Correction

Correction to: Uniqueness of the Representation in Homogeneous Isotropic LQC

Jonathan Engle ${ }^{1,2}$, Maximilian Hanusch ${ }^{1}$ (D), Thomas Thiemann ${ }^{2}$
${ }^{1}$ Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA. E-mail: jonathan.engle@fau.edu; hanuschm@fau.edu
2 Institute for Quantum Gravity, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany. E-mail: thomas.thiemann @ gravity.fau.de

Received: 16 April 2018 / Accepted: 29 April 2018
Published online: 30 July 2018 - © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Correction to: Commun. Math. Phys. 354, 231-246 (2017)
https://doi.org/10.1007/s00220-017-2881-2
We correct some oversights contained in [1].
(1) "Campiglia" was accidentally misspelled at several points in the paper. The authors apologize for this.
(2) The authors forgot to provide the definition of the characters [first used in equation (9)]

$$
\chi_{\lambda}: \mathbb{R} \mapsto \mathbb{C}, \quad t \mapsto \mathrm{e}^{\mathrm{i} \lambda t} \quad \forall \lambda \in \mathbb{R} ;
$$

which are the generators of the almost periodic functions $C_{\mathrm{AP}}(\mathbb{R})$ on \mathbb{R}.
(3) As noticed in [2], in the continuity part of Sect. 4 it had been overseen that, instead of $\nu \circ \varphi \in C_{0}(\mathbb{R})$, we have $\nu \circ \varphi \in \operatorname{span}_{\mathbb{C}}\left(\chi_{0}\right)+C_{0}(\mathbb{R})$ for $\varphi \in C_{0}(\mathbb{R})$ and $\nu:(-1,1) \ni t \mapsto \sqrt{1+t}$. This issue can be fixed, of course, by adding " -1 " in the definition of ν. We then have $\sqrt{1+\varphi} \in \mathfrak{D}$ (instead of $\sqrt{1+\varphi} \in \mathfrak{d}$, as wrongly stated in the paper) - This, however, makes no difference for our conclusion that $1+\omega_{\mathcal{D}}(\varphi) \geq 0$ holds, because ω is defined on full \mathfrak{D}. The revised argumentationstarting after Eq. (14) on page 238, and ending after the mentioned conclusion - then reads as follows.

Revised argumentation:

To see this, first observe that the smooth function

$$
\nu:(-1,1) \ni t \mapsto \sqrt{1+t}-1
$$

(and each of its derivatives) can be represented by a power series. Thus, by completeness of $\overline{\mathfrak{d}}$, for $\varphi \in \overline{\mathfrak{d}}$ real valued with $\|\varphi\|_{\infty}<1$, we have $\nu \circ \varphi \in \overline{\mathfrak{d}}$ as well as

$$
\nu^{(n)} \circ \varphi \in \operatorname{span}_{\mathbb{C}}\left(\chi_{0}\right)+\overline{\mathfrak{l}} \quad \forall n \geq 1
$$

Then, for $\varphi \in \mathfrak{d}$, the chain rule gives

$$
\partial_{t}(\nu \circ \varphi)=(\dot{v} \circ \varphi) \cdot \dot{\varphi} \in \overline{\mathfrak{d}} .
$$

Now, the right hand side is differentiable; and, applying the same arguments inductively, we find that $(\nu \circ \varphi)^{(n)} \in \overline{\mathfrak{d}}$ holds for each $n \in \mathbb{N}$; hence,

$$
v \circ \varphi=\sqrt{1+\varphi}-\chi_{0} \in \mathfrak{d} .
$$

We thus have $\varphi_{\nu}:=\sqrt{1+\varphi} \in \mathfrak{D}$ with

$$
1+\omega_{\mathfrak{d}}(\varphi)=\omega(\mathbb{1}+\widehat{\varphi})=\omega\left(\widehat{\varphi}_{v}^{*} \widehat{\varphi}_{\nu}\right) \geq 0 .
$$

(4) In the equations (24) and (25), the γ-factor was misplaced. More specifically, - Equation (24) must read

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{V_{0}[\mathcal{C}]}{k \gamma} \frac{\left|v_{1} v_{2} v_{3}\right|}{v_{i}} \frac{\mathrm{~d}}{\mathrm{~d} x^{\mathbf{0}}}\left(\gamma \omega_{\mathbf{i}}^{i 0}-\frac{1}{2} \epsilon^{i j k} \omega_{\mathbf{i} j k}\right) . \tag{24}
\end{equation*}
$$

- Equation (25) must read

$$
\begin{equation*}
c^{i}:=\gamma \omega_{\mathbf{i}}^{i 0}-\frac{1}{2} \epsilon^{i j k} \omega_{\mathbf{i} j k}, \quad p_{i}:=\frac{V_{0}[\mathcal{C}]}{k \gamma} \frac{\left|v_{1} v_{2} v_{3}\right|}{v_{i}} . \tag{25}
\end{equation*}
$$

Acknowledgements We thank Christian Fleischhack for communicating to us [2] the technical oversight mentioned in 3.

References

1. Engle, J., Hanusch, M., Thiemann, Th.: Uniqueness of the representation in homogeneous isotropic LQC. Commun. Math. Phys. 354, 231-246 (2017)
2. Fleischhack, Ch.: Continuity of States on Non-Unital Differential Algebras in Loop Quantum Cosmology. e-print: arXiv: 1803.08944 [math-ph]
