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Abstract: Global attraction to solitary waves is proved for a model U(1)-invariant
nonlinear 1D Dirac equation coupled to a nonlinear oscillator: each finite energy so-
lution converges as t → ±∞ to a set of all “nonlinear eigenfunctions” of the form
ψ1(x)e−iω1t +ψ2(x)e−iω2t . The global attraction is caused by nonlinear energy transfer
from lower harmonics to continuous spectrum and subsequent dispersive radiation. We
justify this mechanism by a strategy based on inflation of spectrum by the nonlinear-
ity. We show that any omega-limit trajectory has the time-spectrum in the spectral gap
[−m,m] and satisfies the original equation.Then the application of the Titchmarsh con-
volution theorem reduces the spectrum of the omega-limit trajectory to two harmonics
ω j ∈ [−m,m], j = 1, 2.

1. Introduction

Themain goal of our paper is global attraction to solitarymanifold for 1DDirac equation
with point coupling to an U(1)-invariant nonlinear oscillator. This goal is inspired by
fundamental mathematical problem of an interaction between fields and point particles.
Point interaction models were first considered since 1933 in the papers ofWigner, Bethe
and Peierls, Fermi and others (see [2] for a detailed survey) and of Dirac [9]. Rigorous
mathematical results were obtained since 1960 by Zeldovich, Berezin, Faddev, Cornish,
Yafaev, Zeidler and others [3,7,11,33,35], and since 2000 by Noja, Posilicano, Yafaev
and others [1,34].

In the case of the Maxwell field its coupling to a point particle is not well defined
because the Hamilton functional is not bounded from below. This problem was resolved
byAbrahamby introduction of “extended electron” [31]. In the case of theDirac equation
the Hamilton functional also is not bounded from below even for the extended particle.
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So one need to find an appropriate type of point interaction to the 1D Dirac equation
which guarantees a priori estimates sufficient for the global attraction. We have found a
novel model of such coupling which provides the Hamilton structure and needed a priori
estimates. Namely, we consider the following Dirac equation

iψ̇(x, t) = Dmψ(x, t) − D−1
m δ(x)F(ψ(0, t)), x ∈ R. (1.1)

Here Dm is the Dirac operator Dm := α∂x + mβ, where m > 0, and

α =
(

0 1
−1 0

)
, β =

(
1 0
0 −1

)
,

ψ(x, t) = (ψ1(x, t), ψ2(x, t)) is a continuous C
2-valued wave function, and F(ζ ) =

(F1(ζ1), F2(ζ2)), ζ = (ζ1, ζ2) ∈ C
2, is a nonlinear vector function. The dots stand for the

derivatives in t . All derivatives and Eq. (1.1) are understood in the sense of distributions.
We assume that Eq. (1.1) is U(1)-invariant; that is,

F(eiθ ζ ) = eiθ F(ζ ), ζ ∈ C
2, θ ∈ R. (1.2)

This condition leads to the existence of two-frequency solitary wave solutions of type

ψ(x, t) = φω1(x)e
−iω1t + φω2(x)e

−iω2t , (ω1, ω2) ∈ R
2. (1.3)

We prove that indeed they form the global attractor for all finite energy solutions to
(1.1). Namely, our main result is the following long-time asymptotics: In the case when
polynomials Fj are strictly nonlinear, any solution with initial data from H1(R) ⊗ C

2

converges to the setS of all solitary waves:

ψ(·, t) −→ S , t → ±∞, (1.4)

where the convergence holds in local H1-seminorms.
The asymptotics of type (1.4) was discovered first for linear wave and Klein–Gordon

equations with external potential in the scattering theory [13,14,27,32]. In this case, the
attractor S consists of the zero solution only, and the asymptotics means well-known
local energy decay.

The attraction to the set of all static stationary states with ω = 0 was established in
[15–24] for a number nonlinear wave problems.

First results on the attraction to the set of all stationary orbits for nonlinear U(1)-
invariant Schrödinger equations were obtained in the context of asymptotic stability.
This establishes asymptotics of type (1.4) but only for solutions with initial date close
to some stationary orbit, proving the existence of a local attractor. This was first done
in [28,29], and then developed in [1,4–6,8,21] and other papers.

The global attraction of type (1.4) to the solitary waves was established (i) in [17,20]
for 1D Klein–Gordon equations coupled to nonlinear oscillators; (ii) in [18,19] for nD
Klein–Gordon and Dirac equations with mean field interaction; (iii) in [25,26] for 3D
wave and Klein–Gordon equations with concentrated nonlinearity. The global well-
posedness and the global attraction (1.4) for the Dirac equationits with concentrated
nonlinearity was not considered previously as well as the attraction to solitary waves
with two frequencies.

In previousworks [17,18,20,25,26] for thewave andKlein–Gordon fields theHamil-
ton functionals are bounded from below under appropriate assumptions. In the case of
distributed interaction of the Dirac field with a nonlinear oscillator [19] the Hamilton
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functional is not bounded from below, and the global well-posedness is derived from the
charge conservation.

In our case with the point interaction the charge conservation is not sufficient since
ψ(0) is not well defined for ψ ∈ L2(R). That’s why we suggest a novel model of 1D
Dirac equation with a nonlinear point interaction (1.1) providing the Hamilton structure
and strong a priori estimates.

Let us comment on our approach. First we prove the omega-limit compactness. This
means that for each sequence s j → ∞ the solutions ψ(x, t + s j ) contain an infinite
subsequence which converges in energy seminorms for |x | < R and |t | < T for any
R, T > 0. Any limit function is called as the omega-limiting trajectory γ (x, t). To prove
the global convergence (1.4) is suffices to show that any omega-limiting trajectory lies
on S .

The proof relies on the study of the Fourier transform in time ψ̃(x, ω) for each x ∈ R

and of its support suppψ(x, ·) which is the time-spectrum. The key role is played by
the absolute continuity of the spectral densities ψ̃(x, ·) outside the spectral gap [−m,m]
for each x ∈ R. The absolute continuity is a nonlinear version of Kato’s theorem on
the absence of the embedded eigenvalues and provides the dispersion decay for the high
energy component. Any omega-limit trajectory is the solution to (1.1).

This absolute continuity provides that the time-spectrum of γ̃ (x, ·) = (γ̃1(x, ·),
γ̃2(x, ·)) is contained in the spectral gap [−m,m] for each x ∈ R. Finally, we ap-
ply the Titchmarsh convolution theorem (see [12, Theorem 4.3.3]) to conclude that
time-spectrum of each components γ j (x, ·) of omega-limit trajectory consists of two
frequencies. The Titchmarsh theorem controls the inflation of spectrum by the nonlin-
earity. Physically, these arguments justify the following binary mechanism of the energy
radiation, which is responsible for the attraction to the solitary waves: (i) nonlinear en-
ergy transfer from the lower to higher harmonics, and (ii) subsequent dispersion decay
caused by the energy radiation to infinity.

The general scheme of the proof bring to mind the approach of [17]. Nevertheless
the formulation of the problem and the techniques used are not a straightforward gener-
alization of the one-dimensional result [17].

In [17] the problem reduces to proving a global attraction for the solution ψS(x, t) to
the Klein–Gordon equation with the source F(ψ(0, t))δ(x) and with zero initial data.
In this case the corresponding Fourier transform of ψS(x, t) has a simple structure.
Namely,

ψ̂S(x, ω)= ẑ(ω)eik(ω)|x |, ẑ(ω)=− f̂ (ω)/(2ik(ω)), k(ω)=
√

ω2 − m2, ω ∈ R,

(1.5)

where f (t) = F(ψ(0, t)). Moreover, z(t) = ψS(0, t), and similar representation holds
for bounded and dispersion parts ofψS(x, t). The key role in the proof plays the absolute
continuity of ẑ(ω) on the continuous spectrum |ω| > m of the Klein–Gordon generator.

In our case one need to prove a global attraction for the solutionψS(x, t) to the Dirac
equation with the source D−1

m F(ψ(0, t))δ(x). The corresponding Fourier transform
ψ̂S(x, ω) has more complicated structure than (1.5) [see formulas (4.3)–(4.4)]. Now

ẑ±(ω)eik(ω)|x | with ẑ±(ω) = −(I + m
ω

β ± ik(ω)
ω

α
) f̂ (ω)
2ik(ω)

is only a part of ψ̂S(x, ω)

for ±x > 0. Moreover, z±(t) �≡ ψS(0, t), and the representation (4.4) holds only for
|ω| > m. To solve this difficulty, we derive a novel continuity properties for f̂ (ω) (see
Lemma4.3), Moreover, we use an alternative representation (3.14) for |ω| < m.
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The plan of the paper is as follows. In Sect. 2 we state the main assumptions and
results. In Sect. 3 we eliminate a dispersive component of the solution and construct
spectral representation for the remaining part. In Sect. 4 we prove absolute continuity
of high frequency spectrum of the remaining part. In Sect. 5 we exclude the second
dispersive component corresponding to the high frequencies. In Sect. 6 we establish
compactness for the remaining component with the bounded spectrum. In Sect. 7 we
state the spectral properties of all omega-limit trajectories and apply the TitchmarshCon-
volution Theorem. In Appendices we establish the global well-posedness for Eq. (1.1)
and prove global attraction (1.4) in the case on linear F(ψ).

2. Main Results

Model. We consider the Cauchy problem for the Dirac equation coupled to a nonlinear
oscillator:{

iψ̇(x, t) = Dmψ(x, t) − D−1
m δ(x)F(ψ(0, t)), t ∈ R

ψ |t=0 = ψ0(x),

∣∣∣∣ x ∈ R. (2.1)

We will assume that the nonlinearity F = (F1, F2) admits a real-valued potential:

Fj (ζ ) = −∂ζ j
U (ζ ), ζ j ∈ C, j = 1, 2, U ∈ C2(C2). (2.2)

Then Eq. (2.1) formally can be written as a Hamiltonian system,

ψ̇(t) = J DH (ψ), J = −i D−1
m ,

where DH is the variational derivative of the Hamilton functional

H (ψ) = 1

2
〈ψ, (−∂2x + m2)ψ〉 +U (ψ(0)). (2.3)

Global well-posedness. To have a priori estimates available for the proof of the global
well-posedness, we assume that

U (ζ ) ≥ A − B|ζ |2, ζ ∈ C
2, A ∈ R, 0 ≤ B < m. (2.4)

Wewill write L2 and H1 instead of L2(R)⊗C
2 and instead of H1(R)⊗C

2, respectively.

Theorem 2.1. Let conditions (2.2) and (2.4) hold. Then:

1. For everyψ0 ∈ H1 theCauchy problem (2.1) has a unique solutionψ(t) ∈ C(R, H1)

∩ C1(R, L2).
2. The map W (t) : ψ0 → ψ(t) is continuous in H1 for each t ∈ R.
3. The energy is conserved:

H (ψ(t)) = const, t ∈ R. (2.5)

4. The following a priori bound holds:

‖ψ(t)‖H1 ≤ C(ψ0), t ∈ R. (2.6)

We prove this theorem in “Appendix A”.
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Solitary waves and the main theorem. We assume that the nonlinearity is polynomial.
More precisely,

U (ζ ) = U1(ζ1) +U2(ζ2), ζ j ∈ C, (2.7)

where

Uj (ζ j ) =
N j∑
n=0

un, j |ζ j |2n, un, j ∈ R, uN j , j > 0, N j ≥ 2, j = 1, 2. (2.8)

This assumption guarantees the bound (2.4) and it is crucial in our argument: it allow to
apply the Titchmarsh convolution theorem. Equality (2.8) implies that

Fj (ζ j ) = −∂ζ j
U j (ζ j ) = a j (|ζ j |2)ζ j , j = 1, 2, (2.9)

a j (|ζ j |2) := −
N j∑
n=1

2nun, j |ζ j |2n−2. (2.10)

Definition 2.2. (i) The solitary wave solution of Eq. (1.1) are solutions of the form

ψ(x, t) = φω1(x)e
−iω1t + φω2(x)e

−iω2t , (ω1, ω2) ∈ R
2,

φωk ∈ H1, k = 1, 2. (2.11)

(ii) The solitary manifold is the set:S = {φω1 + φω2 : (ω1, ω2) ∈ R
2
}
.

Note that for any (ω1, ω2) ∈ R
2 there is a zero solitary wave with φω1 = φω2 ≡ 0, since

F(0) = 0. From (2.7) it follows that the set S is invariant under multiplication by eiθ ,
θ ∈ R.

Denote κ j = κ(ω j ) =
√
m2 − ω2

j > 0 for ω j ∈ (−m,m).

Proposition 2.3 (Existence of nonzero solitary waves). Assume that F(ζ ) satisfies (2.9).
Then nonzero solitarywavesmay exist only forω j ∈ (−m,m). The amplitudes of solitary
waves are given by

φω1(x) = C1

(
e−κ1|x | + me−κ1|x |−κ1e−m|x |

ω1

κ1sgnx e−κ1|x |−e−m|x |
ω1

)
,

φω2(x) = C2

(
−κ2sgnx e−κ2 |x |−e−m|x |

ω2

e−κ2|x | − me−κ2 |x |−κ2e−m|x |
ω2

)
. (2.12)

where C j are solutions to

2C jκ j = Fj

(
C j

[
1 + (−1) j+1

m − κ(ω j )

ω j

])
, j = 1, 2. (2.13)
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Corollary 2.4. Substituting (2.12) into (2.11)we obtain the following representation for
solitary wave solutions

ψ(x, t) = C1

(
e−κ1|x | + me−κ1|x |−κ1e−m|x |

ω1

κ1sgnx e−κ1|x |−e−m|x |
ω1

)
e−iω1t

+C2

(
−κ2sgnx e−κ2 |x |−e−m|x |

ω2

e−κ2|x | − me−κ2 |x |−κ2e−m|x |
ω2

)
e−iω2t . (2.14)

Proof of Proposition 2.3. We look for solution ψ(x, t) to (1.1) in the form (2.11). Con-
sider the function

χ(x, t) := ψ(x, t) − i D−1
m ψ̇(x, t) = χω1(x)e

−iω1t + χω2(x)e
−iω2t , (2.15)

where

χωk = φωk − ωk D
−1
m φωk = D−1

m (Dm − ωk)φωk , k = 1, 2.

Hence,

φωk = Dm(Dm − ωk)
−1χωk = Dm(Dm + ωk)(D

2
m − ω2

k )
−1χωk

= χωk + (ω2
k + ωk Dm)(D2

m − ω2
k )

−1χωk . (2.16)

Equation (1.1) implies, that

Dmχ(x, t) = Dmψ(x, t) − iψ̇(x, t) = D−1
m F(ψ(0, t))δ(x).

Applying the operator Dm , we obtain by (2.15)

e−iω1t D2
mχω1(x) + e−iω2t D2

mχω2(x) = F(ψ(0, t))δ(x), D2
m = −∂2x + m2.

Therefore, in the case ω1 �= ω2,

χωk , j (x) = Ckj
e−m|x |

2m
, k, j = 1, 2, (2.17)

where Ckj are solutions to

e−iω1tC1 j + e−iω2tC2 j = Fj (φω1, j (0)e
−iω1t + φω2, j (0)e

−iω2t ), j = 1, 2.

(2.18)

We can also assume this formulas in the case ω1 = ω2 setting χω2 = 0.We will return to
Eq. (2.18) later. First we derive the explicit formulas for φωk (x), using (2.16) and (2.17)
only. Applying [10, Formula 1.2.(11)], we get

(D2
m − ω2

k )
−1Ckj e−m|x |

2m
= Ckj

2π

∫
R

e−iξ xdξ

(ξ2 + m2)(ξ2 + m2 − ω2
k )

= Ckj

ω2
kπ

∫ ∞

0

( cos ξ x

ξ2 + m2 − ω2
k

− cos ξ x

ξ2 + m2

)
dξ

= Ckj

2ω2
k

(e−κk |x |

κk
− e−m|x |

m

)
, κk = κ(ωk).
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Substituting this into (2.16), we obtain(
φωk ,1(x)
φωk ,2(x)

)
=
(
Ck1
Ck2

)
e−κk |x |
2κk

+

(
Ck1

−Ck2

)(
me−κk |x |−κke−m|x |

2ωkκk

)

+

(−Ck2
Ck1

)
sgnx e−κk |x |−e−m|x |

2ωk
. (2.19)

Hence,

φωk , j (0) = Ckj

2κk

(
1 + (−1) j+1

m − κk

ωk

)
, k, j = 1, 2. (2.20)

Now we turn to the study of the Eq. (2.18). First, consider the case when ω1 = ω2 = ω.
We set C1 j = C j , C2 j = 0, j = 1, 2, and Eq. (2.18) becomes

e−iωtC j = Fj (φω, j (0)e
−iωt ) = a j (|φω, j (0)e

−iωt |)φω, j (0)e
−iωt , j = 1, 2

by (2.9). Using (2.20), we get after cancelation of exponential

2C ′
jκ = Fj (φω, j (0)) = Fj (C

′
j

(
1 + (−1) j+1

m − κ

ω

)
), κ =

√
m2 − ω2, j = 1, 2.

(2.21)

Here we denote C ′
j = C j/(2κ). Finally, in the case ω1 = ω2 = ω, Eq. (2.11) reads

ψ(x, t) = φω(x, t)e−iωt ,

where, in accordance with (2.19),⎧⎨
⎩

φω,1(x) = C ′
1

(
e−κ|x | + me−κ|x |−κe−m|x |

ω

)
− C ′

2κsgnx e−κ|x |−e−m|x |
2ωk

φω,2(x) = C ′
2

(
e−κ|x | − me−κ|x |−κe−m|x |

ω

)
+ C ′

1κsgnx e−κ|x |−e−m|x |
2ωk

∣∣∣∣∣∣ . (2.22)

Now consider the case when ω1 �= ω2. Taking into account (2.9), we rewrite (2.18) as

e−iω1tC1 j + e−iω2tC2 j = a j (|φω1, j (0)e
−iω1t + φω2, j (0)e

−iω2t |2)(φω1, j (0)e
−iω1t

+φω2, j (0)e
−iω2t ), j = 1, 2. (2.23)

��
Lemma 2.5. Let ω1 �= ω2. Then for solutions to (2.18) we have either φω1, j (0) = 0 or
φω2, j (0) = 0 for each j = 1, 2.

Proof. It suffices to consider the case j = 1 and ω1 < ω2 only. Denote q1 := φω1,1(0),
q2 := φω2,1(0). We should prove that either q1 = 0 or q2 = 0. Assume, to the contrary,
that q1 �= 0 and q2 �= 0. Then

|φω1,1(0)e
−iω1t + φω2,1(0)e

−iω2t |2 = |q1|2 + |q2|2 + q1q2e
iδt + q1q2e

−iδt ,

δ := ω2 − ω1 > 0,

where q1q2 �= 0 and q1q2 �= 0. Hence, (2.10) implies

a1(|φω1,1(0)e
−iω1t + φω2,1(0)e

−iω2t |2) = bei(N j−1)δt + be−i(N j−1)δt +
∑

|n|≤N1−2

cne
inδt ,
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where b �= 0 since a1 is a polynomial of degree N1−1 ≥ 1 due to (2.8) and (2.10). Now
the right hand side of (2.18) contains the terms e−i[ω1t−(N j−1)δ]t and e−i[ω2t+(N j−1)δ]t
with nonzero coefficients, which are absent on the left hand side. This contradiction
proves the lemma. ��
This lemma and (2.20) imply

Corollary 2.6. Let ω1 �= ω2. Then for solutions to (2.18) we have either C1, j = 0 or
C2, j = 0 for each j = 1, 2.

Note that the cases C21 = C22 = 0 and C11 = C12 = 0 are exactly the case when
ω1 = ω2.

Suppose now, that C12 = C21 = 0. Then (2.11) and (2.19) imply
(

ψ1(x, t)
ψ2(x, t)

)
= C1

2κ1

(
e−κ1|x | + me−κ1|x |−κ1e−m|x |

ω1

κ1sgnx e−κ1|x |−e−m|x |
ω1

)
e−iω1t

+ C2
2κ2

(
−κ2sgnx e−κ2 |x |−e−m|x |

ω2

e−κ2|x | − me−κ2 |x |−κ2e−m|x |
ω2

)
e−iω2t , (2.24)

with C1 = C11, C2 = C22. Taking into account (2.20), we obtain equations for C j :

C j = Fj (
C j

2κ j
[1 + (−1) j+1

m − κ j

ω j
]), j = 1, 2. (2.25)

Equations (2.24) and (2.25) will coincide with Eqs. (2.14) and (2.13) after the replace-
ment C j by 2C jκ j .

It is easy to check that in the case C11 = C22 = 0, we obtain the same formulas,
interchanging ω1 and ω2.

Proposition is completely proved. ��
The following lemma gives a sufficient condition for the existence of nonzero solitary

waves.

Lemma 2.7. Let F satisfies (2.9)–(2.10) with M j = −u1, j > 0, where j ∈ {1; 2}. Then
there exists open subset I (Mj ) ⊂ (−m,m) such that for any ω j ∈ I (Mj ) the j-th
equation of (2.13) has nonzero solutions C j = C j (ω j ). Moreover, if M j > (1 +

√
2)m,

then I (Mj ) = (−m,m).

We prove this lemma in “Appendix C”.

Remark 2.8. (i) Equation (2.13) has generally discrete set of solutions C j , while ω j
belongs generally to an open set,

(ii) In the linear case, when Fj (ψk) = a jψ j with a j ∈ R, the situation is contrary : we
see from (2.13) that

2κ j = a j

(
1 + (−1) j+1

m − κ j

ω j

)
, κ j =

√
m2 − ω2

j ,

i.e., ω j generally belongs to a discrete set, while C j ∈ C is arbitrary.

Our main result is the following theorem.

Theorem 2.9 (Main Theorem). Let the nonlinearity F(ψ) satisfy (2.9)–(2.10). Then
for any ψ0 ∈ H1 the solution ψ(t) ∈ C(R, H1) to the Cauchy problem (2.1) with
ψ(0) = ψ0 converges toS in the space H1

loc(R) ⊗ C2:

ψ(t) → S , t → ±∞. (2.26)
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3. Splitting of Solutions

It suffices to prove Theorem 2.9 for t → +∞; We will only consider the solutionψ(x, t)
restricted to t ≥ 0 and split it as

ψ(x, t) = φ(x, t) + ψS(x, t), t ≥ 0.

Here φ(x, t) is a solution to the Cauchy problem for the free Dirac equation

i φ̇(x, t) = Dmφ(x, t), φ|t=0 = ψ0, (3.1)

and ψS(x, t) is a solution to the Cauchy problem for Dirac equation with the source

iψ̇S(x, t) = DmψS(x, t) − D−1
m F(ψ(0, t))δ(x), ψS(x, 0) = 0. (3.2)

The following lemma states well known local decay for the free Dirac equation.

Lemma 3.1 (cf. [19, Proposition 4.3]). Let ψ0 ∈ H1. Then φ ∈ Cb(R+, H1), and
∀R > 0,

‖φ(t)‖H1(−R,R) → 0, t → ∞. (3.3)

Now (2.6) implies that

ψS = ψ(t) − φ(t) ∈ Cb(R+, H1). (3.4)

Due to (3.3) it suffices to prove (2.26) for ψS only.

Complex Fourier-Laplace transform. Let us analyse the complex Fourier-Laplace trans-
form of ψS(x, t):

ψ̃S(x, ω) =
∫ ∞

0
eiωtψS(x, t) dt, ω ∈ C

+, (3.5)

where C
+ := {z ∈ C : Im z > 0}. Due to (3.4), ψ̃S(·, ω) is an H1-valued analytic

function of ω ∈ C
+.

Denote f (t) = F(ψ(0, t). Then Eq. (3.2) for ψS with zero initial data implies that

(Dm − ω)ψ̃S(x, ω) − D−1
m δ(x) f̃ (ω) = 0, ω ∈ C

+.

It is easy to see that

ψ̃S(x, ω) := (Dm + ω)D−1
m f̃ (ω)G(x, ω) = − f̃ (ω)G(x, ω) − ωD−1

m f̃ (ω)G(x, ω),

where G(·, ω) ∈ H1 is the unique elementary solution to

G ′′(x, ω) + (ω2 − m2)G(x, ω) = δ(x), ω ∈ C
+.

This solution is given by G(x, ω) = eik(ω)|x |

2ik(ω)
, where k(ω) stands for the analytic

function

k(ω) :=
√

ω2 − m2, Im k(ω) > 0, ω ∈ C
+, (3.6)
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which we extend to ω ∈ C̄+ by continuity. Thus,

ψ̃S(x, ω) = − f̃ (ω)
eik(ω)|x |

2ik(ω)
− ωD−1

m f̃ (ω)
eik(ω)|x |

2ik(ω)
, ω ∈ C

+. (3.7)

Note, that

D−2
m

eik(ω)|x |

2ik(ω)
= 1

2π

∫
e−ikxdk

(k2 + m2)(−k2 − m2 + ω2)
= 1

ω2

(e−m|x |

2m
+
eik(ω)|x |

2ik(ω)

)
.

Therefore,

ωD−1
m f̃ (ω)

eik(ω)|x |

2ik(ω)
=mβ

f̃ (ω)

ω

(e−m|x |

2m
+
eik(ω)|x |

2ik(ω)

)
+α

f̃ (ω)

2ω
sgnx(eik(ω)|x | − e−m|x |),

and (3.7) becomes

ψ̃S(x, ω) = − f̃ (ω)
eik(ω)|x |

2ik(ω)
− mβ

f̃ (ω)

ω

(e−m|x |

2m
+
eik(ω)|x |

2ik(ω)

)

− α
f̃ (ω)

2ω
sgnx(eik(ω)|x | − e−m|x |) = −

(
I + β

m + ik(ω)

ω

) f̃ (ω)

2ik(ω)
eik(ω)|x |

+ (β − α sgnx) f̃ (ω)
eik(ω)|x | − e−m|x |

2ω
, ω ∈ C

+. (3.8)

Here the last term vanishes for x = 0. Denote y(t) := ψS(0, t) ∈ Cb(R). Then (3.8)
implies

ỹ(ω) = ψ̃S(0, ω) = −
(
I + β

m + ik(ω)

ω

) f̃ (ω)

2ik(ω)
, ω ∈ C

+. (3.9)

Now (3.8) becomes

ψ̃S(x, ω) = ỹ(ω)eik(ω)|x | + (β − α sgnx) f̃ (ω)
eik(ω)|x | − e−m|x |

2ω
, ω ∈ C

+.

(3.10)

Let us extend ψS(x, t) and f (t) by zero for t < 0. Then

ψS ∈ Cb(R, H1) (3.11)

by (3.4). The Fourier transform ψ̂S(·, ω) := Ft→ω[ψS(·, t)] is a tempered H1-valued
distribution of ω ∈ R. The distribution ψ̂S(·, ω) is the boundary value of the analytic
H1-valued function ψ̃S(·, ω), in the following sense:

ψ̂S(·, ω) = lim
ε→0+

ψ̃S(·, ω + iε), ω ∈ R, (3.12)

where the convergence holds in the space of tempered distributionsS ′(R, H1). Indeed,

ψ̃S(·, ω + iε) = Ft→ω[ψS(·, t)e−εt ],
and ψS(·, t)e−εt −→

ε→0+
ψS(·, t), where the convergence holds in S ′(R, H1) by (3.11).

Therefore, (3.12) holds by the continuity of the Fourier transformFt→ω inS ′(R).
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Similarly to (3.12), the distributions f̂ (ω) and ŷ(ω) of ω ∈ R are boundary values
of analytic in C

+ functions f̃ (ω) and ỹ(ω), ω ∈ C
+, respectively:

f̂ (ω) = lim
ε→0+

f̃ (ω + iε)

ŷ(ω) = lim
ε→0+

ỹ(ω + iε) = −
(
I + β

m+ik(ω)
ω

)
f̂ (ω)

2ik(ω)

∣∣∣∣∣∣ ω ∈ R, (3.13)

since the function f (t) = F(ψ(0, t)) is bounded for t ≥ 0 and vanishes for t < 0. The
convergences hold in the space of tempered distributions S ′(R). Let us justify that the
representation (3.10) for ψ̂S(x, ω) is also valid when ω ∈ R.

Lemma 3.2. For any fixed x ∈ R,

ψ̂S(x, ω) = ŷ(ω)eik(ω)|x | + (β − α sgnx) f̂ (ω)
eik(ω)|x | − e−m|x |

2ω
, ω ∈ R. (3.14)

Here themultiplications are understood in the sense of quasimeasures (see [17,Appendix
B]).

The proof follows from (3.10) similarly to [17, Proposition 3.1]. Namely, the con-

vergence (3.13) holds in the space of quasimeasures, while eik(ω)|x | and eik(ω)|x |−e−m|x |
2ω

are multiplicators in the space of quasimeasures.

4. Absolutely Continuous Spectrum

Denote

�δ := (−∞,−m − δ) ∪ (m + δ,∞), δ ≥ 0. (4.1)

Consider the functions

z̃±(ω) := −(I + m

ω
β ± ik(ω)

ω
α
) f̃ (ω)

2ik(ω)
, ω ∈ C

+. (4.2)

From (3.13) it follows that for ω ∈ �0 there exist

lim
ε→0+

f̃ (ω + iε)

ω + iε
= f̂ (ω)

ω
, lim

ε→0+

(
I + β

m

ω + iε

) f̃ (ω + iε)

2ik(ω + iε)
= (I + β

m

ω

) f̂ (ω)

2ik(ω)
.

Hence, for ω ∈ �0 there exist boundary values ẑ±(ω) of z̃±(ω) :

ẑ±(ω) = lim
ε→0+

z̃±(ω + iε) = −(I + m

ω
β ± ik(ω)

ω
α
) f̂ (ω)

2ik(ω)
, ω ∈ �0. (4.3)

Now we rewrite (3.10) as

ψ̂S(x, ω) = eik(ω)|x | ẑ±(ω) + e−m|x |(± α − β)
f̂ (ω)

2ω
, ±x > 0, ω ∈ �0. (4.4)

We study the regularity of ẑ±(ω). Note that the function ωk(ω) is positive for ω ∈ �0.
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Proposition 4.1. The distributions ẑ±(ω) are absolutely continuous for ω ∈ �0, i.e.
and ẑ± ∈ L1

loc(�0). Moreover,
∫

�0

(|ẑ +(ω)|2 + |ẑ−(ω)|2)ωk(ω) dω < ∞. (4.5)

Proof. We use the arguments of Paley-Wiener type. Namely, the Parseval identity and
(3.4) imply that

∫
R

‖ψ̃S(·, ω + iε)‖2H1 dω = 2π

∞∫
0

e−2εt‖ψS(·, t)‖2H1 dt ≤ C

ε
, ε > 0. (4.6)

Then (4.6) gives ∫
R

‖ψ̃S(·, ω + iε)‖2H1 dω ≤ C

ε
, ε > 0. (4.7)

Evidently,

lim
ε→0+

ε‖e−m|x |‖H1 → 0.

Hence, (4.4) and (4.7) results in

ε

∫
�0

(
|z̃ +(ω + iε)|2‖eik(ω+iε)|x |‖2H1(0,∞)

+ |z̃−(ω + iε)|2‖eik(ω+iε)|x |‖2H1(−∞,0)

)
dω ≤ C, ε > 0. (4.8)

Here is a crucial observation about the norm of eik(ω+iε)|x |.

Lemma 4.2 (cf. [17, Lemma 3.2]).

1. For ω ∈ R,

lim
ε→0+

ε‖eik(ω+iε)|x |‖2H1 = n(ω) :=
{

ωk(ω), |ω| > m
0, |ω| < m , (4.9)

where the norm in H1 is chosen to be ‖ψ‖H1 =
(
‖ψ ′|‖2

L2 + m2‖ψ‖2
L2

)1/2
.

2. For any δ > 0 there exists εδ > 0 such that

ε‖eik(ω+iε)|x |‖2H1 ≥ n(ω)/2, ω ∈ �δ, ε ∈ (0, εδ). (4.10)

Substituting (4.10) into (4.8), we get:∫
�δ

(|z̃ +(ω + iε)|2 + |z̃−(ω + iε)|2)ωk(ω) dω ≤ 2C, 0 < ε < εδ, (4.11)

with the same constant C as in (4.8), and the region �δ defined in (4.1). We conclude
that for each δ > 0 the set of functions

g±
δ,ε(ω) = z̃±(ω + iε)|ωk(ω)|1/2, ε ∈ (0, εδ),
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defined for ω ∈ �δ , is bounded in the Hilbert space L2(�δ), and, by the Banach Theo-
rem, is weakly compact. Hence, the convergence of the distributions (3.13) implies the
following weak convergence in the Hilbert space L2(�δ):

g±
δ,ε ⇁ g±

δ , ε → 0+, (4.12)

where the limit function g±
δ (ω) coincides with the distribution ẑ±(ω)|ωk(ω)|1/2 re-

stricted onto �δ . It remains to note that the norms of all functions g±
δ , δ > 0, are

bounded in L2(�δ) by (4.11), hence (4.5) follows. Finally, ẑ±(ω) ∈ L1
loc(�0) by (4.5)

and the Cauchy-Schwarz inequality. ��
Lemma 4.3. ∫

�0

| f̂ (ω)|2 k(ω)

ω
dω < ∞. (4.13)

Proof. Denote the2×2matrix A±(ω) = I+m
ω

β± ik(ω)
ω

α. Then ẑ±(ω) = −A±(ω)
f̂ (ω)

2ik(ω)
.

For any ω ∈ �0, the matrix A±(ω) has two eigenvalues: λ = 0 and λ = 2 since

det(A± − λI ) =
∣∣∣∣∣
(1 + m

ω
) − λ ± ik(ω)

ω

∓ ik(ω)
ω

(1 − m
ω

) − λ

∣∣∣∣∣ = −2λ + λ2 = λ(λ − 2).

The unit eigenvectors ν±(ω) of operators A±(ω) corresponding to the eigenvalue λ = 2
read

ν±(ω) = (
√

ω + m

2ω
, ∓i

√
ω − m

2ω

)
. (4.14)

Denote g(ω) := f̂ (ω)
2ik(ω)

, and a±(ω) := 〈g(ω), ν±(ω)〉. Then ẑ±(ω) = −A±(ω)g(ω) =
−2a±(ω)ν±(ω), and hence

a±(ω) = 〈g(ω), ν±(ω)〉 = −1

2
〈ẑ±(ω), ν±(ω)〉.

Taking into account (4.14), we get the system of equations for g(ω) = (g1(ω), g2(ω))

⎧⎨
⎩

g1(ω)

√
ω+m
2ω + ig2(ω)

√
ω−m
2ω = − 1

2 〈ẑ +(ω), ν+(ω)〉
g1(ω)

√
ω+m
2ω − ig2(ω)

√
ω−m
2ω = − 1

2 〈ẑ−(ω), ν−(ω)〉

∣∣∣∣∣∣ . (4.15)

Therefore

(
f̂1(ω)

f̂2(ω)

)
=2ik(ω)

(
g1(ω)

g2(ω)

)
=−|ω|

⎛
⎝ i
√

ω−m
2ω i

√
ω−m
2ω√

ω+m
2ω −

√
ω+m
2ω

⎞
⎠( 〈ẑ +(ω), ν+(ω)〉

〈ẑ−(ω), ν−(ω)〉
)

.

Hence,

| f̂ (ω)|2 ≤ C |ω|2(|ẑ +(ω)|2 + |ẑ−(ω)|2).
Now (4.13) follows from (4.5). ��
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5. Further Decomposition of Solutions

Denote

f̂d(ω) :=
{
f̂ (ω), ω ∈ �0
0, ω ∈ R \ �0

(5.1)

and set

ψ̂d(x, ω) = eik(ω)|x | ẑd(x, ω) + e−m|x |(α sgnx − β
) f̂d(ω)

2ω
, ω ∈ R, (5.2)

where

ẑd(x, ω) = − (I + m

ω
β +

ik(ω)

ω
α sgnx

) f̂d(ω)

2ik(ω)

= − (
I +

m

ω
β ± ik(ω)

ω
α
) f̂d(ω)

2ik(ω)
= ẑ±

d (ω), ±x > 0. (5.3)

Consider

ψd(x, t) := 1

2π

∫
R

ψ̂d(x, ω)e−iωt dω, x ∈ R, t ∈ R. (5.4)

We will show that ψd(x, t) is a dispersive component of the solution ψ(x, t), in the
following sense.

Proposition 5.1. (i) ψd(·, t) is a bounded continuous H1-valued function:

ψd(·, t) ∈ Cb(R, H1). (5.5)

(ii) The local energy decay holds for ψd(·, t): for any R > 0,

‖ψd(·, t)‖H1(−R,R) → 0, t → ∞. (5.6)

Proof. We split ψd(x, t) as ψd(x, t) = ϕd(x, t) + χd(x, t), where

ϕd(x, t) = 1
2π

∫
R
e−iωt eik(ω)|x | ẑd(x, ω) dω,

χd(x, t) = 1
2π e

−m|x |(α sgnx − β
) ∫

R
e−iωt f̂d (ω)

2ω dω. (5.7)

First, consider χd(x, t). Note that

∫
R

∣∣ f̂d(ω)

ω

∣∣ dω =
∫
�0

∣∣ f̂d(ω)√
ωk(ω)

√
k(ω)

ω

∣∣ dω ≤
( ∫
�0

| f̂ (ω)|2 k(ω)

ω
dω
)1/2

×
( ∫
�0

dω

ω
√

ω2 − m2)

)1/2
< ∞ (5.8)

by Lemma 4.3. Hence,

χd ∈ Cb(R, H1(R \ 0)). (5.9)
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Moreover,

‖χd(·, t)‖H1(R\0) → 0, t → ∞ (5.10)

by Riemann–Lebesgue Theorem. Now consider ϕd(x, t). Changing the variable ω →
k(ω) = √

ω2 − m2, we rewrite ϕd(x, t) as follows:

ϕd(x, t) = 1

2π

∫
R

ẑd(x, ω(k))e−iω(k)t eik|x | k dk
ω(k)

. (5.11)

Hereω(k) = √
k2 + m2 is the branch analytic for Im k > 0 and continuous for Im k ≥ 0.

Note that the function ω(k), k ∈ R\0, is the inverse function to k(ω) defined on C̄+ [see
(3.6)] and restricted onto �0. Let us introduce the functions

ϕ±(x, t) = 1

2π

∫
R

ẑ±
d (ω(k))e±ikx e−iω(k)t kdk

ω(k)
, x ∈ R, t ≥ 0.

Both functions ϕ±(x, t) are solutions to the free Dirac equation (3.1) on the whole real
line (see “Appendix B”). Moreover,

∂xϕ
±(x, t) := 1

2π

∫
R

±ik ẑ±
d (ω(k))e±ikx e−iω(k)t kdk

ω(k)
, x ∈ R, t ≥ 0. (5.12)

Hence, the Parseval identity implies

‖ϕ±(·, 0)‖2H1 =
∫

R

(m2 + k2)|ẑ±
d (ω(k))|2 k2

ω2(k)
dk

=
∫

�0

ω2|ẑ±(ω)|2 k(ω)

ω
dω =

∫
�0

|ẑ±(ω)|2ωk(ω) dω < ∞

by (4.11). Hence, both ϕ− and ϕ+ are bounded continuous H1-valued functions:

ϕ± ∈ Cb(R, H1), (5.13)

and for any R > 0

‖ϕ±(·, t)‖H1(−R,R) → 0, t → ∞ (5.14)

byLemma3.1. The functionϕd(x, t) coincideswithϕ+(x, t) for x ≥ 0 andwithϕ−(x, t)
for x ≤ 0:

ϕd(x, t) = ϕ±(x, t), ±x ≥ 0. (5.15)

It remains to note thatψd(x, t) = ϕd(x, t)+χd(x, t) has no jump at x = 0 and therefore
∂xψd(x, t) is square-integrable over the whole x-axis. Hence,

‖ψd(t)‖2H1 = ‖ψd(t)‖2H1(R−)
+ ‖ψd(t)‖2H1(R+)

.

Finally, (5.5) follows from (5.13) and (5.9), and (5.6) follows from (5.14) and (5.10). ��
Denote yd(t) = ψd(0, t) ∈ Cb(|R). Formulas (5.2) and (5.3) imply

ŷd(ω) = ψ̂d(0, ω) = −(I + m + ik(ω)

ω
β
) f̂d(ω)

2ik(ω)
, , ω ∈ R, (5.16)

and (5.2) becomes

ψ̂d(x, ω) = ŷde
−κ(ω)|x | + (β − α sgnx) f̂ (ω)

eik(ω)|x | − e−m|x |

2ω
, ω ∈ R.

(5.17)
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6. Bound Component

Spectral representation. We introduce the bound component of the solution ψ(x, t) by

ψb(x, t) = ψS(x, t) − ψd(x, t), x ∈ R, t ∈ R. (6.1)

Then (3.11) and (5.5) imply that

ψb ∈ Cb(R, H1). (6.2)

In particular, yb(t) := ψb(0, t) = ψS(0, t) − ψd(0, t) ∈ Cb(R). Hence, ŷb(ω) :=
ψ̂b(0, ω) is a quasimeasure. Moreover, formulas (3.13) and (5.16) yield

ŷb(ω) = ŷ(ω) − ŷd(ω) = −(I + m + ik(ω)

ω
β
) f̂b(ω)

2ik(ω)
. (6.3)

Here we denote

f̂b(ω) := f̂ (ω) − f̂d(ω). (6.4)

Further, (5.1) implies, that

supp ŷb(ω) = supp ψ̂b(0, ω) ⊂ [−m,m]. (6.5)

Denote

κ(ω) := −ik(ω) =
√
m2 − ω2, Reκ(ω) ≥ 0 for Imω ≥ 0, (6.6)

where k(ω) was introduced in (3.6). Let us note that κ(ω) > 0 for ω ∈ (−m,m). Now
we rewrite (6.3) as

ŷb(ω) = (I + m − κ(ω)

ω
β
) f̂b(ω)

2κ(ω)
= σ(ω) f̂b(ω), (6.7)

where

σ(ω) = 1

2κ(ω)

(
1 + m−κ(ω)

ω
0

0 1 − m−κ(ω)
ω

)
.

Hence

f̂b(ω) = σ−1(ω)ŷb(ω), σ−1(ω) =
(

κ(ω) + m − ω 0
0 κ(ω) + m + ω

)
. (6.8)

Now (3.14), (5.17), (6.1) and (6.8) imply the multiplicative relation

ψ̂b(x, ω) = ŷbe
−κ(ω)|x | + ĥb(x, ω)

e−κ(ω)|x | − e−m|x |

2ω
, ω ∈ R, (6.9)

where we denote

ĥb(x, ω) = (β − α sgnx)σ−1(ω)ŷb(ω). (6.10)

From (6.8) and (6.10) it follows that ĥb(x, ω) for any fixed x ∈ R \ 0 is a quasimea-
sure with the support suppĥb(x, ω) ⊂ [−m,m]. Moreover, e−κ(ω)|x | and (e−κ(ω)|x | −
e−m|x |)/ω are multiplicators. Hence, function ψ̂b(x, ω) is quasimeasure for any fixed
x ∈ R with supports in [−m,m]. Finally,

ψb(x, t) = 1

2π
〈ψ̂b(x, ω), e−iωt 〉, x ∈ R, t ∈ R, (6.11)

where 〈·, ·〉 is an extension of the scalar product 〈 f, g〉 = ∫ f (ω)g(ω)dω.
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Compactness. We are going to prove a compactness of the set of translations of the
bound component, {ψb,n(x, s + t): s ≥ 0}, n = 1, 2.

Lemma 6.1. (i) The functionψb(x, t) is smooth for x �= 0 and t ∈ R. Moreover, for any
fixed x �= 0, t ∈ R, and any nonnegative integers j, k, the following representation
holds

∂
j
x ∂kt ψb(x, t) = 1

2π
〈� j (x, ω), (−iω)ke−iωt 〉, (6.12)

where

� j (x, ω) = (−κ(ω)sgnx
) j
e−κ(ω)|x | ŷb(ω)

+ĥb(x, ω)
[(−κ(ω)sgnx

) j e−κ(ω)|x | − e−m|x |

2ω

+
κ

j (ω) − m j

ω
(−sgnx) j e−m|x |].

(ii) There is a constant C j,k > 0 so that

sup
x �=0

sup
t∈R

∣∣∂ j
x ∂kt ψb(x, t)

∣∣ ≤ C j,k . (6.13)

The lemma follows similarly Proposition 4.1 from [17], since the factors e−κ(ω)|x |ζ(ω),
e−κ(ω)|x |−e−m|x |

2ω ζ(ω), and κ
j (ω)−m j

ω
ζ(ω) aremultiplicators in the space of quasimeasures.

Here ζ(ω) ∈ C∞
0 (R) is any cutoff function satisfying

ζ |[−m−1,m+1] = 1.

Corollary 6.2. By the Ascoli-Arzelà Theorem, for any sequence sl → ∞ there exists a
subsequence (which we also denote by sl ) such that for any nonnegative integers j and
k,

∂
j
x ∂kt ψb(x, sl + t) → ∂

j
x ∂kt γ (x, t), x �= 0, t ∈ R. (6.14)

for some γ ∈ Cb(R, H1). The convergence in (6.14) is uniform in x and t as long as
|x | + |t | ≤ R, for any R > 0.

We call omega-limit trajectory any function γ (x, t) that can appear as a limit in
(6.14). Previous analysis demonstrates that the long-time asymptotics of the solution
ψ(x, t) in H1

loc depends only on the bound component ψb(x, t). By Corollary 6.2, to
conclude the proof of Theorem 2.9, it suffices to check that every omega-limit trajectory
belongs to the set of solitary waves; that is,

γ (x, t) =C1

⎛
⎝ e−κ

+
1 |x | + me−κ

+
1 |x |−κ1e−m|x |

ω+
1

κ
+
1 sgnx

e−κ
+
1 |x |−e−m|x |

ω+
1

⎞
⎠ e−iω+

1 t

+ C2

⎛
⎜⎝ −κ

+
2 sgnx

e−κ
+
2 |x |−e−m|x |

ω+
2

e−κ
+
2 |x | − me−κ

+
2 |x |−κ

+
2 e

−m|x |
ω+
2

⎞
⎟⎠ e−iω+

2 t , κ
+
j =

√
m2 − (ω+

j )
2

(6.15)

with some ω+
1 , ω

+
2 ∈ [−m,m].
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Spectral identity for omega-limit trajectories. Here we study the time spectrum of the
omega-limit trajectories.

Definition 6.3. Let μ be a tempered distribution. By Specμ we denote the support of its
Fourier transform:

Specμ := suppμ̃.

Proposition 6.4. 1. For any omega-limit trajectory γ (x, t), the following spectral rep-
resentation holds:

γ (x, t) = 1

2π
〈 p̂(ω)e−κ(ω)|x |, e−iωt 〉

+
1

2π
〈q̂(x, ω)

e−κ(ω)|x | − e−m|x |

2ω
, e−iωt 〉, x ∈ R, t ∈ R,

(6.16)

where p̂(ω) and q̂(x, ω) = (β − α sgnx)σ−1(ω) p̂(ω) are quasimeasures for all
x ∈ R, and

supp p̂ ⊂ [−m,m], supp q̂(x) ⊂ [−m,m]. (6.17)

2. The following bound holds:

sup
t∈R

‖γ (·, t)‖H1 < ∞. (6.18)

Note that, according to (6.16), p̂(ω) is the Fourier transform of the function p(t) :=
γ (0, t), t ∈ R.

Proof. Formula (6.9) and representation (6.11) imply that

ψb(x, sl + t) = 1

2π
〈ŷb(ω)e−κ(ω)|x |e−iωsl , e−iωt 〉

+
1

2π
〈ĥb(x, ω)

e−κ(ω)|x | − e−m|x |

2ω
e−iωsl , e−iωt 〉, x �= 0, t ∈ R. (6.19)

Further, the convergence (6.14) and the bound (6.13) with j = k = 0 imply that

yb(sl + t) → p(t), sl → ∞, (6.20)

where p ∈ Cb(R). The convergence is uniform on [−T, T ] for any T > 0. Hence,

ŷb(ω)e−iωsl → p̂(ω), sl → ∞ (6.21)

in the space of quasimeasures. Therefore,

ŷb(ω)e−κ(ω)|x |e−iωsl → p̂(ω)e−κ(ω)|x |, sl → ∞ (6.22)

in the space of quasimeasures. Similarly,

ĥb(x, ω) e
−κ(ω)|x |−e−m|x |

2ω e−iωsl = (β − α sgnx)σ−1(ω)ŷb(ω) e
−κ(ω)|x |−e−m|x |

2ω e−iωsl

→ (β − α sgnx)σ−1(ω) p̂(ω) e
−κ(ω)|x |−e−m|x |

2ω = q̂(x, ω) e
−κ(ω)|x |−e−m|x |

2ω , sl → ∞.

(6.23)

Hence, the representation (6.16) follows from (6.19), (6.22) and (6.23); and (6.17) fol-
lows from (6.5). Finally, the bound (6.18) follows from (6.2) and (6.14). ��
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The relation (6.16) implies the basic spectral identity:

Corollary 6.5. For any omega-limit trajectory γ (x, t),

Spec γ (x, ·) = Spec p, x ∈ R. (6.24)

7. Nonlinear Spectral Analysis

Here we will derive (6.15) from the following identity:

p j (t) = C je
−iω+

j t , j = 1, 2, t ∈ R, (7.1)

which will be proved in three steps.

Step 1. The identity (7.1) is equivalent to p̂ j (ω) ∼ δ(ω − ω+
j ), so we start with an

investigation of Spec p j := supp p̂ j .

Lemma 7.1. For omega-limit trajectories the following spectral inclusion holds:

SpecFj (p j (·)) ⊂ Specp j , j = 1, 2. (7.2)

Proof. The convergence (6.14), Lemma 3.1 and Proposition 5.1 (ii) imply that the lim-
iting trajectory γ (x, t) is a solution to Eq. (1.1):

i γ̇ (x, t) = Dmγ (x, t) − D−1
m δ(x)F(γ (0, t)), (x, t) ∈ R

2. (7.3)

Applying to both side operator Dm , we get

i Dm γ̇ (x, t) = D2
mγ (x, t) − δ(x)F(γ (0, t)), (x, t) ∈ R

2.

Since γ (x, t) is smooth function for x ≤ 0 and x ≥ 0, we get the following algebraic
identities :

γ ′
j (0+, t) − γ ′

j (0−, t) = −Fj (p j (t)), t ∈ R, j = 1, 2. (7.4)

The identities imply the spectral inclusion

SpecFj (p j (·)) ⊂ Spec γ ′
j (0+, ·) ∪ Spec γ ′

j (0−, ·). (7.5)

On the other hand, Spec γ ′
j (0+, ·) ∪ Spec γ ′

k(0−, ·) ⊂ Spec p j by (6.24). Therefore,
(7.5) implies (7.2). ��
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Step 2.

Proposition 7.2. For any omega-limit trajectory, the following identity holds:

|p j (t)| = const, j = 1, 2, t ∈ R. (7.6)

Proof. We are going to show that (7.6) follows from the key spectral relations (6.17),
(7.2). Recall that the function Fj (t) := Fj (p j (t)) admits the representation [cf. (2.9)]

Fj (t) = a j (t)p j (t), j = 1, 2, (7.7)

where, according to (2.10),

a j (t) = −
N j∑
n=1

2n jun, j |p j (t)|2n−2, N j ≥ 2; uN j , j > 0. (7.8)

Both functions p j (t) and a j (t) are bounded continuous functions in R by Proposi-
tion 6.4 (ii). Hence, p j (t) and a j (t) are tempered distributions. Furthermore, p̂ j and p̂ j
have the supports contained in [−m,m] by (6.17). Hence, a j also has a bounded support
since it is a sum of convolutions of finitely many p̂ j and p̂ j by (7.8). Then the relation

(7.7) translates into a convolution in the Fourier space, F̂j = â j ∗ p̂ j/(2π), and the
spectral inclusion (7.2) takes the following form:

suppF̂j = supp â j ∗ p̂ j ⊂ supp p̂ j . (7.9)

Let us denote F j = suppF̂j , A j = supp â j , and P j = supp p̂ j . Then the spectral
inclusion (7.9) reads as

F j ⊂ P j . (7.10)

On the other hand, it is well-known that supp â j ∗ p̂ j ⊂ supp â j + supp p̂ j , or F j ⊂
A j +P j .Moreover, the Titchmarsh convolution theorem (see [12, Theorem 4.3.3]) imply
that

inf F j = inf A j + inf P j , supF j = supA j + supP j . (7.11)

Now (7.10) and (7.11) result in

inf F j = inf A j + inf P j ≥ inf P j , supF j = supA j + supP j ≤ supP j ,(7.12)

so that inf A j ≥ 0 ≥ supA j . Thus, we conclude that suppâ j = A j ⊂ {0}, therefore the
distribution â j (ω) is a finite linear combination of δ(ω) and its derivatives. Then a j (t)
are polynomial in t ; since a j (t) is bounded by Proposition 6.4 (ii), we conclude that
a j (t) is constant. Now the relation (7.6) follows since a j (t) is a polynomial in |p j (t)|,
and its degree is strictly positive by (7.8). ��
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Step 3. Now the same Titchmarsh arguments imply that Pj := Specp j is a point ω+
j ∈

[−m,m]. Indeed, (7.6) means that p j (t)p j (t) ≡ C j , hence in the Fourier transform

p̂ j ∗ p̂ j = 2πC jδ(ω). Therefore, if p j is not identically zero, the Titchmarsh Theorem
implies that

0 = sup Pj + sup(−Pj ) = sup Pj − inf Pj .

Hence inf Pj = sup Pj and therefore Pj = ω+
k ∈ [−m,m], so that p̂ j (ω) is a finite

linear combination of δ(ω−ω+
j ) and its derivatives. As the matter of fact, the derivatives

could not be present because of the boundedness of p j (t) = γ j (0, t) that follows from
Proposition 6.4 (ii). Thus, p̂ j ∼ δ(ω − ω+

j ), which implies (7.1).

Conclusion of the proof of Theorem 2.9 According to (7.1) and (6.23)

q̂(ω, x) = (β − α sgnx)σ−1(ω) p̂(ω)

= 2π(β − α sgnx)

(
C1(κ

+
1 + m − ω+

1 )δ(ω − ω+
1 )

C2(κ
+
2 + ω+

2 + m)δ(ω − ω+
2 )

)
,

where

κ
+
j =

√
m2 − (ω+

j )
2.

Then the representation (6.16) implies
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ1(x, t) = C1e
−iω+1 t

(
e−κ

+
1 |x | + (κ+

1+ m −ω+
1 ) e

−κ
+
1 |x |−e−m|x |

2ω+1

)
− C2e

−iω+2 t sgnx(κ+
2+ m +ω+

2 ) e
−κ

+
2 |x |−e−m|x |
2ω+2

γ2(x, t) = C2e
−iω+2 t

(
e−κ

+
2 |x | − (κ+

2+ m +ω+
2 ) e

−κ
+
2 |x |−e−m|x |

2ω+2

)
+ C1e

−iω+1 t sgnx(κ+
1+ m −ω+

1 ) e
−κ

+
1 |x |−e−m|x |
2ω+1

∣∣∣∣∣∣∣∣∣
.

(7.13)

After simple evaluation, (7.13) becomes

⎧⎪⎨
⎪⎩

γ1(x, t) = C ′
1

(
e−κ

+
1 |x | + me−κ

+
1 |x |−κ1e−m|x |

ω+
1

)
e−iω+

1 t − C ′
2κ

+
2 sgnx

e−κ
+
2 |x |−e−m|x |

ω+
2

e−iω+
2 t

γ2(x, t) = C ′
1κ

+
1 sgnx

e−κ
+
1 |x |−e−m|x |

ω+
1

e−iω+
1 t + C ′

2

(
e−κ

+
2 |x | − me−κ

+
2 |x |−κ2e−m|x |

ω+
2

)
e−iω+

2 t

∣∣∣∣∣∣∣
where we denote

C ′
1 = C1

κ
+
1 + m − ω+

1

2κ
+
1

, C ′
2 = C2

κ
+
2 + m + ω+

2

2κ
+
2

.

Therefore, γ (x, t) is a solitary wave (2.14). Due to Lemma 3.1 and Proposition 5.6 it
remains to prove that

lim
t→∞ distH1

loc
(ψb(t),S ) = 0. (7.14)

Assume by contradiction that there exists a sequence sl → ∞ such that

distH1
loc

(ψb(sl),S ) ≥ δ, ∀l ∈ N (7.15)
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for some δ > 0. According to Corollary 6.2, there exist a subsequence sln of the sequence
sl , ω+

1 , ω
+
2 ∈ R and vector-function γ (x, t), defined in (7.13) such that the following

convergence hold

ψb(x, t + sln ) → γ (x, t), ln → ∞, t ∈ R.

This implies that

ψb(x, sln ) → γ (x, 0) = φω+
1
(x) + φω+

2
(x), ln → ∞, (7.16)

where

φω+
1
(x) = C1

⎛
⎝e−κ

+
1 |x | + me−κ

+
1 |x |−κ1e−m|x |

ω+
1

κ
+
1 sgnx

e−κ
+
1 |x |−e−m|x |

ω+
1

⎞
⎠ ,

φω+
2
(x) = C2

⎛
⎜⎝ −κ

+
2 sgnx

e−κ
+
2 |x |−e−m|x |

ω+
2

e−κ
+
2 |x | − me−κ

+
2 |x |−κ

+
2 e

−m|x |
ω+
2

⎞
⎟⎠ .

The convergence (7.16) contradicts to (7.15). This completes the proof of
Theorem 2.9. ��
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A Global Well-Posedness

Here we prove Theorem 2.1.We first need to adjust the nonlinearity F so that it becomes
bounded, together with its derivatives. Define

�(ψ0) =
√
H (ψ0) − A

m − B
, (A.1)

where ψ0 ∈ H1 is the initial data from Theorem 2.1 and A, B are constants from (2.4).
Then we may pick a modified potential function Ũ ∈ C2(C2), so that

Ũ (ζ ) = U (ζ ) for |ζ | ≤ �(ψ0), ζ ∈ C
2, (A.2)

Ũ (ζ ) satisfies (2.4) with the same constants A, B as U (ζ ) does:

Ũ (ζ ) ≥ A − B|ζ |2, for ζ ∈ C
2, where A ∈ R and 0 ≤ B < m, (A.3)

and so that |Ũ (ζ )|, |Ũ ′(ζ )|, and |Ũ ′′(ζ )| are bounded for ζ ∈ C
2. We define

F̃j (ζ ) = −∂ζ j
Ũ (ζ ), ζ ∈ C

2,

http://creativecommons.org/licenses/by/4.0/
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and consider the Cauchy problem of type (1.1) with the modified nonlinearity,{
iψ̇(x, t) = Dmψ(x, t) − D−1

m δ(x)F̃(ψ(0, t)), x ∈ R, t ∈ R.

ψ |t=0 = ψ0(x),
(A.4)

This is a Hamiltonian system, with the Hamilton functional

H̃ (ψ) = 1

2
〈ψ, (−∂2x + m2)ψ〉 + Ũ (ψ(0, t)), ψ ∈ H1, (A.5)

which is Fréchet differentiable in the space H1. By the Sobolev embedding theorem,
‖ψ‖2L∞ ≤ 1

2‖ψ‖2
H1 . Moreover,

‖ψ‖2L∞ ≤ 1

2m
|‖ψ‖|2, (A.6)

where |‖ψ‖|2 := ‖ψ ′‖2
L2 + m2‖ψ‖2

L2 . Indeed, the Cauchy- Schwarz inequality and the
Parseval identity imply

‖ψ‖L∞ ≤ 1

2π
‖ψ̃‖L1 ≤ 1

2π

( ∫
|ψ̃(k)|2(m2 + k2)dk

)1/2( ∫ dk

m2 + k2

)1/2

≤ 1

2π

√
2π |‖ψ‖|

√
π

m
= 1√

2m
‖ψ‖|.

Thus (A.3) leads to

Ũ (ψ(0)) ≥ A − B‖ψ‖2L∞ ≥ A − B

2m
|‖ψ‖|2.

Taking into account (A.5), we obtain the inequality

|‖ψ‖|2 = 2H̃ (ψ) − 2Ũ (ψ(0)) ≤ 2H̃ (ψ) − 2A +
B

m
|‖ψ‖|2, ψ ∈ H1,

which implies

|‖ψ‖|2 ≤ 2m

m − B

(
H̃ (ψ) − A

)
, ψ ∈ H1. (A.7)

Lemma A.1. 1. H̃ (ψ0) = H (ψ0).
2. If ψ ∈ H1 satisfies H̃ (ψ) ≤ H̃ (ψ0), then Ũ (ψ(0)) = U (ψ(0)).

Proof. 1. According to (A.6), (A.7), and the choice of �(ψ0) in (A.1),

‖ψ0‖2L∞ ≤ 1

2m
|‖ψ0‖|2 ≤ H (ψ0) − A

m − B
= �2(ψ0).

Thus, according to the choice of Ũ (equality [A.2)], Ũ (ψ0(0)) = U (ψ0(0)), proving
(i).

2. By (A.6), (A.7), the condition H̃ (ψ) ≤ H̃ (ψ0), and part (i) of this lemma, we
have:

‖ψ‖2L∞ ≤ 1

2m
|‖ψ0‖|2 ≤ H (ψ) − A

m − B
≤ H (ψ0) − A

m − B
= �2(ψ0).

Hence, (ii) follows by (A.2). ��
Remark A.2. We will show that if ψ(t) solves (A.4), then H̃ (ψ(t)) = H̃ (ψ0), and
therefore Ũ (ψ(0, t)) = U (ψ(0, t))byLemmaA.1 (ii).Hence, F̃(ψ(0, t)) = F(ψ(0, t))
for all t ≥ 0, allowing us to conclude that ψ(t) solves (1.1) as well as (A.4).
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Localwell-posedness. Denote by e−i Dmt the dynamical group of the freeDirac equation.
Then the solution to the Cauchy problem (A.4) can be represented by

ψ(t) = e−i Dmtψ0 + Z [ψ(0, ·)](t),
Z [ψ(0, ·)](t) :=

∫ t

0
e−i Dm (t−s)D−1

m δ(·)F̃(ψ(0, s)) ds, t ∈ R. (A.8)

The next lemma establishes the contraction principle for the integral equation (A.8).

Lemma A.3. There exists a constant C > 0 so that for any two functions ψk(·, t) ∈
C([−1, 1], H1), k = 1, 2, one has:

‖Z [ψ1(0, ·)](t) − Z [ψ2(0, ·)](t)‖H1

≤ C |t |1/2 sup
|s|≤|t |

‖ψ1(·, s) − ψ2(·, s)‖H1 , |t | ≤ 1.

Proof. It suffices to consider t ≥ 0. In this case,

e−i Dmt = (i∂t + Dm)G (t), (A.9)

where G (t) is the integral operator with the integral kernel

G (x, y, t) = G(x − y, t) = θ(t − |x − y|)J0(m
√
t2 − (x − y)2)/2.

Here J0 is the Bessel function of zero order, and θ is the Heaviside function. According
to (A.8) and (A.9),

Z [ψ1(0, ·)](t) − Z [ψ2(0, ·)](t) = I1(x, t) + I2(x, t),

where

I1(x, t) :=
∫ t

0
G(x, t − s)

(
F̃(ψ1(0, s)) − F̃(ψ2(0, s))

)
ds,

I2(x, t) := i
∫ t

0
[Ġ(·, t − s) ∗ D−1

m δ(·)](x)(F̃(ψ1(0, s)) − F̃(ψ2(0, s)) ds.

First we prove the L2 estimate for I j (x, t). By the Sobolev embedding theorem,

‖I1(·, t)‖L2 ≤ sup
s∈[0,t]

|F̃(ψ1(0, s)) − F̃(ψ2(0, s))|
∫ t

0
‖G(·, s)‖L2 ds

≤ C sup
z∈C

|∇ F̃(z)|‖ψ1(·, s) − ψ2(·, s)‖H1

∫ t

0
‖ sin s

√
ξ2 + m2√

ξ2 + m2
‖L2 ds

≤ C1 t sup
s∈[0,t]

‖ψ1(·, s) − ψ2(·, s)‖H1 , (A.10)

where we took into account that |∇ F̃(z)| is bounded due to the choice of Ũ . Similarly,

‖I2(·, t)‖L2 ≤ C sup
s∈[0,t]

‖ψ1(·, s) − ψ2(·, s)‖H1

∫ t

0
‖(−iξα + mβ)

cos s
√

ξ2 + m2

ξ2 + m2 ‖L2 ds

≤ C1 t sup
s∈[0,t]

‖ψ1(·, s) − ψ2(·, s)‖H1 . (A.11)
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Now, we derive the L2 estimates for the derivatives ∂x I1(x, t) and ∂x I2(x, t). We have

∂xG(x, t) = 1

2
θ(t − |x |)∂x J0(m

√
t2 − x2) − 1

2
δ(t − |x |)sgnx

where

|∂x J0(m
√
t2 − x2)| = |J1(m

√
t2 − x2)

mx√
t2 − x2

| ≤ C, |x | ≤ |t | ≤ 1.

Hence,

‖∂x I1(·, t)‖L2 ≤ C1‖
∫ t

0
(Cθ(t − s − |x |) + δ(t − s − |x |)) ds‖L2 sup

s∈[0,t]
‖ψ1(·, s) − ψ2(·, s)‖H1

≤ C2[t‖θ(t − |x |)‖L2 + ‖θ(t − |x |)‖L2 ] sup
s∈[0,t]

‖ψ1(·, s) − ψ2(·, s)‖H1

≤ C2 t
1/2(t + 1) sup

s∈[0,t]
‖ψ1(·, s) − ψ2(·, s)‖H1 . (A.12)

Further,

∂x D
−1
m δ(x) = ∂x DmD

−2
m δ(x) = 1

2π

∫
R

e−iξ x (−iξ)(−iξα + mβ)dξ

ξ2 + m2

= −αδ(x) + m2αD−2
m δ(x) + mβ∂x D

−2
m δ(x).

Hence,

∂x I2(x, t) = −iα
∫ t

0
Ġ(x, t − s)

(
F̃(ψ1(0, s)) − F̃(ψ2(0, s))

)
ds

+im2α

∫ t

0
[Ġ(·, t − s) ∗ D−2

m δ(·)](x) α(F̃(ψ1(0, s)) − F̃(ψ2(0, s)) ds

+imβ

∫ t

0
∂x [Ġ(·, t − s) ∗ D−2

m δ(·)](x)(F̃(ψ1(0, s)) − F̃(ψ2(0, s)) ds

= α J1(x, t) + α J2(x, t) + β J3(x, t). (A.13)

The L2 norm of J1(x, t) is estimated similarly to the L2 norm of ∂x I1(x, t). Further,
similarly to (A.10), we get

‖J2(·, t)‖L2 ≤ C sup
s∈[0,t]

‖ψ1(·, s) − ψ2(·, s)‖H1

∫ t

0
‖cos s

√
ξ2 + m2

ξ2 + m2 ‖L2 ds

≤ C1 t sup
s∈[0,t]

‖ψ1(·, s) − ψ2(·, s)‖H1

‖J3(·, t)‖L2 ≤ C sup
s∈[0,t]

‖ψ1(·, s) − ψ2(·, s)‖H1

∫ t

0
‖ξ cos s

√
ξ2 + m2

ξ2 + m2 ‖L2 ds

≤ C1 t sup
s∈[0,t]

‖ψ1(·, s) − ψ2(·, s)‖H1 .

��
For E > 0, let us denote H1

E = {ψ0 ∈ H1: H (ψ0) ≤ E}.
Corollary A.4. 1. For any E > 0 there exists τ = τ(E) > 0 such that for anyψ0 ∈ H1

E
there is a unique solution ψ(x, t) ∈ C([−τ, τ ], H1) to the Cauchy problem (A.4)
with the initial condition ψ(0) = ψ0.

2. The maps W (t) : ψ0 → ψ(t), t ∈ [−τ, τ ] are continuous from H1
E to H1.
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Energy conservation and global well posedness.

Lemma A.5. For the solution to theCauchy problem (A.4)with the initial dataψ0 ∈ H1,
the energy is conserved: H̃ (ψ(t)) = const, t ∈ [−τ, τ ].
Proof. The Galerkin approximations provide a solution ψ ∈ L∞(R, H1) to (A.4) with
energy estimate

H̃ (ψ(t)) ≤ H̃ (ψ0), t ∈ R. (A.14)

Moreover, estimates from the proof of LemmaA.3 imply thatψ ∈ C(R, H1). Therefore,

H (ψ(t)) = H (ψ0), t ∈ [−τ, τ ]
since the inequality (A.14) also holds with ψ(s) instead of ψ0 for every s ∈ [−τ, τ ] by
the uniqueness of solutions proved in Corollary A.4. ��
Corollary A.6. 1. The solution ψ to the Cauchy problem (A.4) with the initial data

ψ |t=0 = ψ0 ∈ H1 exists globally: ψ ∈ Cb(R, H1).
2. The energy is conserved: H̃ (ψ(t)) = H̃ (ψ0), t ∈ R.

Proof. CorollaryA.4 (i) yields a solutionψ ∈ C([−τ, τ ], H1)with a positive τ = τ(E).
However, the value ofH (ψ(t)) is conserved for t ≤ τ by LemmaA.5. Corollary A.4 (i)
allows then to extend ψ to the interval [−2τ, 2τ ], and eventually to all t ∈ R. ��

Conclusion of the proof of Theorem 2.1. The trajectory ψ ∈ Cb(R, H1) is a solution
to (A.4), for which Corollary A.6 (ii) together with Lemma A.1 (i) imply the energy
conservation (2.5). By Lemma A.1 (ii), Ũ (ψ(0, t)) = U (ψ(0, t)), for all t ∈ R. This
tells us that ψ(x, t) is a solution to (1.1). Finally, the a priori bound (2.6) follows from
(A.7) and the conservation of H (ψ(t)). This finishes the proof of Theorem 2.1.

B Free Dirac Equation

Here we show that the function

ϕ±(x, t) = 1

2π

∫
R

(
I +

m

ω(k)
β ± ik

ω(k)
α
) f̂d(ω(k))

2ik
e±ikx e−iω(k)t kdk

ω(k)
,

ω(k) =
√
k2 + m2

are the solutions to the free Dirac equation (3.1). It suffices to prove that for any q =
(q1, q2) ∈ C

2 the functions

p±(x, t) = e±ikx e−iω(k)t(ω(k) + mβ ± ikα
)
q

satisfy

(i∂t − Dm)p±(x, t) = 0.

Indeed, the functions u±
j (x, t) = e±ikx e−iω(k)t q j obviously satisfy

ü±
j (x, t) + D2

m u±
j (x, t) = 0.
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Moreover,

p±(x, t) = (ω(k)I + mβ ± ikα)u±(x, t) = (i∂t + Dm)u±(x, t),

u±(x, t) = (u±
1 (x, t), u±

2 (x, t)).

Hence,

(i∂t − Dm)p±(x, t)=(i∂t−Dm)(i∂t +Dm)u±(x, t)=−ü±(x, t) − D2
m u±(x, t)=0.

C Proof of the Lemma 2.7

It suffices to consider the case j = 1 only, since in the Eq. (2.13) with j = 1 and j = 2

are similar. For ω1 ∈ (−m,m) denote μ1 = μ1(ω1) = 1 +
m−
√
m2−ω2

1

ω1
> 0. Then

Eq. (2.13) for j = 1 reads

2κ1C1 = F1(μ1C1), κ1 = κ1(ω1) =
√
m2 − ω2

1 > 0, ω1 ∈ (−m,m).

Taking into account (2.9)–(2.10), we rewrite this equation as

2κ1 = a1(μ
2
1|C1|2)μ1, (C.1)

where

a1(|ζ |2) = M −
N1∑
n=2

2nun,1|ζ |2n−2, N1 ≥ 2, M > 0, uN1,1 > 0.

Equation (C.1) has nonzero solutions C1 = C1(ω1) in the case when 2κ1(ω1) <

Mμ1(ω1), i.e.

2
√
m2 − ω2

1 < M
(
1 +

m −
√
m2 − ω2

1

ω1

)
.

Dividing by
√
m + ω > 0, we arrive at the inequality

2
√
m − ω1 < M

√
m + ω1 − √

m − ω1

ω1
. (C.2)

Obviously, (C.2) holds for any M > 0 and ω1 sufficiently close tom. It is not difficult to
verify that this holds for any ω1 ∈ (−m,m) in the case when M > (1 +

√
2)m. Indeed,

(C.2) is equivalent to

√
m − ω1 <

M√
m + ω1 +

√
m − ω1

or √
m2 − ω2

1 < M + ω1 − m.

For M > 2m, squaring both sides, we obtain

2ω2
1 + 2ω1(M − m) + M2 − 2Mm

= 2
(
ω1 +

M − m

2

)2 + 1

2

(
M − m(1 +

√
2)
)(
M + m(

√
2 − 1)

)
> 0,

which holds for any M > (1 +
√
2)m.



600 E. Kopylova, A. Komech

D Linear Case

Here we consider the linear case, when

Fj (ζ j ) = a jζ j , Uj (ζ j ) = −a j

2
|ζ1|2 a j ∈ R. (D.1)

Now Eq. (1.1) reads

ψ̇(x, t) = Dmψ(x, t) − D−1
m Aψ(0, t)δ(x), A =

(
a1 0
0 a2

)
, x ∈ R, t ∈ R.

(D.2)

We restrict our consideration to the case when a j < 2m, j = 1, 2. It is in this case
that condition (2.4) is satisfied, and then all conclusions of Theorem 2.1 on global well-
posedness for Eq. (D.2) hold .

Let us calculate corresponding solitary waves. Now Eq. (2.13) become

√
m2 − ω2

1 = a1
ω1 + m −

√
m2 − ω2

1

2ω1
,

√
m2 − ω2

2 = a2
ω2 − m +

√
m2 − ω2

2

2ω2
, ω j ∈ (−m,m).

Cancelling the nonzero factors
√
m + ω1 and

√
m − ω2, we obtain

√
m − ω1 = a1

√
m + ω1 − √

m − ω1

2ω1
,

√
m + ω2 = a2

√
m + ω2 − √

m − ω2

2ω2
.

Multiplying both sides of this equations by
√
m + ω1 +

√
m − ω1 and

√
m + ω2 +√

m − ω2, respectively, we get√
m2 − ω2

1 + m − ω1 = a1,
√
m2 − ω2

2 + m + ω2 = a2, ω j ∈ (−m,m),

(D.3)

where the left hand sides of both equalities are positive for ω j ∈ (−m,m). Hence, there
are no nonzero solitary waves for a j ≤ 0, j = 1, 2. For 0 < a j < 2m, the corresponding
equation of (D.3) has the unique solution

ω j = (−1) j

2

(
a j − m −

√
m2 − a2j + 2ma j

)
. (D.4)

Finally, we conclude that for 0 < a j < 2m, j = 1, 2, the set of finite energy solitary
waves is given by

S =
⎧⎨
⎩C1

⎡
⎣ e−κ1|x | + me−κ1|x |−κ1e

−m|x |
ω1

κ1sgnx
e−κ1|x |−e−m|x |

ω1

⎤
⎦ + C2

⎡
⎣ −κ2sgnx

e−κ2 |x |−e−m|x |
ω2

e−κ2|x | − me−κ2 |x |−κ2e
−m|x |

ω2

⎤
⎦ : C1, C2 ∈ C

⎫⎬
⎭ .

(D.5)

In the case a1 < 0 the set S is given by (D.5) with C1 = 0, while C2 ∈ C is arbitrary,
and vice versa. .
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Theorem D.1. Assume that Fj (ψ j ) = a jψ j , where a j < 2m, j = 1, 2. Then for any
ψ0 ∈ H1 the solution ψ(t) ∈ C(R, H1) to the Cauchy problem (1.1) with ψ(0) = ψ0
converges toS in the space H1

loc(R) ⊗ C2:

�(t) → S , t → ±∞. (D.6)

Proof. We proceed as in the proof of Theorem 2.9 until we get Eq. (7.3), which takes
now the following form:

i γ̇ (x, t) = Dmγ (x, t) − D−1
m Aγ (0, t)δ(x), (x, t) ∈ R

2. (D.7)

In this case we cannot use the Titchmarsh arguments since the condition (2.8) fails. Now
we should prove that

γ (·, t) ∈ S , t ∈ R, (D.8)

for all solutions of (D.7) with the structure (6.16). In the Fourier transform γ̂ (x, ω) =
Ft→ω[γ (x, t)] the Eq. (D.7) becomes

(Dm − ω)γ̂ (x, ω) − D−1
m Aγ̂ (0, ω)δ(x) = 0, (x, ω) ∈ R

2.

Applying the operator Dm + ω, we get

(D2
m − ω2)γ̂ (x, ω) − Aγ̂ (0, ω)δ(x) − ωD−1

m Aγ̂ (0, ω)δ(x) = 0, (x, ω) ∈ R
2.

(D.9)

On the other hand, the representation (6.16) implies that

γ̂ (x, ω) = p̂(ω)e−κ(ω)|x | + (β − α sgnx)σ−1(ω) p̂(ω)
e−κ(ω)|x | − e−m|x |

2ω
,

γ̂ (0, ω) = p̂(ω).

Substituting this into (D.9) and equating coefficients with delta functions, we obtain

2κ(ω) p̂(ω) + βσ−1(ω) p̂(ω)
κ(ω) − m

ω
= A p̂(ω), κ =

√
m2 − ω2,

where σ−1(ω) is the diagonal matrix (6.8) with matrix elements [σ−1(ω)] j j :=
ν j (ω) = κ(ω) + m − (−1) jω.

Therefore, on the support of the distribution p̂ j (ω), j = 1, 2, the identity hold

2κ(ω) + (−1) j+1ν j (ω)
κ(ω) − m

ω
= a j .

Simplifying, we arrive at the following equation

κ(ω) + m + (−1) jω = a j

which are exactly Eq. (D.3) for soliton parameters ω j . Finally, we obtain that for 0 <

a j < 2m

supp p̂ j = ω j ∈ (−m,m),

where ω j are given in (D.4). Hence, the inclusion (D.8) follows. This finishes the proof
of Theorem D.1. ��
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