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Denis Bonheure kindly informed me that [1], section 2.6 (“The minimizer of I weakly
satisfies the Euler—Lagrange equation’), contains a logical gap on p. 516 where I wrote:

“The result |Q2¢i¢| = 0 means that |Vus| < 1 a.e., and this already implies that the
variation of F(v) about vy to leading order (i.e. power 1) in 1 now reads

Vo) amyis) ) a,16sn(s))d3s.

FD v :/ \% P
[ecl(¥) R3( ve) 1 — [Vuge(s)[? 1sn=N

(22)

Since T [vso](¥) is linear in ¥, voe can minimize F over .7 only if F P [vae](¥) =0
for all v, which is precisely (7). Thus the Euler-Lagrange equation (1) is satisfied by
Voo 1N the weak sense, as claimed.”

Bonheure’s objection concerns the sentence: “Since F (1)[voo](1ﬁ) is linear in v, ...”,
which alludes to the usual linearity-based argument (i.e., “Suppose F 1 [voo]() # 0
for some ; then either ’J"(l)[voo](l/f) < Oor 3"(1)[1100](—1//) < 0; but this is impossi-
ble because voo is the minimizer of F(v); hence, F P [v1(¥) = 0.”). He notes that,
although |Qcri¢| = O (cf. the proof on p. 515) implies that TV [v,, () is given by (22),
and although (22) does act linearly on the space of compactly supported C°(R3) test
functions CSO(R3), only a nonlinear subset of these supplies admissible perturbations
of vs. More precisely, the restriction vo + ¥ € 7 (the admissible set of v) rules out
test functions 1 for which Vv (s) - Vi (s) > 0 a.e. in some open e-ball B, satisfying
Qerit N Be # ¥ while allowing those 1 for which Vv (s) - Vi (s) < 0 a.e. in such Be.

The original article can be found online at https://doi.org/10.1007/s00220-012-1502-3.
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Thus one cannot invoke the linearity of F M [va]( - ) : cx (R3) - R to con-
clude that F D [vs (W) = 0 for all ¢ € cx (R3), which is equivalent to the Euler—
Lagrange equation (1) (see (E28) below) in weak form (see (7) in [1]). Of course,
the nonlinear set of admissible i contains the linear subset of C2° (R3) test functions
for which limy_, q_; |V (s)| = O (incidentally, the larger linear subset of C2°(R) for
which limg_,. g, V¥ (5) - Vuse (s) = O contains inadmissible 1, namely those for which
limg ., IV¥(s)| # 0). For ¥ in this linear subset we do have FDvgl(¥) = 0,
by the familiar argument; however, Bonheure points out, knowing only that |Qi| =
0 does not allow us to conclude that the linear subset of test functions satisfying
limg_ g, IV¥(s)| = 0is dense in CSO(R3).

In the following I respond to Bonheure’s criticism (see also [2]) by showing that
FD[vse1(¥) = 0 not only for all Y € C°(R?) which satisfy limy_, o, [V¥(s)] = 0,
but indeed for all € CZ° (R3). I pick up on Remark 3.4, see p. 518 in [1]; thus we play
a variation of the convex duality theme on p. 517 of [1].

We work with the almost everywhere harmonic field (eq.(29) in [1])

Vi(s) = }:% _s| (BI)
We have (eq.(30) in [1])
N
V-Vy =4 Y apds, (E2)
n=1

in the sense of distributions. Moreover, recall that for any w € (Wé P (R3))3, p>1,
V.-Vxw=0 (E3)
weakly; note that V x w is well defined on R except on a set 2, with Lebesgue measure
zero. More generally, linearity implies that V- V x w = 0 for any w = > » Wp with
weak curls V x w, € (LP(R3))3, where Zp sums over a countable (sub-)set of p > 1.
We will work with Y, (W, P (R*))3, p > 1, where (W, " (R%))? is defined as the
closure of the set of divergence-free, compactly supported C*> vector fields w with

respect to the norm |||V x w| IILP(R3).
Abbreviating V), + V x w =: V, an integration by parts now yields

ff"(voo):/ (1— 1~ Vo @)? — 47v00(s) Y an8sn(s))d3s
R3 1<n<N (E4)

= f3(1 1= Vo )2+ V(s) - Vvoo(s)>d3s
R

for any such w € ZP(WOVX’p(R3))3, p > 1. Next observe that pointwise

V(s)'vvoo(s)_\/l_|Vvoo(s)|22 mm { V(s)-E(s) — x/l—IE(S)IZ}

(ES)
1+W@W,seRﬁ@mu9w,
where B; C R? is the open unit ball. The unique minimizer Evy (s) is given by
V(s)
Ey(s) = (E6)

JI+ V)2
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defining a vector field on R3 g.e., satisfying |Ey(s)| < 1, with |Ey(s)| — 1 when
s — {s,,}r]:]=1 C Qit and possibly when s — €2,. Inverting (E6) yields

E
Vis) = & (E7)
V1 —1Ey(9)[?
and so, since V- V = 4x Z,Ilvz 1 ands, in the sense of distributions, we have
E N
AR (E8)

V't —
\/1—|Ev(s)|2 n=1

weakly, for any V = V), + V x w. This almost is the Euler—Lagrange equation we seek
to obtain, yet not quite: at this point we don’t know whether s — Ey (s) is a gradient
field — indeed, for most w it’s not! Also, the minimization w.r.t. E implies

F (ve0) z/ (1-VITVOPR)d*s = ~5v) (E9)
R3

forany V =V, +V x w withw € ZP(WOVX”’(R3))3, p > 1. So we need to show that
there does exista U = Vj,+V x wy such that fora.e. s € R3 we have Ey(s) = —Vuy(s)
for some v, € W(} *%°, and with G(U) = —F (vso)- The existence and uniqueness of the
minimizer v, (s) of F(v) (see [1]) then yields vy (s) = voo(s). Clearly, U = Vj, +V X w,
will minimize §(V) among all V = V, + V x w with w € ZP(WOVX”’(R3))3, p=>1
In fact, it suffices to minimize §(V;, + V x w) for w € Z (WOVX”’(]I@))3 p € {1,2}.

We remark that ) 12 (WOv *P(R3))3 is a Banach space with respect to the norm
lw] = inf{|||V x w1|||L1(]R3) + |||V x w2|I|L2(Rz)} where (given w) the infimum is

over the set {wy +wy = w | wy, € (Wo VX, P (R3))3, p € {1, 2}}; note that the splitting
of w into a sum of w; and w, is not unique (we will take advantage of this to prove
Lemma 0.7, and Theorem 0.1, below).

‘We now show that such a w exists.

In the special case N = 1 it is easily seen that w, = 0 is the minimizer. Indeed,
V), in this case is a spherically symmetric gradient field, and so is E Vs thus, taking the
Gateaux derivative 5—,9(Vh +1V x w) att = 0 with compactly supported w € CZ° (R3)3
yields [Ey, -V x w d3s, and integration by parts now shows that this integral does
vanish because V x Ey, = 0. Hence when N = 1 then V}, is a critical point of §(V),
and the strict convexity of §(V) w.r.t. V x w now establishes its minimality. Of course,
this just re-expresses the long-ago solved J variational problem for N = 1 in terms of
the G variational problem. Thus, in the following we assume N > 1.

When N > 1 then w = 0 is not a minimizer. For suppose w = 0 were a minimizer,
then the Gateaux derivative %S(Vh +tV x w) at t = 0 would have to vanish, yet it is
easily seen that it doesn’t vanish for all w because V x Ey, # 0 when N > 1.

‘We next prove

Theorem 0.1. 3w, € (W, ' (R*)?+(Wy *(R?))? so that U = Vi, +V x w, satisfies

S(U) = inf {S(Vh +V x w)| we (W (R + (W, 2(R3))3]. (E10)
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Proof of the Theorem. We begin by showing that G(V) is well defined on the stipulated
set.

Proposition 0.2. For V = Vj, + V x w with w = w1 + wy as stipulated, the functional
S(V) is well-defined and strongly continuous.

Proof. Through telescoping G(V) = [G(V,+V X w1 +V X wp) —G(Vy + V x wy)]+
[S(V+V xwi)—SG(Vy)]+5(Vy), we right away note that G(V},) is well-defined because
|Vi| € Li,.(R¥) N L?(R3\Bg) for any open Bg D {s,}_,, whereas the two difference
terms (the [...] terms) are estimated as follows: We use the identity

Vi(s) + AVa(s)

3
Vi) FOIE - Va(s)d”sdA, (E11)

1
Vi+ V) —G(V)) =
G(Vi+V2) = S(V)) /0 e 7

and note that Ey =V /\/1+|V|? € (L? N L®)(R?))*, with [[|Ev ||| joe(gs) = 1 and

1/2

NEVII2@s < 19172+ 11Vall 2@ave) + 1V x willl g,

+ IV x walll 2R3y,
(E12)

where Q = BRU{|V x wi| > 1}U{|V x wy| > 1} for some convenient Bg D {s,,},}:’=1
(see “Appendix A”); note that €2 is measurable but not necessarily open. Thus, and setting
-ty =1 - ”LP(IR3) (below with p = 1 or 2),

(i) let Vi = Vj, and Vo = V x wj, then Holder’s inequality applied to (E11) yields
[S(Vh+V xwi) = SVl < IIV x willlp1; (E13)
(i) let Vi =V, +V x wy and Vo, = V X w; and apply Holder to (E11) to get
1SV +V x (wy +w2)) — §(Vi +V x wy)| < JSup HEv [ 211V x walll 2,

(E14)
where we have set V;, = Vj, + V x w; + AV X wy. The L2 norm of Ey, is estimated
by (E12) with w; replaced by Lw,, and the obvious estimate A < 1. This establishes
that (V) is well-defined on the stipulated set.

This also proves that §(V) is strongly continuous at Vs, for |||V x w{"|| ;1 — 0and

IV x wé")]”Lz — 0 together imply G(V}, + V x (wi") + wé"))) — G(Vp) as n — 0.

The strong continuity of §(V) atany V = V, + V x w with w € (V.VOVXJ(JR?))3 +

1/Vx,2

(W, (R?))3 follows essentially verbatim. O

The strong continuity of G(V) in concert with its strict convexity in V x w implies:
Corollary 0.3. The functional G(V) is weakly lower semi-continuous.

Since G(V) is invariant under gauge transformations w — w + Vy (because V x w,
and thus V, are, also Ey is gauge invariant), the strict convexity of §(V) in V x w
does not automatically translate into strict convexity of G(V) in w. However, since
we have stipulated w to be divergence-free, viz. V - w = 0, only gauge transformations
w — w+Vy with harmonic y, i.e. with Ay = 0, remain; but the only allowed harmonic
y are those which are constant at spatial co, which leaves the identity map as the only
gauge transformation. Thus G(V) is strictly convex in w, and so we have
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Corollary 0.4. Any minimizer w, € (Wy " (R*)3 + (Wy 2 (R*)? of (Vi + V x w)
is unique.

We next show that it suffices to consider G(V, + V x w) for w € (I}i/()v><’1(]R3))3 +
(VVOV X2 (R3))3. For this we recall the chiral Helmholtz theorem of [3]:
Lemma 0.5. Any vector field F(s) can be decomposed into F(s) = £(s) + g(s), where

f(s) is divergence-free and g(s) is curl-free. The divergence-free part £ (s) has the chiral
Fourier representation

fs)= Y e TRSQ, (k) f (k) dk (E15)

ne{£1} JR3
. _ T _ ky (ki+inks) ko (ky+ink») . ky+inko)\T
with k = (k1. ko, ks)" and Qq (k) = ~ 5 (Sl — 1 Tercrvi — 1 ")

So £(s) is uniquely characterized by two scalar functions, f,(k), n € {£1}, given by

fok) = f e QL (k) - F(s)ds. (E16)
R3

Note that Q; (k) is a unit vector which depends on k only through k/|k|, and it can
continuously be extended into the removable singularity at k3 = —|k|. Note also that
k-Qy(k) = 0. We remark that this is not in violation of the “hairy ball theorem” because
Q, (k) is complex.

With the help of Lemma 0.5 we prove

Proposition 0.6. Suppose S(Vj, + V x w) < oo. Then, after at most a gauge transfor-
mation w +— w + Vy, we have w € (I}i/()vx’l(JI§3))3 + (WOVX’Z(R3))3.

Proof. For any V. = V;, + V x w with §(V) < oo the subset K¢ C R3 on which

|[V| > C > Oa.e. has finite Lebesgue measure, for we have §(V) > (v 1+ C%2—1)|K¢]|.
Partitioning R? = K¢ UR3\ K¢ we thus estimate

SV) = VIl (key — 1Kcl + ﬁ”WH@z(Rz\Kcy (E17)

Now let C > 0 be small enough so that {sl}fvz | CC Kc. Then, by the triangle
inequality, (E17) implies that, on the one hand,

IV x wlll ko) < SOV + 1Kel+ Vil gy (E18)

and, on the other,

IV < will L2@3\ke) = \/(1 +V1+CHSV) +IKcD + 1Vl 2@svkey- (E19)

Defining
fi.y (k) ::/ e TRSQr(k) - V x w(s)d’s, (E20)
Kc

frg(h) == / e PTESQE (k) - V x w(s)d’s, (E21)
R3\Kc
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and f;, (k) := f1,,(k)+ f2,,(k), we obtain a decomposition of V x winto V x w1 +V x wy
with |V x wi| € LY(R?) and |V x w;| € L?(R?). But then (see [3]),

wi(s) = Y n/ eiznk'sQn(k)ﬁ;,,(k)ﬁd%eWOVX’I(R3)3, le{l,2). (E22)
ne{+1} JR3

O

Next we use that the splitting w = w1 + w is not unique to show:

Lemma 0.7. Let{w(")}neN C (WOVX’I(IR3))3+(WOVX’2(R3))3 be aminimizing sequence

Jor S(Vy+V x w). Then without loss of generality we may assume that |||V x wén) 72 <
C» for some convenient fixed C > 0.

Proof. Since w € (W, "' (R¥)? + (Wy *(R%))> we have f, € Co(R?) + L3(R?),
where CO(R ), a subset of the continuous functions which vanish at spatial oo, is the
image of L 1(R3) under Fourier transform.

Now, if f = fi + fo with fi € Co(R?) and f, € L*(R%), then for h € S(R?)
(Schwartz space) alsof (fi+h)+(fo— h) with fi+h € Co(R3) and fo—h € L2(R).
Since furthermore S(R3) is dense in LZ(R3) (and also in Co(R?), though that’s not
needed), if necessary after splitting w = w; + wz corresponding to f; = f1,,+ f2,5, we
can always find an / to “re-split” w = w/ + w5 with f, = (f1,, +h) + (f2,, — h), such
that |||V x wj|||;2 < C for any fixed C2 > 0. This establishes the Lemma. O

Now consider any minimizing sequence {V™ = V, + V x w™},cy of G(V)
with w® e (WY "'(R3)? + (W, *(R?))? satisfying ||V x wa|l;2 < Ca. The
(Wy > (R?))? norm bound on w(”) implies weak compactness, so from any minimizing
sequence {V® =V, +V x (wgn) + wg’))}neN we can extract a subsequence {V(”f)}jeN

such that (Wovx’z(R3))3—weakly we have that wé"") —~un € (WOVX’z(R3))3 ask — oo;

moreover, |||V x wz]||;2 < C,. This reduces the problem to proving weak compactness

W.L.L. (WOVX !

(R?))3 of the sequence {wgn)}nk <y 1N @ minimizing sequence {V(")}n N
given by V" = Vv, + V x (wgn) + wy), with wy denoting a weak limit point of the
sequence {wé”)}nk ¢y Suitably chosen in the original minimizing sequence (v} neN
The fact that {V™ = v}, +V x (w(") +w»)} ngeN is a minimizing sequence follows from
(E11) with V; = V, +V x (™ +w{) and v, = V x (wy — wi"), which yields the
estimate [G(V; + V2) — G(VD| < CIIV x (w” — wo)ll 2 (cf. (E14)).

We now prove weak compactness w.r.t. (WOv * 1(R3))3 of the sequence { wln)} ngeN:

First of all, since w = 0 is not a minimizer if N > 1, we have infy G(V) < G(Vp).
Thus, without loss of generality we have G(V, + V x wy +V X wI")) < G(V,) and

Vxwy+V x wi") %0, foralln € N.
Second, recalling that for any V.= V;, + V x w with w € (WOVX’I(R3))3 +
(WOVX’Z(IR}))3 the subset K¢ < R3 on which [V| > C > 0 a.e. has finite Lebesgue

measure, since §(V) > (V1 + C% — 1)|K¢|, without loss of generality we now choose
C = +/3 and thus may assume that when N > 1, then for a minimizing sequence
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{V™},cn the size of the domains Kf%) on which |V | > /3 a.e. is bounded by
|K(”)| < G(Vy), uniformly in 7.
We also define Y™ ;= K% U Bg, where Bg D {s¢}I\_, is an open ball and Bg its

closure; then dist(0 Bg, {Sl}lNzl) > 0. Note that |Y™| < |Bg| + |K(")| < |Br|+G(Vp)
uniformly in 7.

Third, we establish the analog of the uniform upper norm bounds obtained in the
proof of Proposition 0.6 for the partitioning R? = YT UR3\ T, We estimate

v = |ive|

ey e

(E23)

Ll('{(n)) Lz(Rg\T("))

and recall that §(V})) > (V™) when N > 1.
On the one hand, (E23) implies |||V<">||| Lirmy < S(Vi) + [T ™|, But then, since

VO oy = VO gy = 1
IV x w(")|||L1(BR) < G(Vp) + Y™+ I1Villl L1 (,): and since the triangle inequality,
followed by a radially-decreasing-rearrangement inequality, gives us [[|Valllp1p,) <
@m)23313(1BRD' Y, lan|, we conclude that (when N > 1) [[[V x w™ ||| 115, is
bounded above uniformly in n. Also, since |||V x walllp1(g,) < 00 independently of
(n)

|V X w(n)IHLI(BR) - ”|Vh|”L1(BR)’ we obtain

n, for w™ = w;’ + w; the triangle inequality now implies that |||V x wl |||L1(BR) <

SOV + 1TP + [ Valll 1 epony + 11V x walll L1 gy < C1(R) uniformly in n.
. . 2 . .
On the other hand, (E23) implies |||V ™||| L@y < 3(S(Va) +17™]), which in
concert with [[V | 2 ga oy, = 11V x w1l 2@\ yron, =1 Vi |l 2 @3\ v yields the

upper bound [[|V x w ||| 2@s\ymy < /3(G(Va) + 1T D) + Vil L2g3\ oy Since

IVall 2gsrony < 47 3 lax] /dist(d B, {s;})_)),andsince ||V x w{™[[| ;2 s\ vy <
1V x w® )|||L2(Rx\T(n>) + IV x walll 2 @3\ y o) by the triangle inequality, and since
1V x w2|||L2(R'§\T(n)) < C by Lemma 0.7, we conclude that for N > 1, we have

IV x w1 |||L2(R3\'Y‘(n)) < C, uniformly in n.
Fourth, by the L! (Br) bounds a minimizing sequence {|V X W, )| }nen has a weak™

convergent subsequence on every Bg; by the Lebesgue decomposition theorem the limit
is the sum of an L!(Bg) function f and a measure  which is singular w.r.t. Lebesgue
measure, with || f |l 1p,) + w(Bg) < C(R). Now suppose that (Bg) > 0; note that
supp(u) has Lebesgue measure zero. Then for any open neighborhood N¢ of supp(u)
of size € we have

/ Jv(w(s)\d% z/ ( 1+|v<n><s>\2_1)d3sz/ Jv("’(s>\d3s—e.
NeNB NeNBr NenB
(E24)

Taking the limit ny — oo (along the convergent subsequence) and then € — 0 reveals

that the singular part makes an additive contribution £ (Bg) > 0to G(V). Thus by sub-

(n)

tracting the part of the V x w;"’ subsequence which converges in absolute value to & we

can lower the value of G(V); hence, {V x wi") }neN Was not a minimizing sequence—in
contradiction to the hypothesis that it was. Therefore, after extracting a subsequence,
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we can assume that a minimizing sequence {V x w%") }nen converges weakly in L' (Bg)
to some V x wy, for each Bp as stipulated. This means that {|V X w%n)|}neN con-
verges weakly in LlloC (R3) to some |V x wy|, and so {V x wgn)}neN converges weakly

in WIZCX’I(R3)3 to some V X wj.

Summarizing so far: any minimizing sequence {w} neny Of G(Vi +V x w) with
w® e (WOV X’I(IR3))3 + (WOv ><’Z(RS))3 has a locally weakly convergent subsequence
with limit w, € (W' (RY)? + (Wy 2(R?))3.

loc
Fifth, by another variation of the reasoning in our proof of Proposition 0.6 we show

that . € (Wy ' (R%)? + (W *(R%))*. Namely, the subset K, C &? on which
[V +V X wi| > /3 a.e. has finite Lebesgue measure, |Kj‘/3| < G(Vp). We also define

T* = Kf/3UB_Randn0tethat|T*| < |BR|+|KT/3| < |Bg|+5G(V}y). Essentially verbatim
to our estimation of the sequence norms we have that [[|[V x willlp1(y«) < G(Va) +
IC* + 1 ValllLrpsy + IV X< w2l g1 p+)- By Holder’s inequality, |||V X wal|| g1+ <
*1/2 1/2
IV < willlgiers < Cr.

and we have [[|[V x walllp2¢y+) < [V x wall|2(r3)- And so

On the other hand, we also know that |||V x wi") 22 @3\ ymy < C> uniformly in n,
and so |||V x willl 223\ v+ < C2. Now suppose that |||V x wi |l 1g3\y+) = 00. But
then, since |V x wq| € (L? N L%®)(R3\'YT*), we can subtract the offending part from
w and add it to wy, denoting the new decomposition by w; + w». Indeed, by the chiral
Fourier representation we can find a V x w with chiral Fourier components g, (k) € (L'n
L*)(R?) such that |||V x (w1 — 0)||| 1 @3\ < 00;since |V x w| € (L?NL®)(R?), it
follows that |V x | € L' (T*),and so |||V x (w; — )| 13y < 00. Also we obviously
have |V x (wy — w)| € L%(R3). Thus, setting w) := w; — w and Wy = wy + W we
have wy +wy = Wy + b with w1 € Wy ' (R*)? and W € Wy *(R%))>. Thus,
Wy € WOVX’I(]I@))3 + (WOVX’Z(R3))3, as claimed.

Lastly, by weak lower semi-continuity (Fatou’s lemma),

U(s) i= Vi(s) + V x wi(s) (E25)

is a minimizer of (V). This completes the proof of Theorem 0.1. O
It now follows in the usual way that U given in (E25) is a critical point of G(V),
satisfying the Euler—Lagrange equation

Vih+V x w,

V x
VI+|V+V x wy?

=0. (E26)

Thus, and applying the Poincaré lemma, we find that locally in simply connected domains

Ey(s) = Ve _ —Vu,(s) (E27)

VI+[U$)?

is a gradient field. Furthermore, as shown in (ES8) for any Ey, we have that

N
v
V) gy Y ands, (E28)
1 — |V, (s)]?

n=1
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in the sense of distributions; thus, v, exists globally a.e. and satisfies F (1)[v*](1/f) =0
for all € C°(R?).
Finally, we show that v, = vy. Namely, we have

Fve) = F(vee) = =5(U) = F(vs). (E29)

The first inequality expresses the fact that v is @ minimizer of F(v); the second in-
equality follows from the fact that U is just a special V, and that F(veo) > —G(V) for
all V. =V, +V x w, see (E9); lastly, the equality in (E29) follows from the fact that
U = —Vu.(s)//1 — [Vus(s)|? satisfies (E28), equivalently v, satisfies FD[v,](y) =
Oforally € C° (R3) — more explicitly, inverting the above-stated algebraic relation
between U and Vu,, we can rewrite —G(U) as follows (cf. (23)—(26) in [1]):

f3(1 i |U(s)|2)d3s - /3(1 1= [Vus) 2+ Us) - Vv*(s)>d3s,
R R
(E30)

and an integration by parts on the last term in the second integral, and using that V- U =
4 fo:l a0, weakly, now yields —G(U) = F(vy). Thus, F(vy) = F(v), and by the
uniqueness of the minimizer of F(v), we have v, = vo.

The proof that F Do, 1(¥) = 0 for all ¥ € C°(R?) is complete. O
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Appendix A

Proof of (E12). Pick aball Bg D {s,,}fl\’:l. Alsolet 21 :={|V x wi| > 1} and 2, :=
{IV x wy| > 1}. Then co > |||V x w1|||L] > le IV x wi|d®s > 2], and similarly
|Q2;] < 00.Let Q2 = BrUQ1UR); then |2| < oco. Let x be the characteristic function of
the set S. Then, by the triangle inequality, [ |Ev|ll,» < |IEvIxgl 2+ | I1EvIxenal -
< |22|'/2, while using |Ey| < |V| and again the

Using |Ey| < 1yields ||Ev|xg| 2
triangle inequality yields

NEVI 2@ q) = MValll 2@ + 1TV x willl 2@ + 1TV x walll 2@3\q)- (AD

12 -
LIR)\Q) —
IV > wi I} < oo. Together with |||V x walll 2@y < IV x walll 2 < 0o we
obtain (E12). O

Next, |V x wi| < 1 on R3\Q yields |||V x willlpzeig < IV x wil]
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