

Correction

Correction to: On the Quasi-Linear Elliptic PDE $-\nabla \cdot (\nabla u/\sqrt{1-|\nabla u|^2}) = 4\pi \sum_k a_k \delta_{s_k}$ in Physics and Geometry

Michael K.-H. Kiessling

Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Rd., Piscataway, NJ 08854, USA. E-mail: miki@math.rutgers.edu

Received: 1 November 2015 / Accepted: 13 August 2018 Published online: 11 October 2018 – © The Author(s) 2018

Correction to: Commun. Math. Phys. 314, 509–523 (2012) https://doi.org/10.1007/s00220-012-1502-3

Denis Bonheure kindly informed me that [1], section 2.6 ("*The minimizer of* \mathcal{F} weakly satisfies the Euler–Lagrange equation"), contains a logical gap on p. 516 where I wrote:

"The result $|\Omega_{\text{crit}}| = 0$ means that $|\nabla v_{\infty}| < 1$ *a.e.*, and this already implies that the variation of $\mathcal{F}(v)$ about v_{∞} to leading order (i.e. power 1) in ψ now reads

$$\mathcal{F}^{(1)}[v_{\infty}](\psi) = \int_{\mathbb{R}^3} \left(\nabla \psi(s) \cdot \frac{\nabla v_{\infty}(s)}{\sqrt{1 - |\nabla v_{\infty}(s)|^2}} - 4\pi \psi(s) \sum_{1 \le n \le N} a_n \delta_{s_n}(s) \right) \mathrm{d}^3 s.$$
(22)

Since $\mathcal{F}^{(1)}[v_{\infty}](\psi)$ is linear in ψ , v_{∞} can minimize \mathcal{F} over \mathscr{A} only if $\mathcal{F}^{(1)}[v_{\infty}](\psi) = 0$ for all ψ , which is precisely (7). Thus the Euler-Lagrange equation (1) is satisfied by v_{∞} in the weak sense, as claimed."

Bonheure's objection concerns the sentence: "Since $\mathcal{F}^{(1)}[v_{\infty}](\psi)$ is linear in ψ , ...", which alludes to the usual linearity-based argument (i.e., "Suppose $\mathcal{F}^{(1)}[v_{\infty}](\psi) \neq 0$ for some ψ ; then either $\mathcal{F}^{(1)}[v_{\infty}](\psi) < 0$ or $\mathcal{F}^{(1)}[v_{\infty}](-\psi) < 0$; but this is impossible because v_{∞} is the minimizer of $\mathcal{F}(v)$; hence, $\mathcal{F}^{(1)}[v_{\infty}](\psi) = 0$."). He notes that, although $|\Omega_{\text{crit}}| = 0$ (cf. the proof on p. 515) implies that $\mathcal{F}^{(1)}[v_{\infty}](\psi)$ is given by (22), and although (22) does act linearly on the space of compactly supported $C^{\infty}(\mathbb{R}^3)$ test functions $C_c^{\infty}(\mathbb{R}^3)$, only a nonlinear subset of these supplies admissible perturbations of v_{∞} . More precisely, the restriction $v_{\infty} + \psi \in \mathscr{A}$ (the admissible set of v) rules out test functions ψ for which $\nabla v_{\infty}(s) \cdot \nabla \psi(s) \geq 0$ *a.e.* in some open ϵ -ball B_{ϵ} satisfying $\Omega_{\text{crit}} \cap B_{\epsilon} \neq \emptyset$ while allowing those ψ for which $\nabla v_{\infty}(s) \cdot \nabla \psi(s) < 0$ *a.e.* in such B_{ϵ} .

The original article can be found online at https://doi.org/10.1007/s00220-012-1502-3.

Thus one cannot invoke the linearity of $\mathcal{F}^{(1)}[v_{\infty}](\cdot) : C_c^{\infty}(\mathbb{R}^3) \to \mathbb{R}$ to conclude that $\mathcal{F}^{(1)}[v_{\infty}](\psi) = 0$ for all $\psi \in C_c^{\infty}(\mathbb{R}^3)$, which is equivalent to the Euler-Lagrange equation (1) (see (E28) below) in weak form (see (7) in [1]). Of course, the nonlinear set of admissible ψ contains the linear subset of $C_c^{\infty}(\mathbb{R}^3)$ test functions for which $\lim_{s\to\Omega_{\rm crit}} |\nabla\psi(s)| = 0$ (incidentally, the larger linear subset of $C_c^{\infty}(\mathbb{R})$ for which $\lim_{s\to\Omega_{\rm crit}} |\nabla\psi(s) \cdot \nabla v_{\infty}(s) = 0$ contains inadmissible ψ , namely those for which $\lim_{s\to\Omega_{\rm crit}} |\nabla\psi(s)| \neq 0$). For ψ in this linear subset we do have $\mathcal{F}^{(1)}[v_{\infty}](\psi) = 0$, by the familiar argument; however, Bonheure points out, knowing only that $|\Omega_{\rm crit}| = 0$ does not allow us to conclude that the linear subset of test functions satisfying $\lim_{s\to\Omega_{\rm crit}} |\nabla\psi(s)| = 0$ is dense in $C_c^{\infty}(\mathbb{R}^3)$.

In the following I respond to Bonhure's criticism (see also [2]) by showing that $\mathcal{F}^{(1)}[v_{\infty}](\psi) = 0$ not only for all $\psi \in C_c^{\infty}(\mathbb{R}^3)$ which satisfy $\lim_{s \to \Omega_{crit}} |\nabla \psi(s)| = 0$, but indeed for all $\psi \in C_c^{\infty}(\mathbb{R}^3)$. I pick up on Remark 3.4, see p. 518 in [1]; thus we play a variation of the convex duality theme on p. 517 of [1].

We work with the almost everywhere harmonic field (eq.(29) in [1])

$$V_h(s) = -\sum_{n=1}^N a_n \nabla \frac{1}{|s - s_n|}.$$
 (E1)

We have (eq.(30) in [1])

$$\nabla \cdot V_h = 4\pi \sum_{n=1}^N a_n \delta_{s_n} \tag{E2}$$

in the sense of distributions. Moreover, recall that for any $w \in (\dot{W}_0^{1,p}(\mathbb{R}^3))^3, p \ge 1$,

$$\nabla \cdot \nabla \times w = 0 \tag{E3}$$

weakly; note that $\nabla \times w$ is well defined on \mathbb{R}^3 except on a set Ω_w with Lebesgue measure zero. More generally, linearity implies that $\nabla \cdot \nabla \times w = 0$ for any $w = \sum_p w_p$ with weak curls $\nabla \times w_p \in (L^p(\mathbb{R}^3))^3$, where \sum_p sums over a countable (sub-)set of $p \ge 1$. We will work with $\sum_p (\dot{W}_0^{\nabla \times, p}(\mathbb{R}^3))^3$, $p \ge 1$, where $(\dot{W}_0^{\nabla \times, p}(\mathbb{R}^3))^3$ is defined as the closure of the set of divergence-free, compactly supported C^∞ vector fields w with respect to the norm $\||\nabla \times w|\|_{L^p(\mathbb{R}^3)}$.

Abbreviating $V_h + \nabla \times w =: V$, an integration by parts now yields

$$\begin{aligned} \mathfrak{F}(v_{\infty}) &= \int_{\mathbb{R}^3} \left(1 - \sqrt{1 - |\nabla v_{\infty}(s)|^2} - 4\pi v_{\infty}(s) \sum_{1 \le n \le N} a_n \delta_{s_n}(s) \right) \mathrm{d}^3 s \\ &= \int_{\mathbb{R}^3} \left(1 - \sqrt{1 - |\nabla v_{\infty}(s)|^2} + V(s) \cdot \nabla v_{\infty}(s) \right) \mathrm{d}^3 s \end{aligned} \tag{E4}$$

for any such $w \in \sum_{p} (\dot{W}_{0}^{\nabla \times, p}(\mathbb{R}^{3}))^{3}$, $p \ge 1$. Next observe that *pointwise*

$$V(s) \cdot \nabla v_{\infty}(s) - \sqrt{1 - |\nabla v_{\infty}(s)|^2} \ge \min_{E(s) \in B_1 a.e.} \left\{ -V(s) \cdot E(s) - \sqrt{1 - |E(s)|^2} \right\}$$
(E5)
$$= -\sqrt{1 + |V(s)|^2}, \quad s \in \mathbb{R}^3 \backslash (\Omega_{\text{crit}} \cup \Omega_w),$$

where $B_1 \subset \mathbb{R}^3$ is the open unit ball. The unique minimizer $E_V(s)$ is given by

$$E_V(s) = \frac{V(s)}{\sqrt{1 + |V(s)|^2}},$$
(E6)

defining a vector field on \mathbb{R}^3 *a.e.*, satisfying $|E_V(s)| < 1$, with $|E_V(s)| \rightarrow 1$ when $s \rightarrow \{s_n\}_{n=1}^N \subset \Omega_{\text{crit}}$ and possibly when $s \rightarrow \Omega_w$. Inverting (E6) yields

$$V(s) = \frac{E_V(s)}{\sqrt{1 - |E_V(s)|^2}},$$
(E7)

and so, since $\nabla \cdot V = 4\pi \sum_{n=1}^{N} a_n \delta_{s_n}$ in the sense of distributions, we have

$$\nabla \cdot \frac{E_V(s)}{\sqrt{1 - |E_V(s)|^2}} = 4\pi \sum_{n=1}^N a_n \delta_{s_n}$$
(E8)

weakly, for any $V = V_h + \nabla \times w$. This almost is the Euler–Lagrange equation we seek to obtain, yet not quite: at this point we don't know whether $s \mapsto E_V(s)$ is a gradient field — indeed, for most w it's not! Also, the minimization w.r.t. E implies

$$\mathcal{F}(v_{\infty}) \ge \int_{\mathbb{R}^3} \left(1 - \sqrt{1 + |V(s)|^2} \right) \mathrm{d}^3 s \equiv -\mathcal{G}(V) \tag{E9}$$

for any $V = V_h + \nabla \times w$ with $w \in \sum_p (\dot{W}_0^{\nabla \times, p}(\mathbb{R}^3))^3$, $p \ge 1$. So we need to show that there does exist a $U = V_h + \nabla \times w_*$ such that for *a.e.* $s \in \mathbb{R}^3$ we have $E_U(s) = -\nabla v_*(s)$ for some $v_* \in \dot{W}_0^{1,\infty}$, and with $\mathcal{G}(U) = -\mathcal{F}(v_\infty)$. The existence and uniqueness of the minimizer $v_\infty(s)$ of $\mathcal{F}(v)$ (see [1]) then yields $v_*(s) = v_\infty(s)$. Clearly, $U = V_h + \nabla \times w_*$ will minimize $\mathcal{G}(V)$ among all $V = V_h + \nabla \times w$ with $w \in \sum_p (\dot{W}_0^{\nabla \times, p}(\mathbb{R}^3))^3$, $p \ge 1$. In fact, it suffices to minimize $\mathcal{G}(V_h + \nabla \times w)$ for $w \in \sum_p (\dot{W}_0^{\nabla \times, p}(\mathbb{R}^3))^3$, $p \in \{1, 2\}$. We remark that $\sum_{p \in \{1, 2\}} (\dot{W}_0^{\nabla \times, p}(\mathbb{R}^3))^3$ is a Banach space with respect to the norm $\|w\| := \inf\{\||\nabla \times w_1|\|_{L^1(\mathbb{R}^3)} + \||\nabla \times w_2|\|_{L^2(\mathbb{R}^3)}\}$, where (given w) the infimum is over the set $\{w_1 + w_2 = w \mid w_p \in (\dot{W}_0^{\nabla \times, p}(\mathbb{R}^3))^3$, $p \in \{1, 2\}$; note that the splitting of w into a sum of w_1 and w_2 is not unique (we will take advantage of this to prove Lemma 0.7, and Theorem 0.1, below).

We now show that such a w_* exists.

In the special case N = 1 it is easily seen that $w_* \equiv 0$ is the minimizer. Indeed, V_h in this case is a spherically symmetric gradient field, and so is E_{V_h} ; thus, taking the Gateaux derivative $\frac{d}{dt} \mathcal{G}(V_h + t\nabla \times w)$ at t = 0 with compactly supported $w \in C_c^{\infty}(\mathbb{R}^3)^3$ yields $\int E_{V_h} \cdot \nabla \times w \, d^3 s$, and integration by parts now shows that this integral does vanish because $\nabla \times E_{V_h} = 0$. Hence when N = 1 then V_h is a critical point of $\mathcal{G}(V)$, and the strict convexity of $\mathcal{G}(V)$ w.r.t. $\nabla \times w$ now establishes its minimality. Of course, this just re-expresses the long-ago solved \mathcal{F} variational problem for N = 1 in terms of the \mathcal{G} variational problem. Thus, in the following we assume N > 1.

When N > 1 then $w \equiv 0$ is not a minimizer. For suppose $w \equiv 0$ were a minimizer, then the Gateaux derivative $\frac{d}{dt} \mathcal{G}(V_h + t\nabla \times w)$ at t = 0 would have to vanish, yet it is easily seen that it doesn't vanish for all w because $\nabla \times E_{V_h} \neq 0$ when N > 1.

We next prove

Theorem 0.1.
$$\exists ! w_* \in (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$$
 so that $U = V_h + \nabla \times w_*$ satisfies

$$\mathcal{G}(U) = \inf \left\{ \mathcal{G}(V_h + \nabla \times w) \middle| w \in (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3 \right\}.$$
(E10)

Proof of the Theorem. We begin by showing that $\mathcal{G}(V)$ is well defined on the stipulated set.

Proposition 0.2. For $V = V_h + \nabla \times w$ with $w = w_1 + w_2$ as stipulated, the functional $\mathcal{G}(V)$ is well-defined and strongly continuous.

Proof. Through telescoping $\mathcal{G}(V) = [\mathcal{G}(V_h + \nabla \times w_1 + \nabla \times w_2) - \mathcal{G}(V_h + \nabla \times w_1)] + [\mathcal{G}(V_h + \nabla \times w_1) - \mathcal{G}(V_h)] + \mathcal{G}(V_h)$, we right away note that $\mathcal{G}(V_h)$ is well-defined because $|V_h| \in L^1_{loc}(\mathbb{R}^3) \cap L^2(\mathbb{R}^3 \setminus B_R)$ for any open $B_R \supset \{s_n\}_{n=1}^N$, whereas the two difference terms (the [...] terms) are estimated as follows: We use the identity

$$\mathcal{G}(V_1 + V_2) - \mathcal{G}(V_1) = \int_0^1 \int_{\mathbb{R}^3} \frac{V_1(s) + \lambda V_2(s)}{\sqrt{1 + |V_1(s) + \lambda V_2(s)|^2}} \cdot V_2(s) \mathrm{d}^3 s \mathrm{d}\lambda, \quad (E11)$$

and note that $E_V = V / \sqrt{1 + |V|^2} \in ((L^2 \cap L^\infty)(\mathbb{R}^3))^3$, with $||E_V||_{L^\infty(\mathbb{R}^3)} = 1$ and

$$\||E_V|\|_{L^2(\mathbb{R}^3)} \le |\Omega|^{1/2} + \||V_h|\|_{L^2(\mathbb{R}^3 \setminus \Omega)} + \||\nabla \times w_1|\|_{L^1(\mathbb{R}^3)}^{1/2} + \||\nabla \times w_2|\|_{L^2(\mathbb{R}^3)},$$
(E12)

where $\Omega = B_R \cup \{|\nabla \times w_1| > 1\} \cup \{|\nabla \times w_2| > 1\}$ for some convenient $B_R \supset \{s_n\}_{n=1}^N$ (see "Appendix A"); note that Ω is measurable but not necessarily open. Thus, and setting $\|\cdot\|_{L^p} := \|\cdot\|_{L^p(\mathbb{R}^3)}$ (below with p = 1 or 2),

(i) let $V_1 = V_h$ and $V_2 = \nabla \times w_1$, then Hölder's inequality applied to (E11) yields

$$|\mathcal{G}(V_h + \nabla \times w_1) - \mathcal{G}(V_h)| \le ||\nabla \times w_1||_{L^1};$$
(E13)

(ii) let $V_1 = V_h + \nabla \times w_1$ and $V_2 = \nabla \times w_2$ and apply Hölder to (E11) to get

$$|\mathcal{G}(V_h + \nabla \times (w_1 + w_2)) - \mathcal{G}(V_h + \nabla \times w_1)| \le \sup_{0 < \lambda < 1} \left\| \left| E_{V_\lambda} \right| \right\|_{L^2} \| |\nabla \times w_2| \|_{L^2},$$
(E14)

where we have set $V_{\lambda} = V_h + \nabla \times w_1 + \lambda \nabla \times w_2$. The L^2 norm of $E_{V_{\lambda}}$ is estimated by (E12) with w_2 replaced by λw_2 , and the obvious estimate $\lambda < 1$. This establishes that $\mathcal{G}(V)$ is well-defined on the stipulated set.

This also proves that $\mathcal{G}(V)$ is strongly continuous at V_h , for $\| |\nabla \times w_1^{(n)}| \|_{L^1} \to 0$ and $\| |\nabla \times w_2^{(n)}| \|_{L^2} \to 0$ together imply $\mathcal{G}(V_h + \nabla \times (w_1^{(n)} + w_2^{(n)})) \to \mathcal{G}(V_h)$ as $n \to \infty$. The strong continuity of $\mathcal{G}(V)$ at any $V = V_h + \nabla \times w$ with $w \in (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$ follows essentially verbatim. \Box

The strong continuity of $\mathcal{G}(V)$ in concert with its strict convexity in $\nabla \times w$ implies: **Corollary 0.3.** *The functional* $\mathcal{G}(V)$ *is weakly lower semi-continuous.*

Since $\mathcal{G}(V)$ is invariant under gauge transformations $w \to w + \nabla \gamma$ (because $\nabla \times w$, and thus V, are, also E_V is gauge invariant), the strict convexity of $\mathcal{G}(V)$ in $\nabla \times w$ does not automatically translate into strict convexity of $\mathcal{G}(V)$ in w. However, since we have stipulated w to be divergence-free, viz. $\nabla \cdot w = 0$, only gauge transformations $w \to w + \nabla \gamma$ with harmonic γ , i.e. with $\Delta \gamma = 0$, remain; but the only allowed harmonic γ are those which are constant at spatial ∞ , which leaves the identity map as the only gauge transformation. Thus $\mathcal{G}(V)$ is strictly convex in w, and so we have **Corollary 0.4.** Any minimizer $w_* \in (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$ of $\mathcal{G}(V_h + \nabla \times w)$ is unique.

We next show that it suffices to consider $\mathcal{G}(V_h + \nabla \times w)$ for $w \in (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$. For this we recall the chiral Helmholtz theorem of [3]:

Lemma 0.5. Any vector field $\mathbf{F}(s)$ can be decomposed into $\mathbf{F}(s) = \mathbf{f}(s) + \mathbf{g}(s)$, where $\mathbf{f}(s)$ is divergence-free and $\mathbf{g}(s)$ is curl-free. The divergence-free part $\mathbf{f}(s)$ has the chiral Fourier representation

$$\mathbf{f}(s) = \sum_{\eta \in \{\pm 1\}} \int_{\mathbb{R}^3} e^{i2\pi k \cdot s} \mathbf{Q}_{\eta}(k) f_{\eta}(k) \mathrm{d}^3 k$$
(E15)

with $k = (k_1, k_2, k_3)^T$ and $\mathbf{Q}_{\eta}(k) = -\frac{\eta}{\sqrt{2}} \left(\frac{k_1(k_1+i\eta k_2)}{|k|(|k|+k_3)} - 1, \frac{k_2(k_1+i\eta k_2)}{|k|(|k|+k_3)} - i\eta, \frac{k_1+i\eta k_2}{|k|} \right)^T$. So $\mathbf{f}(s)$ is uniquely characterized by two scalar functions, $f_{\eta}(k), \eta \in \{\pm 1\}$, given by

$$f_{\eta}(k) = \int_{\mathbb{R}^3} e^{-i2\pi k \cdot s} \mathbf{Q}_{\eta}^*(k) \cdot \mathbf{F}(s) \mathrm{d}^3 s.$$
(E16)

Note that $\mathbf{Q}_{\eta}(k)$ is a unit vector which depends on *k* only through k/|k|, and it can continuously be extended into the removable singularity at $k_3 = -|k|$. Note also that $k \cdot \mathbf{Q}_{\eta}(k) = 0$. We remark that this is not in violation of the "hairy ball theorem" because $\mathbf{Q}_{\eta}(k)$ is *complex*.

With the help of Lemma 0.5 we prove

Proposition 0.6. Suppose $\mathcal{G}(V_h + \nabla \times w) < \infty$. Then, after at most a gauge transformation $w \mapsto w + \nabla \gamma$, we have $w \in (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$.

Proof. For any $V = V_h + \nabla \times w$ with $\mathcal{G}(V) < \infty$ the subset $K_C \subset \mathbb{R}^3$ on which $|V| \ge C > 0$ *a.e.* has finite Lebesgue measure, for we have $\mathcal{G}(V) \ge (\sqrt{1+C^2}-1)|K_C|$. Partitioning $\mathbb{R}^3 = K_C \cup \mathbb{R}^3 \setminus K_C$ we thus estimate

$$\mathcal{G}(V) \ge \||V|\|_{L^1(K_C)} - |K_C| + \frac{1}{1 + \sqrt{1 + C^2}} \||V|\|_{L^2(\mathbb{R}^3 \setminus K_C)}^2.$$
(E17)

Now let C > 0 be small enough so that $\{s_l\}_{l=1}^N \subset K_C$. Then, by the triangle inequality, (E17) implies that, on the one hand,

$$\||\nabla \times w|\|_{L^{1}(K_{C})} \le \mathcal{G}(V) + |K_{C}| + \||V_{h}|\|_{L^{1}(K_{C})},$$
(E18)

and, on the other,

$$\||\nabla \times w|\|_{L^{2}(\mathbb{R}^{3} \setminus K_{C})} \leq \sqrt{(1 + \sqrt{1 + C^{2}})(\mathcal{G}(V) + |K_{C}|) + \||V_{h}|\|_{L^{2}(\mathbb{R}^{3} \setminus K_{C})}}.$$
 (E19)

Defining

$$f_{1;\eta}(k) := \int_{K_C} e^{-i2\pi k \cdot s} \mathbf{Q}^*_{\eta}(k) \cdot \nabla \times w(s) \mathrm{d}^3 s, \tag{E20}$$

$$f_{2;\eta}(k) := \int_{\mathbb{R}^3 \setminus K_C} e^{-i2\pi k \cdot s} \mathbf{Q}^*_{\eta}(k) \cdot \nabla \times w(s) \mathrm{d}^3 s,$$
(E21)

and $f_{\eta}(k) := f_{1;\eta}(k) + f_{2;\eta}(k)$, we obtain a decomposition of $\nabla \times w$ into $\nabla \times w_1 + \nabla \times w_2$ with $|\nabla \times w_1| \in L^1(\mathbb{R}^3)$ and $|\nabla \times w_2| \in L^2(\mathbb{R}^3)$. But then (see [3]),

$$w_{l}(s) := \sum_{\eta \in \{\pm 1\}} \eta \int_{\mathbb{R}^{3}} e^{i2\pi k \cdot s} \mathbf{Q}_{\eta}(k) f_{l;\eta}(k) \frac{1}{|k|} \mathrm{d}^{3}k \in \dot{W}_{0}^{\nabla \times, l}(\mathbb{R}^{3})^{3}, \quad l \in \{1, 2\}.$$
(E22)

Next we use that the splitting $w = w_1 + w_2$ is not unique to show:

Lemma 0.7. Let $\{w^{(n)}\}_{n \in \mathbb{N}} \subset (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$ be a minimizing sequence for $\mathcal{G}(V_h + \nabla \times w)$. Then without loss of generality we may assume that $\||\nabla \times w_2^{(n)}|\|_{L^2} \leq C_2$ for some convenient fixed $C_2 > 0$.

Proof. Since $w \in (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$ we have $f_\eta \in \tilde{C}_0(\mathbb{R}^3) + L^2(\mathbb{R}^3)$, where $\tilde{C}_0(\mathbb{R}^3)$, a subset of the continuous functions which vanish at spatial ∞ , is the image of $L^1(\mathbb{R}^3)$ under Fourier transform.

Now, if $f = f_1 + f_2$ with $f_1 \in \widetilde{C}_0(\mathbb{R}^3)$ and $f_2 \in L^2(\mathbb{R}^3)$, then for $h \in S(\mathbb{R}^3)$ (Schwartz space) also $f = (f_1+h)+(f_2-h)$ with $f_1+h \in \widetilde{C}_0(\mathbb{R}^3)$ and $f_2-h \in L^2(\mathbb{R}^3)$. Since furthermore $S(\mathbb{R}^3)$ is dense in $L^2(\mathbb{R}^3)$ (and also in $C_0(\mathbb{R}^3)$, though that's not needed), if necessary after splitting $w = w_1 + w_2$ corresponding to $f_\eta = f_{1,\eta} + f_{2,\eta}$, we can always find an h to "re-split" $w = w'_1 + w'_2$ with $f_\eta = (f_{1,\eta} + h) + (f_{2,\eta} - h)$, such that $\||\nabla \times w'_2|\|_{L^2} \le C_2$ for any fixed $C_2 > 0$. This establishes the Lemma. \Box

Now consider any minimizing sequence $\{V^{(n)} = V_h + \nabla \times w^{(n)}\}_{n \in \mathbb{N}}$ of G(V)with $w^{(n)} \in (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$ satisfying $|||\nabla \times w_2|||_{L^2} \leq C_2$. The $(\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$ norm bound on $w_2^{(n)}$ implies weak compactness, so from any minimizing sequence $\{V^{(n)} = V_h + \nabla \times (w_1^{(n)} + w_2^{(n)})\}_{n \in \mathbb{N}}$ we can extract a subsequence $\{V^{(n_j)}\}_{j \in \mathbb{N}}$ such that $(\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$ -weakly we have that $w_2^{(n_k)} \rightarrow w_2 \in (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$ as $k \rightarrow \infty$; moreover, $|||\nabla \times w_2|||_{L^2} \leq C_2$. This reduces the problem to proving weak compactness w.r.t. $(\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3$ of the sequence $\{w_1^{(n)}\}_{n_k \in \mathbb{N}}$ in a minimizing sequence $\{V^{(n)}\}_{n \in \mathbb{N}}$ given by $V^{(n)} = V_h + \nabla \times (w_1^{(n)} + w_2)$, with w_2 denoting a weak limit point of the sequence $\{w_2^{(n)}\}_{n_k \in \mathbb{N}}$ suitably chosen in the original minimizing sequence $\{V^{(n)}\}_{n \in \mathbb{N}}$. The fact that $\{V^{(n)} = V_h + \nabla \times (w_1^{(n)} + w_2)\}_{n_k \in \mathbb{N}}$ is a minimizing sequence follows from (E11) with $V_1 = V_h + \nabla \times (w_1^{(n)} + w_2^{(n)})$ and $V_2 = \nabla \times (w_2 - w_2^{(n)})$, which yields the estimate $|\mathcal{G}(V_1 + V_2) - \mathcal{G}(V_1)| \leq C |||\nabla \times (w_2^{(n)} - w_2)|||_{L^2}$ (cf. (E14)). We now prove weak compactness w.r.t. $(\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3$ of the sequence $\{w_1^{(n)}\}_{n_k \in \mathbb{N}}$.

We now prove weak compactness w.r.t. $(W_0^{\vee\times,1}(\mathbb{R}^3))^3$ of the sequence $\{w_1^{(n)}\}_{n_k\in\mathbb{N}}$. First of all, since $w \equiv 0$ is not a minimizer if N > 1, we have $\inf_V \mathcal{G}(V) < \mathcal{G}(V_h)$. Thus, without loss of generality we have $\mathcal{G}(V_h + \nabla \times w_2 + \nabla \times w_1^{(n)}) < \mathcal{G}(V_h)$ and $\nabla \times w_2 + \nabla \times w_1^{(n)} \neq 0$, for all $n \in \mathbb{N}$.

Second, recalling that for any $V = V_h + \nabla \times w$ with $w \in (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$ the subset $K_C \subset \mathbb{R}^3$ on which $|V| \ge C > 0$ *a.e.* has finite Lebesgue measure, since $\mathcal{G}(V) \ge (\sqrt{1+C^2}-1)|K_C|$, without loss of generality we now choose $C = \sqrt{3}$ and thus may assume that when N > 1, then for a minimizing sequence

 $\{V^{(n)}\}_{n\in\mathbb{N}}$ the size of the domains $K_{\sqrt{3}}^{(n)}$ on which $|V^{(n)}| \ge \sqrt{3}$ a.e. is bounded by $|K_{\sqrt{3}}^{(n)}| < \mathcal{G}(V_h)$, uniformly in *n*.

We also define $\Upsilon^{(n)} := K_{\sqrt{3}}^{(n)} \cup \overline{B_R}$, where $B_R \supset \{s_k\}_{l=1}^N$ is an open ball and $\overline{B_R}$ its closure; then dist $(\partial B_R, \{s_l\}_{l=1}^N) > 0$. Note that $|\Upsilon^{(n)}| \le |B_R| + |K_{\sqrt{3}}^{(n)}| < |B_R| + \mathfrak{G}(V_h)$ uniformly in *n*.

Third, we establish the analog of the uniform upper norm bounds obtained in the proof of Proposition 0.6 for the partitioning $\mathbb{R}^3 = \Upsilon^{(n)} \cup \mathbb{R}^3 \setminus \Upsilon^{(n)}$. We estimate

$$\mathcal{G}(V^{(n)}) \ge \left\| |V^{(n)}| \right\|_{L^{1}(\Upsilon^{(n)})} - |\Upsilon^{(n)}| + \frac{1}{3} \left\| |V^{(n)}| \right\|_{L^{2}(\mathbb{R}^{3} \setminus \Upsilon^{(n)})}^{2}$$
(E23)

and recall that $\mathcal{G}(V_h) > \mathcal{G}(V^{(n)})$ when N > 1.

On the one hand, (E23) implies $||V^{(n)}|||_{L^1(\Upsilon^{(n)})} < \mathcal{G}(V_h) + |\Upsilon^{(n)}|$. But then, since $||V^{(n)}|||_{L^1(\Upsilon^{(n)})} \ge ||V^{(n)}|||_{L^1(B_R)} \ge ||\nabla \times w^{(n)}||_{L^1(B_R)} - ||V_h|||_{L^1(B_R)}$, we obtain $||\nabla \times w^{(n)}|||_{L^1(B_R)} < \mathcal{G}(V_h) + |\Upsilon^{(n)}| + ||V_h|||_{L^1(B_R)}$; and since the triangle inequality, followed by a radially-decreasing-rearrangement inequality, gives us $||V_h|||_{L^1(B_R)} \le (4\pi)^{2/3}3^{1/3}(|B_R|)^{1/3}\sum_n |a_n|$, we conclude that (when N > 1) $||\nabla \times w^{(n)}|||_{L^1(B_R)} \le (4\pi)^{2/3}3^{1/3}(|B_R|)^{1/3}\sum_n |a_n|$, we conclude that $||\nabla \times w_2||_{L^1(B_R)} < \infty$ independently of n, for $w^{(n)} = w_1^{(n)} + w_2$ the triangle inequality now implies that $||\nabla \times w_1^{(n)}||_{L^1(B_R)} < \mathcal{G}(V_h) + |\Upsilon^{(n)}| + ||V_h|||_{L^1(\Upsilon^{(n)})} + ||\nabla \times w_2||_{L^1(B_R)} \le \overline{C}_1(R)$ uniformly in n.

On the other hand, (E23) implies $||V^{(n)}|||_{L^2(\mathbb{R}^3 \setminus \Upsilon^{(n)})}^2 < 3(\mathcal{G}(V_h) + |\Upsilon^{(n)}|)$, which in concert with $||V^{(n)}|||_{L^2(\mathbb{R}^3 \setminus \Upsilon^{(n)})} \ge ||\nabla \times w^{(n)}||_{L^2(\mathbb{R}^3 \setminus \Upsilon^{(n)})} - ||V_h||_{L^2(\mathbb{R}^3 \setminus \Upsilon^{(n)})}$ yields the upper bound $||\nabla \times w^{(n)}||_{L^2(\mathbb{R}^3 \setminus \Upsilon^{(n)})} \le \sqrt{3(\mathcal{G}(V_h) + |\Upsilon^{(n)}|)} + ||V_h||_{L^2(\mathbb{R}^3 \setminus \Upsilon^{(n)})}$. Since $||V_h||_{L^2(\mathbb{R}^3 \setminus \Upsilon^{(n)})} \le 4\pi \sum_k |a_k|/\text{dist}(\partial B_R, \{s_j\}_{j=1}^N)$, and since $||\nabla \times w_1^{(n)}||_{L^2(\mathbb{R}^3 \setminus \Upsilon^{(n)})} \le C_2$ by Lemma 0.7, we conclude that for N > 1, we have $||\nabla \times w_1^{(n)}||_{L^2(\mathbb{R}^3 \setminus \Upsilon^{(n)})} \le \overline{C_2}$ uniformly in n.

Fourth, by the $L^1(B_R)$ bounds a minimizing sequence $\{|\nabla \times w_1^{(n)}|\}_{n \in \mathbb{N}}$ has a weak^{*} convergent subsequence on every $\overline{B_R}$; by the Lebesgue decomposition theorem the limit is the sum of an $L^1(B_R)$ function f and a measure μ which is singular w.r.t. Lebesgue measure, with $||f||_{L^1(B_R)} + \mu(\overline{B_R}) \leq \overline{C}(R)$. Now suppose that $\mu(\overline{B_R}) > 0$; note that $\supp(\mu)$ has Lebesgue measure zero. Then for any open neighborhood \mathcal{N}_{ϵ} of $\supp(\mu)$ of size ϵ we have

$$\int_{\mathcal{N}_{\epsilon}\cap B_{R}} \left| V^{(n)}(s) \right| \mathrm{d}^{3}s \geq \int_{\mathcal{N}_{\epsilon}\cap B_{R}} \left(\sqrt{1 + \left| V^{(n)}(s) \right|^{2}} - 1 \right) \mathrm{d}^{3}s \geq \int_{\mathcal{N}_{\epsilon}\cap B_{R}} \left| V^{(n)}(s) \right| \mathrm{d}^{3}s - \epsilon.$$
(E24)

Taking the limit $n_k \to \infty$ (along the convergent subsequence) and then $\epsilon \to 0$ reveals that the singular part makes an additive contribution $\mu(B_R) > 0$ to G(V). Thus by subtracting the part of the $\nabla \times w_1^{(n)}$ subsequence which converges in absolute value to μ we can lower the value of G(V); hence, $\{\nabla \times w_1^{(n)}\}_{n \in \mathbb{N}}$ was not a minimizing sequence—in contradiction to the hypothesis that it was. Therefore, after extracting a subsequence,

we can assume that a minimizing sequence $\{\nabla \times w_1^{(n)}\}_{n \in \mathbb{N}}$ converges weakly in $L^1(B_R)$ to some $\nabla \times w_1$, for each B_R as stipulated. This means that $\{|\nabla \times w_1^{(n)}|\}_{n \in \mathbb{N}}$ converges weakly in $L^1_{\text{loc}}(\mathbb{R}^3)$ to some $|\nabla \times w_1|$, and so $\{\nabla \times w_1^{(n)}\}_{n \in \mathbb{N}}$ converges weakly in $\dot{W}_{\text{loc}}^{\nabla \times, 1}(\mathbb{R}^3)^3$ to some $\nabla \times w_1$.

Summarizing so far: any minimizing sequence $\{w^{(n)}\}_{n\in\mathbb{N}}$ of $\mathcal{G}(V_h + \nabla \times w)$ with $w^{(n)} \in (\dot{W}_0^{\nabla\times,1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla\times,2}(\mathbb{R}^3))^3$ has a locally weakly convergent subsequence with limit $w_* \in (\dot{W}_{loc}^{\nabla\times,1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla\times,2}(\mathbb{R}^3))^3$.

with limit $w_* \in (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$. Fifth, by another variation of the reasoning in our proof of Proposition 0.6 we show that $w_* \in (\dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3))^3 + (\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3))^3$. Namely, the subset $K_{\sqrt{3}}^* \subset \mathbb{R}^3$ on which $|V_h + \nabla \times w_*| \ge \sqrt{3} \ a.e.$ has finite Lebesgue measure, $|K_{\sqrt{3}}^*| < \mathcal{G}(V_h)$. We also define $\Upsilon^* := K_{\sqrt{3}}^* \cup \overline{B_R}$ and note that $|\Upsilon^*| \le |B_R| + |K_{\sqrt{3}}^*| < |B_R| + \mathcal{G}(V_h)$. Essentially verbatim to our estimation of the sequence norms we have that $||\nabla \times w_1||_{L^1(\Upsilon^*)} < \mathcal{G}(V_h) + |\Upsilon^*| + ||V_h||_{L^1(\Upsilon^*)} + ||\nabla \times w_2||_{L^1(\Upsilon^*)}$. By Hölder's inequality, $||\nabla \times w_2||_{L^1(\Upsilon^*)} \le |\Upsilon^*|^{1/2} ||\nabla \times w_2||_{L^2(\Upsilon^*)}^{1/2}$, and we have $||\nabla \times w_2||_{L^2(\Upsilon^*)} \le ||\nabla \times w_2||_{L^2(\mathbb{R}^3)}$. And so $||\nabla \times w_1|||_{L^1(\Upsilon^*)} \le C_1$.

On the other hand, we also know that $\||\nabla \times w_1^{(n)}|\|_{L^2(\mathbb{R}^3 \setminus \Upsilon^{(n)})} \leq \overline{C}_2$ uniformly in n, and so $\||\nabla \times w_1|\|_{L^2(\mathbb{R}^3 \setminus \Upsilon^*)} \leq \overline{C}_2$. Now suppose that $\||\nabla \times w_1|\|_{L^1(\mathbb{R}^3 \setminus \Upsilon^*)} = \infty$. But then, since $|\nabla \times w_1| \in (L^2 \cap L^\infty)(\mathbb{R}^3 \setminus \Upsilon^*)$, we can subtract the offending part from w_1 and add it to w_2 , denoting the new decomposition by $\tilde{w}_1 + \tilde{w}_2$. Indeed, by the chiral Fourier representation we can find a $\nabla \times \tilde{w}$ with chiral Fourier components $\tilde{g}_\eta(k) \in (L^1 \cap L^2)(\mathbb{R}^3)$ such that $\||\nabla \times (w_1 - \tilde{w})|\|_{L^1(\mathbb{R}^3 \setminus \Upsilon^*)} < \infty$; since $|\nabla \times \tilde{w}| \in (L^2 \cap L^\infty)(\mathbb{R}^3)$, it follows that $|\nabla \times \tilde{w}| \in L^1(\Upsilon^*)$, and so $\||\nabla \times (w_1 - \tilde{w})|\|_{L^1(\mathbb{R}^3)} < \infty$. Also we obviously have $|\nabla \times (w_2 - \tilde{w})| \in L^2(\mathbb{R}^3)$. Thus, setting $\tilde{w}_1 := w_1 - \tilde{w}$ and $\tilde{w}_2 := w_2 + \tilde{w}$ we have $w_1 + w_2 = \tilde{w}_1 + \tilde{w}$ with $\tilde{w}_1 \in \dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3)$)³ and $\tilde{w}_2 \in \dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3)$)³. Thus, $w_* \in \dot{W}_0^{\nabla \times, 1}(\mathbb{R}^3)$)³ + ($\dot{W}_0^{\nabla \times, 2}(\mathbb{R}^3)$)³, as claimed.

Lastly, by weak lower semi-continuity (Fatou's lemma),

$$U(s) := V_h(s) + \nabla \times w_*(s) \tag{E25}$$

is a minimizer of $\mathcal{G}(V)$. This completes the proof of Theorem 0.1. \Box

It now follows in the usual way that U given in (E25) is a critical point of $\mathcal{G}(V)$, satisfying the Euler–Lagrange equation

$$\nabla \times \frac{V_h + \nabla \times w_*}{\sqrt{1 + |V_h + \nabla \times w_*|^2}} = 0.$$
 (E26)

Thus, and applying the Poincaré lemma, we find that locally in simply connected domains

$$E_U(s) = \frac{U(s)}{\sqrt{1 + |U(s)|^2}} \equiv -\nabla v_*(s)$$
(E27)

is a gradient field. Furthermore, as shown in (E8) for any E_V , we have that

$$-\nabla \cdot \frac{\nabla v_*(s)}{\sqrt{1 - |\nabla v_*(s)|^2}} = 4\pi \sum_{n=1}^N a_n \delta_{s_n}$$
(E28)

in the sense of distributions; thus, v_* exists globally *a.e.* and satisfies $\mathcal{F}^{(1)}[v_*](\psi) = 0$ for all $\psi \in C_c^{\infty}(\mathbb{R}^3)$.

Finally, we show that $v_* = v_{\infty}$. Namely, we have

$$\mathfrak{F}(v_*) \ge \mathfrak{F}(v_\infty) \ge -\mathfrak{G}(U) = \mathfrak{F}(v_*). \tag{E29}$$

The first inequality expresses the fact that v_{∞} is a minimizer of $\mathcal{F}(v)$; the second inequality follows from the fact that U is just a special V, and that $\mathcal{F}(v_{\infty}) \geq -\mathcal{G}(V)$ for all $V = V_h + \nabla \times w$, see (E9); lastly, the equality in (E29) follows from the fact that $U = -\nabla v_*(s) / \sqrt{1 - |\nabla v_*(s)|^2}$ satisfies (E28), equivalently v_* satisfies $\mathcal{F}^{(1)}[v_*](\psi) =$ 0 for all $\psi \in C_c^{\infty}(\mathbb{R}^3)$ — more explicitly, inverting the above-stated algebraic relation between U and ∇v_* , we can rewrite $-\mathcal{G}(U)$ as follows (cf. (23)–(26) in [1]):

$$\int_{\mathbb{R}^3} \left(1 - \sqrt{1 + |U(s)|^2} \right) \mathrm{d}^3 s = \int_{\mathbb{R}^3} \left(1 - \sqrt{1 - |\nabla v_*(s)|^2} + U(s) \cdot \nabla v_*(s) \right) \mathrm{d}^3 s,$$
(E30)

and an integration by parts on the last term in the second integral, and using that $\nabla \cdot U =$ $4\pi \sum_{n=1}^{N} a_n \delta_{s_n}$ weakly, now yields $-\mathcal{G}(U) = \mathcal{F}(v_*)$. Thus, $\mathcal{F}(v_*) = \mathcal{F}(v_\infty)$, and by the uniqueness of the minimizer of $\mathcal{F}(v)$, we have $v_* = v_{\infty}$. The proof that $\mathcal{F}^{(1)}[v_{\infty}](\psi) = 0$ for all $\psi \in C_c^{\infty}(\mathbb{R}^3)$ is complete.

Acknowledgement. My sincere thanks go to Denis Bonheure for raising his criticism of [1]. I am also very grateful to the referees for their critical comments which helped me to improve this erratum. I also thank Sagun Chanillo, Markus Kunze, and Shadi Tahvildar-Zadeh for their helpful comments.

Appendix A

Proof of (E12). Pick a ball $B_R \supset \{s_n\}_{n=1}^N$. Also let $\Omega_1 := \{|\nabla \times w_1| > 1\}$ and $\Omega_2 :=$ $\{|\nabla \times w_2| > 1\}$. Then $\infty > \||\nabla \times w_1|\|_{L^1} \ge \int_{\Omega_1} |\nabla \times w_1| d^3s \ge |\Omega_1|$, and similarly $|\Omega_2| < \infty$. Let $\Omega = B_R \cup \Omega_1 \cup \Omega_2$; then $|\Omega| < \infty$. Let χ_S be the characteristic function of the set S. Then, by the triangle inequality, $|||E_V|||_{L^2} \leq ||E_V|\chi_{\Omega}||_{L^2} + ||E_V|\chi_{\mathbb{R}^3\setminus\Omega}||_{L^2}$. Using $|E_V| \leq 1$ yields $||E_V|\chi_{\Omega}||_{L^2} \leq |\Omega|^{1/2}$, while using $|E_V| \leq |V|$ and again the triangle inequality yields

$$\||E_V|\|_{L^2(\mathbb{R}^3\backslash\Omega)} \le \||V_h|\|_{L^2(\mathbb{R}^3\backslash\Omega)} + \||\nabla \times w_1|\|_{L^2(\mathbb{R}^3\backslash\Omega)} + \||\nabla \times w_2|\|_{L^2(\mathbb{R}^3\backslash\Omega)}.$$
(A1)

Next, $|\nabla \times w_1| \leq 1$ on $\mathbb{R}^3 \setminus \Omega$ yields $|||\nabla \times w_1||_{L^2(\mathbb{R}^3 \setminus \Omega)} \leq |||\nabla \times w_1||_{L^1(\mathbb{R}^3 \setminus \Omega)}^{1/2} \leq |||\nabla \times w_1||_{L^1(\mathbb{R}^3 \setminus \Omega)}^{1/2}$ $\||\nabla \times w_1|\|_{L^1}^{1/2} < \infty$. Together with $\||\nabla \times w_2|\|_{L^2(\mathbb{R}^3 \setminus \Omega)} \le \||\nabla \times w_2|\|_{L^2} < \infty$ we obtain (E12).

References

- 1. Kiessling, M.K.-H.: On the quasilinear elliptic PDE $-\nabla \cdot (\nabla u / \sqrt{1 |\nabla u|^2}) = 4\pi \sum_k a_k \delta_{s_k}$ in physics and geometry. Commun. Math. Phys. 314, 509-523 (2012)
- 2. Bonheure, D., D'Avenia, P., Pomponio, A.: On the electrostatic Born-Infeld equation with extended charges. Commun. Math. Phys. 346, 877-906 (2016)
- 3. Moses, H.E.: Eigenfunctions of the curl operator, rotationally invariant Helmholtz theorem, and applications to electromagnetic theory and fluid mechanics. SIAM J. Appl. Math. 21, 114–144 (1971)

Communicated by P. Chrusciel