Correction to: On the Quasi-Linear Elliptic PDE $-\nabla \cdot\left(\nabla u / \sqrt{1-|\nabla u|^{2}}\right)=4 \pi \sum_{k} a_{k} \delta_{s_{k}}$ in Physics and Geometry

Michael K.-H. Kiessling
Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd., Piscataway, NJ 08854, USA. E-mail: miki@ math.rutgers.edu

Received: 1 November 2015 / Accepted: 13 August 2018
Published online: 11 October 2018 - © The Author(s) 2018

Correction to: Commun. Math. Phys. 314, 509-523 (2012)
https://doi.org/10.1007/s00220-012-1502-3
Denis Bonheure kindly informed me that [1], section 2.6 ("The minimizer of \mathcal{F} weakly satisfies the Euler-Lagrange equation"), contains a logical gap on p. 516 where I wrote:
"The result $\left|\Omega_{\text {crit }}\right|=0$ means that $\left|\nabla v_{\infty}\right|<1$ a.e., and this already implies that the variation of $\mathcal{F}(v)$ about v_{∞} to leading order (i.e. power 1) in ψ now reads

$$
\begin{equation*}
\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi)=\int_{\mathbb{R}^{3}}\left(\nabla \psi(s) \cdot \frac{\nabla v_{\infty}(s)}{\sqrt{1-\left|\nabla v_{\infty}(s)\right|^{2}}}-4 \pi \psi(s) \sum_{1 \leq n \leq N} a_{n} \delta_{s_{n}}(s)\right) \mathrm{d}^{3} s . \tag{22}
\end{equation*}
$$

Since $\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi)$ is linear in ψ, v_{∞} can minimize \mathcal{F} over \mathscr{A} only if $\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi)=0$ for all ψ, which is precisely (7). Thus the Euler-Lagrange equation (1) is satisfied by v_{∞} in the weak sense, as claimed."

Bonheure's objection concerns the sentence: "Since $\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi)$ is linear in ψ, \ldots ", which alludes to the usual linearity-based argument (i.e., "Suppose $\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi) \neq 0$ for some ψ; then either $\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi)<0$ or $\mathcal{F}^{(1)}\left[v_{\infty}\right](-\psi)<0$; but this is impossible because v_{∞} is the minimizer of $\mathcal{F}(v)$; hence, $\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi)=0$."). He notes that, although $\left|\Omega_{\text {crit }}\right|=0$ (cf. the proof on p. 515) implies that $\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi)$ is given by (22), and although (22) does act linearly on the space of compactly supported $C^{\infty}\left(\mathbb{R}^{3}\right)$ test functions $C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$, only a nonlinear subset of these supplies admissible perturbations of v_{∞}. More precisely, the restriction $v_{\infty}+\psi \in \mathscr{A}$ (the admissible set of v) rules out test functions ψ for which $\nabla v_{\infty}(s) \cdot \nabla \psi(s) \geq 0$ a.e. in some open ϵ-ball B_{ϵ} satisfying $\Omega_{\text {crit }} \cap B_{\epsilon} \neq \emptyset$ while allowing those ψ for which $\nabla v_{\infty}(s) \cdot \nabla \psi(s)<0$ a.e. in such B_{ϵ}.

Thus one cannot invoke the linearity of $\mathcal{F}^{(1)}\left[v_{\infty}\right](\cdot): C_{c}^{\infty}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ to conclude that $\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi)=0$ for all $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$, which is equivalent to the EulerLagrange equation (1) (see (E28) below) in weak form (see (7) in [1]). Of course, the nonlinear set of admissible ψ contains the linear subset of $C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ test functions for which $\lim _{s \rightarrow \Omega_{\text {crit }}}|\nabla \psi(s)|=0$ (incidentally, the larger linear subset of $C_{c}^{\infty}(\mathbb{R})$ for which $\lim _{s \rightarrow \Omega_{\text {crit }}} \nabla \psi(s) \cdot \nabla v_{\infty}(s)=0$ contains inadmissible ψ, namely those for which $\left.\lim _{s \rightarrow \Omega_{\text {crit }}}|\nabla \psi(s)| \neq 0\right)$. For ψ in this linear subset we do have $\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi)=0$, by the familiar argument; however, Bonheure points out, knowing only that $\left|\Omega_{\text {crit }}\right|=$ 0 does not allow us to conclude that the linear subset of test functions satisfying $\lim _{s \rightarrow \Omega_{\text {crit }}}|\nabla \psi(s)|=0$ is dense in $C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$.

In the following I respond to Bonheure's criticism (see also [2]) by showing that $\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi)=0$ not only for all $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ which satisfy $\lim _{s \rightarrow \Omega_{\text {crit }}}|\nabla \psi(s)|=0$, but indeed for all $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$. I pick up on Remark 3.4, see p. 518 in [1]; thus we play a variation of the convex duality theme on $p .517$ of [1].

We work with the almost everywhere harmonic field (eq.(29) in [1])

$$
\begin{equation*}
V_{h}(s)=-\sum_{n=1}^{N} a_{n} \nabla \frac{1}{\left|s-s_{n}\right|} \tag{E1}
\end{equation*}
$$

We have (eq.(30) in [1])

$$
\begin{equation*}
\nabla \cdot V_{h}=4 \pi \sum_{n=1}^{N} a_{n} \delta_{s_{n}} \tag{E2}
\end{equation*}
$$

in the sense of distributions. Moreover, recall that for any $w \in\left(\dot{W}_{0}^{1, p}\left(\mathbb{R}^{3}\right)\right)^{3}, p \geq 1$,

$$
\begin{equation*}
\nabla \cdot \nabla \times w=0 \tag{E3}
\end{equation*}
$$

weakly; note that $\nabla \times w$ is well defined on \mathbb{R}^{3} except on a set Ω_{w} with Lebesgue measure zero. More generally, linearity implies that $\nabla \cdot \nabla \times w=0$ for any $w=\sum_{p} w_{p}$ with weak curls $\nabla \times w_{p} \in\left(L^{p}\left(\mathbb{R}^{3}\right)\right)^{3}$, where \sum_{p} sums over a countable (sub-)set of $p \geq 1$. We will work with $\sum_{p}\left(\dot{W}_{0}^{\nabla \times, p}\left(\mathbb{R}^{3}\right)\right)^{3}, p \geq 1$, where $\left(\dot{W}_{0}^{\nabla \times, p}\left(\mathbb{R}^{3}\right)\right)^{3}$ is defined as the closure of the set of divergence-free, compactly supported C^{∞} vector fields w with respect to the norm $\||\nabla \times w|\|_{L^{p}\left(\mathbb{R}^{3}\right)}$.

Abbreviating $V_{h}+\nabla \times w=: V$, an integration by parts now yields

$$
\begin{align*}
\mathcal{F}\left(v_{\infty}\right) & =\int_{\mathbb{R}^{3}}\left(1-\sqrt{1-\left|\nabla v_{\infty}(s)\right|^{2}}-4 \pi v_{\infty}(s) \sum_{1 \leq n \leq N} a_{n} \delta_{s_{n}}(s)\right) \mathrm{d}^{3} s \tag{E4}\\
& =\int_{\mathbb{R}^{3}}\left(1-\sqrt{1-\left|\nabla v_{\infty}(s)\right|^{2}}+V(s) \cdot \nabla v_{\infty}(s)\right) \mathrm{d}^{3} s
\end{align*}
$$

for any such $w \in \sum_{p}\left(\dot{W}_{0}^{\nabla \times, p}\left(\mathbb{R}^{3}\right)\right)^{3}, p \geq 1$. Next observe that pointwise

$$
\begin{align*}
V(s) \cdot \nabla v_{\infty}(s)-\sqrt{1-\left|\nabla v_{\infty}(s)\right|^{2}} & \geq \min _{E(s) \in B_{1} a . e .}\left\{-V(s) \cdot E(s)-\sqrt{1-|E(s)|^{2}}\right\} \tag{E5}\\
& =-\sqrt{1+|V(s)|^{2}}, \quad s \in \mathbb{R}^{3} \backslash\left(\Omega_{\mathrm{crit}} \cup \Omega_{w}\right),
\end{align*}
$$

where $B_{1} \subset \mathbb{R}^{3}$ is the open unit ball. The unique minimizer $E_{V}(s)$ is given by

$$
\begin{equation*}
E_{V}(s)=\frac{V(s)}{\sqrt{1+|V(s)|^{2}}} \tag{E6}
\end{equation*}
$$

defining a vector field on \mathbb{R}^{3} a.e., satisfying $\left|E_{V}(s)\right|<1$, with $\left|E_{V}(s)\right| \rightarrow 1$ when $s \rightarrow\left\{s_{n}\right\}_{n=1}^{N} \subset \Omega_{\text {crit }}$ and possibly when $s \rightarrow \Omega_{w}$. Inverting (E6) yields

$$
\begin{equation*}
V(s)=\frac{E_{V}(s)}{\sqrt{1-\left|E_{V}(s)\right|^{2}}}, \tag{E7}
\end{equation*}
$$

and so, since $\nabla \cdot V=4 \pi \sum_{n=1}^{N} a_{n} \delta_{s_{n}}$ in the sense of distributions, we have

$$
\begin{equation*}
\nabla \cdot \frac{E_{V}(s)}{\sqrt{1-\left|E_{V}(s)\right|^{2}}}=4 \pi \sum_{n=1}^{N} a_{n} \delta_{s_{n}} \tag{E8}
\end{equation*}
$$

weakly, for any $V=V_{h}+\nabla \times w$. This almost is the Euler-Lagrange equation we seek to obtain, yet not quite: at this point we don't know whether $s \mapsto E_{V}(s)$ is a gradient field - indeed, for most w it's not! Also, the minimization w.r.t. E implies

$$
\begin{equation*}
\mathcal{F}\left(v_{\infty}\right) \geq \int_{\mathbb{R}^{3}}\left(1-\sqrt{1+|V(s)|^{2}}\right) \mathrm{d}^{3} s \equiv-\mathcal{G}(V) \tag{E9}
\end{equation*}
$$

for any $V=V_{h}+\nabla \times w$ with $w \in \sum_{p}\left(\dot{W}_{0}^{\nabla \times, p}\left(\mathbb{R}^{3}\right)\right)^{3}, p \geq 1$. So we need to show that there does exist a $U=V_{h}+\nabla \times w_{*}$ such that for $a . e . s \in \mathbb{R}^{3}$ we have $E_{U}(s)=-\nabla v_{*}(s)$ for some $v_{*} \in \dot{W}_{0}^{1, \infty}$, and with $\mathcal{G}(U)=-\mathcal{F}\left(v_{\infty}\right)$. The existence and uniqueness of the minimizer $v_{\infty}(s)$ of $\mathcal{F}(v)$ (see [1]) then yields $v_{*}(s)=v_{\infty}(s)$. Clearly, $U=V_{h}+\nabla \times w_{*}$ will minimize $\mathcal{G}(V)$ among all $V=V_{h}+\nabla \times w$ with $w \in \sum_{p}\left(\dot{W}_{0}^{\nabla \times, p}\left(\mathbb{R}^{3}\right)\right)^{3}, p \geq 1$. In fact, it suffices to minimize $\mathcal{G}\left(V_{h}+\nabla \times w\right)$ for $w \in \sum_{p}\left(\dot{W}_{0}^{\nabla \times, p}\left(\mathbb{R}^{3}\right)\right)^{3}, p \in\{1,2\}$. We remark that $\sum_{p \in\{1,2\}}\left(\dot{W}_{0}^{\nabla \times, p}\left(\mathbb{R}^{3}\right)\right)^{3}$ is a Banach space with respect to the norm $\|w\|:=\inf \left\{\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{1}\left(\mathbb{R}^{3}\right)}+\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}\right\}$, where (given w) the infimum is over the set $\left\{w_{1}+w_{2}=w \mid w_{p} \in\left(\dot{W}_{0}^{\nabla \times, p}\left(\mathbb{R}^{3}\right)\right)^{3}, p \in\{1,2\}\right\}$; note that the splitting of w into a sum of w_{1} and w_{2} is not unique (we will take advantage of this to prove Lemma 0.7, and Theorem 0.1, below).

We now show that such a w_{*} exists.
In the special case $N=1$ it is easily seen that $w_{*} \equiv 0$ is the minimizer. Indeed, V_{h} in this case is a spherically symmetric gradient field, and so is $E_{V_{h}}$; thus, taking the Gateaux derivative $\frac{d}{d t} \mathcal{G}\left(V_{h}+t \nabla \times w\right)$ at $t=0$ with compactly supported $w \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)^{3}$ yields $\int E_{V_{h}} \cdot \nabla \times w d^{3} s$, and integration by parts now shows that this integral does vanish because $\nabla \times E_{V_{h}}=0$. Hence when $N=1$ then V_{h} is a critical point of $\mathcal{G}(V)$, and the strict convexity of $\mathcal{G}(V)$ w.r.t. $\nabla \times w$ now establishes its minimality. Of course, this just re-expresses the long-ago solved \mathcal{F} variational problem for $N=1$ in terms of the \mathcal{G} variational problem. Thus, in the following we assume $N>1$.

When $N>1$ then $w \equiv 0$ is not a minimizer. For suppose $w \equiv 0$ were a minimizer, then the Gateaux derivative $\frac{d}{d t} \mathcal{G}\left(V_{h}+t \nabla \times w\right)$ at $t=0$ would have to vanish, yet it is easily seen that it doesn't vanish for all w because $\nabla \times E_{V_{h}} \not \equiv 0$ when $N>1$.

We next prove
Theorem 0.1. $\exists!w_{*} \in\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$ so that $U=V_{h}+\nabla \times w_{*}$ satisfies

$$
\begin{equation*}
\mathcal{G}(U)=\inf \left\{\mathcal{G}\left(V_{h}+\nabla \times w\right) \mid w \in\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}\right\} \tag{E10}
\end{equation*}
$$

Proof of the Theorem. We begin by showing that $\mathcal{G}(V)$ is well defined on the stipulated set.

Proposition 0.2. For $V=V_{h}+\nabla \times w$ with $w=w_{1}+w_{2}$ as stipulated, the functional $\mathcal{G}(V)$ is well-defined and strongly continuous.

Proof. Through telescoping $\mathcal{G}(V)=\left[\mathcal{G}\left(V_{h}+\nabla \times w_{1}+\nabla \times w_{2}\right)-\mathcal{G}\left(V_{h}+\nabla \times w_{1}\right)\right]+$ [$\left.\mathcal{G}\left(V_{h}+\nabla \times w_{1}\right)-\mathcal{G}\left(V_{h}\right)\right]+\mathcal{G}\left(V_{h}\right)$, we right away note that $\mathcal{G}\left(V_{h}\right)$ is well-defined because $\left|V_{h}\right| \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{3}\right) \cap L^{2}\left(\mathbb{R}^{3} \backslash B_{R}\right)$ for any open $B_{R} \supset\left\{s_{n}\right\}_{n=1}^{N}$, whereas the two difference terms (the [...] terms) are estimated as follows: We use the identity

$$
\begin{equation*}
\mathcal{G}\left(V_{1}+V_{2}\right)-\mathcal{G}\left(V_{1}\right)=\int_{0}^{1} \int_{\mathbb{R}^{3}} \frac{V_{1}(s)+\lambda V_{2}(s)}{\sqrt{1+\left|V_{1}(s)+\lambda V_{2}(s)\right|^{2}}} \cdot V_{2}(s) \mathrm{d}^{3} s \mathrm{~d} \lambda \tag{E11}
\end{equation*}
$$

and note that $E_{V}=V / \sqrt{1+|V|^{2}} \in\left(\left(L^{2} \cap L^{\infty}\right)\left(\mathbb{R}^{3}\right)\right)^{3}$, with $\left\|\left|E_{V}\right|\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)}=1$ and

$$
\begin{equation*}
\left\|\left|E_{V}\right|\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \leq|\Omega|^{1 / 2}+\left\|\left|V_{h}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Omega\right)}+\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{1}\left(\mathbb{R}^{3}\right)}^{1 / 2}+\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \tag{E12}
\end{equation*}
$$

where $\Omega=B_{R} \cup\left\{\left|\nabla \times w_{1}\right|>1\right\} \cup\left\{\left|\nabla \times w_{2}\right|>1\right\}$ for some convenient $B_{R} \supset\left\{s_{n}\right\}_{n=1}^{N}$ (see "Appendix A"); note that Ω is measurable but not necessarily open. Thus, and setting $\|\cdot\|_{L^{p}}:=\|\cdot\|_{L^{p}\left(\mathbb{R}^{3}\right)}$ (below with $p=1$ or 2),
(i) let $V_{1}=V_{h}$ and $V_{2}=\nabla \times w_{1}$, then Hölder's inequality applied to (E11) yields

$$
\begin{equation*}
\left|\mathcal{G}\left(V_{h}+\nabla \times w_{1}\right)-\mathcal{G}\left(V_{h}\right)\right| \leq\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{1}} ; \tag{E13}
\end{equation*}
$$

(ii) let $V_{1}=V_{h}+\nabla \times w_{1}$ and $V_{2}=\nabla \times w_{2}$ and apply Hölder to (E11) to get

$$
\begin{equation*}
\left|\mathcal{G}\left(V_{h}+\nabla \times\left(w_{1}+w_{2}\right)\right)-\mathcal{G}\left(V_{h}+\nabla \times w_{1}\right)\right| \leq \sup _{0<\lambda<1}\left\|\left|E_{V_{\lambda}}\right|\right\|_{L^{2}}\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}} \tag{E14}
\end{equation*}
$$

where we have set $V_{\lambda}=V_{h}+\nabla \times w_{1}+\lambda \nabla \times w_{2}$. The L^{2} norm of $E_{V_{\lambda}}$ is estimated by (E12) with w_{2} replaced by λw_{2}, and the obvious estimate $\lambda<1$. This establishes that $\mathcal{G}(V)$ is well-defined on the stipulated set.
This also proves that $\mathcal{G}(V)$ is strongly continuous at V_{h}, for $\left\|\left|\nabla \times w_{1}^{(n)}\right|\right\|_{L^{1}} \rightarrow 0$ and $\left\|\left|\nabla \times w_{2}^{(n)}\right|\right\|_{L^{2}} \rightarrow 0$ together imply $\mathcal{G}\left(V_{h}+\nabla \times\left(w_{1}^{(n)}+w_{2}^{(n)}\right)\right) \rightarrow \mathcal{G}\left(V_{h}\right)$ as $n \rightarrow \infty$. The strong continuity of $\mathcal{G}(V)$ at any $V=V_{h}+\nabla \times w$ with $w \in\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+$ $\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$ follows essentially verbatim.

The strong continuity of $\mathcal{G}(V)$ in concert with its strict convexity in $\nabla \times w$ implies:
Corollary 0.3. The functional $\mathcal{G}(V)$ is weakly lower semi-continuous.
Since $\mathcal{G}(V)$ is invariant under gauge transformations $w \rightarrow w+\nabla \gamma$ (because $\nabla \times w$, and thus V, are, also E_{V} is gauge invariant), the strict convexity of $\mathcal{G}(V)$ in $\nabla \times w$ does not automatically translate into strict convexity of $\mathcal{G}(V)$ in w. However, since we have stipulated w to be divergence-free, viz. $\nabla \cdot w=0$, only gauge transformations $w \rightarrow w+\nabla \gamma$ with harmonic γ, i.e. with $\Delta \gamma=0$, remain; but the only allowed harmonic γ are those which are constant at spatial ∞, which leaves the identity map as the only gauge transformation. Thus $\mathcal{G}(V)$ is strictly convex in w, and so we have

Corollary 0.4. Any minimizer $w_{*} \in\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$ of $\mathcal{G}\left(V_{h}+\nabla \times w\right)$ is unique.

We next show that it suffices to consider $\mathcal{G}\left(V_{h}+\nabla \times w\right)$ for $w \in\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+$ $\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$. For this we recall the chiral Helmholtz theorem of [3]:

Lemma 0.5. Any vector field $\mathbf{F}(s)$ can be decomposed into $\mathbf{F}(s)=\mathbf{f}(s)+\mathbf{g}(s)$, where $\mathbf{f}(s)$ is divergence-free and $\mathbf{g}(s)$ is curl-free. The divergence-free part $\mathbf{f}(s)$ has the chiral Fourier representation

$$
\begin{equation*}
\mathbf{f}(s)=\sum_{\eta \in\{ \pm 1\}} \int_{\mathbb{R}^{3}} e^{i 2 \pi k \cdot s} \mathbf{Q}_{\eta}(k) f_{\eta}(k) \mathrm{d}^{3} k \tag{E15}
\end{equation*}
$$

with $k=\left(k_{1}, k_{2}, k_{3}\right)^{T}$ and $\mathbf{Q}_{\eta}(k)=-\frac{\eta}{\sqrt{2}}\left(\frac{k_{1}\left(k_{1}+i \eta k_{2}\right)}{|k|\left(| | \mid+k_{3}\right)}-1, \frac{k_{2}\left(k_{1}+i \eta k_{2}\right)}{|k|\left(| | \mid+k_{3}\right)}-i \eta, \frac{\left.k_{1}+i \eta k_{2}\right)}{|k|}\right)^{T}$. So $\mathbf{f}(s)$ is uniquely characterized by two scalar functions, $f_{\eta}(k), \eta \in\{ \pm 1\}$, given by

$$
\begin{equation*}
f_{\eta}(k)=\int_{\mathbb{R}^{3}} e^{-i 2 \pi k \cdot s} \mathbf{Q}_{\eta}^{*}(k) \cdot \mathbf{F}(s) \mathrm{d}^{3} s . \tag{E16}
\end{equation*}
$$

Note that $\mathbf{Q}_{\eta}(k)$ is a unit vector which depends on k only through $k /|k|$, and it can continuously be extended into the removable singularity at $k_{3}=-|k|$. Note also that $k \cdot \mathbf{Q}_{\eta}(k)=0$. We remark that this is not in violation of the "hairy ball theorem" because $\mathbf{Q}_{\eta}(k)$ is complex.

With the help of Lemma 0.5 we prove
Proposition 0.6. Suppose $\mathcal{G}\left(V_{h}+\nabla \times w\right)<\infty$. Then, after at most a gauge transformation $w \mapsto w+\nabla \gamma$, we have $w \in\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$.

Proof. For any $V=V_{h}+\nabla \times w$ with $\mathcal{G}(V)<\infty$ the subset $K_{C} \subset \mathbb{R}^{3}$ on which $|V| \geq C>0$ a.e. has finite Lebesgue measure, for we have $\mathcal{G}(V) \geq\left(\sqrt{1+C^{2}}-1\right)\left|K_{C}\right|$.

Partitioning $\mathbb{R}^{3}=K_{C} \cup \mathbb{R}^{3} \backslash K_{C}$ we thus estimate

$$
\begin{equation*}
\mathcal{G}(V) \geq\||V|\|_{L^{1}\left(K_{C}\right)}-\left|K_{C}\right|+\frac{1}{1+\sqrt{1+C^{2}}}\||V|\|_{L^{2}\left(\mathbb{R}^{3} \backslash K_{C}\right)}^{2} . \tag{E17}
\end{equation*}
$$

Now let $C>0$ be small enough so that $\left\{s_{l}\right\}_{l=1}^{N} \subset \subset K_{C}$. Then, by the triangle inequality, (E17) implies that, on the one hand,

$$
\begin{equation*}
\||\nabla \times w|\|_{L^{1}\left(K_{C}\right)} \leq \mathcal{G}(V)+\left|K_{C}\right|+\left\|\left|V_{h}\right|\right\|_{L^{1}\left(K_{C}\right)}, \tag{E18}
\end{equation*}
$$

and, on the other,

$$
\begin{equation*}
\||\nabla \times w|\|_{L^{2}\left(\mathbb{R}^{3} \backslash K_{C}\right)} \leq \sqrt{\left(1+\sqrt{1+C^{2}}\right)\left(\mathcal{G}(V)+\left|K_{C}\right|\right)}+\left\|\left|V_{h}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash K_{C}\right)} \tag{E19}
\end{equation*}
$$

Defining

$$
\begin{align*}
f_{1 ; \eta}(k) & :=\int_{K_{C}} e^{-i 2 \pi k \cdot s} \mathbf{Q}_{\eta}^{*}(k) \cdot \nabla \times w(s) \mathrm{d}^{3} s, \tag{E20}\\
f_{2 ; \eta}(k) & :=\int_{\mathbb{R}^{3} \backslash K_{C}} e^{-i 2 \pi k \cdot s} \mathbf{Q}_{\eta}^{*}(k) \cdot \nabla \times w(s) \mathrm{d}^{3} s, \tag{E21}
\end{align*}
$$

and $f_{\eta}(k):=f_{1 ; \eta}(k)+f_{2 ; \eta}(k)$, we obtain a decomposition of $\nabla \times w$ into $\nabla \times w_{1}+\nabla \times w_{2}$ with $\left|\nabla \times w_{1}\right| \in L^{1}\left(\mathbb{R}^{3}\right)$ and $\left|\nabla \times w_{2}\right| \in L^{2}\left(\mathbb{R}^{3}\right)$. But then (see [3]),

$$
\begin{equation*}
w_{l}(s):=\sum_{\eta \in\{ \pm 1\}} \eta \int_{\mathbb{R}^{3}} e^{i 2 \pi k \cdot s} \mathbf{Q}_{\eta}(k) f_{l ; \eta}(k) \frac{1}{|k|} \mathrm{d}^{3} k \in \dot{W}_{0}^{\nabla \times, l}\left(\mathbb{R}^{3}\right)^{3}, \quad l \in\{1,2\} . \tag{E22}
\end{equation*}
$$

Next we use that the splitting $w=w_{1}+w_{2}$ is not unique to show:
Lemma 0.7. Let $\left\{w^{(n)}\right\}_{n \in \mathbb{N}} \subset\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$ be a minimizing sequence for $\mathcal{G}\left(V_{h}+\nabla \times w\right)$. Then without loss of generality we may assume that $\left\|\left|\nabla \times w_{2}^{(n)}\right|\right\|_{L^{2}} \leq$ C_{2} for some convenient fixed $C_{2}>0$.

Proof. Since $w \in\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$ we have $f_{\eta} \in \widetilde{C}_{0}\left(\mathbb{R}^{3}\right)+L^{2}\left(\mathbb{R}^{3}\right)$, where $\widetilde{C}_{0}\left(\mathbb{R}^{3}\right)$, a subset of the continuous functions which vanish at spatial ∞, is the image of $L^{1}\left(\mathbb{R}^{3}\right)$ under Fourier transform.

Now, if $f=f_{1}+f_{2}$ with $f_{1} \in \widetilde{C}_{0}\left(\mathbb{R}^{3}\right)$ and $f_{2} \in \tilde{C}^{2}\left(\mathbb{R}^{3}\right)$, then for $h \in S\left(\mathbb{R}^{3}\right)$ (Schwartz space) also $f=\left(f_{1}+h\right)+\left(f_{2}-h\right)$ with $f_{1}+h \in \widetilde{C}_{0}\left(\mathbb{R}^{3}\right)$ and $f_{2}-h \in L^{2}\left(\mathbb{R}^{3}\right)$. Since furthermore $S\left(\mathbb{R}^{3}\right)$ is dense in $L^{2}\left(\mathbb{R}^{3}\right)$ (and also in $C_{0}\left(\mathbb{R}^{3}\right)$, though that's not needed), if necessary after splitting $w=w_{1}+w_{2}$ corresponding to $f_{\eta}=f_{1, \eta}+f_{2, \eta}$, we can always find an h to "re-split" $w=w_{1}^{\prime}+w_{2}^{\prime}$ with $f_{\eta}=\left(f_{1, \eta}+h\right)+\left(f_{2, \eta}-h\right)$, such that $\left\|\left|\nabla \times w_{2}^{\prime}\right|\right\|_{L^{2}} \leq C_{2}$ for any fixed $C_{2}>0$. This establishes the Lemma.

Now consider any minimizing sequence $\left\{V^{(n)}=V_{h}+\nabla \times w^{(n)}\right\}_{n \in \mathbb{N}}$ of $G(V)$ with $w^{(n)} \in\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$ satisfying $\left\|\mid \nabla \times w_{2}\right\| \|_{L^{2}} \leq C_{2}$. The $\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$ norm bound on $w_{2}^{(n)}$ implies weak compactness, so from any minimizing sequence $\left\{V^{(n)}=V_{h}+\nabla \times\left(w_{1}^{(n)}+w_{2}^{(n)}\right)\right\}_{n \in \mathbb{N}}$ we can extract a subsequence $\left\{V^{\left(n_{j}\right)}\right\}_{j \in \mathbb{N}}$ such that $\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$-weakly we have that $w_{2}^{\left(n_{k}\right)} \rightharpoonup w_{2} \in\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$ as $k \rightarrow \infty$; moreover, $\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}} \leq C_{2}$. This reduces the problem to proving weak compactness w.r.t. $\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}$ of the sequence $\left\{w_{1}^{(n)}\right\}_{n_{k} \in \mathbb{N}}$ in a minimizing sequence $\left\{V^{(n)}\right\}_{n \in \mathbb{N}}$ given by $V^{(n)}=V_{h}+\nabla \times\left(w_{1}^{(n)}+w_{2}\right)$, with w_{2} denoting a weak limit point of the sequence $\left\{w_{2}^{(n)}\right\}_{n_{k} \in \mathbb{N}}$ suitably chosen in the original minimizing sequence $\left\{V^{(n)}\right\}_{n \in \mathbb{N}}$. The fact that $\left\{V^{(n)}=V_{h}+\nabla \times\left(w_{1}^{(n)}+w_{2}\right)\right\}_{n_{k} \in \mathbb{N}}$ is a minimizing sequence follows from (E11) with $V_{1}=V_{h}+\nabla \times\left(w_{1}^{(n)}+w_{2}^{(n)}\right)$ and $V_{2}=\nabla \times\left(w_{2}-w_{2}^{(n)}\right)$, which yields the estimate $\left|\mathcal{G}\left(V_{1}+V_{2}\right)-\mathcal{G}\left(V_{1}\right)\right| \leq C\left\|\left|\nabla \times\left(w_{2}^{(n)}-w_{2}\right)\right|\right\|_{L^{2}}$ (cf. (E14)).

We now prove weak compactness w.r.t. $\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}$ of the sequence $\left\{w_{1}^{(n)}\right\}_{n_{k} \in \mathbb{N}}$.
First of all, since $w \equiv 0$ is not a minimizer if $N>1$, we have $\inf _{V} \mathcal{G}(V)<\mathcal{G}\left(V_{h}\right)$. Thus, without loss of generality we have $\mathcal{G}\left(V_{h}+\nabla \times w_{2}+\nabla \times w_{1}^{(n)}\right)<\mathcal{G}\left(V_{h}\right)$ and $\nabla \times w_{2}+\nabla \times w_{1}^{(n)} \not \equiv 0$, for all $n \in \mathbb{N}$.

Second, recalling that for any $V=V_{h}+\nabla \times w$ with $w \in\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+$ $\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$ the subset $K_{C} \subset \mathbb{R}^{3}$ on which $|V| \geq C>0$ a.e. has finite Lebesgue measure, since $\mathcal{G}(V) \geq\left(\sqrt{1+C^{2}}-1\right)\left|K_{C}\right|$, without loss of generality we now choose $C=\sqrt{3}$ and thus may assume that when $N>1$, then for a minimizing sequence
$\left\{V^{(n)}\right\}_{n \in \mathbb{N}}$ the size of the domains $K_{\sqrt{3}}^{(n)}$ on which $\left|V^{(n)}\right| \geq \sqrt{ } 3$ a.e. is bounded by $\left|K_{\sqrt{3}}^{(n)}\right|<\mathcal{G}\left(V_{h}\right)$, uniformly in n.

We also define $\Upsilon^{(n)}:=K_{\sqrt{3}}^{(n)} \cup \overline{B_{R}}$, where $B_{R} \supset\left\{s_{k}\right\}_{l=1}^{N}$ is an open ball and $\overline{B_{R}}$ its closure; then $\operatorname{dist}\left(\partial B_{R},\left\{s_{l}\right\}_{l=1}^{N}\right)>0$. Note that $\left|\Upsilon^{(n)}\right| \leq\left|B_{R}\right|+\left|K_{\sqrt{3}}^{(n)}\right|<\left|B_{R}\right|+\mathcal{G}\left(V_{h}\right)$ uniformly in n.

Third, we establish the analog of the uniform upper norm bounds obtained in the proof of Proposition 0.6 for the partitioning $\mathbb{R}^{3}=\Upsilon^{(n)} \cup \mathbb{R}^{3} \backslash \Upsilon^{(n)}$. We estimate

$$
\begin{equation*}
\mathcal{G}\left(V^{(n)}\right) \geq\left\|\left|V^{(n)}\right|\right\|_{L^{1}\left(\Upsilon^{(n)}\right)}-\left|\Upsilon^{(n)}\right|+\frac{1}{3}\left\|\left|V^{(n)}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon(n)\right.}^{2} \tag{E23}
\end{equation*}
$$

and recall that $\mathcal{G}\left(V_{h}\right)>\mathcal{G}\left(V^{(n)}\right)$ when $N>1$.
On the one hand, (E23) implies $\left\|\left|V^{(n)}\right|\right\|_{L^{1}\left(\Upsilon \Upsilon^{(n)}\right)}<\mathcal{G}\left(V_{h}\right)+\left|\Upsilon^{(n)}\right|$. But then, since $\left\|\left|V^{(n)}\right|\right\|_{L^{1}\left(\Upsilon^{(n)}\right)} \geq\left\|\left|V^{(n)}\right|\right\|_{L^{1}\left(B_{R}\right)} \geq\left\|\left|\nabla \times w^{(n)}\right|\right\|_{L^{1}\left(B_{R}\right)}-\left\|\left|V_{h}\right|\right\|_{L^{1}\left(B_{R}\right)}$, we obtain $\left\|\left|\nabla \times w^{(n)}\right|\right\|_{L^{1}\left(B_{R}\right)}<\mathcal{G}\left(V_{h}\right)+\left|\Upsilon^{(n)}\right|+\left\|\left|V_{h}\right|\right\|_{L^{1}\left(B_{R}\right)}$; and since the triangle inequality, followed by a radially-decreasing-rearrangement inequality, gives us $\left\|\left|V_{h}\right|\right\|_{L^{1}\left(B_{R}\right)} \leq$ $(4 \pi)^{2 / 3} 3^{1 / 3}\left(\left|B_{R}\right|\right)^{1 / 3} \sum_{n}\left|a_{n}\right|$, we conclude that (when $\left.N>1\right)\left\|\left|\nabla \times w^{(n)}\right|\right\|_{L^{1}\left(B_{R}\right)}$ is bounded above uniformly in n. Also, since $\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{1}\left(B_{R}\right)}<\infty$ independently of n, for $w^{(n)}=w_{1}^{(n)}+w_{2}$ the triangle inequality now implies that $\left\|\left|\nabla \times w_{1}^{(n)}\right|\right\|_{L^{1}\left(B_{R}\right)}<$ $\mathcal{G}\left(V_{h}\right)+\left|\Upsilon^{(n)}\right|+\left\|\left|V_{h}\right|\right\|_{L^{1}\left(\Upsilon^{(n)}\right)}+\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{1}\left(B_{R}\right)} \leq \bar{C}_{1}(R)$ uniformly in n.

On the other hand, (E23) implies $\left\|\left|V^{(n)}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon^{(n)}\right)}^{2}<3\left(\mathcal{G}\left(V_{h}\right)+\left|\Upsilon^{(n)}\right|\right)$, which in concert with $\left\|\left|V^{(n)}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon \Upsilon^{(n)}\right)} \geq\left\|\left|\nabla \times w^{(n)}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon^{(n)}\right)}-\left\|V_{h}\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon \Upsilon^{(n)}\right)}$ yields the upper bound $\left\|\left|\nabla \times w^{(n)}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon^{(n)}\right)} \leq \sqrt{3\left(\mathcal{G}\left(V_{h}\right)+|\Upsilon(n)|\right)}+\left\|V_{h}\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon^{(n)}\right)}$. Since $\left\|V_{h}\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon^{(n)}\right)} \leq 4 \pi \sum_{k}\left|a_{k}\right| / \operatorname{dist}\left(\partial B_{R},\left\{s_{j}\right\}_{j=1}^{N}\right)$, and since $\left\|\left|\nabla \times w_{1}^{(n)}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon^{(n)}\right)} \leq$ $\left\|\left|\nabla \times w^{(n)}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon^{(n)}\right)}+\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon(n)\right.}$ by the triangle inequality, and since $\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon^{(n)}\right)} \leq C_{2}$ by Lemma 0.7 , we conclude that for $N>1$, we have $\left\|\left|\nabla \times w_{1}^{(n)}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon(n)\right.} \leq \bar{C}_{2}$ uniformly in n.

Fourth, by the $L^{1}\left(B_{R}\right)$ bounds a minimizing sequence $\left\{\left|\nabla \times w_{1}^{(n)}\right|\right\}_{n \in \mathbb{N}}$ has a weak* convergent subsequence on every $\overline{B_{R}}$; by the Lebesgue decomposition theorem the limit is the sum of an $L^{1}\left(B_{R}\right)$ function f and a measure μ which is singular w.r.t. Lebesgue measure, with $\|f\|_{L^{1}\left(B_{R}\right)}+\mu\left(\overline{B_{R}}\right) \leq \bar{C}(R)$. Now suppose that $\mu\left(\overline{B_{R}}\right)>0$; note that $\operatorname{supp}(\mu)$ has Lebesgue measure zero. Then for any open neighborhood \mathcal{N}_{ϵ} of $\operatorname{supp}(\mu)$ of size ϵ we have
$\int_{\mathcal{N}_{\epsilon} \cap B_{R}}\left|V^{(n)}(s)\right| \mathrm{d}^{3} s \geq \int_{\mathcal{N}_{\epsilon} \cap B_{R}}\left(\sqrt{1+\left|V^{(n)}(s)\right|^{2}}-1\right) \mathrm{d}^{3} s \geq \int_{\mathcal{N}_{\epsilon} \cap B_{R}}\left|V^{(n)}(s)\right| \mathrm{d}^{3} s-\epsilon$.

Taking the limit $n_{k} \rightarrow \infty$ (along the convergent subsequence) and then $\epsilon \rightarrow 0$ reveals that the singular part makes an additive contribution $\mu\left(B_{R}\right)>0$ to $G(V)$. Thus by subtracting the part of the $\nabla \times w_{1}^{(n)}$ subsequence which converges in absolute value to μ we can lower the value of $G(V)$; hence, $\left\{\nabla \times w_{1}^{(n)}\right\}_{n \in \mathbb{N}}$ was not a minimizing sequence-in contradiction to the hypothesis that it was. Therefore, after extracting a subsequence,
we can assume that a minimizing sequence $\left\{\nabla \times w_{1}^{(n)}\right\}_{n \in \mathbb{N}}$ converges weakly in $L^{1}\left(B_{R}\right)$ to some $\nabla \times w_{1}$, for each B_{R} as stipulated. This means that $\left\{\left|\nabla \times w_{1}^{(n)}\right|\right\}_{n \in \mathbb{N}}$ converges weakly in $L_{\text {loc }}^{1}\left(\mathbb{R}^{3}\right)$ to some $\left|\nabla \times w_{1}\right|$, and so $\left\{\nabla \times w_{1}^{(n)}\right\}_{n \in \mathbb{N}}$ converges weakly in $\dot{W}_{\text {loc }}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)^{3}$ to some $\nabla \times w_{1}$.

Summarizing so far: any minimizing sequence $\left\{w^{(n)}\right\}_{n \in \mathbb{N}}$ of $\mathcal{G}\left(V_{h}+\nabla \times w\right)$ with $w^{(n)} \in\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$ has a locally weakly convergent subsequence with limit $w_{*} \in\left(\dot{W}_{\text {loc }}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$.

Fifth, by another variation of the reasoning in our proof of Proposition 0.6 we show that $w_{*} \in\left(\dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$. Namely, the subset $K_{\sqrt{3}}^{*} \subset \mathbb{R}^{3}$ on which $\left|V_{h}+\nabla \times w_{*}\right| \geq \sqrt{ } 3$ a.e. has finite Lebesgue measure, $\left|K_{\sqrt{3}}^{*}\right|<\mathcal{G}\left(V_{h}\right)$. We also define $\Upsilon^{*}:=K_{\sqrt{ } 3}^{*} \cup \overline{B_{R}}$ and note that $\left|\Upsilon^{*}\right| \leq\left|B_{R}\right|+\left|K_{\sqrt{ } 3}^{*}\right|<\left|B_{R}\right|+\mathcal{G}\left(V_{h}\right)$. Essentially verbatim to our estimation of the sequence norms we have that $\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{1}\left(\Upsilon^{*}\right)}<\mathcal{G}\left(V_{h}\right)+$ $\left|\Upsilon^{*}\right|+\left\|\left|V_{h}\right|\right\|_{L^{1}\left(\Upsilon^{*}\right)}+\| \| \nabla \times w_{2} \mid \|_{L^{1}\left(\Upsilon^{*}\right)}$. By Hölder’s inequality, $\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{1}\left(\Upsilon^{*}\right)} \leq$ $\left|\Upsilon^{*}\right|^{1 / 2}\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}\left(\Upsilon \Upsilon^{*}\right)}^{1 / 2}$, and we have $\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}\left(\Upsilon^{*}\right)} \leq\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}$. And so $\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{1}\left(\Upsilon^{*}\right)} \leq C_{1}$.

On the other hand, we also know that $\left\|\left|\nabla \times w_{1}^{(n)}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon^{(n)}\right)} \leq \bar{C}_{2}$ uniformly in n, and so $\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Upsilon^{*}\right)} \leq \bar{C}_{2}$. Now suppose that $\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{1}\left(\mathbb{R}^{3} \backslash \Upsilon^{*}\right)}=\infty$. But then, since $\left|\nabla \times w_{1}\right| \in\left(L^{2} \cap L^{\infty}\right)\left(\mathbb{R}^{3} \backslash \Upsilon^{*}\right)$, we can subtract the offending part from w_{1} and add it to w_{2}, denoting the new decomposition by $\tilde{w}_{1}+\tilde{w}_{2}$. Indeed, by the chiral Fourier representation we can find a $\nabla \times \tilde{w}$ with chiral Fourier components $\tilde{g}_{\eta}(k) \in\left(L^{1} \cap\right.$ $\left.L^{2}\right)\left(\mathbb{R}^{3}\right)$ such that $\left\|\left|\nabla \times\left(w_{1}-\tilde{w}\right)\right|\right\|_{L^{1}\left(\mathbb{R}^{3} \backslash \Upsilon^{*}\right)}<\infty$; since $|\nabla \times \tilde{w}| \in\left(L^{2} \cap L^{\infty}\right)\left(\mathbb{R}^{3}\right)$, it follows that $|\nabla \times \tilde{w}| \in L^{1}\left(\Upsilon^{*}\right)$, and so $\left\|\left|\nabla \times\left(w_{1}-\tilde{w}\right)\right|\right\|_{L^{1}\left(\mathbb{R}^{3}\right)}<\infty$. Also we obviously have $\left|\nabla \times\left(w_{2}-\tilde{w}\right)\right| \in L^{2}\left(\mathbb{R}^{3}\right)$. Thus, setting $\tilde{w}_{1}:=w_{1}-\tilde{w}$ and $\tilde{w}_{2}:=w_{2}+\tilde{w}$ we have $w_{1}+w_{2}=\tilde{w}_{1}+\tilde{w}$ with $\left.\tilde{w}_{1} \in \dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}$ and $\left.\tilde{w}_{2} \in \dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$. Thus, $\left.w_{*} \in \dot{W}_{0}^{\nabla \times, 1}\left(\mathbb{R}^{3}\right)\right)^{3}+\left(\dot{W}_{0}^{\nabla \times, 2}\left(\mathbb{R}^{3}\right)\right)^{3}$, as claimed.

Lastly, by weak lower semi-continuity (Fatou's lemma),

$$
\begin{equation*}
U(s):=V_{h}(s)+\nabla \times w_{*}(s) \tag{E25}
\end{equation*}
$$

is a minimizer of $\mathcal{G}(V)$. This completes the proof of Theorem 0.1.
It now follows in the usual way that U given in (E25) is a critical point of $\mathcal{G}(V)$, satisfying the Euler-Lagrange equation

$$
\begin{equation*}
\nabla \times \frac{V_{h}+\nabla \times w_{*}}{\sqrt{1+\left|V_{h}+\nabla \times w_{*}\right|^{2}}}=0 . \tag{E26}
\end{equation*}
$$

Thus, and applying the Poincaré lemma, we find that locally in simply connected domains

$$
\begin{equation*}
E_{U}(s)=\frac{U(s)}{\sqrt{1+|U(s)|^{2}}} \equiv-\nabla v_{*}(s) \tag{E27}
\end{equation*}
$$

is a gradient field. Furthermore, as shown in (E8) for any E_{V}, we have that

$$
\begin{equation*}
-\nabla \cdot \frac{\nabla v_{*}(s)}{\sqrt{1-\left|\nabla v_{*}(s)\right|^{2}}}=4 \pi \sum_{n=1}^{N} a_{n} \delta_{s_{n}} \tag{E28}
\end{equation*}
$$

in the sense of distributions; thus, v_{*} exists globally a.e. and satisfies $\mathcal{F}^{(1)}\left[v_{*}\right](\psi)=0$ for all $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$.

Finally, we show that $v_{*}=v_{\infty}$. Namely, we have

$$
\begin{equation*}
\mathcal{F}\left(v_{*}\right) \geq \mathcal{F}\left(v_{\infty}\right) \geq-\mathcal{G}(U)=\mathcal{F}\left(v_{*}\right) \tag{E29}
\end{equation*}
$$

The first inequality expresses the fact that v_{∞} is a minimizer of $\mathcal{F}(v)$; the second inequality follows from the fact that U is just a special V, and that $\mathcal{F}\left(v_{\infty}\right) \geq-\mathcal{G}(V)$ for all $V=V_{h}+\nabla \times w$, see (E9); lastly, the equality in (E29) follows from the fact that $U=-\nabla v_{*}(s) / \sqrt{1-\left|\nabla v_{*}(s)\right|^{2}}$ satisfies (E28), equivalently v_{*} satisfies $\mathcal{F}^{(1)}\left[v_{*}\right](\psi)=$ 0 for all $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ - more explicitly, inverting the above-stated algebraic relation between U and ∇v_{*}, we can rewrite $-\mathcal{G}(U)$ as follows (cf. (23)-(26) in [1]):

$$
\begin{equation*}
\int_{\mathbb{R}^{3}}\left(1-\sqrt{1+|U(s)|^{2}}\right) \mathrm{d}^{3} s=\int_{\mathbb{R}^{3}}\left(1-\sqrt{1-\left|\nabla v_{*}(s)\right|^{2}}+U(s) \cdot \nabla v_{*}(s)\right) \mathrm{d}^{3} s, \tag{E30}
\end{equation*}
$$

and an integration by parts on the last term in the second integral, and using that $\nabla \cdot U=$ $4 \pi \sum_{n=1}^{N} a_{n} \delta_{s_{n}}$ weakly, now yields $-\mathcal{G}(U)=\mathcal{F}\left(v_{*}\right)$. Thus, $\mathcal{F}\left(v_{*}\right)=\mathcal{F}\left(v_{\infty}\right)$, and by the uniqueness of the minimizer of $\mathcal{F}(v)$, we have $v_{*}=v_{\infty}$.

The proof that $\mathcal{F}^{(1)}\left[v_{\infty}\right](\psi)=0$ for all $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$ is complete.

Acknowledgement. My sincere thanks go to Denis Bonheure for raising his criticism of [1]. I am also very grateful to the referees for their critical comments which helped me to improve this erratum. I also thank Sagun Chanillo, Markus Kunze, and Shadi Tahvildar-Zadeh for their helpful comments.

Appendix A

Proof of (E12). Pick a ball $B_{R} \supset\left\{s_{n}\right\}_{n=1}^{N}$. Also let $\Omega_{1}:=\left\{\left|\nabla \times w_{1}\right|>1\right\}$ and $\Omega_{2}:=$ $\left\{\left|\nabla \times w_{2}\right|>1\right\}$. Then $\infty>\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{1}} \geq \int_{\Omega_{1}}\left|\nabla \times w_{1}\right| d^{3} s \geq\left|\Omega_{1}\right|$, and similarly $\left|\Omega_{2}\right|<\infty$. Let $\Omega=B_{R} \cup \Omega_{1} \cup \Omega_{2}$; then $|\Omega|<\infty$. Let χ_{S} be the characteristic function of the set S. Then, by the triangle inequality, $\left\|\left|E_{V}\right|\right\|_{L^{2}} \leq\left\|\left|E_{V}\right| \chi_{\Omega}\right\|_{L^{2}}+\left\|\left|E_{V}\right| \chi_{\mathbb{R}^{3} \backslash \Omega}\right\|_{L^{2}}$. Using $\left|E_{V}\right| \leq 1$ yields $\left\|\left|E_{V}\right| \chi_{\Omega}\right\|_{L^{2}} \leq|\Omega|^{1 / 2}$, while using $\left|E_{V}\right| \leq|V|$ and again the triangle inequality yields

$$
\left\|\left|E_{V}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Omega\right)} \leq\left\|\left|V_{h}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Omega\right)}+\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Omega\right)}+\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Omega\right)} .
$$

Next, $\left|\nabla \times w_{1}\right| \leq 1$ on $\mathbb{R}^{3} \backslash \Omega$ yields $\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Omega\right)} \leq\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{1}\left(\mathbb{R}^{3} \backslash \Omega\right)}^{1 / 2} \leq$ $\left\|\left|\nabla \times w_{1}\right|\right\|_{L^{1}}^{1 / 2}<\infty$. Together with $\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}\left(\mathbb{R}^{3} \backslash \Omega\right)} \leq\left\|\left|\nabla \times w_{2}\right|\right\|_{L^{2}}<\infty$ we obtain (E12).

References

1. Kiessling, M.K.-H.: On the quasilinear elliptic PDE $-\nabla \cdot\left(\nabla u / \sqrt{1-|\nabla u|^{2}}\right)=4 \pi \sum_{k} a_{k} \delta_{s_{k}}$ in physics and geometry. Commun. Math. Phys. 314, 509-523 (2012)
2. Bonheure, D., D'Avenia, P., Pomponio, A.: On the electrostatic Born-Infeld equation with extended charges. Commun. Math. Phys. 346, 877-906 (2016)
3. Moses, H.E.: Eigenfunctions of the curl operator, rotationally invariant Helmholtz theorem, and applications to electromagnetic theory and fluid mechanics. SIAM J. Appl. Math. 21, 114-144 (1971)
