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Denis Bonheure kindly informed me that [1], section 2.6 (“The minimizer of F weakly
satisfies the Euler–Lagrange equation”), contains a logical gap on p. 516 where I wrote:

“The result |�crit| = 0 means that |∇v∞| < 1 a.e., and this already implies that the
variation of F(v) about v∞ to leading order (i.e. power 1) in ψ now reads

F(1)[v∞](ψ) =
∫
R3

(
∇ψ(s) · ∇v∞(s)√

1 − |∇v∞(s)|2 − 4πψ(s)
∑

1≤n≤N
anδsn (s)

)
d3s.

(22)

Since F(1)[v∞](ψ) is linear in ψ , v∞ can minimize F overA only if F(1)[v∞](ψ) = 0
for all ψ , which is precisely (7). Thus the Euler-Lagrange equation (1) is satisfied by
v∞ in the weak sense, as claimed.”

Bonheure’s objection concerns the sentence: “Since F(1)[v∞](ψ) is linear in ψ , ...”,
which alludes to the usual linearity-based argument (i.e., “Suppose F(1)[v∞](ψ) �= 0
for some ψ ; then either F(1)[v∞](ψ) < 0 or F(1)[v∞](−ψ) < 0; but this is impossi-
ble because v∞ is the minimizer of F(v); hence, F(1)[v∞](ψ) = 0.”). He notes that,
although |�crit| = 0 (cf. the proof on p. 515) implies that F(1)[v∞](ψ) is given by (22),
and although (22) does act linearly on the space of compactly supported C∞(R3) test
functions C∞

c (R3), only a nonlinear subset of these supplies admissible perturbations
of v∞. More precisely, the restriction v∞ + ψ ∈ A (the admissible set of v) rules out
test functions ψ for which ∇v∞(s) · ∇ψ(s) ≥ 0 a.e. in some open ε-ball Bε satisfying
�crit ∩ Bε �= ∅ while allowing those ψ for which ∇v∞(s) · ∇ψ(s) < 0 a.e. in such Bε .

The original article can be found online at https://doi.org/10.1007/s00220-012-1502-3.
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Thus one cannot invoke the linearity of F(1)[v∞]( · ) : C∞
c (R3) → R to con-

clude that F(1)[v∞](ψ) = 0 for all ψ ∈ C∞
c (R3), which is equivalent to the Euler–

Lagrange equation (1) (see (E28) below) in weak form (see (7) in [1]). Of course,
the nonlinear set of admissible ψ contains the linear subset of C∞

c (R3) test functions
for which lims→�crit |∇ψ(s)| = 0 (incidentally, the larger linear subset of C∞

c (R) for
which lims→�crit ∇ψ(s) ·∇v∞(s) = 0 contains inadmissibleψ , namely those for which
lims→�crit |∇ψ(s)| �= 0). For ψ in this linear subset we do have F(1)[v∞](ψ) = 0,
by the familiar argument; however, Bonheure points out, knowing only that |�crit| =
0 does not allow us to conclude that the linear subset of test functions satisfying
lims→�crit |∇ψ(s)| = 0 is dense in C∞

c (R3).
In the following I respond to Bonheure’s criticism (see also [2]) by showing that

F(1)[v∞](ψ) = 0 not only for all ψ ∈ C∞
c (R3) which satisfy lims→�crit |∇ψ(s)| = 0,

but indeed for all ψ ∈ C∞
c (R3). I pick up on Remark 3.4, see p. 518 in [1]; thus we play

a variation of the convex duality theme on p. 517 of [1].
We work with the almost everywhere harmonic field (eq.(29) in [1])

Vh(s) = −
N∑

n=1

an∇ 1

|s − sn| . (E1)

We have (eq.(30) in [1])

∇ · Vh = 4π
N∑

n=1
anδsn (E2)

in the sense of distributions. Moreover, recall that for any w ∈ (Ẇ 1,p
0 (R3))3, p ≥ 1,

∇ · ∇ × w = 0 (E3)

weakly; note that∇×w is well defined onR3 except on a set�w with Lebesguemeasure
zero. More generally, linearity implies that ∇ · ∇ × w = 0 for any w = ∑

p wp with

weak curls ∇ × wp ∈ (L p(R3))3, where
∑

p sums over a countable (sub-)set of p ≥ 1.

We will work with
∑

p(Ẇ
∇×,p
0 (R3))3, p ≥ 1, where (Ẇ∇×,p

0 (R3))3 is defined as the
closure of the set of divergence-free, compactly supported C∞ vector fields w with
respect to the norm ‖|∇ × w|‖L p(R3).

Abbreviating Vh + ∇ × w =: V , an integration by parts now yields

F(v∞) =
∫
R3

(
1 −

√
1 − |∇v∞(s)|2 − 4πv∞(s)

∑
1≤n≤N

anδsn (s)
)
d3s

=
∫
R3

(
1 −

√
1 − |∇v∞(s)|2 + V (s) · ∇v∞(s)

)
d3s

(E4)

for any such w ∈ ∑
p(Ẇ

∇×,p
0 (R3))3, p ≥ 1. Next observe that pointwise

V (s) · ∇v∞(s) − √
1 − |∇v∞(s)|2 ≥ min

E(s)∈B1a.e.

{
− V (s) · E(s) −

√
1 − |E(s)|2

}

= −√
1 + |V (s)|2, s ∈ R

3\(�crit ∪ �w),
(E5)

where B1 ⊂ R
3 is the open unit ball. The unique minimizer EV (s) is given by

EV (s) = V (s)√
1 + |V (s)|2 , (E6)
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defining a vector field on R
3 a.e., satisfying |EV (s)| < 1, with |EV (s)| → 1 when

s → {sn}Nn=1 ⊂ �crit and possibly when s → �w. Inverting (E6) yields

V (s) = EV (s)√
1 − |EV (s)|2 , (E7)

and so, since ∇ · V = 4π
∑N

n=1 anδsn in the sense of distributions, we have

∇ · EV (s)√
1 − |EV (s)|2 = 4π

N∑
n=1

anδsn (E8)

weakly, for any V = Vh + ∇ × w. This almost is the Euler–Lagrange equation we seek
to obtain, yet not quite: at this point we don’t know whether s �→ EV (s) is a gradient
field — indeed, for most w it’s not! Also, the minimization w.r.t. E implies

F(v∞) ≥
∫
R3

(
1 −

√
1 + |V (s)|2

)
d3s ≡ −G(V ) (E9)

for any V = Vh +∇ × w with w ∈ ∑
p(Ẇ

∇×,p
0 (R3))3, p ≥ 1. So we need to show that

there does exist aU = Vh +∇×w∗ such that for a.e. s ∈ R
3 we have EU (s) = −∇v∗(s)

for some v∗ ∈ Ẇ 1,∞
0 , and with G(U ) = −F(v∞). The existence and uniqueness of the

minimizer v∞(s) ofF(v) (see [1]) then yields v∗(s) = v∞(s). Clearly,U = Vh +∇×w∗
will minimize G(V ) among all V = Vh + ∇ × w with w ∈ ∑

p(Ẇ
∇×,p
0 (R3))3, p ≥ 1.

In fact, it suffices to minimize G(Vh + ∇ × w) for w ∈ ∑
p(Ẇ

∇×,p
0 (R3))3, p ∈ {1, 2}.

We remark that
∑

p∈{1,2}(Ẇ
∇×,p
0 (R3))3 is a Banach space with respect to the norm

‖w‖ := inf{‖|∇ × w1|‖L1(R3) + ‖|∇ × w2|‖L2(R3)}, where (given w) the infimum is

over the set {w1 + w2 = w | wp ∈ (Ẇ∇×,p
0 (R3))3, p ∈ {1, 2}}; note that the splitting

of w into a sum of w1 and w2 is not unique (we will take advantage of this to prove
Lemma 0.7, and Theorem 0.1, below).

We now show that such a w∗ exists.
In the special case N = 1 it is easily seen that w∗ ≡ 0 is the minimizer. Indeed,

Vh in this case is a spherically symmetric gradient field, and so is EVh
; thus, taking the

Gateaux derivative d
dt G(Vh + t∇ ×w) at t = 0 with compactly supportedw ∈ C∞

c (R3)3

yields
∫
EVh · ∇ × w d3s, and integration by parts now shows that this integral does

vanish because ∇ × EVh = 0. Hence when N = 1 then Vh is a critical point of G(V ),
and the strict convexity of G(V ) w.r.t. ∇ × w now establishes its minimality. Of course,
this just re-expresses the long-ago solved F variational problem for N = 1 in terms of
the G variational problem. Thus, in the following we assume N > 1.

When N > 1 then w ≡ 0 is not a minimizer. For suppose w ≡ 0 were a minimizer,
then the Gateaux derivative d

dt G(Vh + t∇ × w) at t = 0 would have to vanish, yet it is
easily seen that it doesn’t vanish for all w because ∇ × EVh �≡ 0 when N > 1.

We next prove

Theorem 0.1. ∃!w∗ ∈ (Ẇ∇×,1
0 (R3))3+(Ẇ∇×,2

0 (R3))3 so thatU = Vh+∇×w∗ satisfies

G(U ) = inf
{
G(Vh + ∇ × w)

∣∣∣ w ∈ (Ẇ∇×,1
0 (R3))3 + (Ẇ∇×,2

0 (R3))3
}
. (E10)
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Proof of the Theorem. We begin by showing that G(V ) is well defined on the stipulated
set.

Proposition 0.2. For V = Vh + ∇ × w with w = w1 + w2 as stipulated, the functional
G(V ) is well-defined and strongly continuous.

Proof. Through telescoping G(V ) = [G(Vh +∇ ×w1 +∇ ×w2)−G(Vh + ∇ × w1)]+
[G(Vh+∇×w1)−G(Vh)]+G(Vh), we right away note thatG(Vh) is well-defined because
|Vh | ∈ L1

loc(R
3) ∩ L2(R3\BR) for any open BR ⊃ {sn}Nn=1, whereas the two difference

terms (the [...] terms) are estimated as follows: We use the identity

G(V1 + V2) − G(V1) =
∫ 1

0

∫
R3

V1(s) + λV2(s)√
1 + |V1(s) + λV2(s)|2

· V2(s)d3sdλ, (E11)

and note that EV = V
/√

1 + |V |2 ∈ ((L2 ∩ L∞)(R3))3, with ‖|EV |‖L∞(R3) = 1 and

‖|EV |‖L2(R3) ≤ |�|1/2 + ‖|Vh |‖L2(R3\�) + ‖|∇ × w1|‖1/2L1(R3)
+ ‖|∇ × w2|‖L2(R3),

(E12)

where � = BR ∪{|∇ × w1| > 1}∪ {|∇ × w2| > 1} for some convenient BR ⊃ {sn}Nn=1
(see “AppendixA”); note that� is measurable but not necessarily open. Thus, and setting
‖ · ‖L p := ‖ · ‖

L p(R3)
(below with p = 1 or 2),

(i) let V1 = Vh and V2 = ∇ × w1, then Hölder’s inequality applied to (E11) yields

|G(Vh + ∇ × w1) − G(Vh)| ≤ ‖|∇ × w1|‖L1; (E13)

(ii) let V1 = Vh + ∇ × w1 and V2 = ∇ × w2 and apply Hölder to (E11) to get

|G(Vh + ∇ × (w1 + w2)) − G(Vh + ∇ × w1)| ≤ sup
0<λ<1

∥∥∣∣EVλ

∣∣∥∥
L2‖|∇ × w2|‖L2 ,

(E14)
where we have set Vλ = Vh +∇ ×w1 +λ∇ ×w2. The L2 norm of EVλ is estimated
by (E12) withw2 replaced by λw2, and the obvious estimate λ < 1. This establishes
that G(V ) is well-defined on the stipulated set.

This also proves that G(V ) is strongly continuous at Vh , for
∥∥∣∣∇ ×w

(n)
1

∣∣∥∥
L1 → 0 and∥∥∣∣∇ × w

(n)
2

∣∣∥∥
L2 → 0 together imply G(Vh + ∇ × (w

(n)
1 + w

(n)
2 )) → G(Vh) as n → ∞.

The strong continuity of G(V ) at any V = Vh + ∇ × w with w ∈ (Ẇ∇×,1
0 (R3))3 +

(Ẇ∇×,2
0 (R3))3 follows essentially verbatim. ��
The strong continuity of G(V ) in concert with its strict convexity in ∇ × w implies:

Corollary 0.3. The functional G(V ) is weakly lower semi-continuous.

Since G(V ) is invariant under gauge transformations w → w +∇γ (because ∇ × w,
and thus V , are, also EV is gauge invariant), the strict convexity of G(V ) in ∇ × w

does not automatically translate into strict convexity of G(V ) in w. However, since
we have stipulated w to be divergence-free, viz. ∇ · w = 0, only gauge transformations
w → w+∇γ with harmonic γ , i.e. with	γ = 0, remain; but the only allowed harmonic
γ are those which are constant at spatial ∞, which leaves the identity map as the only
gauge transformation. Thus G(V ) is strictly convex in w, and so we have
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Corollary 0.4. Any minimizer w∗ ∈ (Ẇ∇×,1
0 (R3))3 + (Ẇ∇×,2

0 (R3))3 of G(Vh +∇ × w)

is unique.

We next show that it suffices to consider G(Vh + ∇ × w) for w ∈ (Ẇ∇×,1
0 (R3))3 +

(Ẇ∇×,2
0 (R3))3. For this we recall the chiral Helmholtz theorem of [3]:

Lemma 0.5. Any vector field F(s) can be decomposed into F(s) = f(s) + g(s), where
f(s) is divergence-free and g(s) is curl-free. The divergence-free part f(s) has the chiral
Fourier representation

f(s) = ∑
η∈{±1}

∫
R3

ei2πk·sQη(k) fη(k)d
3k (E15)

with k = (k1, k2, k3)T and Qη(k) = − η√
2

( k1(k1+iηk2)
|k|(|k|+k3) − 1, k2(k1+iηk2)

|k|(|k|+k3) − iη,
k1+iηk2)

|k|
)T

.

So f(s) is uniquely characterized by two scalar functions, fη(k), η ∈ {±1}, given by

fη(k) =
∫
R3

e−i2πk·sQ∗
η(k) · F(s)d3s. (E16)

Note that Qη(k) is a unit vector which depends on k only through k/|k|, and it can
continuously be extended into the removable singularity at k3 = −|k|. Note also that
k ·Qη(k) = 0. We remark that this is not in violation of the “hairy ball theorem” because
Qη(k) is complex.

With the help of Lemma 0.5 we prove

Proposition 0.6. Suppose G(Vh + ∇ × w) < ∞. Then, after at most a gauge transfor-
mation w �→ w + ∇γ , we have w ∈ (Ẇ∇×,1

0 (R3))3 + (Ẇ∇×,2
0 (R3))3.

Proof. For any V = Vh + ∇ × w with G(V ) < ∞ the subset KC ⊂ R
3 on which

|V | ≥ C > 0 a.e. has finite Lebesguemeasure, for we haveG(V ) ≥ (
√
1 + C2−1)|KC |.

Partitioning R
3 = KC ∪ R

3\KC we thus estimate

G(V ) ≥ ‖|V |‖L1(KC ) − |KC | + 1
1+

√
1+C2

‖|V |‖2L2(R3\KC )
. (E17)

Now let C > 0 be small enough so that {sl}Nl=1 ⊂⊂ KC . Then, by the triangle
inequality, (E17) implies that, on the one hand,

‖|∇ × w|‖L1(KC ) ≤ G(V ) + |KC | + ‖|Vh |‖L1(KC ), (E18)

and, on the other,

‖|∇ × w|‖L2(R3\KC ) ≤
√

(1 +
√
1 + C2)(G(V ) + |KC |) + ‖|Vh |‖L2(R3\KC ). (E19)

Defining

f1;η(k) :=
∫
KC

e−i2πk·sQ∗
η(k) · ∇ × w(s)d3s, (E20)

f2;η(k) :=
∫
R3\KC

e−i2πk·sQ∗
η(k) · ∇ × w(s)d3s, (E21)
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and fη(k) := f1;η(k)+ f2;η(k), we obtain a decomposition of∇×w into∇×w1+∇×w2

with |∇ × w1| ∈ L1(R3) and |∇ × w2| ∈ L2(R3). But then (see [3]),

wl(s) := ∑
η∈{±1}

η

∫
R3

ei2πk·sQη(k) fl;η(k) 1
|k|d

3k ∈ Ẇ∇×,l
0 (R3)3, l ∈ {1, 2}. (E22)

��
Next we use that the splitting w = w1 + w2 is not unique to show:

Lemma 0.7. Let {w(n)}n∈N ⊂ (Ẇ∇×,1
0 (R3))3+(Ẇ∇×,2

0 (R3))3 be aminimizing sequence

forG(Vh+∇×w). Then without loss of generality wemay assume that ‖|∇×w
(n)
2 |‖L2 ≤

C2 for some convenient fixed C2 > 0.

Proof. Since w ∈ (Ẇ∇×,1
0 (R3))3 + (Ẇ∇×,2

0 (R3))3 we have fη ∈ C̃0(R
3) + L2(R3),

where C̃0(R
3), a subset of the continuous functions which vanish at spatial ∞, is the

image of L1(R3) under Fourier transform.
Now, if f = f1 + f2 with f1 ∈ C̃0(R

3) and f2 ∈ L2(R3), then for h ∈ S(R3)

(Schwartz space) also f = ( f1+h)+( f2−h)with f1+h ∈ C̃0(R
3) and f2−h ∈ L2(R3).

Since furthermore S(R3) is dense in L2(R3) (and also in C0(R
3), though that’s not

needed), if necessary after splitting w = w1 +w2 corresponding to fη = f1,η + f2,η, we
can always find an h to “re-split” w = w′

1 +w′
2 with fη = ( f1,η + h) + ( f2,η − h), such

that ‖|∇ × w′
2|‖L2 ≤ C2 for any fixed C2 > 0. This establishes the Lemma. ��

Now consider any minimizing sequence {V (n) = Vh + ∇ × w(n)}n∈N of G(V )

with w(n) ∈ (Ẇ∇×,1
0 (R3))3 + (Ẇ∇×,2

0 (R3))3 satisfying ‖|∇ × w2|‖L2 ≤ C2. The

(Ẇ∇×,2
0 (R3))3 norm bound onw

(n)
2 implies weak compactness, so from anyminimizing

sequence {V (n) = Vh +∇ × (w
(n)
1 +w

(n)
2 )}n∈N we can extract a subsequence {V (n j )} j∈N

such that (Ẇ∇×,2
0 (R3))3-weaklywe have thatw(nk)

2 ⇀ w2 ∈ (Ẇ∇×,2
0 (R3))3 as k → ∞;

moreover, ‖|∇ × w2|‖L2 ≤ C2. This reduces the problem to proving weak compactness
w.r.t. (Ẇ∇×,1

0 (R3))3 of the sequence {w(n)
1 }nk∈N in a minimizing sequence {V (n)}n∈N

given by V (n) = Vh + ∇ × (w
(n)
1 + w2), with w2 denoting a weak limit point of the

sequence {w(n)
2 }nk∈N suitably chosen in the original minimizing sequence {V (n)}n∈N.

The fact that {V (n) = Vh +∇ × (w
(n)
1 +w2)}nk∈N is a minimizing sequence follows from

(E11) with V1 = Vh + ∇ × (w
(n)
1 + w

(n)
2 ) and V2 = ∇ × (w2 − w

(n)
2 ), which yields the

estimate |G(V1 + V2) − G(V1)| ≤ C‖|∇ × (w
(n)
2 − w2)|‖L2 (cf. (E14)).

We now prove weak compactness w.r.t. (Ẇ∇×,1
0 (R3))3 of the sequence {w(n)

1 }nk∈N.
First of all, since w ≡ 0 is not a minimizer if N > 1, we have infVG(V ) < G(Vh).

Thus, without loss of generality we have G(Vh + ∇ × w2 + ∇ × w
(n)
1 ) < G(Vh) and

∇ × w2 + ∇ × w
(n)
1 �≡ 0, for all n ∈ N.

Second, recalling that for any V = Vh + ∇ × w with w ∈ (Ẇ∇×,1
0 (R3))3 +

(Ẇ∇×,2
0 (R3))3 the subset KC ⊂ R

3 on which |V | ≥ C > 0 a.e. has finite Lebesgue

measure, since G(V ) ≥ (
√
1 + C2 − 1)|KC |, without loss of generality we now choose

C = √
3 and thus may assume that when N > 1, then for a minimizing sequence
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{V (n)}n∈N the size of the domains K (n)√
3 on which |V (n)| ≥ √

3 a.e. is bounded by

|K (n)√
3 | < G(Vh), uniformly in n.

We also define ϒ(n) := K (n)√
3 ∪ BR , where BR ⊃ {sk}Nl=1 is an open ball and BR its

closure; then dist(∂BR, {sl}Nl=1) > 0. Note that |ϒ(n)| ≤ |BR | + |K (n)√
3 | < |BR | + G(Vh)

uniformly in n.
Third, we establish the analog of the uniform upper norm bounds obtained in the

proof of Proposition 0.6 for the partitioning R
3 = ϒ(n) ∪ R

3\ϒ(n). We estimate

G(V (n)) ≥
∥∥∥|V (n)|

∥∥∥
L1(ϒ(n))

− |ϒ(n)| + 1
3

∥∥∥|V (n)|
∥∥∥2
L2(R3\ϒ(n))

(E23)

and recall that G(Vh) > G(V (n)) when N > 1.
On the one hand, (E23) implies

∥∥|V (n)|∥∥L1(ϒ(n))
< G(Vh) + |ϒ(n)|. But then, since∥∥|V (n)|∥∥L1(ϒ(n))

≥ ∥∥|V (n)|∥∥L1(BR)
≥ ‖|∇ × w(n)|‖L1(BR) − ‖|Vh |‖L1(BR), we obtain

‖|∇ × w(n)|‖L1(BR) < G(Vh) + |ϒ(n)| + ‖|Vh |‖L1(BR); and since the triangle inequality,
followed by a radially-decreasing-rearrangement inequality, gives us ‖|Vh |‖L1(BR) ≤
(4π)2/331/3(|BR |)1/3 ∑

n |an|, we conclude that (when N > 1) ‖|∇ × w(n)|‖L1(BR) is
bounded above uniformly in n. Also, since ‖|∇ × w2|‖L1(BR) < ∞ independently of

n, for w(n) = w
(n)
1 + w2 the triangle inequality now implies that ‖|∇ × w

(n)
1 |‖L1(BR) <

G(Vh) + |ϒ(n)| + ‖|Vh |‖L1(ϒ(n)) + ‖|∇ × w2|‖L1(BR) ≤ C1(R) uniformly in n.

On the other hand, (E23) implies
∥∥|V (n)|∥∥2L2(R3\ϒ(n))

< 3
(
G(Vh) + |ϒ(n)|), which in

concert with
∥∥|V (n)|∥∥L2(R3\ϒ(n))

≥ ‖|∇ × w(n)|‖L2(R3\ϒ(n))−‖Vh‖L2(R3\ϒ(n)) yields the

upper bound ‖|∇ × w(n)|‖L2(R3\ϒ(n)) ≤
√
3
(
G(Vh) + |ϒ(n)|) + ‖Vh‖L2(R3\ϒ(n)). Since

‖Vh‖L2(R3\ϒ(n)) ≤ 4π
∑

k |ak |/dist(∂BR, {s j }Nj=1), and since‖|∇ × w
(n)
1 |‖L2(R3\ϒ(n)) ≤

‖|∇ × w(n)|‖L2(R3\ϒ(n)) + ‖|∇ × w2|‖L2(R3\ϒ(n)) by the triangle inequality, and since
‖|∇ × w2|‖L2(R3\ϒ(n)) ≤ C2 by Lemma 0.7, we conclude that for N > 1, we have

‖|∇ × w
(n)
1 |‖L2(R3\ϒ(n)) ≤ C2 uniformly in n.

Fourth, by the L1(BR) bounds a minimizing sequence {∣∣∇ × w
(n)
1

∣∣}n∈N has a weak∗
convergent subsequence on every BR ; by the Lebesgue decomposition theorem the limit
is the sum of an L1(BR) function f and a measure μ which is singular w.r.t. Lebesgue
measure, with ‖ f ‖L1(BR) + μ(BR) ≤ C(R). Now suppose that μ(BR) > 0; note that
supp(μ) has Lebesgue measure zero. Then for any open neighborhood Nε of supp(μ)

of size ε we have
∫
Nε∩BR

∣∣∣V (n)(s)
∣∣∣d3s ≥

∫
Nε∩BR

(√
1 +

∣∣V (n)(s)
∣∣2 − 1

)
d3s ≥

∫
Nε∩BR

∣∣∣V (n)(s)
∣∣∣d3s − ε.

(E24)

Taking the limit nk → ∞ (along the convergent subsequence) and then ε → 0 reveals
that the singular part makes an additive contribution μ(BR) > 0 to G(V ). Thus by sub-
tracting the part of the∇ ×w

(n)
1 subsequence which converges in absolute value toμwe

can lower the value ofG(V ); hence, {∇ × w
(n)
1 }n∈N was not a minimizing sequence—in

contradiction to the hypothesis that it was. Therefore, after extracting a subsequence,
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we can assume that a minimizing sequence {∇ × w
(n)
1 }n∈N converges weakly in L1(BR)

to some ∇ × w1, for each BR as stipulated. This means that {∣∣∇ × w
(n)
1

∣∣}n∈N con-

verges weakly in L1
loc(R

3) to some |∇ × w1|, and so {∇ × w
(n)
1 }n∈N converges weakly

in Ẇ∇×,1
loc (R3)3 to some ∇ × w1.

Summarizing so far: any minimizing sequence {w(n)}n∈N of G(Vh + ∇ × w) with

w(n) ∈ (Ẇ∇×,1
0 (R3))3 + (Ẇ∇×,2

0 (R3))3 has a locally weakly convergent subsequence

with limit w∗ ∈ (Ẇ∇×,1
loc (R3))3 + (Ẇ∇×,2

0 (R3))3.
Fifth, by another variation of the reasoning in our proof of Proposition 0.6 we show

that w∗ ∈ (Ẇ∇×,1
0 (R3))3 + (Ẇ∇×,2

0 (R3))3. Namely, the subset K ∗√
3 ⊂ R

3 on which

|Vh +∇ × w∗| ≥ √
3 a.e. has finite Lebesgue measure, |K ∗√

3| < G(Vh). We also define

ϒ∗ := K ∗√
3∪BR andnote that |ϒ∗| ≤ |BR |+|K ∗√

3| < |BR |+G(Vh). Essentially verbatim
to our estimation of the sequence norms we have that ‖|∇ × w1|‖L1(ϒ∗) < G(Vh) +
|ϒ∗| + ‖|Vh |‖L1(ϒ∗) + ‖|∇ × w2|‖L1(ϒ∗). By Hölder’s inequality, ‖|∇ × w2|‖L1(ϒ∗) ≤
|ϒ∗|1/2‖|∇ × w2|‖1/2L2(ϒ∗), and we have ‖|∇ × w2|‖L2(ϒ∗) ≤ ‖|∇ × w2|‖L2(R3). And so
‖|∇ × w1|‖L1(ϒ∗) ≤ C1.

On the other hand, we also know that ‖|∇ × w
(n)
1 |‖L2(R3\ϒ(n)) ≤ C2 uniformly in n,

and so ‖|∇ × w1|‖L2(R3\ϒ∗) ≤ C2. Now suppose that ‖|∇ × w1|‖L1(R3\ϒ∗) = ∞. But
then, since |∇ × w1| ∈ (L2 ∩ L∞)(R3\ϒ∗), we can subtract the offending part from
w1 and add it to w2, denoting the new decomposition by w̃1 + w̃2. Indeed, by the chiral
Fourier representationwe can find a∇×w̃with chiral Fourier components g̃η(k) ∈ (L1∩
L2)(R3) such that ‖|∇ × (w1− w̃)|‖L1(R3\ϒ∗) < ∞; since |∇ × w̃| ∈ (L2∩ L∞)(R3), it
follows that |∇×w̃| ∈ L1(ϒ∗), and so ‖|∇×(w1−w̃)|‖L1(R3) < ∞. Also we obviously
have |∇ × (w2 − w̃)| ∈ L2(R3). Thus, setting w̃1 := w1 − w̃ and w̃2 := w2 + w̃ we
have w1 + w2 = w̃1 + w̃ with w̃1 ∈ Ẇ∇×,1

0 (R3))3 and w̃2 ∈ Ẇ∇×,2
0 (R3))3. Thus,

w∗ ∈ Ẇ∇×,1
0 (R3))3 + (Ẇ∇×,2

0 (R3))3, as claimed.
Lastly, by weak lower semi-continuity (Fatou’s lemma),

U (s) := Vh(s) + ∇ × w∗(s) (E25)

is a minimizer of G(V ). This completes the proof of Theorem 0.1. ��
It now follows in the usual way that U given in (E25) is a critical point of G(V ),

satisfying the Euler–Lagrange equation

∇ × Vh + ∇ × w∗√
1 + |Vh + ∇ × w∗|2

= 0. (E26)

Thus, and applying thePoincaré lemma,wefind that locally in simply connected domains

EU (s) = U (s)√
1 + |U (s)|2 ≡ −∇v∗(s) (E27)

is a gradient field. Furthermore, as shown in (E8) for any EV , we have that

−∇ · ∇v∗(s)√
1 − |∇v∗(s)|2

= 4π
N∑

n=1

anδsn (E28)
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in the sense of distributions; thus, v∗ exists globally a.e. and satisfies F(1)[v∗](ψ) = 0
for all ψ ∈ C∞

c (R3).
Finally, we show that v∗ = v∞. Namely, we have

F(v∗) ≥ F(v∞) ≥ −G(U ) = F(v∗). (E29)

The first inequality expresses the fact that v∞ is a minimizer of F(v); the second in-
equality follows from the fact that U is just a special V , and that F(v∞) ≥ −G(V ) for
all V = Vh + ∇ × w, see (E9); lastly, the equality in (E29) follows from the fact that
U = −∇v∗(s)

/√
1 − |∇v∗(s)|2 satisfies (E28), equivalently v∗ satisfies F(1)[v∗](ψ) =

0 for all ψ ∈ C∞
c (R3) — more explicitly, inverting the above-stated algebraic relation

between U and ∇v∗, we can rewrite −G(U ) as follows (cf. (23)–(26) in [1]):∫
R3

(
1 −

√
1 + |U (s)|2

)
d3s =

∫
R3

(
1 −

√
1 − |∇v∗(s)|2 +U (s) · ∇v∗(s)

)
d3s,

(E30)

and an integration by parts on the last term in the second integral, and using that∇ ·U =
4π

∑N
n=1 anδsn weakly, now yields −G(U ) = F(v∗). Thus, F(v∗) = F(v∞), and by the

uniqueness of the minimizer of F(v), we have v∗ = v∞.
The proof that F(1)[v∞](ψ) = 0 for all ψ ∈ C∞

c (R3) is complete. ��
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Appendix A

Proof of (E12). Pick a ball BR ⊃ {sn}Nn=1. Also let �1 := {|∇ × w1| > 1} and �2 :=
{|∇ × w2| > 1}. Then ∞ > ‖|∇ × w1|‖L1 ≥ ∫

�1
|∇ × w1|d3s ≥ |�1|, and similarly

|�2| < ∞. Let� = BR∪�1∪�2; then |�| < ∞. LetχS be the characteristic function of
the set S. Then, by the triangle inequality, ‖|EV |‖

L2 ≤ ∥∥|EV |χ�

∥∥
L2 +

∥∥|EV |χR3\�
∥∥
L2 .

Using |EV | ≤ 1 yields
∥∥|EV |χ�

∥∥
L2 ≤ |�|1/2, while using |EV | ≤ |V | and again the

triangle inequality yields

‖|EV |‖L2(R3\�)
≤ ‖|Vh |‖L2(R3\�) + ‖|∇ × w1|‖L2(R3\�) + ‖|∇ × w2|‖L2(R3\�). (A1)

Next, |∇ × w1| ≤ 1 on R
3\� yields ‖|∇ × w1|‖L2(R3\�) ≤ ‖|∇ × w1|‖1/2L1(R3\�)

≤
‖|∇ × w1|‖1/2L1 < ∞. Together with ‖|∇ × w2|‖L2(R3\�) ≤ ‖|∇ × w2|‖L2 < ∞ we
obtain (E12). ��
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