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Abstract We examine document spanners, a formal framework for information
extraction that was introduced by Fagin, Kimelfeld, Reiss, and Vansummeren
(PODS 2013, JACM 2015). A document spanner is a function that maps an input
string to a relation over spans (intervals of positions of the string). We focus on
document spanners that are defined by regex formulas, which are basically regular
expressions that map matched subexpressions to corresponding spans, and on core
spanners, which extend the former by standard algebraic operators and string equal-
ity selection. First, we compare the expressive power of core spanners to three models
— namely, patterns, word equations, and a rich and natural subclass of extended reg-
ular expressions (regular expressions with a repetition operator). These results are
then used to analyze the complexity of query evaluation and various aspects of static
analysis of core spanners. Finally, we examine the relative succinctness of different
kinds of representations of core spanners and relate this to the simplification of core
spanners that are extended with difference operators.
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1 Introduction

Information Extraction (IE) is the task of automatically extracting structured infor-
mation from texts. This paper examines document spanners (also called spanners), a
formalization of the IE query language AQL, which is used in IBM’s SystemT. Doc-
ument spanners were introduced by Fagin et al. [7] in order to allow the theoretical
examination of AQL, and were also used in [8].

A span is an interval on positions of a string w, and a spanner is a function that
maps w to a relation over spans of w. A central topic of [7] and of the present paper
are core spanners (according to Fagin et al., this name was chosen because core
spanners capture the core of AQL).

The primitive building blocks of core spanners are regex formulas, which are
regular expressions with variables. Each of these variables corresponds to a subex-
pression, and whenever a regex formula o matches a string w, each variable is
mapped to the span in w that matches that subexpression. For example, consider the
regex formula « := x{aaa}-a™’ - y{a™}, with terminal a, and variables x and y.
When o matches a string w, it maps x to the span that contains the first three posi-
tions of w, and y to a span from some position after the third to the last position of w.
Hence, each match of o on w determines a tuple of spans; and as there can be multi-
ple matches of a regex formula to a string, this process creates a relation over spans
of w. Core spanners are then defined by extending regex formulas with the relational
operations projection, union, natural join, and string equality selection.

One of the two main topics of the present paper is the examination of decision
problems for core spanners, in particular evaluation and static analysis. These results
are mostly derived from the other main topic, the examination of the expressive power
of core spanners in relation to three other models that use repetition operators, which
act similar to the spanners’ string equality selection.

We begin with comparing core spanners to patterns. A pattern is word that con-
sists of variables and terminals, and generates the language of all words that can be
obtained by substitution of the variables with arbitrary terminal words. For example,
the pattern « = xxaby (where x and y are variables, and a and b are terminals)
generates the language of all words that have a prefix that consists of a square, fol-
lowed by the word ab. Although pattern languages have a simple definition, various
decision problems for them are surprisingly hard. For example, their membership
problem is NP-complete (cf. Angluin [1], Jiang et al. [24]), and their inclusion
problem is undecidable (cf. Bremer and Freydenberger [4]). As we show that core
spanners can recognize pattern languages, this allows us to conclude that evaluation
of Boolean core spanners is NP-hard, and that spanner containment is undecidable.

Next, we consider word equations, which are equations of the form o = 8, where
a and B are patterns. Word equations can be used to define languages and word rela-
tions. We show that word equations with regular constraints can express all relations
that are expressible with core spanners. By using an improved version of Makanin’s
algorithm (cf. Diekert [6]), this allows us to show that satisfiability and hierarchical-
ity for core spanners can be decided in PSPACE. Moreover, using coding techniques
from word equations, we show that two common relations from combinatorics on
words can be selected with core spanners.
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Finally, we examine the relation of core spanners to xregexes (also called extended
regular expressions, regexes, or regular expressions with backreferences in litera-
ture). These are regular expressions that can use a repetition operator, that is available
in most modern implementations for regular expressions (see, e.g., Friedl [17])
and that allows the definition of non-regular languages. For example, the xregex
x{X*} - &x - &x generates all cubic words over X, as x{X*} generates some word
w which is stored in the variable x, and each occurrence of &x repeats that w. As a
consequence of this increase in expressive power, many decision problems are harder
for xregexes than for their “classical” counterparts. In particular, various problems of
static analysis are undecidable (Freydenberger [12]).

But as shown by Fagin et al. [7], core spanners cannot define all languages that
are definable by xregexes. Intuitively, the reason for this is that xregexes can use their
repetition operators inside a Kleene star, which allows them to repeat an arbitrary
word an unbounded number of times — for example, the xregex x{ X *}-&x* generates
the language of all w", n > 2. In contrast to this, core spanners have to express
repetitions with variables and string equality selections. Inspired by this observation,
we introduce variable-star free (or vstar-free) xregexes as those xregexes that neither
define nor use variables inside a Kleene star. We show that every vstar-free xregex
can be converted into an equivalent core spanner. Since all undecidability results
by Freydenberger [12] also apply to vstar-free xregexes, these undecidability results
carry over to core spanners. This also has various consequences for the minimization
and the relative succinctness of classes of spanner representations. We also show that
complementing a core spanner can lead to a size increase that is not bounded by
any recursive function (for basically all natural notions of size). Although this does
not solve an open problem by Fagin et al. [7] on the simplification of core spanners
with difference operators, it shows that if simplification is possible, it has to be non-
computable. As a further contribution, we also develop tools to prove inexpressibility
for vstar-free regular expressions and for core spanners.

As we shall see, many of the observed lower bounds hold even for comparatively
restricted classes of core spanners (in particular, most of the results hold for spanners
that do not use join). Hence, the authors consider it reasonable to expect that these
results can be easily adapted to other information extraction languages that combine
regular expressions with capture variables and a string equality operator.

In addition to regex formulas, Fagin et al. [7] also consider two types of automata
as basic building blocks of spanner representations. While the present paper does
not discuss these in detail, most of the results on spanner representations that are
based on regex formulas can be directly converted to the respective class of spanner
representations that are based on automata.

Related Work For an overview of related models, we refer to Fagin et al. [7]. In
addition to this, we highlight connections to models with similar properties. In [7],
Fagin et al. showed that there is a language that can be defined by xregexes, but not
by core spanners. Furthermore, they compared the expressive power of core span-
ners and a variant of conjunctive regular path queries (CRPQs), a graph querying
language. Barcelo6 et al. [2] introduced extended CRPQs (ECRPQs), which can com-
pare paths in the graph with regular relations. While there is no direct connection
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between ECRPQs and core spanners, both models share the basic idea of combin-
ing regular languages with a comparison operator that can express string equality. As
shown by Freydenberger and Schweikardt [16], ECRPQs have undecidability results
that are comparable to those in the present paper, and to those for xregexes (cf.
Freydenberger [12]). Furthermore, Barcel6 and Muifioz [3] have used word equations
with regular constraints for variants of CRPQs.

Also note that Freydenberger [13] extends the results on the connection between
word equations and core spanners from the present paper into a logic on words that
has the same expressive power as core spanners.

Structure of the Paper In Section 2, we give definitions of xregexes and of core
spanners. Section 3 compares the expressive power of core spanners to patterns, word
equations, and vstar-free regular expressions. The results from this section are then
used in Section 4 to examine the complexity of evaluation and static analysis of span-
ners. We also examine the consequences of these results to the relative succinctness
of different spanner representations. Section 5 concludes the paper.

2 Preliminaries

Let N and N, ¢ be the sets of non-negative and positive integers, respectively. Let X
be a fixed finite alphabet of (terminal) symbols. Except when stated otherwise, we
assume | X'| > 2. We use ¢ to denote the empty word. For every word w € X* and
every a € X, let |w| denote the length of w, and |w|, the number of occurrences of
ainw. A word x € X* is a subword of a word y € X'* if there exist u, v € X* with
y = uxv. A word x € X* is a prefix of a word y € X* if there exists a v € X* with
y = xv, and a proper prefix if it is a prefix and x # y. For every n € N, an n-ary
word relation (over X) is a subset of (X*)".

2.1 Regexes (Extended Regular Expressions)

This section introduces the syntax and semantics of xregexes, which we shall also
use for regex formulas in Section 2.2. We begin with the syntax, which follows the
definition from [7].

Definition 2.1 We fix an infinite set X of variables and define the set M of meta
symbols as M = {&,0,(,),{,},-, vV, " &}. Let ¥, X, and M be pairwise disjoint.
The set of xregexes (extended regular expressions) is defined as follows:

1. The symbols ¥ and ¢, and every a € X' are xregexes.
If o1 and «p are xregex, then (« - a2) (concatenation), (a1 V «3) (disjunction),
and (af) (Kleene star) are xregexes.

3. Forevery x € X and every xregex « that contains neither x{---} nor &x as a
subword, x{«} is an xregex (variable binding).

4. Forevery x € X, we have that &x is an xregex (variable reference).
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If a subword S of an xregex « is an xregex itself, we call 8 a subexpression (of «).
The set of all subexpressions of « is denoted by Sub («), and the set of variables
occurring in variable bindings in an xregex « is denoted by Vars («). If an xregex o
contains neither variable references, nor variable bindings, we call « a proper regular
expression.

In other words, we use the term “proper” to distinguish those expressions that
are usually just called “regular expressions” from the more general extended regular
expressions. We use the notation o™ as a shorthand for « - a*. Parentheses can be
added freely. We may also omit parentheses and the concatenation operator, where
we assume * and + are taking precedence over concatenation, and concatenation pre-
cedes disjunction. Furthermore, we use X' as a shorthand for the regular expression
\/aeE a.

Before introducing the semantics of xregexes formally, we give an intuitive expla-
nation. An expression of the form o« = x{f} matches the same strings as §, but
o additionally stores the matched string in the variable x. Using a variable refer-
ence &x, this string can then be repeated. For example, let @ := (x{X*} - &x). The
subexpression x{X*} matches any string w € X* and stores this match in x. The fol-
lowing variable reference &x repeats the stored w. Thus, « defines the (non-regular)
copy-language {ww | w € X*}.

The following definition of the semantics of xregexes is based on the semantics by
Freydenberger [12], which is an adaption of the semantics from Campeanu et al. [5]
(the former uses variables, the latter backreferences). In comparison to [12], the case
for Kleene star has been changed, in order to make the definition compatible with the
parse trees for regex formulas from Fagin et al. [7].

Definition 2.2 Let y be an xregex over X' and X. A y-parse tree is a finite, directed,
and ordered tree 7). Its nodes are labeled with tuples of the form (w, y’) € (£* x
Sub (y)). The root of every y-parse tree T, is labeled (w, y) with w € X*; and the
following rules must hold for each node v of 7),:

1) Ifvislabeled (w, a) witha € (X U {¢}), then v is a leaf, and w = a.

2) If vislabeled (w, (81 - B2)), then v has exactly one left child v and exactly one
right child v, with respective labels (w1, 81) and (w2, B2), and w = wiw;.

3) Ifwvislabeled (w, (81VB2)), then v has a single child, labeled (w, B1) or (w, 82).

4) 1If v is labeled (w, B*), then one of the following cases holds: (a) w = ¢, and v

is aleaf, or (b) w = wywy ... wy for words wy, ..., w; € X1 (withk > 1), and
v has k children vy, ..., vg (ordered from left to right) that are labeled (w1, 8),
e (Wi, B).

5) Ifwvislabeled (w, x{B}), then v has a single child, labeled (w, B).

6) If v is labeled (w, &x), let < denote the post-order of the nodes of T, (that
results from a left-to-right, depth-first traversal). Then one of the following cases
applies: (a) If there is no node v’ with v’ < v that is labeled (w’, x{8'}) € X* x
Sub(y), then v is aleaf, and w = ¢. (b) Otherwise, let v’ be the node with v < v that
is <-maximal among nodes labeled (w’, x{8’}). Then v is a leaf, and w = w’'.
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If the root of a y-parse tree T), is labeled (w, y), we call T}, a y-parse tree for w. If
the context is clear, we omit y and call 7}, a parse tree.

There is no parse tree for ¢, and references to unbound variables (i. e., variables
that were not assigned a value with a variable binding operator) default to ¢. For an
example of a parse tree, see Fig. 1.

We use parse trees to define the semantics of xregexes:

Definition 2.3 An xregex y recognizes the language L(y) of all w € X™* for which
there exists a y-parse tree 7), with (w, y) as root label.

Example 2.4 Consider the xregexes o := x{ X"} (&x)*, B := x{X T} - &x -x{ZT}-
&x,and y := x{aa™} - (&x)* for somea € X.

Then L(a) = {w" | w € XV, n > 2}, L(B) = {x1x1x2x2 | x1, X2 € X7}, and
L(y) ={a" | n > 2, n is not prime}.

2.2 Document Spanners

Letw :=ajas - - -a, be aword over ¥, withn € Nand ay,...,a, € X. A span of
w is an interval [i, j) with 1 <i < j <n+4 1 andi, j € N. For each span [i, j) of
w, we define a subword wy; j, := a; - - -a;_1. In other words, each span describes a
subword of w by its bounding indices. Two spans [i, j) and [i’, j') of w are equal if
and only if i =i’ and j = j’. These spans overlap ifi <i’ < jori’ <i < j/, and
are disjoint, otherwise. The span [i, j) contains the span [, j/) if i <i’ < j' < j.
The set of all spans of w is denoted by Spans (w).

Example 2.5 Let w := aabbcabaa. As |w| = 9, both [1, 3) and [8, 10) are spans
of w, but [10, 11) is not. Although wy1,3) = wyg 10y = aa, the first two spans are not
equal. Likewise, the two spans [3, 3) and [5, 5) are not equal, even though w3 3) =
w(s,5) = &. The whole word w is described by the span [1, 10).

Fig. 1 An o-parse tree for w, (abab, &z - (z{(a Vb)*} - &z))
where a := &x - (x{(a VvV b)*}-

&x) and w := abab. For these / \

choices of o and w, this is the

only possible parse tree (e, &) (abab,z{(a Vb)*} - &z)
(ab,z{(a Vb)*}) (ab, &)

l

(ab, (aVb)*)

/

(a,aVDb) (b,a VD)

! l

(a,2) (b, b)
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Definition 2.6 Let SVars be a fixed, infinite set of span variables, where X and
SVars are disjoint. Let V C SVars be a finite subset of SVars, and let w € X*.
A (V, w)-tuple is a function p: V — Spans (w), that maps each variable in V to
a span of w. If context allows, we write w-tuple instead of (V, w)-tuple. A set of
(V, w)-tuples is called a (V, w)-relation.

As V and Spans (w) are finite, every (V, w)-relation is finite by definition. Our
next step is the definition of document spanners, which map words w to (V, w)-
relations:

Definition 2.7 Let V and X be alphabets of variables and symbols, respectively. A
(document) spanner is a function P that maps every word w € X* to a (V, w)-
relation P (w). Let V be denoted by SVars (P). A spanner P is n-ary if |SVars (P)| =
n, and Boolean if SVars (P) = . For all w € X*, we say P(w) = True and
P(w) = False instead of P(w) = {()} and P(w) = @, respectively.

A w-tuple u € P(w) is hierarchical if for all x, y € SVars (P) at least one of the
following holds: (1) The span w(x) contains u(y), (2) the span w(y) contains p(x),
or (3) the spans @ (x) and u(y) are disjoint. A spanner P is hierarchical if, for every
w € X*, every u € P(w) is hierarchical.

A spanner P is fotal on w if P(w) contains all w-tuples over SVars (P). Let
Y C SVars be a finite set of variables. The universal spanner over Y is denoted by
Yy. It is the unique spanner P’ such that SVars (P’) = Y and P’ is total on every
w € X*. Furthermore, a spanner P is hierarchical total on w if P(w) is exactly
the set of all hierarchical w-tuples over SVars (P); and the universal hierarchical
spanner over a set Y is the unique spanner Tll,{ that is hierarchical total on every
we X*,

For two spanners P; and P, we write P| € P if Pj(w) € P>(w) for every

w e X* and P; = P, if Pi(w) = P(w) for every w € X*.

Hence, a spanner can be understood as a function that maps a word w to a set
of functions, each of which assigns spans of w to the variables of the spanner. As
Boolean spanners are functions that map words to truth values, they can be interpreted
as characteristic functions of languages. For every Boolean spanner P, we define the
language recognized by P as L(P) := {w € X* | P(w) = True}. We extend this
to arbitrary spanners P by L(P) := {w € X* | P(w) # #}.

Definition 2.8 A regex formula is an xregex o over X' and X := SVars such that «
does not contain any variable references, and for every 8 € Sub (@) with 8 = y*, no
subexpression of y may be a variable binding.

In other words, a regex formula is a proper regular expression that is extended
with variable binding operators, but these operators may not occur inside a Kleene
star. We define SVars(y) := Vars(y) for all regex formulas y.

To define the semantics of regex formulas, we use the definition of parse trees
for xregexes, see Definition 2.2. Intuitively, the goal of this definition is that each
occurrence of a variable x in a y-parse tree is matched to the corresponding span.
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Here, two problems can arise. Firstly, a variable might not occur in the parse tree; for
example, when matching the regex formula (x{a} Vv bb) to the word bb. Secondly, a
variable might be defined too often, as e. g. in the regex formula x{X*} - x{X*}. In
order to avoid such problems, we introduce the notion of a functional regex formula.

Definition 2.9 Let y be a regex formula. We call y functional if for every w € X*
and every y-parse tree T, for w, for each variable x € SVars (), there exactly one
node of 7, has a label of the form (v, x{8}), where v is a subword of w and B is
a sub-regex formula of y. The class of all functional regex formulas is denoted by
RGX.

As shown in Proposition 3.5 in Fagin et al. [7], functionality has a straightforward
syntactic characterization: Basically, variables may not be redeclared, variables may
not be used inside of Kleene stars, and if variables are used in a disjunction, each
side of a disjunction has to bind exactly the same variables. Consider the following
example:

Example 2.10 The regex formula y; := (x{a} Vv x{b}) is functional even though it
contains two occurrences of variable definitions for x. There are just two y;-parse
trees, both of which only contain one node labeled (c, x{c}), where ¢ € {a, b}. Asa
trivial case, even y, := x{(} is functional (as no y»-parse tree exists). Furthermore,
the regex formulas y3 := x{(a Vb)*}-x{b™} and y4 := a* v x{b} are not functional.
Finally, y5 := x{a}* is not a regex formula at all.

For functional regex formulas, we use parse trees to define the semantics:

Definition 2.11 Let y be a functional regex formula and let T be a y-parse tree for
a word w € X*. For every node v of T, the subtree that is rooted at v naturally
maps to a span p(v) of w. As y is functional, for every x € SVars (y), exactly one
node v, of T has a label that contains x. We define MT : SVars (y) — Spans (w) by
' (x) := p(vy). Each y € RGX defines a spanner [y] by

[yl(w) = {u” | T is a y-parse tree for w}

for each w € X*.

Example 2.12 Assume that a, b € X'. We define the regex formula

a:=X" x{a y{X*}- (z{a} vV z{b})} - Z*.
Let w := baaba. Then [a](w) consists of ([2,4),[3,3),[3,4)), (12,5),[3,4),
[4,5)), (I2, 6), [3, 5), [5, 6)), ([3,5), [4,4),[4,5)), and ([3, 6), [4, 5), [5, 6)).

For every w € X*, a spanner P defines a (V, w)-relation P(w). In order to construct
more sophisticated spanners, we introduce spanner operators.

Definition 2.13 Let P, P;, P> be spanners and let w € X*. The algebraic operators
union, projection, natural join and selection are defined as follows.
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Union: Two spanners P; and P, are union compatible if SVars (P1) = SVars (P,),
and their union (P1 U P») is defined by SVars (P U P;) := SVars(P;) =
SVars(P;) and (P} U P)(w) := Pi(w) U Py(w) for every w € X*.

Projection: LetY C SVars (P). The projection wy P is defined by SVars (wy P) :=
Y and 7ty P(w) := P(w)|y for all w € X*, where P(w)|y is the restriction of all
w-tuples in P(w) to Y.

Natural join: Let V; := SVars (P;) for i € {1, 2}. The (natural) join (P < P>)
of P and P, is defined by SVars (P < P») := SVars (P;) U SVars (P») and, for
all w € X*, we define (P; < P;)(w) as the set of all (V; U V,, w)-tuples p for
which there exist (V;, w)-tuples w1 and po with w(w)|y, = pi(w) and w(w)ly, =
2 (w).

Selection: Let R C (X*)* be a k-ary relation over X*. The selection operator
;R is parameterized by k variables xi,...,x; € Vars(P), written as gxlf,...,xk'

,,,,,

all w € X*, we define g“x’fw,XkP(w) as the set of all u € P(w) for which
(wﬂ(,ﬂ), ceey wﬂ(xk)) € R.

Like [7], we mostly consider the string equality selection operator ¢ ~. Hence, unless
otherwise noted, the term “selection” refers to selection by the n-ary string equality
relation. Note that unlike selection (which compares strings), join requires that the
spans are identical.

The join P; o< P, of two spanners P and P, is equivalent to the intersection P N
P, if SVars (P;) = SVars (P;), and to the Cartesian Product P; x P, if SVars (P;)
and SVars (P,) are disjoint. Hence, if applicable, we write N and x instead of ><.

For convenience, we may add and omit parentheses. We assume there is an order
of precedence with projection and selection ranking over join ranking over union,
e.g. we may write Tyl P1U Py Ps instead of (Ty&, PrU (P2 P3)), where
projection and selection are applied to P;, and the result is united with the join of P>
and P;.

Example 2.14 Let P := {;y[[x{Z‘*}y{Z‘*}]] and P, 1= ;;y,z[[x{z*}y{x*}z{z*}]].
Then £(P;) = {ww | w € X*}, and the variables x and y refer to the span of the first
and second occurrence of w, respectively. Analogously, £L(P;) = {w’ |€ ¥*} (and z
refers to the third occurrence of w). Assume that we want to construct a spanner for
the language {w" | w € X*, n € {2, 3}}. As Py and P; are not union compatible, we
cannot simply define P; U P,. Union compatibility can be achieved by projecting P>
onto the set of common variables (i. e., 7y, y} P2).

Definition 2.15 A spanner algebra is a finite set of spanner operators. If O is a
spanner algebra, then RGX® denotes the set of all spanner representations that can be
constructed by (repeated) combination of the symbols for the operators from O with
regex formulas from RGX. For each operator 0 € O and each spanner representation
of the form op (if o is unary) or p; o ps (if o is binary), we define Jop] := o[p] or
[o1 0 p2] := [p1] 0 [p2], respectively. Furthermore, [RGX®] is the closure of [RGX]
under the spanner operators in O.
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We define L(p) := L([p]) for every spanner representation p. Fagin et al. [7] refer
to [RGX] as the class of hierarchical regular spanners and to [RGXY>] as the
class of regular spanners. In addition to (hierarchical) regular spanners, Fagin et al.
also introduced the so-called core spanners, which are obtained by combining regex
formulas with the four algebraic operators projection, selection, union, and join — in
other words, the class of core spanners is the class [[RGX{” 4 =’U’><‘}ﬂ. Analogously,
RGX!™:¢7-U>l ig the class of core spanner representations.

3 Expressibility Results
3.1 Pattern Languages

We begin our examination of the expressive power of core spanners by comparing
them to one of the simplest mechanisms with repetition operators:

Definition 3.1 Let X be an infinite variable alphabet that is disjoint from X. A
patternis aword @ € (X U X)™ that generates the language

L(a) := {o(«) | o is a pattern substitution},

where a pattern substitution is a homomorphism o : (¥ U X)* — X* witho (a) = a
for all a € X'. We denote the set of all variables in @ by Vars («).

Intuitively, a pattern o generates exactly those words that can be obtained by
replacing the variables in o with terminal words homomorphically (i.e., multiple
occurrences of the same variable have to be replaced in the same way). This type of
pattern languages is also called erasing pattern language (cf. Jiang et al. [24]).

Example 3.2 Let x,y € X and a,b € X. The patterns « := xx and 8 := xaybx
generate the languages L(«) = {ww | w € X*} and L(B) = {vawbv | v, w € X*}.

From every pattern «, we can straightforwardly construct an xregex for L(o). A
similar observation holds for core spanners:

Theorem 3.3 There is an algorithm that, given a pattern o, computes in polynomial
time py € RGXY™} such that L(py) = L ().

Proof Leta = a1 --- oy withn € Nogand «q, ..., oy € (XU X). We rewrite « into
a regex formula &, by replacing the i-th occurrence of a variable x with a binding
x;{X*}. More formally, we define & := @ - - - &, where for each i € {1, ..., n}, the
regex formula &; is defined as follows:

1. If«; is aterminal (i.e., there is an @ € X with o; = a), let ; := a.
2. If @; is the j-th occurrence of a variable x € X in a, let &; := x;{X*}.
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Hence, no variable occurs twice in &; and as & contains no disjunctions on variables,
& is functional.

We now define S to be a sequence of selections; where S contains exactly the
selections ¢, for each x € Vars (@) with |a[y = k and k > 2. In other words,
for each x that occurs more than once in «, we include a selection of all x;.

Finally, we define p, := S&. It is easy to see that L(po,) = L(): For every
w € L(w), we can use a pattern substitution ¢ with o (&) to construct a corresponding
w-tuple pu for py. Likewise, for every w € L(py), there exists a corresponding w-
tuple u from which we can reconstruct a pattern substitution o with o (a) = w: By
the construction of py, for each pair of variables x;, x; in o, the words Wy (x;) and
Wy (x;) Must be identical. This allows us to define o (x) 1= wy(x)).-

Example 3.4 Letx,y,z € X, a,b € X, and define the pattern @ := xayybxzx.
The construction in the proof of Theorem 3.3 leads to the spanner representation
Ol ys where y = xi{Z%)-a- yi (£} 12 D%} -0 D%} -1 {ZF) -3 Z*).

While the construction in the proof of Theorem 3.3 is so simple that it might not
seem noteworthy, it will prove quite useful: In contrast to their simple definition,
many canonical decision problems for them are surprisingly hard. Via Theorem 3.3,
the corresponding lower bounds also apply to spanners, as we discuss in Sections 4.1
and 4.2.

3.2 Word Equations and Existential Concatenation Formulas

In this section, we introduce word equations, which are equations of patterns (cf.
Definition 3.1) and can be used to define languages and relations, cf. Karhumaiki
et al. [26]:

Definition 3.5 A word equation is a pair n := (nr, ng) of patterns n; and ng. A
pattern substitution o is a solution of n if o (ny) = o(ngr). We define Vars () :=
Vars (n7) U Vars (ng). For k > 1, a relation R C (X*)F is defined by a word
equation n := (nr,ng) if there exist variables xi,...,x; € Vars(n) such that
R ={(o(x1),...,0(xr)) | ois asolution of n}.

We also write (17, ng) as np = ng. As we shall see just after the next definition
both sides of the equation may have common variables. The following relations are
well known examples of relations that are definable by word equations:

Definition 3.6 Over X*, we define relations
Reom = {(x,y) | x,y € {u}* for some u € X*},

Reye := {(x, y) | x is a cyclic permutation of y}.

As shown in Lothaire [30], the relation R.on is defined by the equation xy = yx,
and Ry is defined by the equation xz = zy.
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Let R be a k-ary string relation, and let C be a class of spanners. We say that
R is selectable by C, if for every spanner P € C and every sequence of variables
X = (X1, ..., x) with xq, ..., xx € SVars (P), the spanner ;XRP is also in C.

Proposition 3.7 The relations Rcop and Ry are selectable by core spanners.

Proof Both parts of the proof use a technique from [7]. Let x = xp, ..., xx be a
sequence of distinct span variables (k > 1), and let X := {x1, ..., x¢}. The spanner
¢RYy is called the R-restricted universal spanner over x, and is denoted by TX.
According to Proposition 4.15 in [7], in order to show that a R is selectable by core
spanners, it suffices to show that TR is a core spanner for every x € SVarsk,

Reyc: Note that for all x, y € X*, the word x is a cyclic permutation of y (and
vice versa) if and only if there exist u, v € X* with x = uv and y = vu (see e. g.
Lothaire [30]). Hence we can define the core spanner Peyc 1= 7{y,y) 1'3 where

P = {;’uzgi’vz[[ax X ayl,
and the regex formulas oy and o, are defined as
ay = X*x {ul{E*} . vl{E*}} >,
ay = ¥y (%) ua{ T} ZF.

In order to prove that Peyc = T)f, S, we first observe that, for every w € X* and
every i € Peyc(w), there exists a i € P(w) with u(x) = ji(x) and uw() = pn(y).
The selections enforce u 1= wj,) = Wi, and v := Wi,y = W, Hence,
Wyx) = uv and wy(y) = vu, which means that (w;(x), wy(y)) € Reye, and u €

Tﬁ S (w). For the other direction, we can show analogously that every . € T)f S (w)
can be extended into a i € IS(w), which then proves p € Peye(w).

Rcom: This proof relies on another fact from combinatorics on words. For all
x,y € X*, the equation xy = yx holds if and only if (x,y) € Rcom (again, see
Lothaire [30]). We define a core spanner Peomy := 7y, y) ﬁ, where

P = ;;’T,rg,r3,r4§;x2C;yzg);fz;;yz [[al X oy X a3z X Ol4]],

and the regex formulas o1, ..., oq are defined as

SRz} 2
ay == ' {n{ X"} {2} 2,
a3 = Ty {H{Z*} - (T} 2%,
ay =y {ra{Z*) - {ZF} 2.

o]

In order to prove that P.om = )f S, first assume that u© € Peom(w) for some
w € X*. Again, this means that there exists a {t € P(w) with u(x) = fi(x) and
uw(y) = [i(y). In a slight abuse of notation, we identify the variables x, x, y, y with
the corresponding subwords of w. In other words, we define x, X, y,y € X* by
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7 i= wy, for z € {x, X, y, y}. Furthermore, let r = wy ). Due to the equality
selections, we obtain the following word equations from o to a4:

X = Xr =rx,

y = §r=rj.
We explain this in detail for the first equation: First, note that due to the structure of
a1, we know that wy,(x) = w3 - W) holds. Likewise, the structure of a; ensures
that wy(xy) = Wp(ry) - Wp(s,)- Due to the selections &7 . 0 £ y,» and £, the
latter can be expressed as w, (x) = Wy () Wy (5), and by combining the two equations
while abusing the notation as explained above, we obtain x = xr = rx. The second
equation is obtained analogously.

As Xr = rx, there exists a word u € X* with r, x € {u}*. We choose the shortest

u for which r € {u}*. Then, due to yr = ry, we have that y € {u}* holds as well.
This implies x, y € {#}*, (Wu(x), Wu(y)) € Reom, and 0 € ch)‘,’m (w). AAgain we can
show analogously that every u € Tﬁ $™ (w) can be extended into a i € P(w), which
then proves it € Peom(Ww). O

In particular, this means that we can add §IEC°“1 and ¢Rec to core spanner
representations, without leaving the class [RGX™¢ 7>,

Example 3.8 Define Lipp = {(w" | w € £T,n > 2} and p := L™ (x{ZH)- -
y{Z*}). Then L(p) = Limp.

This does not imply that Rcom can be used to select relations like Rpow =
{(x,x") | n = 0}. For example, if x := abab, then (x, y) € Rcom holds for all
y € {ab}*. The authors conjecture that Rpqy is not selectable by core spanners.

Furthermore, the spanner that is constructed for Rcom in the proof of Proposi-
tion 3.7 is more complicated than the corresponding word equation xy = yx. In fact,
we constructed both spanners not from the equations, but from a characterization of
the solutions. This appears to be necessary, due the fact that spanners need to relate
their variables to an input w, while word equations use their variables without such
restrictions. We shall see in Theorem 3.13 that, if this is kept in mind, core spanners
can be used to simulate word equations.

Before we consider this topic further, we examine how word equations can simu-
late spanners, as this shall provide useful insights on some question of static analysis
in Section 4.2. One drawback of word equations is that they are unable to express
many comparatively simple regular languages; like A* for any non-empty A C X*
(cf. Karhumiki et al. [26]). In order to overcome this problem, we consider the
following extension:

Definition 3.9 Let n := (11, nr) be a word equation. A regular constraints func-
tion' is a function C that maps each x € Vars(n) to a nondeterministic finite

IFollowing the terminology of [3]; literature also uses the term rational constraints.
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automaton C(x). A solution o of 7 is a solution of n under constraints C if o (x) €
L(C(x)) holds for every x € Vars ().

Hence, regular constraints restrict the possible substitutions of a variable x to a
regular language L(C(x)).

A syntactic extension of word equations is EC, the existential theory of concate-
nation, which is obtained by extending word equations with Vv, A, and existential
quantification over variables. For example, Ry is expressed by the EC-formula

Peye(x, y) = 3z: (xz = zy).

Using appropriate coding techniques, one can transform every EC-formula into an
equivalent word equation (see Diekert [6]). Although the transformations given
in [6] can result in an exponential blowup, satisfiability of word equations and of
EC-formulas can still be decided in PSPACE.

Like word equations, these formulas can be further extended by adding regular
constraints. For each variable x and each nondeterministic finite automaton (NFA)
A, the (regular) constraint L 4(x) is satisfied for a solution o if o(x) € L(A). We
call the resulting class of formulas EC™9, the existential theory of concatenation with
regular constraints.

Example 3.10 Let A be an NFA with £(A) = {ab‘a | i > 1}, and define the EC"9-
formula ¢ (x, y) :=3z: (La(z) A 3z1, 220 x = 21222) A (Jz1, 221 Y = 21222)).

Then ¢ expresses the relation of all (x, y) that have a common subword z
from L(A).

Note that we intentionally use L4(x) for constraint symbols instead of C, to
emphasize the following distinction in the use of constraints: In word equations,
every variable x is constrained to one language L(C(x)). In contrast to this, an EC"8-
formula can use multiple constraint symbols for one variable (e. g., in the form of
Ls(x) A La/(x)), or none at all.

Using the same techniques as for EC, one can transform EC™9-formulas into
equivalent word equations with regular constraints. Again, the construction can result
in an exponential blowup, but satisfiability of EC™9-formulas can still be decided in
PSPACE (cf. Diekert [6]).

In order to simulate core spanners with EC™9-formulas, we introduce the follow-
ing definition:

Definition 3.11 Let P be a core spanner with SVars (P) = {x1, ..., x,},n > 0, and
let ¢ (xy, le, xlc, e x,f, xnc) be an EC™9-formula. We say that ¢ realizes P if, for all
w,wlp, w]C,...,w,f,wnC € X*, we have that ¢(w, wa,wlc, ...,w,f,w,f) = True

holds if and only if there is a u € P(w) with w! = wy ;) and w,f = Wi, j;) for
each 1 < k < n, where [ig, jk) = w(xk).

This definition uses the fact that spans are always defined in relation to a word
w. Note that every span [i, j) € Spans (w) is characterized by the words wyy ;) and
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wy;, j). Hence, if 1 € [p]](w), the EC™9-formula models 4 (xx) = [ix, jk) by mapping
Xy tow, x,f to wry, i), and ka to wy;, j,)- In the naming of the variables, C stands for
content, and P for prefix. This allows us to model spanners in EC™9-formulas:

Theorem 3.12 There is an algorithm that, given p € RGX™¢ Yt computes in
polynomial time an EC™9-formula ¢, that realizes [p].

Proof Before presenting the construction that is the main part of proof, we briefly
consider a technical detail of functional regex formulas. On an intuitive level, func-
tional regex formulas guarantee that in each parse tree, every variable is assigned
exactly once (hence, x{a}-x{a} is not functional). Consequently, it seems reasonable
to conjecture that, if a functional regex formula contains a subformula of the form
o1 - op, then SVars («1) N SVars (wz) = ¥ must hold.

While this conjecture is true for regex formulas that do not contain #, it does not
hold in general. For example, consider o := o - ap with @1 := x{a} and ap :=
(x{@} v b). Then x € SVars («;) N SVars («p), but as x{@} can never be part of the
label of a parse tree, the regex formula « is functional.

In order to exclude these fringe cases and simplify the construction of EC'9-
formulas, we introduce the following concept: A regex formula o is ¥-reduced if
o = @, or if @ does not contain any occurrence of . Using simple rewrite rules, we
can observe the following. [

Claim 1 There is an algorithm that, given a regex formula «, computes in polynomial
time an -reduced regex formula ag with [ar] = [o].

Proof In order to compute og, it suffices to rewrite o according to the following
rewrite rules:

1. * — ¢,

2. (@vP) — qand (@ Vv &) — & for all regex formulas &,
3. (@-¥) — @and (¥ - &) — 0 for all regex formulas &,
4. x{#} — ¢ for all variables x.

As ¢ is never part of a parse tree, we can observe that for all regex formulas « and
B, where 8 is obtained by applying any number of these rewrite rules, [8] = [«¢]
holds. Furthermore, one can use these rules to convert « into an equivalent and #-
reduced ag in polynomial time: If « is stored in a tree structure, it suffices to apply
all applicable rules in bottom-up manner. [J (Claim 1)

This allows us to proceed to the main part of the proof. Recall that our goal is a

procedure that, given a p € RGX!™-¢ Y=<} with SVars (p) = {x1, ..., x,}, constructs
an EC™-formula g, (xy, x1, x, ... xF, xC) such that for all w, wf, w$, ..., wr,
w§ € X*, we have that g, (w, w!, wf, ..., w! wS) = True holds if and only if

there is some 1 € P(w) with w}” = wyy ;) and wkc = W, ) foreach 1 <k <n,
where [ix, jik) = n(xp).
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In fact, this p is always uniquely defined by w, the w,‘: , and the wkc. Based
on this, we introduce some notation that simplifies our reasoning. Given w € X*
and u € P(w), we define the (2n + 1)-tuple w,, = (w, wa, wlc, ...,wf, w,f)
by w,‘: ‘= wy1,i,) and wkC = W, j,) as in the previous paragraph. For the other
direction, we say that a (2n + 1)-tuple w = (w, wf), wlc, e, w,f, w,?) over X* is
spanner compatible if, for all 1 < k < n the concatenated word u),‘(D . wkc is a pre-
fix of w. In this case, we define uyw through pw(xx) = [ik, jk) with iy = |w}:| +1
and ji = |w,f w,f| + 1 for 1 < k < n. Note that these are one-to-one conversions
if w is fixed: Every u defines its unique spanner compatible w,, and every span-
ner compatible w defines its unique ©w. We can now rephrase Definition 3.11 using
this terminology, and observe that ¢, realizes [p] if and only if the following two
statements hold:

1. Forallw e (X*)2t1 we have that ¢p(W) = True implies that w is spanner
compatible and py € P(w).
2. If u € P(w), then ¢,(W,) = True.

We now proceed to the most complicated part of this proof, the construction of
EC'9-formulas from regex formulas. (The following sub-proof is rather lengthy, as
it contains the full induction for the correctness proof. The main part of the proof
continues on page 17).

Claim 2 There is an algorithm that, given a functional regex formula p € RGX,
constructs in polynomial time an EC"™9-formula ¢, that realizes [p].

Proof Due to Claim 1, we can assume without loss of generality that p is #-reduced.
We define ¢, recursively as follows:

1. If p does not contain any variables (i. e., n = 0), p is a proper regular expression.
Using canonical transformation techniques, we can construct in polynomial time
a non-deterministic finite automaton A with £(A) = L(p), and we define

©p(xw) = La(xy).

Then ¢, realizes [p], as ¢,(w) = True holds if and only if w € L(A) = L(p),
which holds if and only if uy € [p](w).

2. If p contains variables, we assume that SVars (p) = {x1, ..., x,} withn > 1.
By definition of regex formulas, no variable of p may occur inside of a Kleene
star. Hence, we can distinguish three cases:

(a) p = p1V pa2, where p1, pr are functional regex formulas with SVars(p;) =
SVars(pz) = SVars(p). We define

P _C P C\._
(pp(xw,xl,xl,...,xn,xn).—

P _C P _C P _C P _C
(gom ()cw,)c1 )X ,...,xn,xn>\/gop2<xw,x1 )X ,...,xn,xn>).

The intuition behind this formula should be clear; we proceed directly to
proving the correctness. Assume that ¢, and ¢,, realize [p1] and [p1],

@ Springer



870 Theory Comput Syst (2018) 62:854-898

respectively. We choose any w € X™*. To show the direction from logic to
spanners, we extend w into a tuple w. By definition, ¢,(w) = True holds if
and only if ¢, (W) = True forani € {1, 2}. As ¢, realizes [p;], the tuple
w is spanner compatible, and py € [p;](w) holds. For the other direction,
we proceed analogously: If u € [p;](w), then ¢, (W,) = True; hence,
@p(W,) = True. We conclude that ¢, realizes [p].

(b) p = p1 - p2, where p1, py are functional regex formulas with SVars(p;) U
SVars(py) = SVars(p) and SVars(p) N SVars(p2) = @. Without loss of
generality, we can assume

SVars (p1) = {x1, ..., Xm},
Svars (02) = {xm+11 R} xn}

with 0 < m < n. We define

©p (xw,x{’,xlc,... x,{), nC) =
V1L 20 T s Tp L P (xw,xl , x§ ,...,x,f,xnc,yl,yz,zzﬂ,...,z,’;),
where
<p1(xw,x1P,x1C,...,xr{’,xnc,yl,yz,z,i_’_l,...,zf:) =
(Xw = Y1 ¥2) A @p, (yl,xl’D,Xf,-.-,xnf,X,ﬁ)

+C P C P_ P

m+1<i<n

The idea behind this formula is as follows: As p = p; - pp, whenever
[p](w) # @ holds, w can be decomposed into w = wy - wy, where wy is
parsed in pg, and w; in py. We store these words in the variables y; and y»,
respectively. For all variables in SVars (p1), the spans of the u € [p1](w1)
are also spans in w (as w; is a prefix of w). Hence, we can use the results
from p; unchanged. On the other hand, [p;](w>) determines spans in rela-
tion to wy. Hence, each span [i, j) € Spans (w2) corresponds to the span
[i +¢,j+c) € Spans (w), where ¢ := |w|. The variables zf represent
the start of the span with respect to y», and the conjunction of the equations
(xl.P =y - zl.P ) converts these starts into spans with respect to x,.

The correctness proof is a little lengthy, but straightforward. Assume that
¢p, and @, realize [pi] and [p>]. Assume that ¢,(w) = True for some

tuple w = (w, wf, wlc, e, w,f, wff). By definition of ¢, the tuple w can
be extended into W = (w,wf),wlc,...,wf, wg,ul,ug, vr‘::H,...,vf)

with @7 (w') = True. By observing the structure of ¢;, we obtain:

. w=uy-uy,
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(©)

. wf:ul-vipform+1 <i<n,
iii. ¢, (u;) = True and @), (ux) = True, where
. P C P C
uy = (ul,wl , Wy ,...,wm,wm),
. P c P . C
u = <u2,vm+1,wm+l,...,vn,wn).

From this and our initial assumption, we can conclude that w is spanner
compatible, and that y, € [p1](1) and pu, € [p2](u2) must hold. Thus,
there exits corresponding parse trees 77 and 7> with respective root labels
(u1, p1) and (u3, p2). We combine these into a new parse tree 7 by adding
a new root node (w, p; - p2) that has 77 as left and 7> as right child. As
described in Definition 2.11, this tree 7' defines the w-tuple

T ()= Ll il if 1 <k <mand p () = [ ik, ji),
Lik+lutl, jx + lurl) ifm+1 <k <nand po(xp) = [ ik, jk)-

In other words, for the variables x; to x,,, the w-tuple /LT simulates (1 in
u1, the left part of w; and for the variables x,,11 to x,, it simulates p; in
uy, the right part of w. Hence, all spans for the latter variables are shifted by
|u1|. Using the equalities wl.P =u- vl.P from above, we obtain u! = uw,
which concludes this direction of the correctness proof. The other direction
proceeds analogously: Given u € [p], we can use the corresponding parse
tree T to factorize w into u| and us. We then shift the spans of the variables
Xm+1 10 X, by |u1], and use this to obtain up with @,, (up) = True. No
effort is necessary for uy, and we can then combine u; and u; into a tuple w
with ¢, (W) = True and w = w,,. Thus, ¢, realizes [p].

p = x{p} for some x € {x1,...,x,}, and p is a functional regex formula
with SVars(p) = SVars(p) \ {x}. Without loss of generality, let x = x|. We
define

P C P _Cy.
Qo(Xy, X1, X7 5oy Xy, X)) 1=

P C P _C P _C
<<x1 :s)/\(xl :xw)/\wﬁ (xw,x2 J Xy e Xy Xy ))

The formula uses the fact that in this case, for each u € [p](w), we have that
w(x1) = [1, Jlw| + 1) must hold. This is encoded by xf) = ¢ and xlc = w.
For the correctness proof, assume that ¢ realizes [0]. Going from logic to

spanners, assume that w = (w, w{’, wlC, R w,f, wnc) and ¢, (W) = True.
Due to the structure of the formula, we know that wa =g, wlc = w, and
95 (W) = True forw = (w, wl, ws, . owl wd). As @, realizes [p], we

know that W is spanner compatible, and p¢ € [4](w). Due to this and the
definition of p, we observe u € [p](w) for the w-tuple
(xp) == [L|wl+1)ifk=1,
PRO=4 e () itk > 1.
As 1 = pw, we conclude this direction of the proof. For the other direc-
tion, let u € [p](w). By definition, u(x;) = [1, |w| + 1) and @1 € [p]
for i = plix,,...x,}- Due to our initial assumption, ¢5(wy) = True
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must hold. Note that w, = (w, wf, wzc, R w,f, wnc), and let w =
(w, &, w, wf, wzc, el w,f, wnc). Then @,(W) = True; and as w = w,

this concludes this direction. Thus, ¢, realizes [p].

Finally, note that the size of ¢, is polynomial in the size of p. More importantly, the
construction of ¢, follows the syntax of p, and does not requires expensive additional
computations. Hence, ¢, can be computed in polynomial time. O (Claim 2)

Using Claim 2, we have the conversion for RGX, the class of (functional) regex for-
mulas. As final step of the proof, we extended this to all core spanner representations
(i.e., the full class RGX™¢~-Y>}) Consider an arbitrary core spanner representa-
tions p € RGXI™¢™-U=t with SVars (p) = {x1, ..., x,}, n > 0. We distinguish the
following cases:

1. pis aregex formula. This case is covered in Claim 2.
2. p=myp,withY = SVars (p) and SVars () 2 SVars (p). Assume without loss

of generality that SVars(p) = {xi, ..., Xp1m} with m > 0. We define
P _.C P _C\.
Yo (xw,xl SXT e Xy, ,xn> =
P c P c . . P _C P C
Elanrl’xn-H’ o Xpgms Xndm - Pp (xw’xl s X e ’xn+m’xn+m>

Regarding the correctness, assume that ¢, realizes [4]. Hence, if it € [p](w),
we have ¢;(wy) = True. This means that for u := fily, we know that
¢,(w,) = True holds as well. Likewise, if ¢,(W) = True, there exists an
extension W of w with pg € [0](w). As W is spanner compatible, so is w. Thus,
we observe iy = wwly and uw € [p](w). Hence, ¢, realizes [p].

3. p = ¢{Th, withx € (SVars(p))™, 2 < m < n, and SVars(p) = SVars(p).

Assume without loss of generality that x = (x1, ..., x;,). We define
P P
®p (xw,x1 ,xlc, Ce Xy ,xnc) =
P _C P _C C C
®5 (xw,x1 SXD s X ,xn>A /\ (xl =x; )
2<i<m
Recall that £, only checks whether wy,(y;) = wy(;) holds, not whether

wm(x;) = u(x;). This is equivalent to checking whether xiC = xjc holds.

We only proof the correctness for m = 2, the other cases proceed analogously
(or by reducing them to this binary case). Assume that ¢, realizes [4]. Let u €
[p](w). Then wy(x;) = Wu(xy) and p € [p](w) hold by definition. The latter
implies ¢;(w) = True. Together with the former and the structure of ¢,, we
conclude ¢,(w) = True.

For the other direction, let ¢,(w) = True. By the structure of ¢,, we know
that 95 (w) = True and w{ = w{. As ¢; realizes [5], we have that w is spanner
compatible, and puy € [6](w). Due to wlc = wzc, this implies iy € [p](w) and
concludes the proof that ¢, realizes [p].
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4. p = (p1 U p2), with SVars (p;) = SVars (p2) = SVars (p). Let

P _C P C\._
¢p<xw,x1,x1,...,xn,xn).—
P _C P _C P _C P _C
((pp,<xw,xl,x1,...,xn,xn>\/(pp2<xw,xl,x],...,xn,xn».

In this case, the construction and the correctness proof are identical to case 2a
(disjunction) in the proof of Claim 2.

5. p = (p1 < pp) with SVars (p) = SVars (p;) U SVars (p2). We assume without
loss of generality that SVars(py) = {x1, ..., x;} and SVars(p2) = {x;, ..., Xn}
withO </ <n,1 <m <n+1,and m < [ 4 1. Note that this implies
SVars(p;) N SVars(p2) = {xpm, ..., x1}, and SVars(p;) N SVars(pz) = @ if and
only if m =1 + 1. We define

P _C P _C\.
g0p<xw,x],x1,...,xn,xn).=

P _C P .C P _C P . C
(‘Pm (xw,xl S XD ey X)X )/\gop2 <xw,xm,xm,...,xn ) X, ))

The definition of > requires that u € [p](w) holds if and only if there are
u1 € [p1](w) and py € [p2] (w) with wy(x;) = pa(x;) foralli € {m, ..., 1}.
For each of these variables x;, we have that ¢,, and ¢,, model the span with the
same variables x” and x£.

To prove the correctness, assume that ¢,, and ¢,, realize [p1] and [p2],
respectively. Let ;& € [p](w). Then there exist ;1 € [p1](w) and 2 € [p2] (w)
with 1 = pl(xy,...x) and w2 = plix,...x,}» which implies w1 (xg) = p2(xk)
for m < k < 1. Now, in order to talk about the components of w,, and w,,,, we

name the components of the tuples as w,, = (w,w!, w¢, ..., w/ wf) and
wy, = w,wh wS, ... wl wS). As 11 and 1y agree on their common vari-
ables, we can combine this to w := (w, wf, wlC, R w,f, wf) = W,. As each

@p,; realizes [p;], we know that ¢, (w,,) = True. Hence, ¢,(W,) = ¢,(W) =
True. This concludes this direction.

For the other direction, assume that ¢,(w) = True. Due to the
structure of the formula, this implies ¢, (w;) = True, where w; =
(w, wf), wlc, e, wlP, w,c) and wp := (w, wnfz, w,ﬁ, , w,f, wf). As ¢, real-

izes [p;i], we know that w; is spanner compatible, and uyw, € [p;](w). Due
to the former, w is also spanner compatible. Due to the latter, we know that
ww € [p](w), as pw(xr) = pw, (xx) = pw,(xx) for allm < k < I. Hence, ¢,
realizes [[p].

The formula ¢, can be derived from p without requiring further computation, and its
size is polynomial in the size of p. Hence, ¢, can be constructed in polynomial time.
As we shall see in Section 4.2, this result allows us to find upper bounds on two
problems from the static analysis of spanners. We now examine how spanners can
simulate word equations (and, thereby, also EC™9-formulas). As discussed above,
spanners need to relate their variables to an input word. Hence, we only state the
following result, which is a weaker form of simulation than for the other direction:
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Theorem 3.13 Every word equation n := (nr, nr) with regular constraints C can
be converted effectively into a p € RGX!™ >} with SVars(p) D Vars(n) such that for
all w € X*, there is a solution o of n under constraints C with w = o (np) = o (nR)
if and only if there is a . € [p](w) with o (x) = wy(x) for all x € Vars(n).

Proof As each of the two sides of a word equation is a pattern, we can transform those
into regex formulas by using the a slightly adapted version of the conversion proce-
dure from the proof of Theorem 3.3. Only two changes are made. Firstly, instead of
binding a variable x to some X*, we respect the constraints by using a regular expres-
sion for the language £(C(x)). Secondly, in order to ensure SVars (p) 2 Vars (),
the first occurrence of a variable x is not represented by x1, but by x.

Assume that n; = a1 ---a;, and ng = @y -, Withm,n € Nym + 1 < n,
and o, ..., a, € (¥ U X). We construct regex formulas 77, := &j - - - &, and g :=
Qm+1 - - - &y, Where for each position in 1 < i < n, we define &; as follows:

1. If@; is a terminal (i.e., there is an a € X with o; = a), let &; := a.
2. If «; is a variable (i.e., there is an x € X with o; = x), let y be a regular
expression with £(y) = L(C(x)). Furthermore, let j := oy - - - &j |-

(a) If j =1, define @; := x{y}
(b) If j > 2, define &; := x;{y} (where x; € SVars is a new variable).

This ensures that SVars (7) and SVars (fig) are disjoint. We then construct a
sequence S of string equality selections appropriately: For every x € Vars (1) with
k :=|nLnrlx = 2, the sequence S includes a selection ¢,
Finally, we define p := S(fjL x 7r).
In order to prove that this construction is correct, we show that for all w € X*,
i € [p](w) holds if and only if there is a solution o of 1 under constraints C with

,,,,, Xg*

l. w=o0(L)=0(nr),and
2. o0(x) = wy() forall x € Vars (n).

We begin with the if-direction. Assume that o is a solution of 1 under constraints C.
Let w := o (nr) (which implies w = o (nr), as o is a solution of n). We use this to
define a w-tuple u as follows: Due to our construction, each variable * € SVars (p)
corresponds to a uniquely defined o; with o; = x. If 1 < i < m, then X occurs in 17y,
andif m + 1 < i < n, then X occurs in 7g. We now define u(x) := [/, r), where the
choice of / and r depends on this distinction:

— Ifxoccursinny,let! ;= |o(ay---aj—1)|+1andr :=|o(a;--- o) + 1,
— Ifx occursin ijg, let! := |o(aps1 -+ -i—1)|+ 1 and r := |o (1 - ;)| + 1.

Either way, we know that w3y = o (x) holds, which implies w sy € L(C(x)).
Analogously, we can use o to construct parse trees for (w, 7z) and (w, 7jg). This
allows us to conclude p € [1jL x ng](w). Furthermore, for every selection ¢,
in S, we know from the construction that x and all x; (1 < i < k) refer to the
same x € Vars (n), which means that w, () = wy ;) = o(x) holds. Hence, for
each of these selections, € [, x Ng](w) implies u € [¢r,, o (AL X NR)[(w).

,,,,,
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Thus, 1 € [S(HL x Nr)](w), which is equivalent to i € [p](w) and concludes this
direction of the proof.

For the only if-direction, assume that u € [p](w). We now define a pattern sub-
stitution 0 by o(a) := a foralla € ¥, and o(x) := wy(y) for all x € Vars(n).
By our construction, wu(x) is derived from x{y}, where L£(y) = L£(C(x)) must hold,
which means that w,(,y € £(C(x)), and hence o (x) € L(C(x)). All that remains
to be shown is that o(n) = o(nr) = w. In order to prove this, we first define
W = Wy -+ Wy, and Wr = Wyy4] - - - Wy, where the w; with 1 < i < n are defined
as follows:

1. Ifa; =a € X,letw; :=a. Then w; = & and W = o (¢;) hold by definition.
2. Ifaj=x€eX,letj:=|or---a;|x. We distinguish two cases.

(a) Ifj=1,letw; = wyy). Then o(e;) = w; holds by definition.
(b) Ifj>2letw; = Wy(x;)- Observe that S contains the selection ¢,
Hence, wy(x;) = Wy (x) holds, which implies o (e;) = ;.

..... xg*

Now note that the w; correspond to the labels of the parse trees that have root labels
(w, 1) and (w, Ng). Hence, w;, = w and wg = w must hold. Furthermore, we have
w; = o(;) forall 1 <i < m. This allows us to conclude

U(nL) = o(ay - oy) O(ﬂR):o(am+1...a'1)

= W] Wy =wW[, = Wm+1 "Wy = WR.

We observe o (11.) = o(ng) = w, which concludes this direction of the proof. O]

While this form of simulation is weaker (as w has to be present), it still shows
that the constructed spanner is satisfiable if and only if the word equation (with con-
straints) is satisfiable. Furthermore, the computed (V, w)-relations encode solutions
of the equation.

Example 3.10 Let a,b € X and define  := (xy, yx) with £L(C(x)) = L(aab™)
and £(C(y)) = X. The construction from the proof of Theorem 3.13 results in

P = Ce 8y, (ML X AR,

where 7j; 1= x{aab’}  y{Z*} and fjg := y{Z T} - x2{aab™}.

The only reason that this construction is not necessarily possible in polynomial
time is that regular constraints are specified with NFAs, while core spanners use
regular expressions, which can lead to an exponential increase in the size.

There is a similar construction that does not use the join operator: By adding new
variables z1, z2, we can construct

B = CryCynbay 2o @iliiL}zadiir)),

which behaves almost like p; the only difference that the solution is encoded in w =
o(nL - nR), instead of o ().
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3.3 Xregexes

As shown by Fagin et al. [7], there are languages that are recognized by xregexes, but
not by core spanners. In order to prove this, [7] introduced the so-called “uniform-
0-chunk-language Ly,c: Assuming 0, 1 € X', Ly, is defined as the language of all
W=u=5]-1-85 -t -Sy_1-t-Sy,wheren > 0,s1,...,5, € {1}7,and ¢t € {0}". Then
L(atuze) = Lyge holds for the xregex oz := 17 - x{0*} - (17 - &x)* - 1T, but no core
spanner recognizes L.

Considering that the syntax of regex formulas does not allow the use of vari-
ables inside a Kleene star (or plus), this inexpressibility result might be considered
expected, as oy, has an occurrence of &x inside a Kleene star. This raises the ques-
tion whether xregexes that restrict variables in a similar manner can still recognize
languages that core spanners cannot. In order to examine this question, we define the
following subclass of xregexes:

Definition 3.15 An xregex « is variable star-free (short: vstar-free) if, for every
B € Sub (@) with B = y*, no subexpression of y is a variable binding or a variable
reference. We denote the class of all vstar-free xregexes by vsfXR.

As we shall see in Theorem 3.21 below, every language that is recognized by a
vstar-free xregex is also recognized by a core spanner. While this observation might
be considered not very surprising, its proof needs to deal with some technicalities. In
particular, one needs to deal with expressions like o := x{X*} - (&x V &x&x). A
conversion in the spirit of Theorem 3.3 would need to replace the &x with distinct
variables and ensure equality with selections; but as the disjunction contains subex-
pressions with distinct numbers of occurrences of &x, we would not be able to ensure
functionality of the resulting regex formula. We avoid these problems by working
with the following syntactically restricted class of vstar-free xregexes:

Definition 3.16 An o € vsfXR is an xregex path if, for every B € Sub () with
B = (y1 V y2), no subexpression of y; or y; is a variable binding or a variable
reference. We denote the class of all xregex paths by XRP.

Intuitively, an xregex path @ € XRP can be understood as a concatenation o« =
o - - - oy, where each ; is either a proper regular expression, a variable reference,
or a variable binding of the form «; = x{@}, where & is also an xregex path. By
“multiplying out” disjunctions that contain variables, we can convert every vstar-free
xregex into a disjunction of xregex paths.

Lemma 3.17 There is an algorithm that, given o € vsfXR, computes oy, ..., a, €
XRP with L(a) = |J!_; L(c).

Proof If a vstar-free xregex « is not an xregex path, there exists at least one x €

Vars (o) and at least one subexpression 8 € Sub (@) with 8 # « such that

1. B isadisjunction;i.e., 8 = (y] V y») for some y1, y» € vsiXR,
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2. B contains a variable binding x{- - - } or a variable reference &x.

We now rewrite « into two vstar-free xregexes «; and «y, by replacing 8 with y; or
y2, respectively. We observe that this rewriting step does not change the language:
O

Claim 1 L(a) = L(o1) U L(xn)

Proof If w € L(a), there exists an «-parse tree T for w; in other words, the root of
T is labelled with (w, ). Recall that « is vstar-free. Hence, we know that T" uses the
occurrence of B that was rewritten to create oy and oy at most once (in order to be
able to use the occurrence multiple times, &« would need to contain a star around f).

This allows us to distinguish two possibilities: If 7 does not use this occurrence
of B at all, we can immediately transform 7 into an ¢;-parse tree 7; (i € {1,2}) by
replacing the root label with (w, «;), and changing all children accordingly. Hence,
w € L(w;) holds.

On the other hand, if T uses this occurrence of B, then there exists a uniquely
defined node v in T that is labeled with (w, 8) for some word w € X*. Further-
more, this node corresponds to the occurrence of 8 that was rewritten in oy and .
By definition, v has exactly one child ¢ that is labeled with either (i, y;), where
i € {1,2}. We rewrite T into a a;-parse tree T; by removing v (i.e., 0 replaces v),
relabeling the root of T to (w, «;), and changing all labels between the root and ¥
accordingly. As T; is a «;-parse tree for w, we have that w € L(w;) holds. This proves
L) € L(ay) U L(az).

In order to prove L(«) 2 L(a1)U L(a2), we proceed analogously: If w € L(a1)U
L(ap), we can transform a «; -parse tree for w into an «-parse tree by inserting a node
(w, B) (if necessary), and changing the labels accordingly. U (Claim 1)

Note that this equivalence relies on the fact that « is vstar-free, which implies that
B does not occur inside a Kleene star. For xregexes that are not vstar-free, we can
only conclude L£(«) 2 L(a1) U L(a2). This is easily seen considering the example
of x{a}y{b}(&x Vv &y)*, which would be rewritten to x{a}(&x)* and y{b}(&y)*.

We repeat this rewriting procedure on every created vstar-free xregex that is not an
xregex path. This procedure terminates, as every rewriting removes a disjunction that
contains at least one variable (binding or reference). Hence if « contains k € N.g
disjunctions, this process results in xregex paths «q, ..., o, for some n < 2k and

L) = Uiy Lap).

Example 3.18 Let o := x{X*} - &x - (x{X*} v y{X*}) - (&x V &y) - &x. Multiplying
out the disjunctions, we obtain the following xregex paths:

ap = x{X*} - &x - x{X*} &x - &x,

ay = x{X*}- &x - x{X*} - &y - &x,

az = x{X*} &x - y{X*} - &x - &x,

as = x{ X%} &x - y{X*} - &y - &x.

Then L(a) = U7, L(@).
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This transformation process might result in an exponential number of xregex
paths; but as efficiency is not of concern right now, this is not a problem (the followup
paper Freydenberger [13] shows that this blowup can be avoided with a more involved
construction). Each of these xregex paths is then transformed into a functional regex
formula:

Lemma 3.19 There is an algorithm that, given o € XRP, computes p € RGXV¢7)
with L(p) = L(a).

Proof Before we start with the proof, note that we can safely assume that o does
not contain @: If @ occurs inside a Kleene star (or a disjunction), that Kleene star
(or disjunction) cannot contain any variable bindings or references, as « is an xregex
path. Hence, we can remove @ as in the proof of Theorem 3.12. All other occurrences
of ¥ imply L£(«) = @ — in this case, we are done.

Our goal is to rewrite the xregex path « into an equivalent core spanner of the form
7y S8, where § is a regex formula, and S is a sequence of string equality selections.

The main idea of the construction is quite straightforward: We basically replace
each variable reference &x with a unique x;{X*}, and use a string equality ¢,
to connect x; with the appropriate binding. The only technical problem is that
unlike regex formulas, xregexes allow variables to be bound multiple times. We
solve this by using a unique variable for every occurrence of a variable binding
ina.

As explained above, the xregex path « can be understood as a concatenation
o = «ap --- oy, where each «; is either a proper regular expression, a variable ref-
erence, or a variable binding of the form «; = x{&}, where & is also an xregex
path.

Now, if we choose any occurrence of a variable reference &x in «, exactly one of
the following two cases applies:

1. There is no binding x{} in « that to the left of that occurrence of &x, or
2. there is a binding x{} in « that is to the left of that occurrence of &x.

In the first case, this &x will always default to ¢, which means that we can safely
replace it with €.

In the second case, we see that this &x will always refer to the variable binding
x{} that is closest to it to the left in «. In other words, we can simply read « from
left to right. All &x before the first binding for x default to ¢; and all &x after the
first binding for x refer to the most recent binding for x (recall that, according to
our definition of xregexes, no variable binding for a variable x may contain another
binding of x).

This allows us to rewrite « into an xregex path y with £(y) = L(«) such that no
occurrence of a variable reference &x in y refers to the default value ¢, and every
variable binding x{- - - } occurs at most once. This is done the following way: We read
o from left to right. If we encounter a reference &x for which no binding has been
seen, we replace it with e. If we encounter a binding x{} that has already been seen
before, we replace it with a binding for a new variable X, and all occurrences of &x
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are renamed to &x. (Of course, further occurrences of x{} would require further new
variables.) For example, the xregex path

ay = x{X*} - &x - x{Z¥} - &y - &x
from Example 3.18 would be rewritten to
yy = x{X*} - &x - X{X*} - & - &X.

After rewriting « to y, the next step is to transform y into a regex formula § by replac-
ing all variable references in a manner that is similar to the proof of Theorem 3.3.
More specifically, we construct § by replacing, for each x € Vars (), the i-th occur-
rence of &x in y with x;{X*}. Note that § is functional: Each variable in SVars (8)
appears exactly once in §; and as § is also an xregex path, this implies that every §-
parse tree contains every variable exactly once. (Recall that we assumed that o does
not contain ¢J; hence, neither do y and §.)

For every variable x for which there occur references &x in y, we define a selec-
tion g“‘z , where V, = {x} U {x; | x;j occursiné}. We let S denote a sequence
of these selections (the order is irrelevant), and define the spanner representation
p = mpSS. As we simulate the behavior of each variable binding x{: - - } and its ref-
erences &x using the selection ¢ V. it is easy to see that £L(p) = L(y) and, hence,
L(p) = L(x). O

Example 3.20 Consider the xregex path
o= &x - x{X* - y{ZT*)} - &x - &y - y{ZF) - &x - &y.
The construction from the proof of Lemma 3.19 leads to the equivalent xregex path
y=e-x{Z% y{Z)} - &x - &y - P{ET} &x - &7,
from which we derive the functional regex formula
5= x | () i (Z i EHHE I ZF 5 2,

which we use in the spanner representation p := 3¢, g'&:y] 8. Then L(a) =

L(p).

Sy

As these spanner representations are Boolean, they are also union compatible.
Hence, we can now combine Lemma 3.17 and Lemma 3.19 to observe the following.

Theorem 3.21 There is an algorithm that, given o € vsfXR, computes p €
RGXV™¢7 Y wirh L(p) = L().

In Section 4.2, we use Theorem 3.21 together with the undecidability results
from [12] to obtain multiple lower bounds for static analysis problems. Theorem 3.21
also raises the question whether every language that is recognized by a core span-
ner is also recognized by a vstar-free regular expression. As we have already seen in
Example 3.8, it is possible to express the language

Limp = {w" |w € >t on=>2)

@ Springer



880 Theory Comput Syst (2018) 62:854-898

with core spanners. Hence, under certain conditions, core spanners can simulate
constructions like (&x)*.

While Linp might seem to be an obvious witness that separates the classes of
languages that are recognized by core spanners and by vstar-free xregexes, proving
this appears to be quite involved. Instead, we consider a related language, which
allows us to use the following tool:

Definition 3.22 Letk € N.g. Wecallaset A C N* linear if there exist an r > 0 and
mo, ...,m, € NCwith A = {mo 4+ miy + maio + -+ +myiy | i1,i2,...,i, € N}
A set A C N¥ is semi-linear if it is a finite union of linear sets. Assume X =
{a1, a, ..., a;} with | 2| = k. The Parikh map ¥ : ¥* — NFis defined by ¥ (w) :=
(Jwlg;s [Wlay, - - -, lwlg, ), and is extended to languages by ¥ (L) := {¥(w) | w € L}.
We call L semi-linear if ¥ (L) is semi-linear.

According to Parikh’s Theorem [32], every context-free language is semi-linear.
Moreover, as shown by Ginsburg and Spanier [19], a set is semi-linear if and only if
it is definable in Presburger arithmetic. Building on this, we state the following.

Theorem 3.23 For every a € vstXR, the language L(a) is semi-linear.

Proof In order to increase the readability, we prove the claim for the case | X| = 2
(the adaption to larger alphabets is obvious). We assume X = {a, b} and define
Y(a) := (1,0) and ¥ (b) := (0,1). Assume that Vars () = {xi,...,x;} for
some k € N.g.

It suffices to prove the claim for « € XRP, as semi-linear sets are closed under
union, and (according to Lemma 3.17) every vstar-free xregex is equivalent to a finite
union of xregex paths.

As explained in the proof of Lemma 3.19 (in the construction of y), we can also
assume without loss of generality that every variable binding x{- - - } occurs exactly
once in «, and that no variable reference &x; uses the default binding ¢. In particular,
this means that in every «-parse tree, each variable x; stores exactly one word w;.

Let o be an xregex path that satisfies these conditions. Our goal is to construct a
Presburger formula ¢ such that ¢(n2, n®) is true if and only if (n®, n®) € ¥ (L()).
This formula will use variables x? and xlb to represent |w; |5 and |w; |p, respectively.
Recall that, due to our initial assumptions, each reference &x; refers to the same word
w;; hence, we can safely define the corresponding variables x?* and x;” “globally”
in @.

Let IC{l1, ..., k}. We use x and Xx; as abbreviations for the sequences xf, xf, e
xg, xP and (x2, xP : i € I), and define

@(n?, n®) := 3Ix: @y (n?, n°,x),

where ¢, with Vars(e) = {xi, ..., xx} is constructed according to the following
general procedure.

Given an xregex path y, we define a Presburger formula ¢, as follows: First, as y
is an xregex path, there is a decomposition y = y1-y2-- - y1 (I € N5 o), where each y;
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is either a proper regular expression, a variable reference, or a variable binding of the

form x{y;} such that y; is also an xregex path. For each y;, we use variables n? and

n? to denote the number of a or b that occur in the subword that is generated by y;.
We denote the set of all variables that are bound or referenced in y; by

VarsBR (y;) := Vars (y;) U {x | &x occurs in y;}.

In a slight abuse of notation, we identify XvarsBr(;,) With the sequence (x2, xP

VarsBR(y;)).
Keeping this in mind, we define

X €

a b . a b a b.
©y (n ,n ,XVarSER(y)) :=dnt{,n{,...n;,n;:

I
((na = n? + ..+ nla)/\(nb = nlf + ..+ n}))/\/\ (pyz (n?, n?, XVarsBR(yi))> ,

i=1

where the Presburger formulas are defined as follows:

— If y; is a proper regular expression, then as L£(y;) is semi-linear (as a conse-
quence of Parikh’s theorem [32], every regular language is semi-linear). Hence,
due to Ginsburg and Spanier [19], there is a Presburger formula ¢,, such that
Py, (n?, nP) is true if and only if (n?, n®) € ¥ (L(y;)). We define

@y, (n2, 1P, XvarsBR()) = By (1T, 17) -

In order to avoid potential confusion, note that in this case XvarsBR(y;) 1S the empty
sequence. This is due to the fact that y; is a proper regular expression, which
implies VarsBR (y;) = .

- Ify; = &xj forsome 1 < j <[, we define

oy (nf ny, XVarsBR(y1)) 1= (”la = xf) A (”? = x?) .
— Ify; = x;{8} for some 1 < j </ and some xregex path §, we define

a b e a__ ,a b_ b a b
@y (nf. 17 Xvarssr(y) ) = (”i = xj) A (”i = Xj) A @s (nF, 17, XvarsBR(3)) -

While the definition recurses in the case of xregex paths that contain variable bind-
ings (the third case in the definition of ¢,, above), the formula ¢ is still ensured to be
finite and well-defined (as § is always a subexpression of y and, hence, shorter).

Recall that by our initial assumption, for every variable x;, each variable reference
&x; refers to the same word w;. Taking this into account, we can prove that

W (L(@) = {(n®,n®) | p(n?, n®) is true}

via a straightforward structural induction. O

We use Theorem 3.23 to separate the classes of languages that are recognized by
core spanners and by vstar-free xregexes:

Lemma 3.24 Let Ly = {(ab™)" | m,n > 2} and p := X" (x(abbt)y{Z 1))
for X :={a,b}. Then L,y = L(p), but there is no o € vstXR with L(a) = L.
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Proof Assume that there is an o € vsfXR with L£(«) = Lyg. By Theorem 3.23, L
must be semi-linear. Note that ¥ (L,g) = {(n, mn) | m,n > 2}. As semi-linear sets
are closed under projection (cf. Ginsburg and Spanier [19]), this implies that the set
C = {mn | m,n > 2} is semi-linear, and due to closure under complementation
(also cf. [19]), the set P = {p | p is prime, p = 0, or p = 1} is semi-linear as well.
However, semi-linear sets are finite unions of linear sets, and so P contains a subset
P.y == {c+an | n € N.p} of prime numbers for c > 2 and a > 2. Obviously,
c+ac=c(l+a)e P4, but c(1 4 a) is a composite number. Hence, there is no
o € vsfXR with L(a) = Lyg. O

We do not need the join operator to define non-semi-linear languages: Consider the
core spanner representation o from Example 3.14 with £(p) = Lpg. If we construct
0 as explained below that example, we obtain £(p) = {ww | w € Lyg}, which is
also not semi-linear.

It is worth pointing out Lemma 3.24 does not resolve the open question from [7]
whether there is a language that is recognized by a core spanner, but not by an xregex,
as Theorem 3.23 only applies to vstar-free xregexes. We have already seen languages
that are not semi-linear, but are recognized by xregexes: The language Lg is rec-
ognized by apg = x{abb*}&x™; and a similar approach is used for the following
language (which we already met in Example 2.4):

Example 3.25 Let X' := {a}, and define the language Ly, := {a™" | m,n > 2}. In
other words, Ly is the language of all words a' with i > 4 such that i is not a prime
number. Let anpy := x{aa™} - (&x)*. Then L(anpr) = Lipr-

While Lyg and Lpp, are defined by very similar xregexes, the latter cannot be
recognized by core spanners. In order to show this with a semi-linearity argument,
we observe:

Theorem 3.26 Let |X| = 1 and let P be a core spanner over X. Then L(P) is
semi-linear.

Proof We prove this by showing that on unary terminal alphabets, every EC9-
language is semi-linear. Due to Theorem 3.12, this proves the claim.

Let X = {a}, and consider any EC"™®-formula ¢(w) over X. We show that £(¢)
is semi-linear by converting ¢ into a Presburger formula ¢ for the set ¥ (L(p)) =
{lw| | w € L(p)}. We obtain ¢ by rewriting ¢ in the following way:

1. Each quantifier 3x is replaced with 3x.

2. Each regular constraint L 4 (x) is replaced with a formula ¢4 (X) for the set {|x| |
x € L(A)}. As each L(A) is a regular language, this is possible according to
Ginsburg and Spanier [19].

3. Each word equation n;, = np is replaced with the equation sum(nz) = sum(ng),
where the function sum is defined by sum(a) := 1, sum(x) := X for x € X, and
sum(« - B) := sum(x) + sum(f).
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For example, the word equation xaxyx = ayzzya is converted into the Presburger
equationx + 1 +x+y+x=1+y+2z+2+y+ 1 (for ¥ = {a}). Intuitively,
each variable X in ¢ contains the length of x in ¢ (which, as |¥'| = 1, corresponds
to the Parikh image of that word). Hence, the Presburger formula ¢ defines the set
¥ (L(p)). According to [19], this implies that ¥ (L(¢)) is semi-linear, which means
that L£(¢) is semi-linear. This concludes the proof. O]

Note that this construction only applies to unary alphabets, as this is the only case
where there is a one-to-one correspondence between words and their Parikh images.

Apart from the observation that Ly, from Example 3.25 is not recognized by core
spanners, Theorem 3.26 also allows us to conclude the following.

Corollary 3.27 If|X| = 1, then L(P) is regular for every core spanner P.

In other words, for unary terminal alphabets, core spanners recognize exactly
the same class as regular spanners, namely the class of regular languages (which,
in the unary case, is identical to the class of context-free languages). Furthermore,
Lemma 3.24 and Theorem 3.26 together show the following.

Corollary 3.28 The class of languages that is recognized by core spanners is not
closed under homomorphisms.

We conclude this section with a summary of our insights into the relative expres-
sive power of the various models. To increase readability, we use the following
definitions: Let REG, XR, and PAT denote the class of regular expressions, xregex, or
patterns, respectively. For a class of language recognizing mechanisms D, let L(D)
denote the class of languages that are recognized by elements of D. For example,
L(PAT) is the class of pattern languages, and £(RGX!™¢™Y>}) is the class of lan-
guages that are recognized by core spanners. The hierarchy in Fig. 2 is obtained by
combining the results in the present section with the fact that every pattern language
contains either exactly one or infinitely many words (first observed by Angluin [1]),
and that there are regular languages that are not EC-recognizable (see Karhuméki

L(XR) L(ECTe)
v
6
4| L(RGXImCT Uy 7

5

L(vsFXR) L(EC)

™2 o7

L(REG) L(PAT)

by def.; z{a*}&x

obvious; Angluin [1]

by def.; Angluin [1]

by def.; Example 3.25 4+ Theorem 3.23
Theorem 3.21; Lemma 3.24

Theorem 3.12

by def.; Karhuméki et al. [26]

R

Fig. 2 To the left: The relationship of the various language classes. An arrow denotes proper inclusion (of
the source class in the target class), the dotted arrow denotes inclusion. 7o the right: The references for
these results. See also the explanation at the end of Section 3
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et al. [26]). Two sets of question remain open: Firstly, although Theorem 3.26
together with Example 3.25 shows that there is a language that is recognized by
xregex, but not by EC™9 (and, hence, also not by EC or RGX{™:¢™-Y:><}) it remains
open whether the reverse direction holds as well. Secondly, although we know that
L(RGX!TE U=ty ¢ £(ECT™9), we do not know whether this inclusion is strict. In
fact, it even remains open whether there is a language that is recognized by EC, but
not by RGX"¢7-Y=}This second set of question is discussed in more detail in
Freydenberger [13].

4 Decision Problems
4.1 Spanner Evaluation

We first examine the combined complexity of the evaluation problem for core
spanners. To this end, we define the problem CSp—Eval: Given a core spanner
representation p € RGXV¢-U>} a word w € X*, and a (SVars (p), w)-tuple u,
is u € [p](w)? In order to prove lower bounds for this problem, we consider the
membership problem for pattern languages: Given a pattern « and a word w, decide
whether w € L(«). As shown by Jiang et al. [24], this problem is NP-complete
(for pattern languages that do not allow replacing variables with ¢, this was already
shown by Angluin [1]). Due to Theorem 3.3, we observe the following (the proof of
NP-membership is straightforward).

Theorem 4.1 CSp—Eval is NP-complete, even if restricted to RGX™¢ 7},

Proof In order to prove NP-hardness, it suffices to give a polynomial time reduction
from the membership problem for pattern languages to CSp—Eval. Given a pattern
o and a word w, we use Theorem 3.3 to construct a spanner representation p, €
RGX!™} in polynomial time such that £(a) = L(pg). Next, we define p := 7pp,.
As p represents a Boolean spanner, we define w to be the empty tuple (). Now,
u € [p](w) holds if and only if w € L(w).

We prove membership in NP using the following NP-algorithm: Assume that we
are given a core spanner representation p, a word w € X*, and a w-tuple . For every
regex formula y in p, we nondeterministically guess a w-tuple u,,. By definition,
each of these tuples has a size that is polynomial in |w|. In addition to this, for every
union (p; U pp), we guess a representation p; that is ignored. We then verify these
guesses deterministically: First, we discard all parts of p that are ignored, and obtain
a spanner representation p € RGXps;. For all remaining regex formulas y in p, we
check whether 11, is consistent with  and w. Obviously, this can be done in polyno-
mial time. If all of these checks pass, we evaluate all operators in p. As p contains no
unions, the result of these evaluations is always either {J, or a set that contains exactly
one w-tuple. Hence, this process only takes polynomial time. Furthermore, when it
terminates, it results either in @, or in a w-tuple fi. In the latter case, we return True
if o = . O
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The question arises whether there are natural restrictions to CSp—Eval that make
this problem tractable. It appears that any subclass of the core spanners that extends
regular spanners in a meaningful way while having a tractable evaluation problem
cannot be allowed to recognize the full class of pattern languages.

For pattern languages, it was shown by Ibarra et al. [23] that bounding the number
of variables in the pattern leads to an algorithm for the membership problem with a
running time that is polynomial, although in O(n¥) (where n is the length of the word
w, and k the number of variables). From a parameterized complexity point of view
(see e. g. Grohe and Flum [20]), this is usually not considered satisfactory. Without
going too much into details, in parameterized complexity, one generally considers
parameterized problems tractable that belong to the class FPT (from fixed-parameter
tractable). This class is defined as follows: The input of a parameterized problem is
a pair (x, k), where x is the input of the non-parameterized problem (e. g., a pattern
o and a word w), and k is a parameter of the input (e. g., the number of variables
in «). The parameterized problem is in FPT if there exist a computable function f,
a constant ¢ > 0, and an algorithm that decides the problem in time O (f (k)n°).
We do not define the class W[1], but we note that the standard complexity theoretic
assumption is that if a problem is W[1]-hard, it is not in FPT.

It was first observed by Stephan et al. [34] that the membership problem for pattern
languages is W[1]-complete if the number of variable occurrences (not of variables)
is used as a parameter (see Fernau et al. [11] for the full proof). As the number
of variable occurrences in a pattern corresponds to the number of variables in an
equivalent spanner, this implies that using the number of variables in a spanner as
parameter leads to W[1]-hardness for this parameter of CSp—Eval.

Fernau and Schmid [10] and Fernau et al. [11] discuss these and various other
potential restrictions to pattern languages that still do not lead to tractability (among
these a bound on the length of the replacement of each variable, which corresponds to
a bound on the length of spans). On the other hand, Reidenbach and Schmid [33] and
Fernau et al. [9] examine parameters for patterns that make the membership problem
tractable. While this does not directly translate to spanners, the authors consider these
directions promising for further research.

But apart from these potential restrictions on the use of string equality, other
restrictions are needed, as the use of join also makes evaluation intractable:

Proposition 4.2 CSp—Eval is NP-complete, even if restricted to RGX"><,

Proof We prove this with a reduction from the Clique problem: Given an undirected
graph G = (V, E) and a number k < |V|, decide whether G contains a clique of size
k. This problem is NP-complete (cf. Garey and Johnson [18]). Consider an undirected
graph G = (V, E) with V = {1, ..., n} for some n > 1, and a number k < n. Let
a € X and define w := a" and p := ><y<; < j<k0;, j, Where each o; ; is defined by

o = \/ a" ' xi{ayav ! xj{a}a"".
{u,v}€E,

u<v
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In other words, each part of the disjunction corresponds to a choice of # and v, which
allows [o; ;] (w) to map x; to the u-th and x; to the v-th letter of w. Then . € [p]|(w)

holds if and only if there exist distinct nodes vy, ..., vx € V such that {v;,v;} € E
foralll <i < j <k;and pu(x;) = [vj, v; + 1) for 1 <i < k. Thus, the empty tuple
is an element of [7yp]](w) if and only if G contains a clique of size k. O]

We also consider the data complexity of the evaluation problem for core spanners.
For every core spanner representation p over X, we define the decision problem
CSp—Eval(p): Given a word w € X* and a w-tuple p, is i € [p] (w)? Using a slight
variation of the proof of Theorem 4.1, we obtain the following.

Theorem 4.3 CSp—Eval(p) is in NLOGSPACE for every p € RGXVT-¢ U=l

Proof This result follows from a slight change to the NP-decision procedure from the
proof of Theorem 4.1: We can represent the guessed w-tuples ., for each regex for-
mula y by using two pointers for each ., (x) = [i, j) (one pointer for i, one for j).
As p is fixed, a finite number of such pointers suffices to represent all w-tuples. Fur-
thermore, the verification of these guesses can also be realized nondeterministically
with only a constant amount of additional pointers. O

4.2 Static Analysis

We consider the following common decision problems for core spanner representa-
tions, where the input is p € RGX™¢7Y>} or py, py € RGXIT¢ 7 Uel:

CSp—Sat: Is [[p](w) # @ for some w € X*?
CSp—Hierarchicality: Is [p] hierarchical?
CSp—Universality: Is [p] = Tsvars(p)?
CSp—Equivalence: Is [p1] = [02]?
CSp—Containment: Is [o1] € [p2]?
CSp—Regularity: Is [p] € [RGXY=i]?

A S

We approach the first two of these problems by using Theorem 3.12 to convert core
spanner representations to EC™9-formulas, for which satisfiability is in PSPACE
(cf. Diekert [6]). Hence, we observe:

Theorem 4.4 The problem CSp—Sat is PSPACE-complete, even if it is restricted to
spanner representations from RGX!¢7),

Proof We begin with the upper bound. According to Theorem 3.12, for every core
spanner representation p, there exists an EC™8-formula ¢ that realizes [p]. Further-
more, ¢ can be computed in polynomial time. In particular, ¢ is satisfiable if and only
if p is satisfiable. As satisfiability for EC"9-formulas is in PSPACE (cf. Diekert [6]),
this question can be answered in PSPACE.

For the lower bound, we construct a reduction to CSp—Sat from the intersec-
tion emptiness problem for regular expressions, which is defined as follows: Given
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(proper) regular expressions «f, ..., ¢, decide whether ﬂ?zl L(a;)) = 0. As a
direct consequence of the proof of Lemma 3.2.3 in Kozen [27], this problem is
PSPACE-complete (although Kozen’s proof uses automata, these are defined via reg-
ular expressions). Recall that every proper regular expression is also a functional
regex formula. Hence, we can construct a Boolean spanner representation

xnxl{al} - xpfog ).

,,,,,

Obviously, for every w € X*, we have P(w) # @ if and only if there exists a word
v € X*withw = v and v € L(a;) for 1 < i < n. Hence, P is satisfiable if
and only if (/_, L(e;) # ¥. As PSPACE is closed under complementation, this
proves PSPACE-hardness of CSp—Sat, even when restricted to representations from
the class RGX!¢ ™), O

The proof of the lower bound in Theorem 4.4 uses the PSPACE-hardness of the
intersection emptiness problem for regular expressions. But even if the variables in
the regex formulas were only bound to X, it follows from Theorem 3.13 that this
problem would still be at least as hard as the satisfiability problem for word equations
without constraints. Considering that even proving the decidability was hard (see
Diekert [6] for an overview), approaching CSp—Sat without knowledge on word
equations would have required enormous additional effort.

It is also possible to use EC™9-formulas to express a violation of the criteria for
hierarchicality. This allows us to state the following result:

Theorem 4.5 The problem CSp—Hierarchicality is PSPACE-complete, even if it is
restricted to RGX!¢ ™%},

Proof We begin with of the upper bound. The main idea is that non-hierarchicality
can be expressed in EC™9-formulas. Hence, our goal is to construct a polynomial time
procedure that, given a core spanner representation p € RGX™:¢ :’U’N}, constructs
an EC"™9-formula gny that is satisfiable if and only if [p] is not hierarchical.

Recall that, by definition, for every spanner P and every word w € X*, a w-tuple
W € P(w) is not hierarchical if there exist variables x, y € SVars (P) such that all of
the following hold:

1. The span p(x) does not contain w(y),
2. the span w(y) does not contain 1 (x), and
3. the spans p(x) and w(y) overlap (i. e., they are not disjoint).

If this is the case, we say that w(x) and w(y) strictly overlap. It is easy to see that
two spans [i, j1) and [i2, jo) strictly overlap if one of the following strict overlap
conditions is met:

1. i1 <iy<j1<ja,

2. iy <iy < jp<ji-

For an illustration of these two conditions, see Fig. 3. Our next goal is to define
an EC™®9-formula @y (x?, xC, ¥, yC) that expresses the first condition when
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31 J1 71 J1

io J2 iz J2
Fig. 3 The two possibilities how two spans can strictly overlap (see proof of Theorem 4.5). To the left:
i1 <iy < j1 < ja2. Totheright: ir < iy < j» < Ji

combined with an EC™9-formula that realizes a spanner (we do not need to define
a formula for the second condition, as both conditions are symmetrical). To this
purpose, we first define the EC™9-formula

Pppref (X, y) =3z 1 (La(2) A (x2 = y)),

where A is an NFA with £(A) = X 7. Clearly, (x, y) € X* x X* satisfies @ppref if
and only if x is a proper prefix of y. Next, we define

(pOVI(-xP7-xC9 yPa yc) =
Jz1, 22t ((21 = x"x) A (22 = yPy6)
/\ﬁoppref(xp» yP) A Soppref(yp» 21) A @ppref(21, 22))-

The idea behind the construction is as follows: Recall that this formula is going to
be used together with an EC™9-formula that realizes a spanner. Hence, x© and x¢
represent a span [1 + |x?|, 1 4+ |[xPx€|) = [i1, j1), while y* and y© represent a span
(14 [y, 14+ 1yPyC)) = [i2, j2). In particular, x¥x€ and y* y© are both prefix of
some common word w. Hence, i; < i3 holds if and only if x* is a proper prefix of
yP. Likewise, i» < ji and ji < j, hold if and only if y* is a proper prefix of x*'x€,
or xPx€ is a proper prefix of y* y€, respectively.

In other words, ¢oy1 checks whether the first of the two strict overlap conditions is
satisfied.

We are now ready to construct gng. Let p € RGX™¢ Y} and assume that

SVars (p) = {x1,...,x,} for some n > 2 (spanners with less than two variables
are trivially hierarchical). Using Theorem 3.12), we then construct an EC"9-formula
@p G, xP xC, 00 xP xC) that realizes [p]. We now define
. P .C P _C.
ONH = 3xy, X1, X[, .., X, , X,
P _C P _C P C P C
(pp<xw’x1 s X ey Xy ,xn)/\ \/ ‘Povl(xi » Xi s X ,xj>
1=<i,j=n;
i#]

Assume that [p] is not hierarchical. Then there exist a word w € X*,
a w-tuple u € [p], and x;,x, € SVars(p) such that w(x;) and w(x,)
strictly overlap. As ¢, realizes [p], we have that u defines an assign-
ment (W, Wiy Wiy, j1)s - - - » W[1,in)s Wiy, j,)) that satisfies this subformula (where
[ix, jx} = w(xx)). Furthermore, as w(x,) and w(x;) strictly overlap, either
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povt(xf, xF, xP x$) or gou(x}, xG, xF, xC) is satisfied (f i; < i or im < i,
respectively). Hence, ¢ny is satisfiable.

Likewise, ¢nu is only satisfied if ¢, and (at least) one @oyi (le , xlC, x£ , xg ) are
satisfied. This corresponds to a w-tuple u where p(x;) and p(x,,) strictly overlap.
Hence, u is not hierarchical, which means that [p] is not hierarchical.

Therefore, gy is satisfiable if and only if [p] is not hierarchical. Furthermore,
@NH can be constructed in polynomial time, as we only need to construct ¢, (which is
possible in polynomial time, according to the proof of Theorem 4.4), and an amount
of goyi-formulas that is quadratic in |SVars (p)|, each of which has a constant length.
Both constructions rely solely on the syntax of p, and require no further computation.

As satisfiability of EC™9-formulas can be decided in PSPACE, the complement of
CSp—Hierarchicality is in PSPACE; and as PSPACE is closed under complementa-
tion, this means that CSp—Hierarchicality is in PSPACE.

For the lower bound, we slightly modify the proof of the lower bound for
CSp—Sat. Again, we use the intersection emptiness problem for regular expressions.
Given proper regular expressions «1, . .., oy, we define
o (ri{aaa-ai) - xfaaaca)) x G(E- T D) x (2T 2,

,,,,,

for some a € X. By replacing each ¢; in that proof with aaa - «;, we ensure that
every word w € X* with [¢r; . (xif{aaa-ai}---xp{aaa - an}](w) # ¥ has at
least length 3 (which is the minimal word length for which non-hierarchical spanners
are possible). Furthermore, for each such w, the variable y is assigned the span that
contains all positions of w except the last one, and z is assigned the span that contains
all positions except the first one. Hence, these spans strictly overlap, which means
that p is not hierarchical. On the other hand, if [¢f | (xi{aaa - a1} - xy{aaa -
ayD](w) = @, then [p] = @. Therefore, p is hierarchical if and only if there is no
W € [))<j<p L(e;). As this problem is PSPACE-complete, CSp—Hierarchicality is
PSPACE-hard. O

For the remaining problems, we use Theorem 3.21, and the fact that the undecid-
ability results from Freydenberger [12] also hold for vstar-free xregexes:

Theorem 4.6 The problems CSp—Universality and CSp—Equivalence are not semi-
decidable, but co-semi-decidable. The problem CSp—Regularity is neither semi-
decidable, nor co-semi-decidable. These results hold even if the input is restricted
to RGXI™¢7Uh

Proof The co-semi-decidability of the first two problems is obvious. We discuss this
for universality: For any core spanner representation p, we can always decide whether
[p](w) = Ysvars(p)(w) holds. Hence, we can semi-decide non-universality by enu-
merating all w € X* until we find a word w with [p](w) # Ysvars(p)(w). Thus,
CSp—Universality is co-semi-decidable. The proof for CSp—Equivalence works
analogously.

We now proceed to the proofs of the lower bounds. As shown by Freyden-
berger [12], if | X¥'| > 2, for xregexes «, the following holds:
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— Itis not semi-decidable whether £() = X*,
— It is neither semi-decidable, nor co-semi-decidable whether L(«) is a regular
language.

The proof in [12] takes a Turing machine X (with some additional technical restric-
tions) and computes an xregex «y with a single variable x such that £(«) = X* if
and only if X accepts no input, and L(ay) is regular if and only if X accepts only
finitely many inputs.

These xregexes oy are defined over the alphabet X' = {0, #} and, when adapted
to the notation of this paper, are always of the following shape:

oAy = Cstruc V Ustate V Ohead NV %mod V Xvar -

It is important to note that all subexpressions except oy, are proper regular
expressions, while

Qpar = OVH* 0 - x{0*) - (0] Vo V- Vay)

for some n € Np that depends on X', where all «; are xregex paths that do not contain
variable bindings, and no other variable references than &x.

We note that the single variable biding x{0*} and all variable references &x do not
occur under a Kleene star, and conclude that oy is a vstar-free xregex.

By Theorem 3.21, we can effectively convert every «y into a Boolean spanner
representation py € RGX¢ Y with L(px) = L(ay).

Then [px] = Yy holds if and only if L(ay) = X*. As this question is not semi-
decidable, CSp—Universality is also not semi-decidable. As CSp—Universality is a
special case of CSp—Equivalence, the latter problem is also not semi-decidable.

Furthermore, [px] is a regular spanner if and only if £(ay) is a regular lan-
guage (as shown by Fagin et al. [7], when viewed as language definition mechanisms,
regular spanners define exactly the class of regular languages). This question is nei-
ther semi-decidable, nor co-semi-decidable; hence, this applies to CSp—Regularity
as well. U

As the proof of Theorem 4.6 relies only on Boolean spanners, the decidability
status of CSp—Regularity does not change if the problem asks for hierarchical regu-
larity (i. e., membership in [RGX]) instead of regularity, as the two classes coincide
for Boolean spanners. Likewise, CSp—Universality remains not semi-decidable if one
replaces Ysvars(p) With Tg/ars( o)

In the construction from this proof, variables are only bound to a language a™.
Hence, the same undecidability results hold for spanners that use selections by equal
length relation, instead of the string equality relation. While the proof builds on
xregexes oy that use only a single variable x, the resulting core spanners use an
unbounded amount of variables, as every occurrence of a variable reference &x in
an xregex path is converted to a spanner variable x;. But undecidability remains even
if we bound the number of variables in the spanners, as the oy can be modified to
use only a bounded number of variable references (see Section 4.1 in [12]). Theo-
rem 4.6 also implies that CSp—Containment is not semi-decidable. This holds even
for a more restricted class of spanners:
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Theorem 4.7 The problem CSp—Containment is not semi-decidable, even if it is
restricted to RGXI671,

Proof This proof uses the undecidability of the inclusion problem for pattern lan-
guages, which is defined as follows: Given two patterns « and §, decide whether
L) € L(B).

For unbounded sizes of X, this undecidability was proven by Jiang et al. [25],
and Freydenberger and Reidenbach [15] adapted this proof to all (non-unary) finite
terminal alphabets.

Given two patterns «, 8, we can use Theorem 3.3 to construct spanner represen-
tations py, pg € RGX!™} with L(px) = L(X) for X € {«, B}, and turn these into
representations of Boolean spanners px := mypx. Then [py](w) S [6g](w) holds
for all w € X* if and only if L(a) C L(B).

This shows that CSp—Containment is not decidable. As it is obviously co-semi-
decidable, this also shows that CSp—Containment is not semi-decidable. O]

As shown by Bremer and Freydenberger [4], the inclusion problem for pattern
languages remains undecidable if the number of variables in the patterns is bounded.
In fact, that proof constructs patterns where even the number of variable occurrences
is bounded. Therefore, CSp—Containment is not semi-decidable even if restricted
to representations from RGX!™¢"} with a bounded number of variables. It is a hard
open question whether the equivalence problem for pattern languages is decidable (cf.
Ohlebusch and Ukkonen [31], Freydenberger and Reidenbach [15]). Undecidability
of this problem would imply undecidability of CSp—Equivalence, even if restricted
to representations from RGX!™¢7 1,

We conclude this part of the section with a table that summarizes our results on
decision problems:

Problem Status Reference
CSp—Eval NP-complete Theorem 4.1,
Proposition 4.2

CSp—Eval(p) in NLOGSPACE Theorem 4.3
CSp—Sat PSPACE-complete Theorem 4.4
CSp—Hierarchicality PSPACE-complete Theorem 4.5
CSp—Universality co-semi-decidable, not semi-decidable =~ Theorem 4.6
CSp—Equivalence co-semi-decidable, not semi-decidable Theorem 4.6
CSp—Containment co-semi-decidable, not semi-decidable Theorem 4.7
CSp—Regularity neither semi-, nor co-semi-decidable Theorem 4.6

Details under which restrictions the lower bounds persist can be found in the
respective results.
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4.2.1 Minimization and Relative Succinctness

In order to address the minimization of spanner representations, we first formalize
the notion of the size or complexity of a spanner representation. Even for proper
regular expressions, there are various different definitions of size, see e. g. Holzer
and Kutrib [22], and there might be convincing reasons to add additional weight to
the number of variables or other parameters. As we shall see, these distinctions do
not affect the negative results that we prove later. Hence, instead of defining a single
fixed notion of size, we use the following general definition of complexity measures
from Kutrib [29]:

Definition 4.8 Let SR be a class of spanner representations. A complexity measure
for SR is a recursive function c: SR — N such that for each X, the set of all p € SR
that represent spanners over X' can be effectively enumerated in order of increasing
c(p), and does not contain infinitely many p € SR with the same value c(p).

By recursive, we mean a function that is total and computable. Definition 4.8
is general enough to include all notions of complexity that take into account that
descriptions are commonly encoded with a finite number of distinct symbols, and
that it should be decidable if a word over these symbols is a valid encoding from
SR. Regardless of the chosen complexity measure, computable minimization of core
spanners is impossible:

Theorem 4.9 Let ¢ be a complexity measure for RGXVT¢ ™Yol There is no algo-
rithm that, given a p € RGXT¢79>} computes an equivalent p € RGXIT¢ U=}
that is c-minimal.

Proof Define Umin to be the set of c-minimal core spanner representations of Yy. By
the definition of a complexity measure, Uni, is finite. Hence, given a core spanner
representation p, we can decide whether p € Upin.

Now assume there is an algorithm MIN, that minimizes core spanner representa-
tions with respect to c. Given a core spanner representation p, we can decide whether
[e] = [Yg], by checking whether MIN.(p) € Umin. But as shown in Theorem 4.6,
this problem is undecidable. Hence, MIN, cannot exist. O

In addition to regex formulas, Fagin et al. [7] also define spanner representa-
tions that are based on so-called vset- and vstk-automata (denoted by VAse: and
VAst)- They show [VAsi] = [RGX] and [VAset] = [RGX™Y>], and conclude that
[VAet ™67 Uml] = [VAg! ™6™ V] = [RGXI™¢ 7Y} Without going futher into
details, we note that their equivalence proofs use computable conversions between
the models. Hence, Theorem 4.9 also applies to those spanner representations from
[7] that can express core spanners, like VAgy ¢ Y} and VAget™¢ V> and it
implies that an algorithm that converts from one of these classes of representations
to another cannot guarantee that its result is minimal.
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Using a technique by Hartmanis [21], we can use the fact that CSp—Regularity
is not co-semi-decidable to compare the relative succinctness of regular and core
spanner representations:

Theorem 4.10 Let c1 and ¢ be complexity measures for the classes RGX"Y" and
RGX\¢7U) respectively. For every recursive function f: N — N, there exists a
o € RGXVE79> sych that [p] € [RGXTV=4], but c1(p) > f(ca(p)) holds for
every p € RGX'™Y b with [5] = [p].

Proof For the sake of a contradiction, assume that there exist complexity measures ¢
for RGX™-U>} and ¢, for RGX!™¢7-YU> as well as a recursive function f such that,
for every core spanner representation p € RGX!™¢™ > with [p] e [RGXY>],
there exists a regular spanner representation 5 € RGX™Y> with [5] = [p] and
c1(p) < f(ca(p)). Our goal is to show that this implies that the set

NR := {p € RGX"¢U> | there is no pg € RGXY> with [e] = [pr]}

is semi-decidable. As CSp—Regularity is not co-semi-decidable (Theorem 4.6), this
will yield the desired contradiction.

We define a semi-decision procedure for NR as follows: Given a core spanner
p € RGXIm¢7 Ul compute a complexity bound n := f(c2(p)). We define

Fy = {pr € RGX™Y™ | ¢ (op) < n).

By Definition 4.8, the set F), is finite, and we can effectively enumerate its elements
POl, ..., pr fork : = |F,]|.

Also by definition, we know that if there exists a pg € RGX!™Y>} with [pg] =
[o], there exists a pr € RGX™Y>} with [pr] = [p] and pg € F,. In other words:
If [p] is expressible with regular spanners, it is expressible with a regular spanner
representation p that satisfies the complexity bound 7.

For all p; € F,, we now semi-decide [p] # [p:]. In order to do this, we enumerate
all w € X*. In each step, if [p](w) # [p:i](w) holds, we mark p; as not equivalent
to p.

If all spanners in F, are marked, we know that no regular spanner [pg] with
[pr] = [p] exists, and put out True. As F, is finite, this point is reached in a
finite number of steps if there is no such spanner. On the other hand, if such a
spanner exists, the procedure will never terminate. Hence, we have defined a semi-
decision procedure for NR, which implies that CSp—Regularity is co-semi-decidable,
a contradiction to Theorem 4.6. O

Hence, the blowup from RGX!™¢™ Y=} to RGX!™Y>} is not bounded by any
recursive function. As above, we can replace each of this classes with a class with the
same expressive power; for example, we can replace RGX!™Y->} with VAstk{”*U’M},
VAset, OF VAset{” e (or, as the proof uses Boolean spanners, RGX or VAgy, or any
class between those).
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We also consider the relative succinctness of representations of core spanners and
representations of their complements. For every spanner P, we define its comple-
ment compl(P) = Yvars(p) \ P, and its hierarchical complement complH (P) :=

H
TVars(P) \ P.

Theorem 4.11 Let ¢ be a complexity measure for RGX\™:¢7- Ut For every recursive
function f: N — N, there exists a p € RGXT¢Y>} such that

1. C([p]) € [RGXETV=] put B
2. c(p) > f(c(p)) holds for every p € RGXTE7-Y=t with [ 5] = compl([p]).

This also holds if we consider CH instead of C.

Proof 1t suffices to prove the claim for Boolean core spanner representations (hence,
we can focus on the case of C, and do not need to consider CH separately). For
convenience, we define the set of all Boolean core spanner representations

BCSR := {p € RGX™¢ Y4 | svars (p) = 0).

As preparation for the actual proof, we consider the following sets of Boolean core
spanner representations:

FIN := {p € BCSR | L(p) is finite},
COF := {p € BCSR | L(p) is co-finite}.

This proof heavily relies on various sets from the first two levels of the arithmetic
hierarchy (cf. Kozen [28]). Without going into further details, note that E? is the

family of all sets that are semi-decidable (recursively enumerable), 17 ? is the family
of all thats that are co-semi-decidable (co-recursively enumerable), and AV=x ? N
I ? is the family of all sets that are decidable.

Regarding the next level, Eg is the family of all sets that are semi-decidable when
using oracles for sets in X 10 (or in IT ?), Hg is the family of all sets that are co-semi-
decidable when using such oracles. Finally, Ag = Eg N Hg is the family of all sets
that are decidable when using oracles for sets in E? orin IT ? . O

A central part of our reasoning in this proof is the following observation:
Claim 1 COF ¢ A).

Proof As shown in Freydenberger [12], the xregexes that we used in the proof of
Theorem 4.6 also prove that co-finiteness for vstar-free xregexes is Eg—complete.
Hence, the proof of Theorem 4.6 also implies that COF is Z‘g -hard. This immedi-
ately implies COF ¢ AY; as otherwise, Z‘g = Ag would hold, which contradicts the
fact that the arithmetical hierarchy is a proper hierarchy. O (Claim 1)
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Our goal is to use Claim 1 to obtain the contradiction on which this proof rests.
More precisely, we shall prove that any recursive bound on the size of the core span-
ner for a complement can be used to prove COF € Ag. One of the central parts of our
reasoning shall be the following result.

Claim 2 FIN € 2.

Proof We give the following semi-decision procedure for FIN. Let p € BCSR.
Enumerate all finite sets S C X*. For each set, we check the following two
conditions:

1. SCL(p)
2. LPNZ*\S)=0

Note that both conditions are decidable: As S is finite, the first condition can be
checked by deciding if w € L(p) for each w € §.

For the second condition, we first construct a regular expression « with L(a) =
(X*\ S). Then, we define the Boolean core spanner representation pg := o N p. As
L(ps) = L) N L(p) = (X*\ §) N L(p), we can decide the second condition by
checking if L£(pg) = @ (which is decidable, according to Theorem 4.4).

If S satisfies both conditions, S = L(p) holds. Hence, £(p) is finite, and the
semi-decision procedure returns True. Furthermore, for every p € FIN, the pro-
cedure will (after a finite number of enumerated finite sets) check the set § =
L(p), and then return True. Thus, FIN is semi-decidable, which is equivalent to
FIN € X0, O (Claim 2)

The next observation is not very deep; but in order to streamline the flow of our
later reasoning, we state it as a separate claim.

Claim 3 For every p € BCSR, we have that p € COF holds if and only if there is a
6 € FIN with [g] = C([p])-

Proof Let p € BCSR. We begin with the if-direction. Assume there exists a p € FIN
with [p] = C([p]). As p € FIN, the language L£(p) is finite, which implies that
L(p) = X*\ L(p) is co-finite. Hence, p € COF.

For the only-if direction, let p € COF; i.e., L(p) is co-finite. Hence, X* \ L(p)
is finite, and regular. Thus, there exists a proper regular expression p with £(5) =
2*\ L(p). As every proper regular expression is also a functional regex formula with
no variables (and, hence, Boolean), p € BCSR follows. This gives 0 € FIN, while
[6] = C([p]) holds by our choice of p. O (Claim 3)

We now proceed to the main part of the proof, which uses these claims. Let ¢ be a
complexity measure for the class RGX!>¢~-Y>} Assume that there exists a recursive
function f: N — N such that for all p € RGX!™¢™Y>} for which C([p]) is a
core spanner, there exists a p € RGX!™¢ VU= with [5] = C([p]) and c(p) <
Fe().
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Our goal is to show that this assumption implies that COF is in Ag. We prove this

by defining a decision procedure with oracles for 2? and Hg on the input p € BCSR
as follows. First, compute n := f(c(p)), and let

R, = {p € BCSR | ¢(p) < n}.

From Claim 3, we know that p € COF if and only if there is a p € FIN with [p] =
C([p])- Due to our assumption on f, this holds if and only if such a p exists in R,.
We now check for each p € R, whether it satisfies these two criteria:

l. 6 €FIN

2. [a] =ceD

Due to Claim 2, we know that FIN is in Z‘? . Hence, the first criterion can be decided
with a Z‘?—oracle.

Regarding the second criterion, note that [5] # C([p]) is semi-decidable (as
it suffices to find a w € X* that disproves the equality). Hence, this criterion is
co-semi-decidable, which means that it can be decided with a IT ?-oracle.

If there exists a p € R, that satisfies both criteria, the procedure returns True. In
this case, p € COF holds by Claim 3; hence, this is correct.

If no such o can be found among the (finitely many) elements of R,,, the procedure
returns False. As mentioned above, this is correct due to our assumptions on f.

As COF can be decided by using oracles for ZJ? and I7 ? , we know that COF € Ag
must hold. This contradicts Claim 1. As our only assumption was the existence of the
recursive bound f, no such bound can exist.

In other words, there are core spanners where the (hierarchical) complement is also
a core spanner, but the blowup between their representations is not bounded by any
recursive function. Again, this holds for the other classes of representations as well.

This result has consequences to an open question of Fagin et al. One of the central
tools in [7] is the core-simplification-lemma, which states that every core spanner is
definable by an expression of the form wy SA, where A is a vset-automaton, V C
SVars (A), and S is a sequence of selections Sy for x, y € SVars (A).

In addition to core spanners, Fagin et al. also discuss adding a set difference
operator \, and ask “whether we can find a simple form, in the spirit of the
core-simplification lemma, when adding difference to the representation of core
spanners”. It is a direct consequence of Theorem 4.11 that such a simple representa-
tion, if it exists, cannot be obtained effectively, as reducing the number of difference
operators can lead to a non-recursive blowup. While this observation does not prove
that such a simple form does not exist, it suggests that any proof of its existence
should be expected to be non-constructive.

5 Conclusions and Further Work

In Section 3, we have seen that core spanners can express languages that are defined
by patterns or by vstar-free xregexes. We used this in Section 4 to derive various lower
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bounds on decision problems, even for subclasses of core spanner representations.
Note that in most of the cases, these lower bounds do not require the join operator,
and mostly rely on the string equality selection. This can be interpreted as a sign that
string equality (or repetition) is an expensive operator, in particular as similar results
have been observed for related models (e. g., [2, 12, 16]). On the other hand, Propo-
sition 4.2 demonstrates that even without string equality, join is also an expensive
operator. The authors take this as a sign that the search for good restrictions on core
spanners will probably have to combine restrictions on string equality and on join.

There is also reason to hope that the connections to patterns and word equations
can be beneficial for spanners: There is recent work on restricted classes of pat-
tern languages with an efficient membership problem (e. g., [10, 33]), which could
lead to subclasses of spanners that can be evaluated more efficiently. Furthermore, as
Theorems 3.12 and 3.13 show, core spanners and word equations with regular con-
straints are closely related. Recent work on word equations has also considered tasks
like enumerating all solutions of an equation. The employed compression techniques
(cf. [6]) might also be used to improve the evaluation of core spanners. In particular,
the EC™9-formulas that are constructed in the proof of Theorem 3.12 have the spe-
cial property that there is a variable x,, (for w), and for every solution ¢ and every
variable x, we have that o (x) is a subword of o (xy,).

Freydenberger [13] builds on this observation and introduces a fragment of EC"™9
that has exactly the same expressive power as core spanners. The connection is even
stronger: As shown in [13], there exist polynomial time conversions between this
fragment and core spanner representations. It remains to be seen whether the con-
nection between spanners and word equations can also be used to find interesting
subclasses of core spanners that have friendlier upper bounds (in particular regarding
evaluation).

Also note that conversion from vstar-free regular expressions to core spanner rep-
resentations that is used for Theorem 3.21 can lead to an exponential increase in size.
As shown in [13], this blowup can be avoided by using a more involved construction.

Finally, while we only mentioned this explicitly in Section 4.2.1, note that most of
the other results in this paper can also be directly converted to the appropriate spanner
representations that use vset- and vstk-automata from [7].
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