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Abstract: We show that the Higgs and gauge fields for a BPS monopole may be con-
structed directly from the spectral curve without having to solve the gauge constraint
needed to obtain the Nahm data. The result is the analogue of the instanton result: given
ADHM data one can reconstruct the gauge fields algebraically together with differenti-
ation. Here, given the spectral curve, one can similarly reconstruct the Higgs and gauge
fields. This answers a problem that has remained open since the discovery of monopoles.

1. Introduction

Despite the study of BPS monopoles being a mature subject, now over 35 years old,
and having uncovered many remarkable results, a number of the original questions that
sparked its development remain unanswered. They are hard. One can ask, for example,
what the Higgs and gauge fields or their gauge invariant energy density are, but beyond
the spherically symmetric coincident n-monopole solution and some partial results for
SU (2) charge 2monopoles there are no explicit formulae. Although a number of general
methods have been developed to address this, extending earlier analogous results for the
construction of instantons (see below), these constructions typically involve a step (such
as solving an ODE) that stymie attempts at an analytic solution. Numerical results based
on these constructions and utilising the increase in computing power over the period have
meant that we can understand a number of qualitative aspects of monopole behaviour;
at the very least analytic solutions would give some control over these. In this paper we
shall describe how to explicitly construct the Higgs and gauge fields for a monopole and
circumvent those usually intractable steps; a number of new results will appear in the
process.

We will focus here on SU (2) charge-n monopoles. Our approach will assume from
the outset that we know the spectral curve C for the monopole. This curve appears in
both Nahm’s extension [13] of the ADHM construction of instantons and Ward’s [16]
use of the Ak ansatz which Atiyah and Ward used in their instanton construction; it
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is also implicit in the Bäcklund transformation construction of Forgács et al. [8]. This
curve gives a point in the moduli space of SU (2) charge-n monopoles and we note
that the relationship between this description of the moduli space and both Donaldson’s
rational map and Jarvis’s rational map descriptions remains still poorly understood.
In this paper we will work within the Nahm construction [9,14]. This involves two
potentially difficult steps: first, the solution of a first order (matrix) differential equation
�†v = 0; and second, the integration of appropriate bilinears of these solutions to give
the Higgs and gauge fields. Now the operator �† is in turn constructed from Nahm
data, matrices Ti (s) (i = 1, 2, 3) that satisfy Nahm’s equations Ṫ1 = [T2, T3] (and
cyclic) and certain boundary conditions that will be described in more detail below.
Unfortunately, Nahm data is hard to construct. Some years ago Ercolani and Sinha [7]
showed how, using integrable systems techniques, one could solve for a gauge transform
of the Nahm data directly from C; this theory has been further extended by the authors
[2,5]. Determining the gauge transformation is equivalent to solving a further ODE and
although its solution exists we don’t know how to do this explicitly; we shall relate
this to Donaldson’s treatment [6] of the complex and real moment map description
of the Nahm equations. Putting this difficulty to one side for the moment, we show
how integrable systems techniques and a lesser known ansatz of Nahm may be used to
solve �†v = 0, again up to the same gauge transformation. Not all of the solutions
obtained are normalisable and in due course we show that constructing an appropriate
projector to these is purely algebraic. But even with these solutions we must perform
a number of integrations to obtain expressions for the sought after fields. An old work
of Panagopoulos [15] is appropriate here: after some correction and small extensions
we show that not only can all integrations be performed but the as yet undetermined
gauge transformation combines within the bilinears into a term that is determined by
the spectral curve. Rather than getting overly involved in the mathematics of Riemann
surfaces that any example will necessitate (see for example [1,3]) this paper will give
general formulae for the fields directly in terms of the curve and a well-studied algebro-
geometric object, the Baker–Akhiezer function. We conclude with a limited example
showing how our construction yields a known result in the charge 2 setting; in a sequel
paper we shall present the general results for the fields of the charge 2 monopole.

2. The ADHMN Construction

In this section we recall the salient features of the ADHMN construction of monopoles
sufficient to introduce our notation and the major features of the construction.

The equations we wish to solve are

Di� = 1

2

3∑

j,k=1

εi jk Fjk, i = 1, 2, 3, (2.1)

for the gauge group SU (2). Here � is the Higgs field, Fi j = ∂i A j − ∂ j Ai + [Ai , A j ] is
the curvature of the (spatial) connection of the gauge field Ai (x) and Di the covariant
derivative Di� = ∂i� + [Ai ,�], x = (x1, x2, x3) ∈ R

3. These equations may be
viewed as a reduction of the self-dual YangMills equations to three dimensions under the
assumption that all fields are independent of time. Upon identifying the A4-component
of the gauge field with the Higgs field � the four-dimensional Yang–Mills Lagrangian
yields upon reduction the three dimensional Yang–Mills–Higgs Lagrangian

L = −1

2
Tr Fi j F

i j + Tr Di� Di�.
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We are interested in configurations minimizing the energy of the system. These are given
by the Bogomolny equation (2.1) A solution with the boundary conditions

√
−1

2
Tr�(r)2

∣∣∣∣∣
r→∞

∼ 1 − n

2r
+ O(r−2), r =

√
x21 + x22 + x23 ,

is called a monopole of charge n.
Modifying the Atiyah–Drinfeld–Hitchin–Manin (ADHM) construction of instanton

solutions to the (Euclidean) self-dual Yang–Mills equations Nahm introduced the oper-
ator

� = ı
d

dz
+ x4 − ı T4 +

3∑

j=1

σ j ⊗ (Tj + ı x j1n), (2.2)

where the Tj (z) are n × n matrices and σ j the Pauli matrices. Following the instanton
construction the operator �†� must commute with quaternions which happens if and
only if Ti † = −Ti , T

†
4 = −T4 and

Ṫi = [T4, Ti ] + 1

2

3∑

j,k=1

εi jk[Tj (z), Tk(z)]. (2.3)

Equation (2.3) are known as Nahm’s equations; one often encounters them in the
more familiar gauge with T4 = 0. When �†� commutes1 with quaternions it is a
positive operator; in particular this means that

(
�†�

)
(z) is an invertible operator and

consequently� has no zeromodes. To describemonopoles thematrices Tj (z) are further
required to be regular for z ∈ (−1, 1) and have simple poles at z = ±1, the residues of
which define an irreducible n-dimensional representation of the su(2) algebra. Hitchin’s
analysis [9][§2] of the equation �†v = 0 tells us that has two normalizable solutions
and it is in terms of these that the Atiyah–Drinfeld–Hitchin–Manin–Nahm (ADHMN)
construction gives the gauge and Higgs field solutions.

Theorem 2.1 (ADHMN). The charge n monopole solution of the Bogomolny equation
(2.1) is given by

�ab(x) = ı
∫ 1

−1
dz zv†a(x, z)vb(x, z), a, b = 1, 2, (2.4)

Ai ab(x) =
∫ 1

−1
dz v†a(x, z)

∂

∂xi
vb(x, z), i = 1, 2, 3, a, b = 1, 2. (2.5)

Here the two (a = 1, 2) 2n-column vectors va(x, z) = (v
(a)
1 (x, z), . . . , v(a)

2n (x, z))T

form an orthonormal basis on the interval z ∈ [−1, 1]
∫ 1

−1
dz v†a(x, z)vb(x, z) = δab, (2.6)

1 Throughout the superscript † means conjugated and transposed. We will at times emphasise the vectorial
nature of an object by printing this in bold, e.g for vector a† = aT .
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for the normalizable solutions to the Weyl equation

�†v = 0, (2.7)

where

�† = ı
d

dz
+ x4 − ı T4 −

3∑

j=1

σ j ⊗ (Tj + ı x j1n). (2.8)

The normalizable solutions form a two-dimensional subspace of the full 2n-dimensional
solution space to the formal adjoint equation (2.7). The n × n-matrices Tj (z), T4(z),
called Nahm data, satisfy Nahm’s equation (2.3) and the Tj (z) are required to be regular
for z ∈ (−1, 1) and have simple poles at z = ±1, the residues of which define an
irreducible n-dimensional representation of the su(2) algebra; further

Ti (z) = −T †
i (z), T4(z) = −T †

4 (z), Ti (z) = T T
i (−z), T4(z) = T T

4 (−z). (2.9)

Our strategywill be to solve (2.7) and determine those solutions that are normalizable.
Inwhat followswe shall denote byV = (v1, . . . , v2n) and similarlyW = (w1, . . . ,w2n)

the 2n × 2n fundamental matrices of solutions to �†v = 0 and �w = 0 respectively.
Then V can be chosen to be (W †)−1. As we have already remarked these are not all
normalizable. According to the ADMHN theorem the Nahm data Tj (z) expanded in the
vicinity of the end point z = 1 − ξ behaves as

Tj (1 − ξ) = − ı
l j
ξ
+ O(1), j = 1, 2, 3,

where (theHermitian) l j define the irreducible n-dimensional representation of the su(2)
Lie algebra, [l j , lk] = ı ε jkl ll . Then (2.7) behaves in the vicinity of the pole as

[
d

dξ
−

∑3
j=1 σ j ⊗ l j

ξ

]
v(x, 1 − ξ) = 0. (2.10)

One can show (see for example [17]) that
∑3

j=1 σ j ⊗l j has only two distinct eigenvalues,
λa = (n−1)/2 with multiplicity n+1 and λb = −(n+1)/2 with multiplicity n−1. If ai
are eigenvectors associated with λa (i = 1, . . . , n + 1), and b j eigenvectors associated
with λb ( j = 1, . . . , n − 1), then (2.10) has solutions ξλa ai and ξλbb j . Therefore
normalizable solutions must lie in the subspace with positive λa = (n − 1)/2 and so we
require that v(x, 1) is orthogonal to the subspace with eigenvalue −(n + 1)/2, i.e.

lim
z→1− v(x, z)T · b j = 0, j = 1, . . . , n − 1.

These n−1 conditions coming from the behaviour at z = 1 thus yield a n+1 dimensional
space of solutions to �†v = 0. A similar analysis at z = −1 again yields a further n− 1
constraints resulting in two normalisable solutions on the interval. We define a projector
μ onto this subspace; this is the 2n × 2 matrix such that

Vμ = (v1, v2)
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where va (a = 1, 2) are the normalizable solutions (2.6). That is

∫ 1

−1
dz μ†V †Vμ = μ†

(∫ 1

−1
dz V †V

)
μ = 12.

Although V = V (x, z) and va = va(x, z) are both z-dependent we note that the matrix
μ does not depend on z for we have from

0 = �†(v1, v2) = �†(Vμ) = (�†V )μ + ı V
d

dz
μ = ı V

d

dz
μ

and the (generic) invertibility of V (x, z) that μ̇ = 0 and hence that μ = μ(x). Thus to
reconstruct the gauge and Higgs fields we must construct the projector μ that extracts
from V the two normalizable solutions.

At this stage the integrations in (2.1) look intractable but work of Panagopoulos
enables their evaluation. Define the Hermitian matrices

H = −
3∑

j=1

x jσ j ⊗ 1n, F = ı
3∑

j=1

σ j ⊗ Tj , Q = 1

r2
HFH − F . (2.11)

Then

Proposition 2.2 (Panagopoulos [15]).
∫

dz v†avb = v†aQ−1vb. (2.12)
∫

dz zv†avb = v†aQ−1
(
z +H xi

r2
∂

∂xi

)
vb. (2.13)

∫
v†a

∂

∂xi
vbdz = v†aQ−1

[
∂

∂xi
+H z

r2
xi +H ı

r2
(x × ∇)i

]
vb. (2.14)

These are proven in “Appendix A”. Interestingly, consideration of gauge invariance
leads to new results that will be particularly useful in our later development. Recall that
a gauge transformation acts on the normalizable solutions (v1, v2) = Vμ from the right
by h(x) ∈ SU (2). Then using (2.13)

� = i
∫ 1

−1
dzz v†v = iμ†

[∫ 1

−1
dzzV †V

]
μ

= i

[
μ†V †Q−1

(
z +H xi

r2
∂

∂xi

)
Vμ

]z=1

z=−1
(2.15)

and so a gauge transformation yields

h−1�h = h−1
(
i
∫ 1

−1
dzzv†v

)
h

= h−1
(
iμ†

[∫ 1

−1
dzzV †V

]
μ

)
h
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= h−1

(
i

[
μ†V †Q−1

(
z +H xi

r2
∂

∂xi

)
Vμ

]z=1

z=−1

)
h

= h−1�h + h−1
(
i
[
μ†V †Q−1HVμ

]z=1

z=−1

)
xi
r2

∂

∂xi
h

thus we must have

0 =
[
μ†V †Q−1HVμ

]z=1

z=−1
. (2.16)

Further, the transformation of the gauge field

Ai =
∫ 1

−1
dz v†

∂

∂xi
v = μ†V †

(
Q−1

[
∂

∂xi
+H z

r2
xi +H ı

r2
(x × ∇)i

])
Vμ

∣∣∣
z=1

z=−1
(2.17)

under a gauge transformation necessitates that we have

h−1Aih + h−1∂i h

= h−1
(∫ 1

−1
dz v†

∂

∂xi
v

)
h = h−1Aih + h−1

(
μ†V †Q−1Vμ

) ∣∣∣
z=1

z=−1
∂i h

+ h−1
(
μ†V †Q−1HVμ

) ∣∣∣
z=1

z=−1

ı

r2
(x × ∇)i h.

This will follow again as a result of (2.16) and the requirement of the ADHMN theorem
2.1 that Vμ is normalised by

12 = μ†
(∫ 1

−1
dz V †V

)
μ = μ†(x)

(
V †(x, z)Q−1(x, z)V (x, z)

) ∣∣z=1
z=−1 μ(x).

The z-independence of the projectorsμ together with the fact that the poles of V lie only
at the end points means that determining the projector is purely algebraic and reduces
to the cancellation of poles.

Consideration of (2.16) leads to a new result which is the analogue of Hitchin’s
hermitian form introduced in his description of monopoles [9].

Theorem 2.3. With the notation above,
(
V †Q−1HV

)
(z) = constant,

(
W †QHW

)
(z) = constant, (2.18)

and consequently (2.16) holds true.

Proof. As these are essentially the inverses of each other we shall only prove the first.
Using the notation and results of “Appendix A” we find

d

dz

(
V †Q−1HV

)
= V †

(
d

dz

[
Q−1H

]
− (H + F)Q−1H − Q−1H(H + F)

)
V

= V †
(
D(Q−1)H +Q−1(H + F)H − Q−1H(H + F)

)
V

= V †
(
H + Q−1[F ,H]

)
V

= 0

where we have made explicit use of (A.4) and (A.2). ��
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Let us summarise what we have thus far. Given

• Nahm Data (needed to construct �† and Q),
• the fundamental matrices V or W to �†v = 0 or �w = 0, where V = (

W †
)−1

,

we can algebraically solve for the projector μ and consequently obtain the Higgs (2.4)
and gauge fields (2.17). Although this is the strategy of our solution we shall ultimately
show that we only require this data up to a gauge transformation and that these are
determined by the curve.

3. Integrability and a Lesser Known Ansatz of Nahm

In this section we shall express both the Nahm data and fundamental matrices V and
W in terms of the curve, clearly identifying what may be done explicitly and what
is implicit. The key ingredient is integrability which has not been visible so far. We
first make some general remarks, then turn to the construction of the Nahm data and
fundamental matrices.

Upon setting (with Ti † = −Ti , T
†
4 = −T4)

α = T4 + ı T3, β = T1 + iT2, L = L(ζ ) := β − (α + α†)ζ − β†ζ 2,

M = M(ζ ) := −α − β†ζ,

one finds

Ṫi = [T4, Ti ] + 1

2

3∑

j,k=1

εi jk[Tj (z), Tk(z)] ⇐⇒ L̇ = [L , M]

⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

[
d

dz
− α, β

]
= 0,

d(α + α†)

dz
= [α, α†] + [β, β†].

(3.1)

The first equivalance here is that of a Lax pair, suggesting an underlying integrable
system, while the second equivalence expresses Nahm’s equations in the form of a
complex and a real equation (respectively) [6]. The complex Nahm equation is readily
solved,

βg = gν,

(
d

dz
− α

)
g = 0 ⇐⇒ β = gνg−1, α = ġg−1, (3.2)

where ν is constant and generically diagonal, ν = Diag(ν1, . . . , νn); by conjugating2 by
the constant matrix g(0)we may assume β(0) = ν and g(0) = 1n . It is the real equation
that is more difficult. Define

h = g†g (3.3)

then
ḣh−1 = g†(α + α†)g†−1, h(0) = 1n, (3.4)

2 β̃ = g(0)−1βg(0), g̃(z) = g(0)−1g(z), α̃ = g(0)−1αg(0).
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and the real equation yields the (possibly) nonabelian Toda equation

d

dz

(
ḣh−1

)
=

[
hνh−1, ν†

]
. (3.5)

In the monopole context Donaldson [6] proved the existence of a solution for the real
equation with Nahm data. In terms of the Lax pair we are wishing to solve

(L − η)U = 0,
[
d

dz
+ M

]
U = 0. (3.6)

The characteristic equation P(η, ζ ) := det(η − L(ζ )) = 0 defines our spectral curve C
which takes the form

P(ζ, η) := ηn + a1(ζ )ηn−1 + · · · + an(ζ ) = 0, deg ak(ζ ) ≤ 2k. (3.7)

For large ζ we see that det(η/ζ 2 − L/ζ 2) ∼ ∏n
i=1(η/ζ 2 + ν

†
i ) and so η/ζ ∼ −ν

†
i ζ .

The curve C is an n-sheeted cover of P1 of genus gC = (n − 1)2; we shall denote by
{∞i }ni=1 the preimages of ζ = ∞. SettingU = g†−1� we use the complex equation to
transform (3.6) into a standard scattering equation for �,

[
d

dz
− g†(α + α†)g†−1

]
� = ζν†�. (3.8)

“Standard”here simplymeans that thematrix ζν† on the right-hand side is z-independent.
In terms of h we have (3.4) and

g†Lg†−1 = hνh−1 − ḣh−1ζ − ν†ζ 2. (3.9)

The point to note is that we can solve the standard scattering equation (3.8) explicitly in
terms of the function theory of C by what is known as a Baker–Akhiezer function [12],
and so too ḣh−1 and (the gauge transform) g†Lg†−1 = �̂Diag(η1 . . . , ηn)�̂

−1, where
�̂ := �̂(z, P) (P ∈ C) is the fundamental matrix of solutions to (3.8). Asymptotically
the i-th column of �̂ behaves as exp(zζν

†
i ) and the Baker–Akhiezer function is defined

by

lim
P=P(ζ,η)→∞i

�̂(z, P) exp(−zζν
†
j ) = Diag(δi j ). (3.10)

In the monopole context Ercolani and Sinha were the first to construct the Baker–
Akhiezer function and use this to study Nahm data [7]; this theory was (corrected and)
extended in [5] with a needed generalization of the Abel–Jacobi map proved in [4]. In the
notation above these works explicitly construct the Baker–Akhiezer solutions to (3.8) as
well3 as ḣh−1. Thus the Nahm data is only determined up to the gauge transformation
g†−1 which is to satisfy the differential equation (3.4) for g, where the left-hand side is
to be viewed as specified. In the gauge where T4 = 0, equivalently α = α†, this takes
the form

2ġ†g†−1 = ḣh−1

3 In the notation of Ercolani and Sinha we have g†−1 = C and ḣh−1 = −Q0(z).
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which we cannot solve in general. (In the Hitchin system context this is the analogue of
having solved the complex moment map equation ∂̄Aφ = 0 and then being faced with
solving the real moment map equation μ(A) = FA + [φ, φ†] = 0.) In what follows
we will not need the specific construction of these functions and will simply denote the
solution to (3.8) by �BA.

Althoughwe can only solve for Nahm data up to a gauge transformation, what can we
say about the solutions to either �†v = 0 or �w = 0? Nahm again made the seminal
ansatz; with some small changes better suited for the connections to integrability we
may encode this in terms of the following theorem (proven in “Appendix B”).

Theorem 3.1. (Nahm [14]). Let |s > be an arbitrarily normalized spinor not in ker(12 +
û(x) · σ ), with û(x) a unit vector independent of z and σ = (σ1, σ2, σ3). Then

w := w(ζ ) = (12 + û(x) · σ ) e− ı z[(x1−ı x2)ζ−ı x3−x4]|s > ⊗U (z) (3.11)

satisfies �w = 0 if and only if

0 = (L(ζ ) − η)U (z), (3.12)

0 =
(

d

dz
+ M(ζ )

)
U (z), (3.13)

where
η = (x2 − ı x1) − 2x3ζ − (x2 + ı x1)ζ

2, (3.14)

and L(ζ ) and M(ζ ), as above, satisfy the Lax equation L̇ = [L , M].
The appendix also shows that the curve has a real structure, that is, it is invariant under
the anti-holomorphic involution:

J : (ζ, η) → (−1

ζ
,− η

ζ
2 ). (3.15)

Given our previous discussion our approach is natural: we may solve

U (z) = g†−1 �BA (3.16)

in termsof the earlier (andunknown) gauge transformation g†−1 and theBaker–Akhiezer
function. Prior to this other workers had sought to explicitly perform the integrations.
(This approach is reviewed in “Appendix C”.)

It remains to describe the fundamentalmatrixW . Given a spectral curve and a position
x we substitute the corresponding value of η (given by (3.14)) into (3.7). This is an
equation of degree 2n in ζ which we shall refer to as the Atiyah–Ward constraint, this
equation having appeared in their work. The 2n solutions ζ j give us 2n points on the
curve Pj := (ζ j , η j ) ( j = 1, . . . , n) where η j again follows from x and (3.14). These
2n points come in n pairs of points related by the antiholomorphic involution J. To each
pointwe have the associated values û(ζ j ) and for each of thesewe solve forU (z) yielding
a 2n × 1 matrix w(Pj ). Taking each of the 2n solutions we obtain a 2n × 2n matrix of
solutionsW . Theremay be non-generic points for which ζi = ζ j at whichwemodify this
discussion by taking a derivative w′(Pj ); these non-generic points correspond to points
of bitangency of the spectral curve and appear in Hurtubise’s study of the asymptotic
behavious of the Higgs fileld [11].
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Summarising the insights of this section: the Nahm data, the fundamental matrices
V or W to �†v = 0 or �w = 0, where V = (

W †
)−1

, and the Lax matrices L , M can
be solved for in terms of the Baker–Akhiezer function up to the unknown gauge trans-
formation g†−1. In terms of this gauge transformation h = g†g satisfies the nonabelian
Toda equation (3.5).

4. Constructing the Gauge and Higgs Fields

Having reviewed the general formalism and established the first new result Theorem 2.3
we shall now extend this. Our aim is to establish

Theorem 4.1. Given a spectral curve C one may construct the gauge and Higgs fields
directly.

First, the form of (3.16) and (3.11) tells us that we may write

W = 12 ⊗ g†−1 Ŵ , V = 12 ⊗ g V̂ , V̂ = Ŵ †−1,

where

ŵ = (12 + û(x) · σ ) e− ı z[(x1−ı x2)ζ−ı x3−x4]|s > ⊗ �BA.

Here Ŵ = (ŵ1, . . . , ŵ2n) and V̂ are explicitly expressible in terms of the spectral curve
C. Next observe that the operators appearing on the right-hand side of Proposition 2.2
take the form Q−1O and, because g = g(z) is a function of z only, these indefinite
integrals may be written as

μ†V †Q−1OVμ=μ†V̂ †
[(

12 ⊗ g†
)
Q−1 (12 ⊗ g)

]
OV̂μ=μ†V̂ †Q′−1 (12 ⊗ h)OV̂μ,

where we recall that h = g†g. Here, using the definitions (2.11),

Q′ =
(
12 ⊗ g†

)
Q

(
12 ⊗ g†−1

)
:= 1

r2
HF ′H − F ′, F ′ = ı

3∑

j=1

σ j ⊗ g†Tj g
†−1.

Now using the definition of α, β we have4 from (3.9) that

F ′ =
( 1

2 ḣh
−1 −ıν†

ıhνh−1 − 1
2 ḣh

−1

)
,

and from our earlier remarks this may be reconstructed from the curve C. Further Ŵ
and V̂ are determined by the Baker–Akhiezer function for the full range of z ∈ [−1, 1],
so allowing their expansions at the end-points and the evaluation of the integrals of
Proposition 2.2. At this stage we see that the various impediments to reconstructing the
gauge and Higgs fields, notably the need for the Nahm data to determine Q and only
being able to determine V up to a gauge transformation, have combined into the one
unkown (matrix) h(z). Certainly the Baker–Akiezer function gives us ḣh−1 from which
one can in principle solve the ODE for h(z), but our aim is to reconstruct the gauge
and Higgs fields without having to do this integration. We shall now show how we may
reconstruct h(z) and so prove the theorem.

4 ∑
j σ j ⊗Tj = 1

2 (σ1+ıσ2)⊗(T1−ıT2)+
1
2 (σ1−ıσ2)⊗(T1+ıT2)+σ3⊗T3 = σ−⊗β+σ3⊗T3−σ+⊗β†.
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5. Determining h(z)

To proceed we must be a little more precise about our spectral curve, the nature of the
coordinates (ζ, η) and the geometry of the Lax pair. In particular we need to specify
the sections we are using in our construction. Hitchin’s construction [9] shows that the
spectral curve naturally lies inmini-twistor space: the spectral curve is an algebraic curve
C ⊂ TP1. If ζ is the inhomogeneous coordinate on the Riemann sphere then (ζ, η) are
the standard local coordinates on TP1 defined by (ζ, η) → η d

dζ
. The anti-holomorphic

involution (3.15) endows TP1 with its standard real structure.

5.1. Bundle structure and sections. We wish to extend the definition of our Lax pair to
yield a bundle on P

1. Let N and S denote the standard patches on P
1 (here 0 ∈ N =

{ζ | ζ �= ∞}) and denote by the same expressions the corresponding open sets for TP1.
Take L = LN , M = MN , and we choose (ζ S = 1/ζ , ηS = η/ζ 2)

LS(ζ S) = LN (ζ )

ζ 2 , MS(ζ S) = α† − β

ζ
= MN (ζ ) − LN (ζ )

ζ
. (5.1)

We have the reality conditions

LS †(ζ S) = −LN (−1/ζ̄ ), MS †(ζ S) = −MN (−1/ζ̄ ). (5.2)

Away from the branch points of the spectral curve the eigenvectors5 UN
j are linearly in-

dependent and can be organized into a maximal rank matrixUN = (UN
1 ,UN

2 , . . . ,UN
n )

so that LN = UN DN
(
UN

)−1
, with diagonal DN = Diag(ηN

1 , ηN
2 , . . . , ηN

n ). View-
ing our curve C as an n-fold branched cover of P1 the columns UN

j correspond to

the various sheets of the cover. Similarly, LS = USDS
(
US

)−1
. From (5.1) we see

that the corresponding eigenvectors are proportional: US = UN F with diagonal F =
diag(F1, F2, . . . , Fn). It also follows from (5.1) and (d/dz + MN ,S)UN ,S = 0 that

d

dz
F = DN

ζ
F. (5.3)

Thus F is diagonal with its diagonal elements of the form Fi (z, ζ, η) = fi (ζ )ezηi /ζ .
For the case we consider the spectral curve has monodromy permuting all of its sheets
(and thus all of its eigenvectorsUN ,S

j ); thus all functions the fi (ζ ) must be equal and so

Fi (z, ζ, η) = f (ζ )ezηi /ζ . Let us now focus on the I -th row ofUN : this defines a function
�N

I on C everywhere outside ζ = ∞. Similarly, the I -th row ofUS defines a function�S
I

onC everywhere besides ζ = 0.These two functions are related by�S
I = �N

I f (ζ )ezη/ζ ;
in other words the pair of I -th rows ofUN andUS define a section of the bundle over C
with transition function f (ζ ) exp(zη/ζ ). Now by the Birkhoff–Grothendieck theorem a
line bundle over P1 must be of the form O(r) for some integer r , and so by a change of
trivialization we can take f (ζ ) = 1/ζ r .

At this point we come to different choices in specifying the sectionsU . Let Lz be the
line bundle with transition function ezη/ζ . For Hitchin z ∈ [0, 2] with z = 1 the point
where L1 ⊗ π∗O(n − 1) has n sections with real structure. Hitchin’s sections [9] are

5 Wewill use capital Roman letters {I, J, . . .} for rows and lower case Roman letters {i, j, . . .} for columns.
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defined just in terms of the two patches N , S and r = n − 1 in the above. The Baker–
Akhiezer construction of [5,7] describes the flow in terms of s ∈ [−1, 1] (z = s + 1)
and a line bundle Lδ corresponding to a nonspecial divisor δ = ∑gC+n−1

i=1 δi of degree
gC + n − 1 = degπ∗O(n − 1). The line bundles Lδ and L1 ⊗ π∗O(n − 1) are linearly
equivalent. On C \ {∞i }ni=1 the Baker–Akhiezer function is meromorphic with poles in
δ; the transition functions for this line bundle are around each of the δi . Thus in the NS
transition function we have r = 0. In what follows we set

F = Diag
(
ezηi /ζ /ζ l

)
(5.4)

where l = n−1 when describing Hitchin’s choice of section and l = 0 when describing
the Baker–Akhiezer sections.

5.2. Identifying h(z). The bundle structure just described enables us to identify h(z).
First observe that if [d/dz + M]U = 0 then

[
d/dz − M†

]
U †−1 = 0. Using this to-

gether with (5.2) shows
[
d/dz + MS(ζ S)

]
UN (z,−1/ζ̄ )†−1 = 0 and consequently that

DS(ζ S) := UN (z,−1/ζ̄ )†US(z, ζ S) (5.5)

is a z-independent matrix. Now

DS(ζ S)DS(ζ S) = UN (z,−1/ζ̄ )†LS(ζ S)US(z, ζ S)

= −
(
LN (−1/ζ̄ )UN (z,−1/ζ̄ )

)†
US(z, ζ S)

= −DN (−1/ζ̄ )†DS(ζ S) = DS(ζ S)DS(ζ S).

Using the fact that the diagonal matrices DN , S have distinct entries for generic (ζ, η)

we deduce that DS is diagonal. We similarly define the constant diagonal matrix

DN (ζ ) = (−1)l U S(z,−1/ζ̄ S)†UN (z, ζ ). (5.6)

Then from US = UN F on an overlap we have

DS(ζ S) =
(
US(z,− 1

ζ̄ S
)F(z,−1

ζ̄
)−1

)†

UN (s, ζ )F(z, ζ )

= (−1)l F(z,−1

ζ̄
)†−1DN (ζ )F(z, ζ ).

Upon using that all of the matrices here are diagonal and that under the antiholomorphic
involution (3.15) η/ζ → η̄/ζ̄ we have

DS = (−1)l f (ζ )/ f (−1/ζ̄ )†DN = 1

ζ 2l DN .

In the Hitchin setting {DN ,DS} yield a section of π∗O(2n−2); such a section takes
the form c0ηn−1 + c1(ζ )ηn−2 + · · · + cn−1(ζ ) where cl(ζ ) is of degree 2l in ζ . In our
setting we get a regular function constant in z.
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5.3. Expressing h(z) in terms of the Baker–Akhizer function. Now with U = UN =
g(z)†−1�̂(z, ζ ), where �̂(z, ζ ) is the n × n matrix whose columns6 are the Baker–
Akhiezer functions for the preimages of ζ , we have

DN (ζ ) =
[
UN (z,−1

ζ̄
)Diag(ezη̄i /ζ̄ )

]†
g†−1�̂(z, ζ )

= Diag(ezηi /ζ )�̂(z,−1

ζ̄
)†h(z)−1�̂(z, ζ ).

Now the left-handside is z-independent, sowemay evaluate this at z = 0 using h(0) = 1n
to give

DN (ζ ) = �̂(0,−1

ζ̄
)†�̂(0, ζ ).

Employing this we obtain

h(z) = �̂(z, ζ )Diag(ezηi /ζ )�̂(0, ζ )−1�̂(0,−1

ζ̄
)†−1�̂(z,−1

ζ̄
)†. (5.7)

Again using the diagonality of DN this expression shows that h(z)† is obtained by the
interchange of ζ → − 1

ζ̄
; but h(z) is independent of ζ and sowe see that h(z) is hermitian,

as is required. Finally, using the independence of h(z) on the value of ζ being used, upon
taking ζ to infinity and using (3.10) and the hermiticity of h we may rewrite this to give.

Theorem 5.1. Let �̂(z, 0) be the Baker–Akhiezer function with (I, i)-entry �̂I (z, 0i ),
where 0i = J (∞i ), then

h(z) = �̂(z, 0)�̂(0, 0)−1. (5.8)

We remark that the inverse of �̂(z, ζ ) may be constructed with the dual Baker–
Akhiezer function; further, we see that this expression is independent of the ordering of
sheets that is implicit in the Baker–Akhiezer function.

At this stage we have established Theorem 4.1 circumventing the actual construction
ofNahmdata.Todetermine theNahmdata onemust solve forh(z) = �̂(z, 0)�̂(0, 0)−1 =
g†g where h and gmust satisfy (3.4). This constraint makes finding gmore difficult than
simply a matrix factorization problem; although Cholesky factorization enables one to
factorize h such a factorization is only defined up to a unitary transformation which is
determined by (3.4). An interesting question is whether the function theory of C might
help in this determination.

6. Example

We shall give an example of Theorem 5.1 for the case n = 2. The spectral curve for
n = 2 was constructed by Hurtubise [10] and we shall employ the Ercolani-Sinha [7]
form

0 = η2 +
K 2

4

(
ζ 4 + 2(k2 − k′2)ζ 2 + 1

)
, (6.1)

where K = K (k) is a complete elliptic integral, and η is related to the spatial coordinates
by

η = (x2 − ı x1) − 2ζ x3 − (x2 + ı x1)ζ
2. (6.2)

6 �̂(z, ζ ) := (�1(z, P1), . . . , �n(z, Pn)), where Pi = (ζ, ηi ).
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It was known that the solutions

f1(z) = K
dn Kz

cn Kz
= πθ2θ3

2

θ3(z/2)

θ2(z/2)
, f2(z) = Kk′ sn Kz

cn Kz
= πθ3θ4

2

θ1(z/2)

θ2(z/2)
,

f3(z) = Kk′ 1

cn Kz
= πθ2θ4

2

θ4(z/2)

θ2(z/2)
(6.3)

to the spinning top equations ḟ1 = f2 f3 (and cyclic) gave solutions to the Nahm
equations via Tj (z) = σ j

2ı f j (z) and the work of [7] and (with corrections in) [5] derived
these from first principles. As we have noted the construction proceeds via the Baker–
Akhiezer function but this only yields the Nahm data up to a gauge transformation g†−1.
In the works cited the differential equation for this gauge transformation was solved
explicitly and we will compare the expression for h(z) given by Theorem 5.1 with that
obtained from the solution of the differential equation. For higher charges the associated
differential equation has not been solved.

The Baker–Akhiezer function for the problem at hand takes the form

�(z, P) = χ(P)

(−θ3(α(P))θ2(α(P) − z/2)
θ1(α(P))θ4(α(P) − z/2)

)
eβ1(P)z

θ2(z/2)
(6.4)

where

χ(P) = θ2(1/4)θ3(1/4)

θ3(0)θ1(α(P) − 1/4)θ4(α(P) + 1/4)
,

β1(P) = 1

4

{
θ ′
1(α(P))

θ1(α(P))
+

θ ′
3(α(P))

θ3(α(P))

}
, (6.5)

and we have the Abel map α(P) = ∫ P
∞1

dζ/4η for P = (ζ, η). Then with P1,2 corre-
sponding to (ζ,±η) we have

�̂(z, ζ ) =
(−θ3(α(P1))θ2(α(P1) − z/2) −θ3(α(P2))θ2(α(P2) − z/2)

θ1(α(P1))θ4(α(P1) − z/2) θ1(α(P2))θ4(α(P2) − z/2)

)

×
(

χ(P1)eβ1(P1)z

θ2(z/2)
0

0 χ(P2)eβ1(P2)z

θ2(z/2)

)
.

(6.6)

To evaluate this for 01,2 we note (from [5]) that α(01) = −τ/2, α(02) = −1/2. Using
θ4(τ/2) = 0 = θ2(1/2) we may simplify (5.8) to

h(z) =
⎛

⎝
θ2(α(01)−z/2)

θ2[01] − θ3[02]θ2(α(02)−z/2)
θ1[02]θ4[02]

− θ1[01]θ4(α(01)−z/2)
θ3[01]θ2[01]

θ4(α(02)−z/2)
θ4[02]

⎞

⎠
(

θ2eβ1(01)z

θ2(z/2)
0

0 θ2eβ1(02)z

θ2(z/2)

)

=
⎛

⎝
θ2(τ/2+z/2)

θ2(τ/2)
θ3(1/2)θ2(1/2+z/2)

θ1(1/2)θ4(1/2)

θ1(τ/2)θ4(τ/2+z/2)
θ3(τ/2)θ2(τ/2)

θ4(1/2+z/2)
θ4(1/2)

⎞

⎠
(

θ2eβ1(01)z

θ2(z/2)
0

0 θ2eβ1(02)z

θ2(z/2)

)

=
(

B(z/2)θ3(z/2)
B(0)θ3

− θ4θ1(z/2)
θ2θ3

− B(z/2)θ4θ1(z/2)
B(0)θ2θ3

θ3(z/2)
θ3

)(
θ2eβ1(01)z

θ2(z/2)
0

0 θ2eβ1(02)z

θ2(z/2)

)
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where B(v) = exp(−iπ [v + τ/4])

= 1

θ3θ2(z/2)

(
θ2θ3(z/2) −θ4θ1(z/2)

−θ4θ1(z/2) θ2θ3(z/2)

)(
eβ1(01)z−iπ z/2 0

0 eβ1(02)z

)
.

Now upon using the quasi-periodicity of the theta functions,

θ ′
1(−τ/2)

θ1(−τ/2)
= iπ − θ ′

4

θ4
,

θ ′
3(−τ/2)

θ3(−τ/2)
= iπ − θ ′

2

θ2
,

we find

β1(01) = iπ

2
− 1

4

{
θ ′
2

θ2
+

θ ′
4

θ4

}
= iπ

2
, β1(02) = −1

4

{
θ ′
2

θ2
+

θ ′
4

θ4

}
= 0.

Here we have used that θ2,4 are even and so θ ′
2,4 = 0. Thus

h(z) = 1

θ3θ2(z/2)

(
θ2θ3(z/2) −θ4θ1(z/2)

−θ4θ1(z/2) θ2θ3(z/2)

)
.

In terms of (6.3) and using K = πθ23 /2 we arrive at

h(z) = 1

K

(
f1 − f2

− f2 f1

)
, h−1(z) = 1

K

(
f1 f2
f2 f1

)
. (6.7)

We wish to compare (6.7) with h−1 = C†C whereC is the solution to the differential
equation

C−1Ċ = ĊC−1 = f3
2

(
0 1
1 0

)
.

Then

C = C† = CT =
(
F(z) G(z)
G(z) F(z)

)
,

with solution

F = cosh

(∫ z

0
f3(s)ds/2

)
= [p(z) + 1/p(z)] /2,

G = sinh

(∫ z

0
f3(s)ds/2

)
= [p(z) − 1/p(z)] /2,

where7

p(z) = exp

(∫ z

0
f3(s)ds/2

)
= exp

(
k′K

∫ z

0

ds

cn Kz

)
=

[
dn Kz + k′sn Kz

cn Kz

]1/2
.

7 Here we have made use of ∫
du

cn u
= 1

k′ ln
dnu + k′snu

cnu
.
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Now

G2(z)= 1

2

(
dn(Kz; k)
cn(Kz; k) − 1

)
= 1

2

(
f1
K

− 1

)
, 2F(z)G(z)=k′ sn(Kz; k)

cn(Kz; k) = f2
K

,

(6.8)

F2 − G2 = 1, F2 + G2= f1
K

,

and consequently C2(z) = 1

K

(
f1 f2
f2 f1

)
, so verifying (6.7).
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Appendix A. The Panagopoulos Formulae

Panagopolous [15] introduced three formulae to evaluate integrals appearing in the
ADHMN construction giving a proof for one of these; his other formulae were checked
against a calculationonone axis.We shall prove and slightlymodifyhere thePanagopolous
formulae, extending his method to the case x4, T4 possibly nonzero and correcting an
ordinary differential operator by a partial differential operator (which reduces to the
former on an axis).

Panagopolous’s approach to evaluate integrals
∫

dz v†aAvb

for any given operator A and any two solutions va,b of �†v = 0 is to seek an operator
B such that

v†aAvb = d

dz

(
v†aBvb

)
, (A.1)

so giving a primitive. Using (2.7, 2.11) then if v is any solution of�†v = 0 we have that

12n
d

dz
v = [ı x4 + T4 − (H + F)] v,

whence

v†aAvb = dv†a
dz

Bvb + v†a
dB
dz

vb + v†aB
dvb
dz

= v†a

(
dB
dz

− [T4,B] − (H + F)B − B(H + F)

)
vb.

The diagonal term with x4 cancels here. Thus we seek to relate the operators A and B
by

A = D(B) := dB
dz

− [T4,B] − (H + F)B − B(H + F)

http://creativecommons.org/licenses/by/4.0/
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where we have defined the operator D.
We will use the following relations (recall T4 is shorthand for 12 ⊗ T4),

QH = HF − FH = [H,F] = −HQ, H = Q−1 [H,F] , [H, T4] = 0,

(A.2)

xi (∂iH) = H, H2 = r212n,

F2 = −12 ⊗
3∑

i=1

Ti Ti − ı
3∑

i, j,k=1

εi jk σk ⊗ Ti Tj ,

dF
dz

− [T4,F] = ı
3∑

i, j,k=1

εi jk σk ⊗ Ti Tj .

Therefore

0 =
[
F2 +

dF
dz

− [T4,F],H
]

. (A.3)

We now establish the integrals in (2.2).

Proposition A.1. With Q = 1
r2
HFH − F then

D(Q−1) = dQ−1

dz
− [T4,Q−1] − (H + F)Q−1 − Q−1(H + F) = 12n (A.4)

and we have the antiderivative (2.12)
∫

dz v†avb = v†aQ−1vb.

Proof. In this caseA = 12n and the left-hand side of (A.4) may be rewritten as follows

Q−1
[
− d

dz

(
1

r2
HFH − F

)
+ [T4,Q] − (H + F)

(
1

r2
HFH − F

)

−
(
1

r2
HFH − F

)
(H + F)

]
Q−1

= Q−1
[
− 1

r2
H

(
dF
dz

− [T4,F]
)
H +

dF
dz

− [T4,F]

− 1

r2
(H + F)HFH − 1

r2
HFH(H + F) + (H + F)F + F(H + F)

]
Q−1

= Q−1

[
1

r2
H

(
F2 + 12 ⊗

3∑

i=1

Ti Ti

)
H −

(
F2 + 12 ⊗

3∑

i=1

Ti Ti

)

− 1

r2
H2FH − 1

r2
FHFH +HF + F2

− 1

r2
HFH2 − 1

r2
HFHF + FH + F2

]
Q−1
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Upon noting that

Q2 =
(
1

r2
HFH − F

)2

= 1

r4
HFH2FH + F2 − 1

r2
HFHF − 1

r2
FHFH

= 1

r2
HF2H − 1

r2
HFHF − 1

r2
FHFH + F2

and performing the appropriate cancellations we obtain the necessary result. ��
Proposition A.2. With Q as previously given we have the antiderivative

∫
dz zv†avb = v†aSvb, where S = Q−1

(
z +H xi

r2
∂

∂xi

)
. (A.5)

Proof. Set S1 = Q−1z and S2 = Q−1H xi
r2

∂
∂xi

. Then

D(S1) = d

dz

(
zQ−1

)
− z[T4,Q−1] − z(H + F)Q−1 − zQ−1(H + F)

= zD(Q−1) +Q−1 = z12n +Q−1.

Further, again using (A.4),

r2D(S2) = d

dz

(
Q−1Hxi

∂

∂xi

)
− [T4,Q−1Hxi

∂

∂xi
] − (H + F)Q−1Hxi

∂

∂xi

− Q−1Hxi
∂

∂xi
(H + F)

= D(Q−1)Hxi
∂

∂xi
+Q−1(H + F)Hxi

∂

∂xi
− Q−1Hxi

∂

∂xi
(H + F)

= Hxi
∂

∂xi
+Q−1(H + F)Hxi

∂

∂xi
− Q−1H(H + F)xi

∂

∂xi
− Q−1Hxi (∂iH)

= Q−1 [QH + (H + F)H − H(H + F)] xi
∂

∂xi
− Q−1Hxi (∂iH)

= −Q−1r2

Upon combining these, D(S) = D(S1 + S2) = z12n and the result follows.

We note that we may write S2 more symmetrically if needed:

S2 = 1

2

[←−
∂

∂xi

xi
r2

HQ−1 +Q−1H xi
r2

−→
∂

∂xi

]
.

Remark: In [15] Panagopolous gave the ordinary differential operator S ′ = Q−1
(
z + 2H d

dr2

)
for which D(S ′) = z12n + Q−1

[
dH
dr2

,H
]
; as we are acting on functions

and gauge transformations that are not just a function of r we have replaced this with
our partial differential operator S.
Proposition A.3. With Q as previously given we have the antiderivative

∫
v†a

∂

∂xi
vbdz = v†aQ−1

[
∂

∂xi
+H z

r2
xi +H ı

r2
(x × ∇)i

]
vb. (A.6)
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Proof. Let L = L1 + L2 + L3 with

L1 = Q−1 ∂

∂xi
, L2 = Q−1H z

r2
xi , L3 = Q−1H ı

r2
(x × ∇)i .

We compute D(Li ), i = 1, 2, 3. First

D(L1) = d

dz

(
Q−1 ∂

∂xi

)
− [T4,Q−1 ∂

∂xi
] − (H + F)Q−1 ∂

∂xi
− Q−1 ∂

∂xi
(H + F)

= D(Q−1)
∂

∂xi
− Q−1 ∂H

∂xi
= 12n

∂

∂xi
− Q−1 ∂H

∂xi

where we use Proposition A.1. Next

D(L2) = d

dz

(
Q−1H z

r2
xi
)

− [T4,Q−1H z

r2
xi ] − (H + F)Q−1H z

r2
xi

− Q−1H z

r2
xi (H + F)

= D(Q−1)H z

r2
xi +Q−1(H + F)H z

r2
xi − Q−1H z

r2
xi (H + F) +Q−1H xi

r2

= H z

r2
xi +Q−1 [F ,H]

z

r2
xi +Q−1H xi

r2

= Q−1H xi
r2

upon using (A.2). Next we calculate D(L3) for i = 1. We have

D(L3) = d

dz

[
Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)]
−

[
T4,Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)]

− (H + F)

[
Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)]

−
[
Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)]
(H + F)

= D(Q−1)H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)

+Q−1(H + F)H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)

− Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
(H + F)

= H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
+Q−1 [F ,H]

ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)

− Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
H

= −Q−1H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
H.
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again using (A.2). Altogether we have

D(L) = 12n
∂

∂x1
+Q−1

{
− ∂H

∂x1
+H x1

r2
− H ı

r2

(
x2

∂

∂x3
− x3

∂

∂x2

)
H
}

Multiplying the expression in the parentheses by −r2 gives

−{·} r2 = −σ1 ⊗ 12(x
2
1 + x22 + x23 ) + σ1 ⊗ 12x

2
1 + σ2 ⊗ 12x1x2 + σ3 ⊗ 12x1x3

− ı(σ1 ⊗ 12x1 + σ2 ⊗ 12x2 + σ3 ⊗ 12x3) × (x2σ3 ⊗ 12 − x3σ2 ⊗ 12)

which vanishes by standard relations, proving the result. ��

Appendix B. The Nahm Ansatz

Introduce the shorthand

R j = Tj + ı x j1n, j = 1, 2, 3, γ = − ı [(x1 − ı x2)ζ − ı x3] . (B.1)

Upon substituting (3.11) into �w = 0 we find

0 = |s > ⊗
(
ı
d

dz
− ı T4 + ı γ + û · R

)
ŵ(z)

+ σk ||s > ⊗
(
ı ûk

(
d

dz
− T4 + γ

)
+ Rk + ı(R × û)k

)
ŵ(z).

and so we require

0 =
(
ı
d

dz
− ı T4 + ı γ + û · R

)
ŵ(z), (B.2)

0 = Lkŵ(z) :=
(
ı ûk

(
d

dz
− T4 + γ

)
+ Rk + ı(R × û)k

)
ŵ(z). (B.3)

The consistency of these equations imposes various constraints. First consider

[L1,L2] = (ı û1 + û2û3)
(
Ṫ2 − [T4, T1] − [T3, T1]

) − (ı û2 − û1û3)
(
Ṫ1 − [T4, T2]

−[T2, T3]) − (1 − (̂u3)2)
(
Ṫ3 − [T4, T3] − [T1, T2]

)
+ (1 − û · û)

(
Ṫ3 − [T4, T3]

)
.

Thus provided û(x) is a unit vector and the Ti ’s satisfy the Nahm equations we have
consistency of the equations Lkŵ(z) = 0.

At this stage we introduce a convenient parametrization (reflected in Hitchin’s
mini-twistor construction). Let y ∈ C

3 be a null vector. We may consider y ∈ P
2 and

parameterize y as

y =
(
1 + ζ 2

2 ı
,
1 − ζ 2

2
,−ζ

)
. (B.4)

Then

y · y = (1 + |ζ |2)2
2

, y · y = 0.
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The signs here have been chosen so that

L(ζ ) := 2 ı y · T = (T1 + ı T2) − 2 ı T3 ζ + (T1 − ı T2) ζ 2.

In due course we will see this to be our Lax matrix. Set

û = û(ζ ) := ı
y × y
y · y = 1

1 + |ζ |2
(
ı(ζ − ζ ), (ζ + ζ ), 1 − |ζ |2

)
. (B.5)

Then

û × y = − ı y, û × y = ı y.

The three vectors Re( y), Im( y) and û form an orthogonal basis in R
3 with |̂u| = 1,

whence any v ∈ R
3 may be written as

v = û (̂u · v) + y
(
y · v

y · y
)
+ y

(
y · v

y · y
)

.

In particular,

v + ı v × û = û (̂u · v) + 2 y
(
y · v

y · y
)

. (B.6)

We record that

y(ζ ) = −ζ
2
y(−1/ζ ), û(−1/ζ ) = −û(ζ ),

û = (− ı ζ−1, ζ−1,−1) − 2 y
ζ(1 + |ζ |2) = (ı ζ, ζ, 1) +

2ζ y
1 + |ζ |2 ,

û · T = − ı
[
(T1 + ı T2)ζ

−1 − ı T3
]

− 2 y · T
ζ(1 + |ζ |2) = ı [(T1 − ı T2)ζ − ı T3] +

2ζ y · T
1 + |ζ |2 .

Parameterizing û as above and using (B.6) we may write

ı û
(

d

dz
− T4 + γ

)
+ R + ı R × û = ı û

(
d

dz
− T4 + γ

)
+ û (̂u · R) + 2 y

(
y · R
y · y

)

= û
(
ı
(

d

dz
− T4 + γ

)
+ û · R

)
+ 2 y

(
y · R
y · y

)

and as a consequence (B.2, B.3) are equivalent to

0 =
(
ı
d

dz
− ı T4 + ı γ + û · R

)
ŵ(z), (B.7)

0 = ( y · R) ŵ(z). (B.8)

The remaining consistency to be checked is then
[
ı
d

dz
− ı T4 + ı γ + û · R, y · R

]
= ı y · (Ṫ − [T4, T ]) + [

û · T , y · T] = 0,

which upon use of û × y = − ı y is equivalent to Nahm’s equations.
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Equally from

û · R = − ı
[
(R1 + ı R2)ζ

−1 − ı R3

]
− 2 y · R

ζ(1 + |ζ |2)
= ı [(R1 − ı R2)ζ − ı R3] +

2ζ y · R
1 + |ζ |2

we may write the equations as

0 =
(

d

dz
− T4 + γ + [(R1 − ı R2)ζ − ı R3]

)
ŵ(z) =

(
d

dz
+ M

)
ŵ(z),

0 = ( y · R) ŵ(z),

where
M(ζ ) := (T1 − ı T2)ζ − ı T3 − T4. (B.9)

The equations we have obtained are just the Lax equations

0 = 2 ı ( y · R) ŵ(z) = (L(ζ ) − η) ŵ(z),

0 =
(

d

dz
+ M

)
ŵ(z),

for which L̇ = [L , M] and where our construction defines η to be

η = 2 y · x = (x2 − ı x1) − 2x3ζ − (x2 + ı x1)ζ
2.

From the first of these we see that

0 = det (L(ζ ) − η) ,

which gives the equation of the spectral curve C. Upon using y(ζ ) = −ζ
2
y(−1/ζ ) we

see from

0 = det (L(ζ ) − η)† = det
(
L(ζ )† − η

)
= det

(
2 ı y(ζ ) · T − η

)

= det
(
−2 ı ζ

2
y(−1/ζ ) · T − η

)

that the spectral curve is invariant under

J : (ζ, η) → (−1

ζ
,− η

ζ
2 ).

The spectral curve then has the form

P(η, ζ ) := ηn + a1(ζ )ηn−1 + · · · + an(ζ ) = 0, deg ak(ζ ) ≤ 2k, (B.10)

and the genus of C is g = (n − 1)2.
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Appendix C. Direct Integration of the Lax Equations

When Nahm gave his ansatz he also suggested a direct integration of the resulting Lax
equations; Panagopoulos [15, §3] tried implementing this for the charge 2 case. We
will review here this approach and conclude by contrasting it with the proposed Baker–
Akhiezer approach we have described.

Underlying the algebro-geometric description of Lax pairs and the spectral curve
is that dimC ker [L(ζ ) − η] = 1. Thus if f i is an eigenvector of L with associated
eigenvalue ηi then so too is f i hi (z). The idea is that given a solution of (3.12) to find an
appropriate hi (z) such that (3.13) is also satisfied. To implement this we need to know
both an eigenvector f i and its derivative to subsequently obtain a differential equation
for hi (z). To determine these we make some simple observations:

(1) Suppose L := L(ζ ) satisfies the Lax equation L̇ = [L , M]. Then for any (ζ, η)

det(L(ζ ) − η) 1n = (L(ζ ) − η)Adj(L(ζ ) − η)

is constant, where Adj denotes the adjugate matrix. Differentiating this yields

(L(ζ ) − η)

(
d

dz
Adj(L(ζ ) − η) − [Adj(L(ζ ) − η), M]

)
= 0

and using the generic invertibility of L(ζ ) − η we obtain

d

dz
Adj(L(ζ ) − η) = [Adj(L(ζ ) − η), M]. (C.1)

(2) For any constant vector ν let P = (ζ, ηi ) lie on the spectral curve. Then

f i = Adj(L − ηi )ν (C.2)

is an eigenvector of L(ζ ) with eigenvalue ηi as

(L − λi ) f i = (L − ηi )Adj(L − ηi )ν = det(L − ηi )ν = 0.

Using these observations we seek a function hi (z) such that F = Adj(L − ηi )νhi (z) is
solution of (3.13). Now

Ḟ = [Adj(L − ηi ), M]νhi (z) + Adj(L − ηi )νḣi (z)

= −MF + Fh−1
i ḣi + Adj(L − ηi )Mνhi (z)

Taking the inner product with an arbitrary vector μ and requiring F satisfy (3.13) yields
the differential equation

h−1
i

dhi
dz

= −μT Adj(L − ηi )Mν

μT Adj(L − ηi )ν
. (C.3)

We see then that to employ this approach we need both the Nahm data to be able to
determine the right-hand side of (C.3) and to be able to integrate the subsequent rational
expressions. For n = 2 this is possible. For higher charges we can only construct Nahm
data up to the gauge transformation described in the main text. Let us imagine we
make such a gauge transformation and then use the approach of this appendix to solve
(3.12,3.13). Now the right-hand side of (C.3) is in principle known and an integration is
required. By way of contrast, the Baker–Akhiezer approach allows the construction of
the gauge transform of both L and the solution of (3.13) without further integration.
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