holds if and only if Ax = 0 for x = (x1, . . . , xl). We use the same blow-
up construction regarding x1, . . . , xl as in Proposition 7 and Lemma 11 to make
the influence of y1, . . . , yp on the Hamming distance negligible. For this we put

J := {1, . . . , t} and introduce new variables x
j
i where 1 ≤ i ≤ l and j ∈ J . If u

is among x1, . . . , xl , we define its blow-up set to be B(u) = {xj
i |j ∈ J }, otherwise,

for u ∈ {y1, . . . , yp}, we set B(u) = {u}. Now for each atom R(u1, . . . , uq) of ϕ

we form the set of atoms {R(u′
1, . . . , u

′
q)|(u′

1, . . . , u
′
q) ∈ ∏q

i=1 B(ui)}, and define



1168 Theory of Computing Systems (2019) 63:1131–1184

the quantifier free formula ϕ′ to be the conjunction of all atoms in the union of these
sets. Note that this construction takes time polynomial in the size of ψ and hence in
the size of the input MinDistance-instance whenever t is polynomial in the input size
because the atomic relations in ψ are at most octonary.

If s is an assignment of values to x making Ax = 0 true, we define s′(xj
i ) :=

s(xi) and extend this to a model of ϕ′ assigning the uniquely determined values to
y1, . . . , yp. Let m′ be the model arising in this way from the zero assignment m. If s′
is any model of ϕ′, then for every 1 ≤ i ≤ l, all j ∈ J and each atom R(u1, . . . , uq)

of ϕ, s′ satisfies, in particular, the conjunction R(u′
1, . . . , u

′
q)∧R(u′′

1, . . . , u
′′
q) where

for u ∈ {u1, . . . , uq} we have u′ = u′′ = u if u ∈ {y1, . . . , yp}, u′ = x1
i , u′′ = x

j
i

if u = xi , and u′ = u′′ = x1
k if u = xk for some k ∈ {1, . . . , l} � {i}. Hence, the

vectors (s′(x1
1), . . . , s′(x1

l )) and (s′(x1
1), . . . , s′(x1

i−1), s
′(xj

i ), s′(x1
i+1), . . . , s

′(x1
l ))

both belong to the kernel of A and so does their difference, which is s′(xj
i ) − s′(x1

i )

times the i-th unit vector. As the i-th column of A is non-zero, we must have
s′(xj

i ) = s′(x1
i ). This also implies that if s′ is zero on x1

1 , . . . , x1
n, then it must be

zero on all x
j
i (1 ≤ i ≤ l, j ∈ J ) and thus it must coincide with m′. There-

fore, every feasible solution to the NOSol-instance (ϕ′, m′) yields a non-zero vector
(s′(x1

1), . . . , s′(x1
l )) in the kernel of A.

Further, if s′ is an r-approximation to an optimal solution, i.e., if hd(s′, m′) ≤
rOPT(ϕ′, m′), then, as s′(x1

i ) = s′(xj
i ) holds for all j ∈ J and all 1 ≤ i ≤ l,

we obtain a solution to the MinDistance problem with Hamming weight w such
that t · w ≤ hd(s′, m′). Also, any optimal solution to the MinDistance-instance can
be extended to a not-necessarily optimal solution s′′ of (ϕ′, m′), for which one can
bound the distance to m′ as follows: OPT(ϕ′, m′) ≤ hd(s′′, m′) ≤ t · OPT(A) + p.
Combining these inequalities, we can infer t · w ≤ r · t · OPT(A) + r · p, or
w ≤ OPT(A) · (r + r/OPT(A) · p/t). We noted above that p is linearly bounded in
the size of the input, thus choosing t quadratic in the size of the input bounds w by
OPT(A)(r + o(1)), whence we have an AP-reduction with α = 1.

Lemma 43 For constraint languages �, where one can decide the existence of and
also find a feasible solution of NOSol(�) in polynomial time, we have the reduction
NOSol(�) ≤AP NOSol((� � {[x], [¬x]}) ∪ {≈}).

Proof If an instance (ϕ, m) does not have feasible solutions, then it does not have
nearest other solutions either. So we map it to the generic unsolvable instance ⊥. Con-
sider now formulas ϕ over variables x1, . . . , xn with models m where some feasible
solution s0 �= m exists (and has been computed).

We can assume ϕ to be of the form ψ(x1, . . . , xn) ∧ ∧
i∈I1

[xi] ∧ ∧
i∈I0

[¬xi],
where ψ is a (� � {[x], [¬x]})-formula and I1, I0 ⊆ {1, . . . , n}. We transform ϕ to

ϕ′ := ψ(x1, . . . , xn) ∧ ∧
i∈I1

xi ≈ y1 ∧ ∧
i∈I0

xi ≈ z1 ∧ ∧1+n2

i=1 (yi ≈ y1 ∧ zi ≈ z1)

and extend models of ϕ to models of ϕ′ in the natural way. Conversely, if s′ is a model
of ϕ′ and s′(yi) = 1 and s′(zi) = 0 hold for all 1 ≤ i ≤ 1 + n2, then we can restrict
it to a model of ϕ. Other models of ϕ′ are not optimal and are mapped to s0. It is not
hard to see that this provides an AP-reduction with α = 1.
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Proposition 44 For every constraint language � satisfying iL ⊆ 〈�〉 ⊆ iL2 we have
MinDistance ≡AP NOSol(�).

Proof Since we lack compatibility with existential quantification, we shall deal with
each co-clone B = 〈�〉 in the interval {iL, iL0, iL1, iL2, iL3} separately. First we
perform the reduction from Lemma 42 to NOSol({RB, [¬x]}). We need to find
a reduction to NOSol({RB}) as this reduces to NOSol(�) by Proposition 15 and
Theorem 1.

This is simple in the case of iL0 and iL2 since [¬x] = {x | RiL0(x, x, x, x)} ∈
〈{RiL0}〉∧ (see Proposition 15) and [¬x] = {x | ∃y(RiL2(x, x, x, y, y, y, x, y))},
where the existential quantifier can be handled by an AP-reduction with α = 1 which
drops the quantifier and extends every model by assigning 1 to all previously exis-
tentially quantified variables. Thereby (optimal) distances between models do not
change at all.

In the remaining cases, we reduce NOSol({RB, [¬x]}) ≤AP
NOSol({RB, [x], [¬x]}) and the latter to NOSol({RB, ≈}) by Lemma 43, which
now has to be reduced to NOSol({RB}). This is obvious for B = iL where equality
constraints x ≈ y can be expressed as RiL(x, x, x, y) ∈ 〈{RiL}〉∧ (cf. Proposi-
tion 15). For iL1 the same can be done using the formula ∃z(RiL1(x, y, z, z)), where
the existential quantifier can be removed by the same sort of simple AP-reduction
with α = 1 as employed for iL2. Finally, for iL3 we want to express equality as
∃u∃v(RiL3(x, x, x, y, u, u, u, v)). Here, in an AP-reduction, the quantifiers cannot
simply be disregarded, as the values of the existentially quantified variables are
not constant for all models. They are uniquely determined by the values of x and
y for each particular model, though, which allows us to perform a similar blow-up
construction as in the proof of Lemma 42.

In more detail, given a {RiL3 , ≈}-formula ψ containing variables x1, . . . , xl , first
note that each atomic RiL3 -constraint RiL3(x1, . . . , x8) can be represented as a linear
system of equations, namely ⊕4

i=1xi = 0 and xi ⊕ xi+4 = 1 for 1 ≤ i ≤ 4. Since
equalities xi ≈ xj can be written as xi ⊕ xj = 0, the formula ψ is equivalent to
an expression of the form Ax = b where x = (x1, . . . , xl). Replacing each equality
constraint by the existential formula above and bringing the result into prenex normal
form, we get a formula ∃y1, . . . , yp(ϕ(y1, . . . , yp, x1, . . . , xl)), which is equivalent
to ψ and where ϕ is a conjunctive {RiL3}-formula. By construction any two models of

ϕ that agree on x1, . . . , xl must coincide. Thus, introducing variables x
j
i for 1 ≤ i ≤ l

and j ∈ J := {1, . . . , t} and defining ϕ′ in literally the same way as in the proof
of Lemma 42, any model s of ψ yields a model s′ of ϕ′ by putting s′(xj

i ) := s(xi)

for 1 ≤ i ≤ l and j ∈ J and extending this with the unique values for y1, . . . , yp

satisfying ϕ(y1, . . . , yp, x1, . . . , xl). In this way we obtain a model m′ of ϕ′ from a
given solution m of ψ . Besides, if s′ is any model of ϕ′, then as in Lemma 42, the
vectors (s′(x1

1), . . . , s′(x1
l )) and (s′(x1

1), . . . , s′(x1
i−1), s

′(xj
i ), s′(x1

i+1), . . . , s
′(x1

l )))

both satisfy ψ , and thus their difference is in the kernel of A. Since the variable xi

occurs in at least one of the atoms of ψ , the i-th column of A is non-zero, implying
that s′(xj

i ) = s′(x1
i ) for j ∈ J and all 1 ≤ i ≤ l. Thus, any model s′ �= m′ of ϕ′

gives a model s �= m of ψ by defining s(xi) := s′(x1
i ) for all 1 ≤ i ≤ l.



1170 Theory of Computing Systems (2019) 63:1131–1184

The presented construction is an AP-reduction with α = 1, which can be proven
completely analogously to the last paragraph of the proof of Lemma 42, choosing t

quadratic in the size of ψ .

6.2.3 MinHornDeletion-Equivalent Cases

As in Proposition 38 the need to use conjunctive closure instead of 〈 〉 causes
a case distinction in the proof of the following result, which is the dual variant
of [6, Lemma 16]. Correspondingly, Lemma 46 then replaces [6, Lemma 17].

Lemma 45 If � is exactly dual Horn (iV ⊆ 〈�〉 ⊆ iV2) then one of the following
relations is in 〈�〉∧: [x → y], [x → y] × {0}, [x → y] × {1}, or [x → y] × {01}.

Proof The co-clone 〈�〉 is equal to iV, iV0, iV1, or iV2. In the case 〈�〉 = iV the
relation RiV belongs to 〈�〉∧ by Theorem 1; because of RiV(y, y, y, x) = [x → y]
we have [x → y] ∈ 〈RiV〉∧ ⊆ 〈�〉∧. The case 〈�〉 = iV1 leads to [x → y] ×
{1} ∈ 〈�〉∧ in an analogous manner. The cases 〈�〉 = iV0 and 〈�〉 = iV2 lead to
[x → y] × {0} ∈ 〈�〉∧ and [x → y] × {01} ∈ 〈�〉∧, respectively, by observing that
[S1(y, y, x)] = [S0(¬y,¬y,¬x,¬y)] = [(¬y∧¬y) ≈ (¬y∧¬x)] = [x → y].

Lemma 46 If � is exactly dual Horn (iV ⊆ 〈�〉 ⊆ iV2), then the problem NOSol(�)

is MinHornDeletion-hard.

Proof There are four cases to consider, namely 〈�〉 ∈ {iV, iV0, iV1, iV2}. For sim-
plicity we only present the situation where 〈�〉 = iV1; the case 〈�〉 = iV2 is very
similar, and the other possibilities are even less complicated. At the end we shall give
a few hints how to adapt the proof in these cases.

The basic structure of the proof is as follows: we choose a suitable weak base
of iV1 consisting of an irredundant relation R1, and identify a relation H1 ∈ 〈{R1}〉∧
which allows us to encode a sufficiently complicated variant of the MinOnes-problem
into NOSol({H1}). Thus by Theorem 1 and Lemma 45 we have H1 ∈ 〈{R1}〉∧ ⊆
〈�〉∧ and [x → y] × {1} ∈ 〈�〉∧, wherefore Proposition 15 implies NOSol(�′) ≤AP
NOSol(�) where �′ = {H1, [x → y] × {1}}. According to [22, Theorem 2.14(4)],
MinHornDeletion is equivalent to MinOnes(�) for constraint languages � being dual
Horn, not 0-valid and not implicative hitting set bounded+ with any finite bound,
that is, if 〈�〉 ∈ {iV1, iV2}. The key point of the construction is to choose R1 and H1
in such a way that we can find a relation G1 satisfying iV1 ⊆ 〈{G1}〉 ⊆ iV2 and
((G1 × {1}) ∪ {0}) × {1} = H1. The latter property will allow us to prove an AP-
reduction MinHornDeletion ≡AP MinOnes({G1}) ≤AP NOSol(�′), completing the
chain.

We first check that R1 = V1 ◦ 〈χ4〉 satisfies 〈{R1}〉 = iV1: namely, by construc-
tion, this relation is preserved by the disjunction and by the constant operation with
value 1, i.e., 〈R1〉 ⊆ iV1. This inclusion cannot be proper, since 0 /∈ R1 (〈R1〉 �⊆ iI0)
and x ∨ (y ∧ z) /∈ R1 while x = (e1 ◦ β) ∨ (e4 ◦ β), y = (e1 ◦ β) ∨ (e2 ◦ β) and
z = (e1 ◦β)∨ (e3 ◦β) belong to V1 ◦〈χ4〉 (cf. before Theorem 2 for the notation), i.e.
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the generating function (x, y, z) �→ x ∨ (y ∧ z) of the clone S00 [13, Figure 2, p. 8]
fails to be a polymorphism of R1. For later we note that when β is chosen such that the
coordinates of χ4 are ordered lexicographically (and we are going to assume this from
now on), then this failure can already be observed within the first seven coordinates
of R1. Now according to Theorem 2, the sedenary relation R1 := V1 ◦ 〈χ4〉 is a weak
base relation for iV1 without duplicate coordinates, and a brief moment of inspection
shows that none of them is fictitious either. Therefore, R1 is an irredundant weak base
relation for iV1. We define H1 to be {(x0, . . . , x8) | (x0, . . . , x7, x8, . . . , x8) ∈ R1},
then clearly H1 ∈ 〈{R1}〉∧. Now we put G1 := G′

1�{0} where G′
1 := {(x0, . . . , x6) |

(x0, . . . , x8) ∈ H1}, and one quickly verifies that ((G1 × {1}) ∪ {0}) × {1} = H1.
Since G′

1 ∈ 〈H1〉 ⊆ 〈R1〉 = iV1 and removing the bottom-element 0 of a non-trivial
join-semilattice with top-element still yields a join-semilattice with top-element, we
have G1 ∈ iV1. With the analogous counterexample as for the relation R1 above, we
can show that (x, y, z) �→ x ∨ (y ∧z) is not a polymorphism of G1 (because the non-
membership is witnessed among the first seven coordinates). Thus, 〈{G1}〉 = iV1; in
particular G1, and any relation conjunctively definable from it, is not 0-valid.

For the reduction let now ϕ(x) = G1(x1) ∧ · · · ∧ G1(xk) be an instance of
MinOnes({G1}). We construct a corresponding �′-formula ϕ′ as follows.

ϕ′′(x, y, z) = H1(x1, y, z) ∧ · · · ∧ H1(xk, y, z)

ϕ′′′(x, x(2), . . . , x(�), z) =
�∧

i=1

⎛

⎝(xi
z=1−−→ x

(2)
i ) ∧

�−1∧

j=2

(x
(j)
i

z=1−−→ x
(j+1)
i ) ∧ (x�

i

z=1−−→ xi)

⎞

⎠

ϕ′(x, x(2), . . . , x(�), y, z) = ϕ′′(x, y, z) ∧ ϕ′′′(x, x(2), . . . , x(�), z)

where � = |x| is the number of variables of ϕ, y and z are new global variables, and

where we have written (u
w=1−−→ v) to denote ([x → y] × {1})(u, v, w). Let m0 be

the assignment to the �2 + 2 variables of ϕ′ given by m0(z) = 1 and m0(x) = 0
elsewhere. It is clear that (ϕ′, m0) is an instance of NOSol(�′), since m0 satisfies ϕ′.
The formula ϕ′′′ only multiplies each variable x from ϕ �-times and forces x ≈
x(2) ≈ · · · ≈ x(�), which is just a technicality for establishing an AP-reduction. The
main idea of this proof is the correspondence between the solutions of ϕ and ϕ′′.

For each solution s of ϕ(x) there exists a solution s′ of ϕ′′(x, y) with s′(y) = 1
(and s′(z) = 1). Each solution s′ of ϕ′′ has always s′(z) = 1 and either s′(y) = 0
or s′(y) = 1. Because every variable from x is part of one of the xi , the assign-
ment m0 restricted to (x, y, z) is the only solution s′ of ϕ′′ satisfying s′(y) = 0. If
otherwise s′(y) equals 1, then s′ restricted to the variables x satisfies ϕ(x), following
the correspondence between the relations G1 and H1.

For r ∈ [1, ∞) let s′ be an r-approximate solution of the NOSol(�′)-instance
(ϕ′, m0). Let s := s′ �x be the restriction of s′ to the variables of ϕ. Since
s′ �= m0, by what we showed before, s′(y) = 1 and s is a solution of ϕ(x).
We have OPT(ϕ′, m0) ≥ 2 and OPT(ϕ) ≥ 1, since solutions of the NOSol(�′)-
instance (ϕ′, m0) must be different from m0, whereby y is forced to have value 1, and
[ϕ] ∈ 〈{G1}〉∧ is not 0-valid. Moreover, hw(s) = hd(0, s), hd(s′, m0) = �hw(s) + 1,
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OPT(ϕ′, m0) = �OPT(ϕ) + 1, and hd(s′, m0) ≤ rOPT(ϕ′, m0). From this and
OPT(ϕ) ≥ 1 it follows that

�hw(s) < �hw(s) + 1 = hd(s′, m0) ≤ rOPT(ϕ′, m0) = r�OPT(ϕ) + r

≤ r�OPT(ϕ) + rOPT(ϕ)

≤ r�OPT(ϕ) + rOPT(ϕ) + (r − 1)�OPT(ϕ)

= (2r − 1 + r/�)�OPT(ϕ)

= (1 + 2(r − 1) + r/�)�OPT(ϕ).

Hence s is an (1 + α(r − 1) + o(1))-approximate solution of the instance ϕ of the
problem MinOnes({G1}) where α = 2.

In the case when 〈�〉 = iV2, the proof goes through with minor changes: R2 =
V2◦〈χ4〉 = R1�{1}, so we define H2 and G2 like H1 and G1 just using R2 and H2 in
place of R1 and H1. Then we have H2 = H1�{1}, G2 = G1�{1} and 〈{G2}〉 = iV2.
Moreover, for the reduction we shall need an additional global variable w for ϕ′′′
(and ϕ′) since the encoding of the implication from Lemma 45 requires it (and forces
it to zero in every model).

For 〈�〉 = iV0 we can use R0 = V0 ◦ 〈χ4〉 = R2 ∪ {0}; then, letting H0 =
{(x0, . . . , x7) | (x0, . . . , x7, x7, . . . , x7) ∈ R0} ∈ 〈{R0}〉∧, we have H0 = (G2×{1})∪
{0}. On a side note, we observe that H0 = V0 ◦ 〈χ3〉, which we can use alternatively
without detouring via R0. Given the relationship between G2 and H0, we do not need
the global variable z in the definition of ϕ′′, but we need to have it in the definition of

ϕ′′′, where the relation given by Lemma 45 necessitates atoms of the form (u
z=0−−→ v)

forcing z to zero in every model.
The case where 〈�〉 = iV is similar to the previous: we can use the irredundant

weak base relation H = V ◦ 〈χ3〉 = H0 ∪ {1} = (G1 × {1}) ∪ {0}. Except for y in
the definition of ϕ′′ no additional global variables are needed in the definition of ϕ′,
because [u → v] atoms are directly available for ϕ′′′.

Corollary 47 If � is exactly Horn (iE ⊆ 〈�〉 ⊆ iE2) or exactly dual-Horn
(iV ⊆ 〈�〉 ⊆ iV2) then NOSol(�) is MinHornDeletion-complete under AP-Turing-
reductions.

Proof Hardness follows from Lemma 46 and duality. Moreover, NOSol(�) can be
AP-Turing-reduced to NSol(� ∪ {[x], [¬x]}) as follows: Given a �-formula ϕ and a
model m, we construct for every variable x of ϕ a formula ϕx = ϕ ∧ (x ≈ m(x)).
Then for every x where [ϕx] �= ∅ we run an oracle algorithm for NSol(� ∪
{[x], [¬x]}) on (ϕx, m) and output one result of these oracle calls that is closest
to m.

We claim that this algorithm provides indeed an AP-Turing reduction. To see
this observe first that the instance (ϕ, m) has feasible solutions if and only if this
holds for (ϕx, m) and at least one variable x. Moreover, we have OPT(ϕ, m) =
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minx,[ϕx ]�=∅(OPT(ϕx, m)). Let A(ϕ, m) be the answer of the algorithm on (ϕ, m)

and let B(ϕx, m) be the answers to the oracle calls. Consider a variable x∗ such
that OPT(ϕ, m) = minx,[ϕx ]�=∅(OPT(ϕx, m)) = OPT(ϕx∗ , m), and assume that
B(ϕx∗ , m) is an r-approximate solution of (ϕx∗ , m). Then we get

hd(m, A(ϕ, m))

OPT(ϕ, m)
= miny,[ϕy ]�=∅(hd(m, B(ϕy, m))

OPT(ϕx∗ , m)
≤ hd(m, B(ϕx∗ , m))

OPT(ϕx∗ , m)
≤ r .

Thus the algorithm is indeed an AP-Turing-reduction from NOSol(�) to NSol(� ∪
{[x], [¬x]}). Note that for � ⊆ iV2 the problem NSol(� ∪ {[x], [¬x]}) reduces
to MinHornDeletion according to Propositions 29 and 27. Duality completes
the proof.

7 Finding theMinimal Distance Between Solutions

In this section we study the optimization problem MinSolutionDistance. We first
consider the polynomial-time cases and then the cases of higher complexity.

7.1 Polynomial-Time Cases

We show that for bijunctive constraints the problem MinSolutionDistance can be
solved in polynomial time. After stating the result we present an algorithm and
analyze its complexity and correctness.

Proposition 48 If � is a bijunctive constraint language (� ⊆ iD2) then the problem
MSD(�) is in PO.

By Proposition 32, an algorithm for bijunctive constraint languages � can be
restricted to at most binary clauses. Alternatively, one can use the plain base

{[x], [¬x], [x ∨ y], [¬x ∨ y], [¬x ∨ ¬y]}

of iD2 exhibited in [12] to see that every relation in � can be written as a conjunction
of disjunctions of two not necessarily distinct literals. We shall treat these disjunc-
tions as one- or two-element sets of literals when extending the algorithm of Aspvall,
Plass, and Tarjan [2] to compute the minimum distance between distinct models of a
bijunctive constraint formula.
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Algorithm BIJUNCTIVE MSD

Input: An iD2-formula given as a collection of one- or two-element sets of literals
(bijunctive clauses).
Output: “ 1 model” or the minimal Hamming distance of any two distinct models
of .
Method:
Let be the set of variables occurring in .
Let be the set of literals.
Let denote the literal complementary to .

Construct the relation .
Let be the reflexive and transitive closure of , i.e. the least preorder on extend-
ing .
Construct the sets

for some

for some

If 0 1 or 0 1 holds, then return “ 1 model”.

Let
Let
Return min as minimal Hamming distance.
End of algorithm

Complexity The size of L is linear in the number of variables, the reflexive closure
can be computed in time linear in |L|, the transitive closure in time cubic in |L|,
see [32]. The equivalence relation ∼ is the intersection of ≤ restricted to L′ and
its inverse (quadratic in |L′|); from it we can obtain the partition L′/∼ in linear
time in |L′| ≤ |L|, including the cardinalities of the equivalence classes and their
minimization. Similarly, the remaining sets from the proof (V0, V1, their intersection
and union, and thus also L′) can be computed with polynomial time complexity.

Correctness The pairs in R arise from interpreting the atomic constraints in ϕ as
implications. By transitivity of implication, the inequality u ≤ v for literals u, v

means that every model m of ϕ satisfies the implication u → v or, equivalently,
m(u) ≤ m(v). In particular, x ≤ ¬x implies m(x) = 0 and ¬x ≤ x implies m(x) =
1. Therefore V0 can be seen to be the set of variables that have to be false in every
model of ϕ, and V1 the set of variables true in every model.

If V0 ∩ V1 �= ∅ holds then the formula ϕ is inconsistent and has no solution. If
V0∪V1 = V holds, then every variable has a unique fixed value, hence ϕ has only one
solution. Otherwise the formula is consistent and not all variables are fixed, hence
there are at least two models.

To determine the minimal number of variables, whose values can be flipped
between any two models of ϕ, it suffices to consider the literals without fixed value,
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L′. If we have u ≤ v and v ≤ u, the literals are equivalent, u ∼ v, and must have the
same value in every model. This means that any two distinct models have to differ
on all literals of at least one equivalence class in L′/∼. Therefore, the return value of
the algorithm is a lower bound for the minimal distance.

To prove that the return value can indeed be attained, we exhibit two models
m0 �= m1 of ϕ having the least cardinality of any equivalence class in L′/∼ as
their Hamming distance. Let L ∈ L′/∼ be a class of minimum cardinality. Define
m0(u) := 0 and m1(u) := 1 for all literals u ∈ L. We extend this by setting
m0(w) := m1(w) := 0 for all w ∈ L such that w ≤ u for some u ∈ L, and by
m0(w) := m1(w) := 1 for all w ∈ L such that u ≤ w for some u ∈ L. For variables
v ∈ V satisfying v ≤ ¬v or ¬v ≤ v we have v ∈ V0 ∪ V1, and thus v /∈ L′; in other
words, for [v]∼ ∈ L′/∼ the classes [v]∼ and [¬v]∼ are incomparable. Thus, so far,
we have not defined m0 and m1 on a variable v ∈ V and on its negation ¬v at the
same time. Of course, fixing a value for a negative literal ¬v implicitly means that
we bind the assignment for v ∈ V to the opposite value.

It remains to fix the value of literals in L′ that are neither related to the literals in L

nor have fixed values in all models. Suppose (ū, v) ∈ R is a constraint such that the
value of at least one literal has not yet been defined. There are three cases: either both
literals have not yet received a value, or ū is undefined and v has been assigned the
value 1 (either as a fixed value in all models or because of being greater than a literal
in L or because of being lesser than a complement of a literal in L), or v is undefined
and ū has been assigned the value 0 (either as a fixed value in all models or because
of being smaller than a literal in L or greater than a complement of a literal in L). All
three cases can be handled by defining both models, m0 and m1, on the remaining
variables identically: starting with a minimal literal u, where m0 and m1 are not yet
defined, we assign m0(u) := m1(u) := 0 and m1(u) := m0(u) := 1.

This way none of the constraints is violated, and m0 and m1 are distinct only
on variables corresponding to literals in L. Iterate this procedure until all variables
(and their complements) have been assigned values. If L′′ ⊆ L′ denotes the literals
remaining after propagating the values of m0 and m1 on L, then the presented method
can be implemented by partitioning L′′ into two classes L0 and L1 such that L0 ∩
{u, u} is a singleton for every u ∈ L′′ and each weakly connected component of the
quasiordered set (L′′, ≤) is either a subset of L0 or L1. Then set m0 and m1 to k on
the literals belonging to Lk for k ∈ {0, 1}.

By construction, m0 differs from m1 only in the variables corresponding to the
literals in L, so their Hamming distance is |L| as desired. Moreover, both assignments
respect the order constraints in (L, ≤). As these faithfully reflect all original atomic
constraints, m0 and m1 are indeed models of ϕ.

Proposition 49 If � is a Horn (� ⊆ iE2) or a dual Horn (� ⊆ iV2) constraint
language then MSD(�) is in PO.

We only discuss the Horn case (� ⊆ iE2), dual Horn (� ⊆ iV2) being symmetric.
The following algorithm improves the description given in [6] by correctly treating
two marginal cases where the output is evident.
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Algorithm HORN MSD

Input: A Horn formula given as a set of Horn clauses (cf. the plain base of iE2
given in [12]).
Output: “ 1 model” or the minimal Hamming distance of any two distinct models
of .
Method:
For each variable in , add the clause .
Let .
Apply the following rules to until no more clauses and literals can be removed and
no new clauses can be added.
Unit resolution and unit subsumption: Let denote the complement of a literal .

If the clause set contains a unit clause , remove all clauses containing the literal
and remove all literals from the remaining clauses. Add to the set .
Hyper-resolution with binary implications: Resolve all negative literals of a clause

simultaneously with binary implications possessing identical premises.

Let be the set of clauses after applying the two rules exhaustively.
If contains the empty clause, return “ 1 model”.
If contains a literal for every variable in , return “ 1 model”.
If contains a variable that appears neither in nor in , return 1 as the minimal
Hamming distance.

Otherwise, let be the set of variables occurring in , and let 2 be the relation
defined by if . Note that is an equivalence, since
the tautological clauses ensure reflexivity and resolution of implications computes
their transitive closure. We say that a variable depends on variables 1 , if

contains the clauses 1 , 1, . . . , and holds
for all 1 .
Return min , does not contain dependent variables as the minimal
Hamming distance.
End of algorithm

Complexity The run-time of the algorithm is polynomial in the number of clauses
in ϕ: Unit resolution/subsumption can be applied at most once for each variable, and
hyper-resolution has to be applied at most once for each variable x and each clause
¬y1 ∨ · · · ∨ ¬yk ∨ z and ¬y1 ∨ · · · ∨ ¬yk .

Correctness Adding resolvents and removing subsumed clauses maintains logical
equivalence, therefore D ∪ U is logically equivalent to ϕ, i.e., both clause sets have
the same models. We note that the sets of variables of U and of D are disjoint. The
unit clauses in U are always (uniquely) satisfiable, thus D and ϕ are equisatisfiable.
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Therefore, if D contains the empty clause, ϕ is also unsatisfiable; otherwise D is
satisfiable, e.g., by assigning 0 to every x ∈ V . In this case, if U contains a literal for
every variable of ϕ, the unit clauses in U define a unique model of ϕ.

Otherwise ϕ has at least two models m1 �= m2. In the simplest case some vari-
able x in ϕ has been left unconstrained by D and U ; in this case we can pick any
model of D and U and extend it to two different models of ϕ with Hamming dis-
tance 1 by setting m1(x) = 0 and m2(x) = 1 and setting m1(y) = m2(y) = 0 for any
other variable y outside D and U . For the remaining situations it is sufficient to con-
sider the models of D only, as each model m of D uniquely extends to a model of ϕ

by defining m(x) = 1 for (x) ∈ U and m(x) = 0 for (¬x) ∈ U ; hence the minimal
Hamming distances of the models of ϕ and D will be the same.

We are thus looking for models m1, m2 of D such that the size of the difference
set �(m1, m2) = {x | m1(x) �= m2(x)} is minimal. In fact, since the models of
Horn formulas are closed under minimum, we may assume m1 < m2, i.e., we have
m1(x) = 0 and m2(x) = 1 for all variables x ∈ �(m1, m2). Indeed, given two
models m2 and m′

2 of D where neither m2 ≤ m′
2 nor m′

2 ≤ m2, m1 = m2 ∧m′
2 is also

a model, and it is distinct from m2. Since hd(m1, m2) ≤ hd(m2, m
′
2), the minimal

Hamming distance will occur between models m1 and m2 satisfying m1 < m2.
Note the following facts regarding the equivalence relation ∼ and dependent

variables.

– If x ∼ y then the two variables must have the same value in every model of D
in order to satisfy the implications ¬x ∨ y and ¬y ∨ x. This means that for all
models m of D and all X ∈ V/ ∼, we have either m(x) = 0 for all x ∈ X or
m(x) = 1 for all x ∈ X.

– The dependence of variables is acyclic: If, for some l ≥ 2, for every 1 ≤ i < l

we have that zi depends on variables including one, say yi , which is equiva-
lent to zi+1, and zl = z1, then there is a cycle of binary implications between
the variables and thus zi ∼ yi ∼ zj for all i, j , contradicting the definition of
dependence.

– If a variable z depending on y1, . . . , yk belongs to a difference set �(m1, m2),
then at least one of the yis also has to belong to �(m1, m2): m2(z) = 1 implies
m2(yj ) = 1 for all j = 1, . . . , k (because of the clauses ¬z∨yi), and m1(z) = 0
implies m1(yi) = 0 for at least one i (because of the clause ¬y1 ∨ · · · ∨ ¬yk ∨
z). Therefore �(m1, m2) is the union of at least two sets in V/ ∼, namely the
equivalence class of z and the one of yi .

– If some z1 ∈ �(m1, m2) is equivalent to a variable z′
1 that depends on some

other variables, then we have a variable z2 among them, which also belongs to
�(m1, m2). If the equivalence class of z2 still contains a variable z′

2 depending on
other variables, we can iterate this procedure. In this way we obtain a sequence
z1 ∼ z′

1, z2 ∼ z′
2, z3 ∼ z′

3, . . . where z′
i depends on variables including zi+1,

which is equivalent to z′
i+1. Because there are only finitely many variables and

because of acyclicity, after a linear number of steps we must reach a variable
zn ∈ �(m1, m2) such that its equivalence class (being a subset of the difference
set) does not contain any dependent variables.



1178 Theory of Computing Systems (2019) 63:1131–1184

Hence the difference between any two models cannot be smaller than the cardinal-
ity of the smallest set in V/ ∼ without dependent variables. It remains to show that
we can indeed find two such models.

Let X be a set in V/ ∼ which has minimal cardinality among the sets with-
out dependent variables, and let m0, m1 be interpretations defined as follows: (1)
m0(y) = 0 and m1(y) = 1 if y ∈ X; (2) m0(y) = 1 and m1(y) = 1 if y /∈ X and
(¬x ∨ y) ∈ D for some x ∈ X; (3) m0(y) = 0 and m1(y) = 0 otherwise. We have
to show that m0 and m1 satisfy all clauses in D. Let m be any of these models. D
contains two types of clauses.

Type 1: Horn clauses with a positive literal ¬y1 ∨ · · · ∨ ¬yk ∨ z. If m(yi) = 0 for
any i, we are done. So suppose m(yi) = 1 for all i = 1, . . . , k; we have to
show m(z) = 1. The condition m(yi) = 1 means that either yi ∈ X (for
m = m1) or that there is a clause (¬xi ∨ yi) ∈ D for some xi ∈ X. We
distinguish the two cases z ∈ X and z /∈ X.

Let z ∈ X. If z ∼ yi for any i, we are done for we have m(z) =
m(yi) = 1. So suppose z �∼ yi for all i. As the elements in X, in partic-
ular z and the xis, are equivalent and the binary clauses are closed under
resolution, D contains the clause ¬z ∨ yi for all i. But this would mean
that z is a variable depending on the yis, contradicting the assumption
z ∈ X.

Let z /∈ X, and let x ∈ X. As the elements in X are equivalent and the
binary clauses are closed under resolution, D contains ¬x ∨ yi for all i.
Closure under hyper-resolution with the clause ¬y1 ∨ · · · ∨ ¬yk ∨ z means
that D also contains ¬x ∨ z, whence m(z) = 1.

Type 2: Horn clauses with only negative literals ¬y1 ∨ · · · ∨ ¬yk . If m(yi) = 0 for
any i, we are done. It remains to show that the assumption m(yi) = 1 for all
i = 1, . . . , k leads to a contradiction. The condition m(yi) = 1 means that
either yi ∈ X (for m = m1) or that there is a clause (¬xi∨yi) ∈ D for some
xi ∈ X. Let x be some particular element of X. Since the elements in X are
equivalent and the binary clauses are closed under resolution, D contains
the clause ¬x ∨yi for all i. But then a hyper-resolution step with the clause
¬y1 ∨ · · · ∨ ¬yk would yield the unit clause ¬x, which by construction
does not occur in D. Therefore at least one yi is neither in X nor part of a
clause ¬x ∨ yi with x ∈ X, i.e., m(yi) = 0.

7.2 Hard Cases

7.2.1 Two Solution Satisfiability

In this section we study the feasibility problem of MSD(�) which is, given a �-
formula ϕ, to decide if ϕ has two distinct solutions.

Problem: TwoSolutionSAT(�)

Input: A conjunctive formula ϕ over the relations from the constraint language �.
Question: Are there two satisfying assignments m �= m′ of ϕ?
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A priori it is not clear that the tractability of TwoSolutionSAT is fully characterized
by co-clones. The problem is that the implementation of relations of some language �

by another language �′ might not be parsimonious, that is, in the implementation one
solution to a constraint might be blown up into several ones in the implementation.
Fortunately we can still determine the tractability frontier for TwoSolutionSAT by
combining the corresponding results for SAT and AnotherSAT.

Lemma 50 Let � be a constraint language for which SAT(�) is NP-hard. Then the
problem TwoSolutionSAT(�) is NP-hard.

Proof Since SAT(�) is NP-hard, there must be a relation R in � having more than
one tuple, because every relation containing only one tuple is at the same time Horn,
dual Horn, bijunctive, and affine. Given an instance ϕ for SAT(�), construct ϕ′ as
ϕ ∧ R(y1, . . . , y�) where � is the arity of R and y1, . . . , y� are new variables not
appearing in ϕ. Obviously, ϕ has a solution if and only if ϕ′ has at least two solutions.
Hence, we have proved SAT(�) ≤m TwoSolutionSAT(�).

Lemma 51 Let � be a constraint language for which AnotherSAT(�) is NP-hard.
Then the problem TwoSolutionSAT(�) is NP-hard.

Proof Let a �-formula ϕ and a satisfying assignment m be an instance of the problem
AnotherSAT(�). Then ϕ has a solution other than m if and only if it has two distinct
solutions.

Lemma 52 Let � be a constraint language for which both problems SAT(�) and
AnotherSAT(�) are in P. Then TwoSolutionSAT is also in P.

Proof Let ϕ be an instance of TwoSolutionSAT(�). All polynomial-time decidable
cases of SAT(�) are constructive, i.e., whenever that problem is polynomial-time
decidable, there exists a polynomial-time algorithm computing a satisfying assign-
ment provided it exists. If ϕ is not satisfiable, we reject the instance. Otherwise, we
can compute in polynomial time a satisfying assignment m of ϕ. Now use the algo-
rithm for AnotherSAT(�) on the instance (ϕ, m) to decide if there is a second solution
to ϕ.

Corollary 53 For any constraint language �, the problem TwoSolutionSAT(�) is
in P if both SAT(�) and AnotherSAT(�) are in P. Otherwise, TwoSolutionSAT(�) is
NP-hard.

Proposition 54 Let � be a constraint language for which TwoSolutionSAT(�) is in P.
Then there is a polynomial-time n-approximation algorithm for MSD(�), where n is
the number of variables of the �-formula on input.

Proof Since TwoSolutionSAT(�) is in P, both SAT(�) and AnotherSAT(�) must be
in P by Corollary 53. Since SAT(�) is in P, we can compute a model m of the input ϕ

in polynomial time if it exists. Now we check the AnotherSAT(�)-instance (ϕ, m).
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If it has a solution m′ �= m, it is also polynomial time computable, and we return
(m, m′). If we fail somewhere in this process, then the MSD(�)-instance ϕ does not
have feasible solutions; otherwise, hd(m, m′) ≤ n ≤ n · OPT(ϕ).

7.2.2 MinDistance-Equivalent Cases

In this section we show that, as for the NearestOtherSolution problem, the affine
cases of MSD are MinDistance-complete.

Proposition 55 MSD(�) is MinDistance-complete if the constraint language �

satisfies the inclusions iL ⊆ 〈�〉 ⊆ iL2.

Proof We prove MSD(�) ≡AP NearestOtherSolution(�), which is MinDistance-
complete for each constraint language � satisfying the inclusions iL ⊆ 〈�〉 ⊆ iL2,
according to Proposition 44. As the inclusion � ⊆ iL2 = 〈{even4, [x], [¬x]}〉 holds,
any �-formula ψ is expressible as ∃y(A1x + A2y ≈ c). The projection of the
affine solution space is again an affine space, so it can be understood as solutions
of a system Ax = b. If (ψ, m0) is an instance of NOSol(�), then ψ is a MSD(�)-
instance, and a feasible solution m1 �= m2 satisfying ψ gives a feasible solution
m3 := m0 + (m2 −m1) for (ψ, m0), where hd(m0, m3) = hd(m2, m1). Conversely, a
solution m3 �= m0 to (ψ, m0) yields a feasible answer to the MSD-instance ψ . Thus,
OPT(ψ) = OPT(ψ, m0) and so NOSol(�) ≤AP MSD(�). The other way round, if ψ

is an MSD-instance, then attempt to solve the system Ax = b defined by it; if there
is no or a unique solution, then the instance does not have feasible solutions. Other-
wise, we have at least two distinct models of ψ ; let m0 be one of these. As above we
conclude OPT(ψ) = OPT(ψ, m0), and therefore, MSD(�) ≤AP NOSol(�).

7.2.3 Tightness Results

We prove that Proposition 54 is essentially tight for some constraint languages. This
result builds heavily on the previous results from Section 6.2.1.

Proposition 56 For a constraint language � satisfying the inclusions iN ⊆ 〈�〉 ⊆
iI and any ε > 0 there is no polynomial-time n1−ε-approximation algorithm for
MSD(�), unless P = NP.

Proof We show that any polynomial time n1−ε-approximation algorithm forMSD(�)

would also allow to decide in polynomial time the problem AnotherSATnc(�), which
is NP-complete by Proposition 38.

The algorithm works as follows. Given an instance (ϕ, m) for AnotherSATnc(�),
the algorithm accepts if m is not a constant assignment. Since � is 0-valid (and 1-
valid), this output is correct. If ϕ has only one variable, reject because ϕ has only two
models; otherwise, proceed as follows.

For each variable x of ϕ, we construct a new formula ϕ′
x as follows. Let k be

the smallest integer greater than 1/ε. Introduce nk − n new variables xi for i =
1, . . . , nk − n. For every i ∈ {1, . . . , nk − n} and every constraint R(y1, . . . , y�)
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in ϕ, such that x ∈ {y1, . . . , y�}, construct a new constraint R(zi
1, . . . , z

i
�) by zi

j = xi

if yj = x and zi
j = yj otherwise; add all the newly constructed constraints to ϕ

in order to get ϕ′
x . Note, that we can extend models s of ϕ to models s′ of ϕ′

x by
setting s′(xi) = s(x). In particular, this can be done for m, yielding m′ ∈ [ϕ′

x]. As
� ⊆ iI = iI0 ∩ iI1, the MSD(�)-instance ϕ′

x has feasible solutions; thus run the
n1−ε-approximation algorithm for MSD(�) on ϕ′

x . If for every x the answer is a pair
(m1, m2) with m2 = m1, then reject, otherwise accept.

This procedure is a correct polynomial-time algorithm for AnotherSATnc(�).
For polynomial runtime is clear, it remains to show correctness. If ϕ has only
constant models, then the same is true for every ϕ′

x since ϕ contains a variable
distinct from x. Thus each approximation must result in a pair of complemen-
tary constant assignments, and the output is correct. Assume now that there is a
model s of ϕ different from 0 and 1. Hence, there exists a variable x such that
s(x) = m(x) because m is constant. It follows that ϕ′

x has a model s′ fulfilling
OPT(ϕ′

x) ≤ hd(s′, m′) < n, where n is the number of variables of ϕ. But then the
approximation algorithm must find two distinct models m1 �= m2 of ϕ′

x satisfying
hd(m1, m2) < n · (nk)1−ε = nk(1−ε)+1. Since we stipulated k > 1/ε, it follows that
hd(m1, m2) < nk . Consequently, we have m2 �= m1 and the output of our algorithm
is again correct.

8 Concluding Remarks

The problems investigated in this paper are quite natural. In the space of bit-vectors
we search for a solution of a formula that is closest to a given point, or for a solu-
tion next to a given solution, or for two solutions witnessing the smallest Hamming
distance between any two solutions. Our results describe the complexity of exploring
the solution space for arbitrary families of Boolean relations. Moreover, our prob-
lems generalize problems familiar from the literature: MinOnes, NearestCodeword,
and DistanceSAT are instances of our NearestSolution, while MinDistance is the same
as our problem MinSolutionDistance when restricting the latter to affine relations.

To prove the results, we first had to extend the notion of AP-reduction. The opti-
mization problems considered in the literature have the property that each instance
has at least one feasible solution. This is not the case when looking for nearest solu-
tions regarding a given solution or a prescribed Boolean tuple, as a formula may have
just a single solution or no solution at all. Therefore we had to refine the notion of
AP-reductions such that it correctly handles instances without feasible solutions.

The complexity of NearestSolution can be classified by the usual approach: We
first show that for each constraint language the complexity of the problem does not
change when admitting existential quantifiers and equality, and then check all finitely
related clones according to Post’s lattice. This approach does not work for the prob-
lems NearestOtherSolution and MinSolutionDistance: It does not seem to be possible
to show a priori that the complexity remains unaffected under such language exten-
sions. In principle the complexity of a problem might well differ for two constraint
languages �1 and �2 that represent the same clone (〈�1〉 = 〈�2〉) but that differ with
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Fig. 4 Comparing the complexities: The hard cases (colored blue and black) are the same, whereas the
polynomial cases (green) increase from left to right

respect to partial polymorphisms (〈�1 ∪ {≈}〉∧ �= 〈�2 ∪ {≈}〉∧). Theorems 4 and 5
finally show that this is not the case, but we learn this only a posteriori. Our method
of proof fundamentally relies on irredundant weak bases that seem to be the perfect
fit for such a situation: a priori compatibility with existential quantification is not
required, but it will follow once the proof succeeds just using weak bases.

Figure 4 compares the complexity classifications of the three problems. Regarding
NearestSolution and NearestOtherSolution, knowing that an assignment is a solution
apparently helps in finding a solution nearby. For expressive constraint languages it
is NP-complete to decide whether a feasible solution exists at all; for NearestSolution
this requires the existence of at least one satisfying assignment, while the other two
problems need even two. Kann proved in [21] that MinOnes(�) is NPOPB-complete
for 〈�〉 = BR, where NPOPB is the class of NPO problems with a polynomially
bounded objective function. This result implies that NearestSolution(�) is NPOPB-
complete for 〈�〉 = BR as well. It is unclear whether this result also holds for 〈�〉 =
iN2. It may be possible to find a suitable constraint language �′ satisfying 〈�′〉 = BR
such that MinOnes(�′) reduces to NearestOtherSolution(�) for iI0 ⊆ 〈�〉 or iI1 ⊆
〈�〉, proving thus that NOSol(�) is NPOPB-complete for these cases. Likewise, the
NPOPB-hardness of MSD(�) for iN2 ⊆ 〈�〉 or iI0 ⊆ 〈�〉 or iI1 ⊆ 〈�〉 remains open
for the time being.
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[Existence of k-valued closed classes without a finite basis].

Doklady Akademii Nauk SSSR 127(1), 44–46 (1959)
19. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. Assoc. Comput. Mach. 44(4),

527–548 (1997)



1184 Theory of Computing Systems (2019) 63:1131–1184

20. Juban, L.: Dichotomy theorem for the generalized unique satisfiability problem. In: Ciobanu, G.,
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