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Abstract: We consider the geodesic flow defined by periodic Eaton lens patterns in
the plane and discover ergodic ones among those. The ergodicity result on Eaton lenses
is derived from a result for quadratic differentials on the plane that are pull backs of
quadratic differentials on tori. Ergodicity itself is concluded for Z

d -covers of quadratic
differentials on compact surfaces with vanishing Lyapunov exponents.

1. Introduction

1.1. Periodic Eaton lens distributions in the plane. An Eaton lens is a circular lens on
the plane R

2 which acts as a perfect retroreflector, i.e. so that each ray of light after
passing through the Eaton lens is directed back toward its source, see Fig. 1. More
precisely, if an Eaton lens is of radius R > 0, then the refractive index (RI for short)
inside the lens depends only on the distance from the center r and is given by the formula
n(x, y) = n(r) = √

2R/r − 1. The refractive index n(x, y) is constant and equals 1
outside the lens.

In this paper we consider dynamics of light rays in periodic Eaton lens distributions
in the plane R

2 ∼= C. As a simple example take a lattice � ⊂ R
2 and consider an Eaton

lens of radius R > 0 centered at each lattice point of �. This configuration of lenses
will be denoted by L(�, R)

Let us call an Eaton lens distribution, say L, in R
2 admissible, if no pair of lenses

intersects. For every admissible Eaton lens configuration L, the dynamics of the light
rays can be considered as a geodesic flow (gLt )t∈R on the unit tangent bundle of R

2 with
lens centers removed, see Section A for details. The Riemannian metric inducing the
flow is given by g(x,y) = n(x, y) · (dx ⊗ dx + dy ⊗ dy), where n(x, y) is the refractive
index at (x, y).
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Fig. 1. Light rays passing through an Eaton lens and its flat counterpart

Since each Eaton lens in L acts as a perfect retroreflector, for any given slope θ ∈
R/πZ there is an invariant setPL,θ in the unit tangent bundle, such that all trajectories
on PL,θ have direction θ or θ + π outside the lenses. The restriction of the geodesic

flow (gLt )t∈R to PL,θ will be denoted by (gL,θ
t )t∈R. Moreover, (gL,θ

t )t∈R possesses a
natural invariant infinite measure μL,θ equivalent to the Lebesgue measure on PL,θ ,
see Appendix A for details. With respect to this setting we consider measure-theoretic
questions. Denote by πL,θ : PL,θ → C the map associating to a unit tangent vector in
PS,θ its footpoint (in C).

For example, in [17], the authors have shown, that simple periodic Eaton lens config-
urations, for example L(�, R), have the opposite behavior of ergodicity. More precisely,
a light ray in an Eaton lens configuration is called trapped, if the ray never leaves a strip
parallel to a line in R

2. The trapping phenomenon observed in [17] was extended in [16]
to the following result:

Theorem 1.1. If L(�, R) is an admissible configuration then for a.e. direction θ ∈
R/πZ there exist constants C = C(�, R, θ) > 0 and v = v(�, R, θ) ∈ R/πZ, such
that the πL(�,R),θ -image of every geodesic orbit in PL(�,R),θ is trapped in an infinite
band of width C > 0 in direction v.

We say that a flow (gL,θ
t )t∈R is trapped if there exist constants C = C(L, θ) > 0 and

v = v(L, θ) ∈ R/πZ such that the πL,θ -image of every orbit is trapped in an infinite
band of width C > 0 in direction v.

Knieper and Glasmachers [18,19] have trapping results for geodesic flows on Rie-
mannian planes. Among other things, Theorem 2.4 in [19] says, that for all Riemann
metrics on the plane that are pull backs of Riemann metrics on a torus with vanishing
topological entropy, the geodesics are trapped. Nevertheless, the trapping phenomena
obtained in [16–19] have different flavors. The former is transient whereas the latter is
recurrent.

Let us further mention that Artigiani describes a set of exceptional triples (�, R, θ)

for which the flow (g
L(�,R),θ
t )t∈R is ergodic in [2].

In this paper we investigate ergodicity and trapping for more complicated periodic
Eaton lens distributions. In fact, given a lattice � ⊂ C let us denote a �-periodic
distribution of k Eaton lenses with center ci ∈ C and radius ri ≥ 0 for i = 1, . . . , k by
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L(�, c1, . . . , ck, r1, . . . , rk).Of course,wewill only consider admissible configurations.
If the list of Eaton lenses has centrally symmetric pairs, we write ±ci for their centers
and list their common radius only once. We adopt the convention that if the radius of a
lens is zero then this lens disappears.

For a random choice of admissible parameters in this family of configurations in
Sect. 5 we prove trapping.

Theorem 1.2. For every lattice� ⊂ C, every vector of centers c ∈ C
k and almost every

r ∈ R
k
>0 such that L(�, c, r) is admissible the geodesic flow (gL(�,c,r),θ )t∈R is trapped

for a.e. θ ∈ R/πZ.

An admissible ergodic Eaton lens configuration in the plane. As a consequence we have
that the set of parameters (�, c, r , θ) for which (g

L(�,c,r),θ
t )t∈R is ergodic is very rare.

Despite this, in this paper, we find exceptional one-dimensional ergodic sets (piecewise
smooth curves) of parameters such that a random choice inside such a curve provides
an ergodic behavior of light rays. In fact the configurations we found are curves

θ 	−→ L(�θ , c1(θ), . . . , ck(θ), r1(θ), . . . , rk(θ))

parameterized with the angle θ ∈ R/πZ such that θ 	→ �θ is constant or varies in a
diagonal way, i.e. �θ = diag(a(θ), b(θ))�. We should stress that such ergodic curves
do not exist when k = 1. More precisely, from results of [16] one can conclude:

Theorem 1.3. Suppose that θ 	−→ L(�θ , c(θ), r(θ)) is a C2-curve such that �θ =
diag(a(θ), b(θ))� for a lattice � and two positive C2-maps a and b. Then for a.e. θ

the geodesic flow (gL(�θ ,c(θ),r(θ)),θ )t∈R is trapped.

We now describe the simplest curve with ergodic directions. It is a loop defined for
every angle θ ∈ [0, π ]. To start, we take the function

l(θ) := 2− | cot θ |(1− | cot θ |)
and consider the curve of lattices

�θ = Z(0, 4) ⊕ Z(4, 2) for θ mod π ∈ [−π/4, π/4]
continued by

�θ = Z(0, 4) ⊕ Z(2l(θ), 2) for θ mod π ∈ [π/4, 3π/4].
Both families of lattices agree on the respective boundaries of their defining intervals
and so we obtain a continuous loop of lattices since �π = �0. Next define the curve
θ 	→ γW (θ) of admissible Eaton lens configurations for every θ ∈ R/πZ as follows:

γW (θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L (�θ , (0, 0),±(1, 1 + tan θ), 2 sin θ, cos θ) if θ mod π ∈ [0, π/4]
L(�θ , (0, 0),±(cot θ, 2), l(θ) sin θ, cos θ) if θ mod π ∈ [π/4, π/2]
L(�θ , (0, 0),±(cot θ, 2), l(θ) sin θ,− cos θ) if θ mod π ∈ [π/2, 3π/4]
L (�θ , (0, 0),±(−1, 1− tan θ), 2 sin θ,− cos θ) if θ mod π ∈ [3π/4, π ]

We want to assume, that two Eaton lens configurations in the plane are the same,
if they differ by a translation. After all, that is equivalent to a translation of the origin,
preserving dynamical properties. Then the curve of Eaton lens distribution closes, since
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Fig. 2. Ergodic curve for angles |θ | ≤ π/4 and |θ − π | ≤ π/4

γW (0) = γW (π)+ (0, 2). The admissibility of all Eaton lens configurations in the image
of γW is shown in Sect. 2.1. To give a geometric outline of the lens configurations we
add a cartoon showing the configurations at representative angles in the interval [0, π/4]
(Fig. 2) and [π/4, π/2] (Fig. 3).

In “Appendix A”we show that each Eaton lens can be replaced by a flat lens (slit-fold)
whose ends are located on straight lines in direction θ tangents to the lens. Note that
γW (θ) arises as �θ -lattice of three lenses: one is central and other two are symmetric
with respect to the center. After the replacement of every central lens by its flat horizontal
counterpart (with the same center), and the replacement of the symmetric lens couples
by their vertical flat counterparts hooked in the center, we obtain a�θ -periodic system of
slit-folds. Moreover, after a horizontal rescaling, for θ ∈ (π/4, 3π/4), we have the same
(independent of θ )� = Z(0, 4)⊕Z(4, 2)-periodic system of slit-folds on C, denoted in
the next sections by X̂3, which can be treated as a �-periodic quadratic differential on
C. Then for every θ ∈ R/πZ the study of the behavior of geodesic orbits on PγW (θ),θ

comes down to the study of a directional measured foliation on X̂3. Passing to the
quotient quadratic differential X3 := X̂3/� we have a half-translation torus whose
orientation cover is the famous translation surface called Eierlegende Wollmilchsau.
Since the Eierlegende Wollmilchsau is a square tiled surface, its directional flow in
every direction with rational slope is not ergodic. Coming back to systems of lenses, it
follows that there exists a dense set of directions θ in R/πZ, such that the geodesic flow
(g

γW (θ),θ
t )t∈R is not ergodic.
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Fig. 3. Ergodic curve for the angles |θ ± π/2| ≤ π/4

Theorem 1.4. For almost every θ ∈ R/πZ the geodesic flow (g
γW (θ),θ
t )t∈R is ergodic.

Part of the paper shows several curves of ergodic Eaton lens configurations in the
plane, see Figs. 28, 29 and 30. For some of those curves we describe admissible Eaton
lens configurations only for an interval of slopes in R/πZ.

Reduction to quadratic differentials and cyclic pillow case covers. The dynamical
results for periodic Eaton lens distributions in the plane rely on the equivalence of
the Eaton dynamics in a fixed direction, say θ , to the (dynamics on a) direction folia-
tionFθ (q) of a quadratic differential (half-translation structure) q on the plane. Starting
from a (slit-fold) quadratic differential, the connection is made by replacing a slit-fold,
as shown in Fig. 4, by an Eaton lens. For a given direction the dynamical equivalence of a
slit-fold and an Eaton lens is motivated by Fig. 1. This equivalence is described in detail
in Appendix A.We distinguish two objects: A flat lens is a one-dimensional replacement
of an Eaton lens perpendicular to the light direction, that does not change the future and
the past of the light in the complement of the Eaton lens that is replaced, see Fig. 1. A
slit-fold on the other hand is a flat lens in the language of quadratic differentials. In fact,
a slit-fold is constructed by removing a line segment, say [a, b] with a, b ∈ C, from
the plane (or any flat surface), then a closure is taken so that the removed segment is
replaced by two parallel and disjoint segments. Then for each segment one identifies
those pairs of points, that have equal distance from the segments center point. Once this
is done we obtain a slit-fold that we denote by 〉a, b〈 on the given surface, see Fig. 4.
The single slit-fold 〉a, b〈 defines a quadratic differential on the plane with two singular
points located on the (doubled) centers of the segment and a zero at its (identified) end-
points. Alternatively that quadratic differential on the plane is obtained as quotient of
the abelian differential defined by gluing two copies of the slit plane C\[a, b] crosswise
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Fig. 4. A slit-fold

Fig. 5. Torus quadratic differentials X2, X3 and X4; slit-folds are marked with a dashed line

along its strands. Then a quotient is taken with respect to the sheet exchange map that
lifts the rotation by π around the center point of [a, b]. By adding slit-folds we can
construct a variety of quadratic differentials starting from any flat surface.

For fixed k ∈ N the set Sk of quadratic differentials made of k disjoint slit-folds
is a subset of Q((−1)2k, 2k), the vector space of genus one quadratic differentials that
have 2k singular points and k cone points of order 2. Disjointness of slit-folds means,
cone points of different slit-folds do not fall together. We need the superset Sk ⊃ Sk
of those quadratic differentials that are made of exactly k slit-folds, including the ones
with merged cone points. Let us consider the three particular half-translation surfaces
X2 ∈ S2, X3 ∈ S3 and X4 ∈ S4 drawn on Fig. 5.

Theorem 1.5. Let X = Xk for k = 2, 3, 4 and denote by X̃ its universal cover, a
quadratic differential on the plane. Then for almost every θ ∈ R/πZ the foliation in
direction θ on X̃ is ergodic.

Those ergodic foliations on the plane can be converted into ergodic curves of admis-
sible Eaton lens distributions.

The ergodicity of universal covers of quadratic surfaces in Sk on the other hand is
rather exceptional. If X ∈ Sk satisfies a separation condition on slit-folds (which is an
open condition) then the foliation in direction θ on X̃ is trapped for a.e. θ ∈ R/πZ, see
Corollary 5.6 for details.

The following more general ergodicity result supplies the key to the proof of Theo-
rems 1.5 and 1.4.

Theorem 1.6. Let (X, q) be a quadratic differential on a compact, connected surface
such that all Lyapunov exponents of the Kontsevich–Zorich cocycle of (X, q) are zero.
Then for every connected unbranchedZ

d -cover (X̃ , q̃), almost every directional foliation
on (X̃ , q̃) is ergodic.
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Fig. 6. The pillowcase quadratic differential in polygonal representation

Note, that a Z
d -cover is an abelian cover and so d ≤ 2gX , gX being the genus of

X . This result is in fact a consequence of the more general Theorem 4.6 that provides a
criterion on ergodicity for translation flows onZ

d -covers of compact translation surfaces.
We would like to mention that a similar result was obtained independently by Avila,
Delecroix, Hubert and Matheus but it was never published (communicated by Pascal
Hubert). Some related research was also recently done by Hooper, Hubert and Weiss
who studied ergodicity of directional flows on translation surfaces with infinite area, see
e.g. [22] and [23].

2. Ergodic Slit-Fold Configurations on Planes by Cyclic Pillowcase Covers

In this section we outline the strategy to construct the ergodic quadratic differentials on
the plane assuming the validity of Theorem 1.6. Theorem 1.6 reduces the problem of
ergodicity from cyclic quadratic differentials in the plane to quadratic differentials (T , q)

on the torus T whose all Lyapunov exponents are zero. A recent criterion of Grivaux
and Hubert [20] implies that a cyclic cover of the pillowcase has all Lyapunov exponents
zero, if it is branched at (exactly) three singular points. Now it turns out that there is a
only a short list of those branched cyclic covers T → P . Recall, the pillowcase P is
a quadratic differential qP on the sphere S2. To characterize it, consider the quadratic
differential dz2 on R

2 ∼= C. This differential is invariant under translations and the
central reflection −id : R

2 → R
2. Thus it descends to the torus T

2 := R
2/Z

2 defining
a quadratic differential invariant under the hyperelliptic involution ϕ : T

2 → T
2 induced

by the central reflection of R
2. So it further descends to a quadratic differential qP on

the quotient sphere S2 = T
2/ϕ. The pillowcase is the pair P = (S2, qP ), see Fig. 6.

Putting the result from [20] on cyclic pillowcase covers and Theorem 1.6 together, one
has:

Corollary 2.1. Let π : X → P be a finite cyclic cover branched over three of the
singular points of P and let q = π∗qP be the pull back quadratic differential to X. If
(X̃ , q̃) → (X, q) is a connected Z

d-cover with d ≤ 2gX , then almost every directional
foliation on (X̃ , q̃) is ergodic.

We now give a list of relevant pillow-case covers:

Proposition 2.2. Up to the action of SL2(Z) on covers and up to isomorphism of covers,
there are three cyclic covers (T, q) → P that are branched over exactly three cone
points of qP . The degree of each such cover is 3, 4 or 6.

The proof of Proposition 2.2 is the content of Sects. 3.2, 3.3 and 3.4.
Figure 7 shows polygonal one strip representations of one cyclic pillowcase cover

in each degree. We note that the quadratic differential on the degree 3 cover has the
Ornithorynque (see [11] for the description of the surface) as its orientation cover and
the quadratic differential on the degree 4 cover has the Eierlegende Wollmilchsau (see
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degree 3

degree 6

degree 4

Fig. 7. Torus differentials with zero Lyapunov exponents

also [11]) as its orientation cover. There are questions particular to the conversion of a
quadratic differential into an admissible Eaton lens distribution in the plane. For example
to convert the torus differentials from Proposition 2.2 to Eaton lens distributions one
needs a cover that is a slit-fold differential in the plane. We do this below for the Eaton
curve presented in the introduction. The construction of some other curves need more
sophisticated geometric arguments that can be found in “Appendix B”.

Eatondifferentials and skeletons. For afixeddirection the (long term)Eaton lens dynam-
ics on the plane or on a torus is equivalent to the dynamics on a particular slit-fold, so we
call a quadratic differential that is given by a union of slit-folds a pre-Eaton differential.
Since the radius of an Eaton lens replacing a slit-fold depends on the angle between the
light ray and the slit-fold, a light direction needs to be specified. Recall that a configu-
ration of Eaton lenses is admissible, if no pair of Eaton lenses intersects. A pre-Eaton
differential q is called an Eaton differential, if there is a nonempty open interval I ⊂ R

such that for every (light) direction θ ∈ I mod π the translation flow on the orientation
cover of q in direction θ is measure equivalent (here flows are treated as measured folia-
tions) to the geodesic flow of an admissible Eaton lens configuration, whose lens centers
and radii depend continuously on θ ∈ I . We further call an Eaton differentialmaximal, if
I → R/πZ, x 	→ x mod π is onto. Finally let us call a (pre-)Eaton differential ergodic,
if its direction foliations are ergodic in almost every direction. Note, that a pre-Eaton
differential must be located on a torus, or a plane, since it has no singular points besides
the ones of its slit-folds. So it is enough to present a pre-Eaton differential by a union of
slit-folds, that we will call skeleton. Below we introduce and use geometric as well as
algebraic presentations of skeletons.

Note that, in view of the celebrated Kerckhoff–Masur–Smillie [24] result, every pre-
Eaton differential on a torus is ergodic, even uniquely ergodic. The ergodicity problem
is more subtle when we pass to �-periodic (� a lattice) pre-Eaton differentials on the
plane. Then ergodicity depends on the values of Lyapunov exponents of the quadratic
differential on the quotient torus C/�. Theorem 1.6 and Proposition 5.3 show that the
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Fig. 8. Cutting and turning polygonal pieces gives a pure slit-fold representation modulo absolute homology

Fig. 9. The quadratic surface X3 (rotated by π/2) and its universal cover X̃3 (Wollmilchsau differential)

pre-Eaton differential is ergodic if and only if the top Lyapunov exponent of the quotient
quadratic differential is zero.

Proof of Theorem 1.5. Pre-Eaton differentials are obtained from all three torus differen-
tials in Fig. 7, by first cutting vertically through their center and then rotating either one
of the halves underneath the other, as in Fig. 8. Up to rescaling the resulting pre-Eaton
differentials are X2 (from the degree 3 cover), X3 (from the degree 4 cover) and X4
(from the degree 6 cover) as shown in Fig. 5. It follows, that X2, X3 and X4 are cyclic
covers of the pillowcase and branched over exactly three singularities of P . Passing to
their universal covers we obtain three pre-Eaton differentials X̃2, X̃3, X̃4 on the plane.
In view of Corollary 2.1 almost every directional foliation for every such differential is
ergodic. ��

Below we call the quadratic differential X̃3 on the complex plane obtained from the
degree 4 pillowcase cover X3 theWollmilchsau differential, see Fig. 9.

Theorem 2.3. The Wollmilchsau differential is an ergodic, maximal Eaton differential.
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Fig. 10. Railed moves of slit-folds and Eaton lenses in direction θ

Ergodicity follows because Theorem 1.5 applies. To show the other statements of
the Theorem we need to describe an Eaton lens configuration depending continuously
on θ ∈ R/πZ and show that it is admissible. This is done in Proposition 2.4, see the
comment after that.

Eaton lenses may overlap when placed at slit-fold centers. To resolve this problem
we deform the measured foliation tangential to its direction θ ∈ R/πZ to a measure
equivalent foliation by moving slit-folds parallel to θ . More precisely take a direction
foliation Fθ (q) of a quadratic differential q that contains a slit-fold. Then changing the
location of the slit-fold while keeping its endpoints (and therefore its center points) on
the same leaves of Fθ (q) is called a railed motion. Changing a slit-fold skeleton using
railed motions is called a railed deformation. In terms of Teichmüller Theory railed
deformations are isotopies, orWhitehead moves that preserve the transverse measure of
a measured foliation. In particular, two measured foliations that differ by railed defor-
mations are Whitehead equivalent. A Whitehead move is a deformation of a foliated
surface that collapses a leaf connecting two singular points, or it is the inverse of such a
deformation, see [27, page 116]. Figure 11 shows railed deformations deforming skele-
tons into disjoint slit-folds. Each of those consists of several Whitehead moves. Some
railed motions are shown in Fig. 10 to the left. After performing a railed deformation,
appropriately sized Eaton lenses are placed at the slit-fold centers.

2.1. The Eaton lens configurations along γW are admissible. The following result
together with Theorem 1.5 gives the proof of Theorem 1.4.

Proposition 2.4. The Eaton lens configurations defined by γW (θ) are admissible and
for all θ ∈ [0, π ] the ergodicity of the geodesic flow (g

γW (θ),θ
t )t∈R is equivalent to the

ergodicity of the directional foliation generated by the Wollmilchsau differential X̃3 in
direction θ ′ such that

θ ′ =
{

θ if θ mod π ∈ [−π/4, π/4]
arccot

(
cot θ

(
1− | cot θ |(1−| cot(θ)|)

2

))
if θ mod π ∈ [π/4, 3π/4].

Remark 2.5. Proposition 2.4 says that X̃3 is amaximal Eaton differential.We believe that
every periodic pre-Eaton differential on the plane is an Eaton differential for all intervals
of a finite partition ofR/πZ. A possible general construction of the corresponding Eaton
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systems is probably very technical and difficult to describe. Instead, in “Appendix B”
we present (in drawings) examples of such construction for the pre-Eaton differentials
X̃2 and X̃4.

Proof of Proposition 2.4. For this proof we will use complex coordinates on the plane.
Let us consider the situation for light directions θ ∈ [0, π/4] first. For those angles the
Eaton lens configurations are periodic with respect to the lattice � := Z4i ⊕Z(4 + 2i).
Therefore it is enough to show that Eaton lenses centered inside the strip S = {z ∈
C; |�z| ≤ 2} are pairwise disjoint and do not leave the strip, i.e. do not cross the
boundary of the strip.

Modulo the action of � there are three Eaton lenses on γW (θ). The first one L0(θ)

has radius r0(θ) = 2 sin θ and is centered at the origin. Then there is a pair of lenses
denoted by L±(θ) centered at c±(θ) = ±(1+ i(1+tan θ)), both of radius r±(θ) = cos θ ,
see Fig. 2. Since the radius of the Eaton lenses L±(θ) is less then 1 and the radius of
L0(θ) is bounded by 2, the lenses in the � orbit of any one of those three Eaton lenses
are pairwise disjoint. For the same reason the Z4i orbit of all three Eaton lenses lies in
the strip S.

The line in direction θ through the point i contains the center of L+(θ) since its slope
is tan θ . The distance of that line to its parallel through the origin, denoted by t±(θ),
is cos θ , equaling the radius of L+(θ). So the lines t±(θ) and t±(θ) + 2i are tangent to
L+(θ). Then by central symmetry the lines t±(θ) and t±(θ)− 2i are tangents to L−(θ).
It follows that L+(θ) + 4ni lies between the lines t±(θ) + 4ni and t±(θ) + (4n + 2)i
and L−(θ) + 4ni lies between the lines t±(θ) + (4n − 2)i and t±(θ) + 4ni for every
n ∈ Z. Therefore, no pair of Eaton lenses in the Z4i orbits of L±(θ) intersect. Since
the Z(4 + 2i) translates of S cover the whole plane, intersecting only in their boundary
lines, we conclude that no pair of Eaton lenses in the � orbits of L±(θ) intersect.

Since L0(θ), the lens in the origin, has radius 2 sin θ the line in direction θ through 2,
denoted by t0(θ), is tangent to it. By reflection symmetry with respect to the horizontal
axis, the line through 2 in direction π − θ is also a tangent to L0(θ). Let us denote this
(tangent-)line by t0(θ), we shall see it is also tangent to L+(θ). Indeed, the reflection of
t0(θ) with respect to the vertical through the center of L+(θ) is the tangent t±(θ). Since
the centers of L+(θ) and L0(θ) lie on different sides of their common tangent t0(θ)

these lenses do not intersect. By central symmetry the same is true for L−(θ) and L0(θ).
Since all three lenses L±(θ) and L0(θ) in the parallelogram in S bounded by t±(θ)± 2i
are disjoint and these parallelograms have a (modulo boundary) disjoint � orbit, we
conclude that the lens distribution given by γW (θ) is disjoint for all θ ∈ [0, π/4].

For the same interval of angles the geodesic flow (g
γW (θ),θ
t )t∈R is measure equivalent

to direction θ dynamics defined by the surface X̃3. First the results of “Appendix A”
imply, that for given θ ∈ [0, π/4] the ergodicity of the geodesic flow is equivalent to the
ergodicity of the measured foliation defined by the slit-fold distribution obtained from
the flat lens representation of Eaton lenses. That is, for given θ ∈ [0, π/4] we replace
every Eaton lens by a slit-fold centered at the lens’ center, perpendicular to θ and with
length equal to the diameter of the lens. In fact modulo � we obtain the slit-folds

S±(θ) := ±〉1 + cos θ sin θ + i(1 + tan θ − cos2 θ),

1− cos θ sin θ + i(1 + tan θ + cos2 θ)〈
through the centers of L±(θ) and

S0(θ) := 〉 − 2 sin2 θ + 2i sin θ cos θ, 2 sin2 θ − 2i sin θ cos θ〈
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Fig. 11. Transitions from Eaton lenses to the Wollmilchsau skeleton

through the origin, see Fig. 11. The endpoints of the slit-fold S+(θ) lie on the lines (and
direction θ foliation leaves) t±(θ) and t±(θ) + 2i . That means we can perform a railed
deformation of S+(θ) along those leaves terminating in the slit-fold 〉0, 2i〈. By central
symmetry there is a railed deformation of S−(θ) to the slit-fold 〉0,−2i〈. The end points
of the slit-fold S0(θ) are located on direction θ foliation leaves through the point ±2,
so S0(θ) has a railed deformation to the slit-fold 〉 − 2, 2〈. But that means the skeleton
S+ ∪ S− ∪ S0 is Whitehead equivalent to the skeleton 〉 − 2, 2〈 ∪ 〉0, 2i〈 ∪ 〉0,−2i〈.
The � orbit of the latter is the Wollmilchsau skeleton in the plane, showing the claim
on equivalence of ergodicity for angles θ ∈ [0, π/4].

The strategy we have just used to replace an Eaton lens with a slit-fold is the same for
every angle. Let us describe this process for the slit-folds in the Wollmilchsau skeleton:
For a fixed direction θ ∈ R/πZ a slit-fold, say S, replaces an Eaton lens, say L , if the
two lines in direction θ through the endpoints of S are tangent to L . Step by step, the
flat lens equivalent to L is in the quadratic differential interpretation the slit-fold SL
perpendicular to the direction θ with diameter and center matching those of L . In that
case, the endpoints of SL lie on the two said tangents to L and therefore there is a railed
deformation of SL to S. If, as in our case, more than one slit-fold is involved it must be
checked that the tangent segments between S and SL do not cross another slit-fold. This
is illustrated in Fig. 11 for an angle θ ∈ [0, π/4] (left) and for an angle θ ∈ [π/4, π/2]
(right). This same strategy is applied for the angles θ ∈ [π/4, π/2] below. The tangent
lines necessary to show equivalence to the Wollmilchsau skeleton are also needed to
show admissibility.

For the angles θ ∈ [π/4, π/2] the lattice of translation depends on the angle. In fact
�θ := Z4i + Z(2l(θ) + 2i), where l(θ) = 2 − cot θ(1 − cot θ). While L0(θ) is still
centered at the origin, nowwith radius r0(θ) = l(θ) sin θ = 1

sin θ
+sin θ−cos θ the other

two lenses L±(θ) as before of radius cos θ are now centered at c±(θ) = ±(cot θ + 2i),
see Fig. 3. In particular the radii of the lenses L±(θ) are bounded by 1 < l(θ) ≤ 2 and
the radius of the lens L0(θ) is bounded by l(θ) ≤ 2. Because the generators of the lattice
�θ move each lens by at least twice their diameter there are no pairwise intersections
possible among the lenses in one �θ orbit. Moreover the Z4i orbit of L−(θ) lies on the
left of the vertical through the origin while the Z4i orbit of L+(θ) lies on the right of
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that line. As 0 ≤ cot θ ≤ 1 we have

cot θ + cos θ ≤ 2 cot θ ≤ 2− cot θ(1− cot θ) = l(θ).

Moreover, r0(θ) = l(θ) sin θ ≤ l(θ). It follows that the Z4i orbits of L±(θ) and L0(θ)

are contained in the strip S = {z ∈ C; |�z| ≤ l(θ)}. Since the Z(2l(θ) + 2i) translates
of S cover the whole plane, intersecting only in their boundary lines, we conclude that
no pair of Eaton lenses in the �θ orbits of L±(θ) intersect.

Restricted to the Z4i orbit the lens configuration have for all θ ∈ [π/4, π/2] reflec-
tion symmetries around the coordinate axes. More precisely the Z4i orbit of each lens
is invariant under the reflection at the horizontal while the Z4i orbits of L±(θ) are inter-
changed by reflection at the vertical. Given these symmetries, all that remains to be seen
is that L0(θ) does not intersect with L+(θ). To do this we find a common tangent to
L0(θ) and L+(θ) that separates them. Let us consider the tangent line s(θ) to L0(θ) at
the intersection point of its boundary with the half-line t0(θ) in direction θ through the
origin. The direction of s(θ) is π/2 − θ . The half-line t0(θ) + i in direction θ through
the point i intersects perpendicularly s(θ) and goes through the center of L+(θ). By ele-
mentary geometry, see also Fig. 3, the distance from i to the center of L+(θ) is (sin θ)−1.
The leg of the right triangle with hypothenuse the segment from 0 to i lying on t0(θ)

has length sin θ . So the intersection point of s(θ) with t0(θ) + i must be at distance
r0(θ) − sin θ = 1

sin θ
− cos θ from i . But then it has distance cos θ from the center of

L+(θ) and so the tangent s(θ) to L0(θ) is also tangent to L+(θ).
To show admissibility for one of the remaining angles, say θ ∈ [π/2, π ], notice that

L±(θ) are the lenses L±(π−θ) reflected at the vertical through the origin. We also have
L0(θ) = L0(π−θ) and the lattice of translations has the same symmetry�θ = �π−θ . So
the �θ orbits of these (reflected) lenses match the distribution given in the introduction.
Since for θ = π/2 the lenses L±(θ) are located on the vertical coordinate axis, this
continuation of γW is continuous at π/2. Moreover globally the lens distribution for
θ ∈ [π/2, π ] equals the one for π − θ reflected at the vertical coordinate axis. Since
a reflection is an isometry, it preserves admissibility of lens distributions. Finally the
Eaton lens configuration at θ = π matches that at θ = 0, since γW (π) + 2i = γW (0).
��

In particular the proof of Proposition 2.4 shows that the Wollmilchsau differential is
a maximal Eaton differential. This, together with the fact that the Wollmilchsau differ-
ential appears as a cyclic pillow case cover branched over exactly three points, shows
Theorem 2.3.

3. Quadratic Differentials on Tori in the Determinant Locus

3.1. Quadratic and Abelian differentials. In this article quadratic differentials are the
fundamental objects. They appear in various presentations, analytical, polygonal and
geometrical. All of those play important roles in different parts of our text.

Consider a Riemann surface X , i.e. a one dimensional complex manifold, not neces-
sarily compact, and a quadratic differential q on X with poles of order at most one. A
quadratic differential is a tensor that can locally be written as f (z) dz2 = f (z) dz⊗ dz,
where f is a meromorphic function with poles of order at most one. Away from the
poles and zeros of f one may use q to define natural coordinates on X

ζ =
∫ z

z0

√
f (z) dz =

∫ z

z0

√
q.
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If ζ1 and ζ2 are local coordinates, then dζ1 = √
f (z) dz = ±dζ2 in the intersection of the

coordinate patches, so ζ1 = ±ζ2 + c for some c ∈ C. That way the pair (X, q) defines
a maximal atlas made of natural coordinates and is therefore called half-translation
surface. The maximal atlas is also called half-translation structure. The coordinate
changes for any two charts from a half-translation structure are translations combined
with half-turns (180 degree rotations) and this motivates the name half-translation sur-
face. Similarly to a quadratic differential it is possible to consider an Abelian differential
(holomorphic 1-form) ω on X . If 	 ⊂ X denotes the set of zeros of ω, as for quadratic
differentials, away from 	 Abelian differential defines natural coordinates on X

ζ =
∫ z

z0
ω.

If ζ1 and ζ2 are local coordinates and their coordinate patches intersect then ζ1 = ζ2 + c
for some c ∈ C. So the pair (X, ω) defines a maximal atlas made of natural coordinates
and is called translation surface. Here the maximal atlas is called translation structure.

Objects on the plane that are invariant under translations pull back via natural charts
to X and glue together to give global objects on the translation surface (X, ω). Among
those objects are the euclideanmetric, the differential dz, and constant vector fields in any
given direction. In fact, the pull back of the differential dz recovers ω on the translation
surface (X, ω). Similarly objects on the plane that are invariant under translations and
half-turns define global objects on the half-translation surface (X, q). Here objects of
interest are again the euclidean metric, the quadratic differential dz2 (recovering q), and
any direction foliation by (non-oriented) parallel lines. Since there is one line foliation
on C for each angle θ ∈ R/πZ that is tangent to ± exp iθ , we denote its pullback to X
byFθ (q), orFθ if there is no confusion about the quadratic differential. For a translation
surface, say (X, ω), the constant unit vector field on C in direction θ ∈ R/2πZ defines
a directional unit vector field Vθ = V ω

θ on X \ 	. Then the corresponding directional

flow (ϕθ
t )t∈R = (ϕ

ω,θ
t )t∈R (also known as translation flow) on X \ 	 preserves the

area measure μω given by μω(A) = 1
2 |
∫

A ω ∧ ω|. If the surface X is compact then the
measureμω is finite.Wewill use the notation (ϕv

t )t∈R for the vertical flow (corresponding
to θ = π

2 ) and (ϕh
t )t∈R for the horizontal flow respectively (θ = 0).

For every half-translation surface (X, q) there exists a unique double cover πo :
(X̂ , q̂) → (X, q), the orientation cover, characterized by the property that it is branched
precisely over all singular points with odd order. The pull-back q̂ = π∗

o q is the square
q̂ = ω2 of an abelian differential ω ∈ 
(X). If M = X̂ then the translation surface
(M, ω) is called also the orientation cover of the half-translation surface (X, q). The
pull-back F̂θ of any direction foliation Fθ is orientable. This foliation coincides with
the foliations determined by the directional flows (ϕθ

t )t∈R and (ϕθ+π
t )t∈R on (M, ω).

Suppose that q is not the square of an abelian differential on X . Then its orientation
cover (M, ω) is connected. We call the foliation Fθ on (X, q) ergodic if the translation
flow (ϕθ

t )t∈R on M is ergodic with respect to the measure μω.

Particular representations of half-translation structures. The quadratic differential
(dz)2 on C is invariant under translations and rotations of 180 degrees, that group
generated by those isometries are in the group of half-translations. Invariance of (dz)2

under that group results in a variety of possible constructions of quadratic differentials,
or equivalently half-translation surfaces.
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Most notably a (compact) polygon in C all of whose edges appear in parallel pairs,
together with an prescribed identification of edge pairs by half-translations. It is known,
that any quadratic differential on a compact surface can be represented by such a polygon.
A second way is to take suitable quotients of C under certain discrete groups of half-
translations. Here any torus C/� with a lattice � of translations is an example. Our way
to built quadratic differentials in the plane C ∼= R

2 and on a torus is by successively
adding (non-intersecting) slit-folds. Since the identifications of the edges of a slit-fold
are half-translations it defines a canonical new quadratic differential on the surface with
the slit-fold. One important property of slit-folds is, that they do not change the genus of
the half-translation surface to which they are added. There are other types of “folds” with
this property. Examples are shown in “Appendix B”. They are helpful in the construction
of other ergodic curves.

3.2. Cyclic covers of pillowcases. In this sectionwe classify those quadratic differentials
on tori that arise as pullbacks of the pillowcase along a covering map (cyclic covers)
which is unbranched over one point. Two of those examples are quotients of the well
known Ornithorynque and Eierlegende Wollmilchsau under an involution.

Given a Riemann surface X and a finite subset 	∗ ⊂ X it is well known that the
elements of ξ ∈ H1(X, 	∗;G), G an abelian group, define a regular cover π : Xξ → X
over X\	∗ branched over 	∗ ⊂ X with deck transformation group G. To describe
this cover formally first denote by 〈 · , · 〉 : H1(X, 	∗;G) × H1(X \ 	∗;G) → G the
algebraic intersection form. If σ : [t0, t1] → X is a closed curve in X and σξ : [t0, t1] →
Xξ is any of its lifts to Xξ then σξ (t1) = 〈ξ, [σ ]〉 ·σξ (t0), where · denotes the deck group
action of G on Xξ .

Let us look at the pillowcase P with underlying space X = CP
1 and take 	 ⊂ CP

1

to be the pillowcases four singular points. We are looking for pillowcase covers with
at most three branch points. That means such a cover is unbranched over at least one
singular point of the pillowcase. Then the result of Hubert and Grivaux [20] implies that
the cover is in the determinant locus. We now construct those covers.

3.3. Differentials in the determinant locus. Take the pillowcase X = P with named
singular points p1, p2, p3, p4 = pF ∈ P put in clockwise order starting from the upper
left. We assume the point pF is fixed under all automorphisms (and affine maps) of P .
We further assume all branching of covers is restricted to the set 	∗ = {p1, p2, p3}.

Let γ12, γ23 be generators in H1(P, {p1, p2, p3};Z/dZ) so that γ12 is the class of
the oriented horizontal path joining p1 and p2 and γ23 is the class of the oriented vertical
path joining p2 and p3. Let γh, γv be generators in H1(P \ {p1, p2, p3};Z/dZ) such
that γh is the class the horizontal (right oriented) simple loop and γv is the class of the
simple loop around p1 with counterclockwise orientation. Then

〈γ12, γv〉 = 〈γ23, γh〉 = 1 and 〈γ12, γh〉 = 〈γ23, γv〉 = 0.

Let us consider any cyclic degree d coverPξ ofP branched over	∗ which is defined
by a homology class ξ = whγ12 + wvγ23 ∈ H1(X, 	∗;Z/dZ). Here

wh = 〈ξ, γv〉 ∈ Z/dZ and wv = 〈ξ, γh〉 ∈ Z/dZ

are called weights of the cover Pξ → P . Therefore the cover is determined by the triple
(d, wh, wv) ∈ N × Z/dZ × Z/dZ and we will denote it by Xd(wh, wv) → P . The
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cover Xd(wh, wv) is connected iff gcd(d, wh, wv) = 1. The cover defined by those
data has a straightforward geometric realization. Namely, cut the pillowcase along the
three line segments joining: p1 with p2, p2 with p3 and p3 with pF . The resulting
surface is isometric to a rectangle of width 2 and height 1 in the complex plane. Let
us denote this polygonal presentation of X with cuts by Xc and take d labeled copies
Xc × {1, . . . , d} = Xc

1 � · · · � Xc
d . Now identify the vertical right edge of Xc

i with the
vertical left edge Xc

i+wv mod d by a translation. Then identify the right half of the upper
horizontal edge of Xc

i with the left half of the upper horizontal edge of X
c
i+wh mod d using

a half turn and identify the right half of the lower horizontal edge of Xc
i with the left

half of the lower horizontal edge of Xc
i using a half turn. This determines Xd(wh, wv)

because of the covers cyclic nature. By eventually renaming the decks we may assume
thatwv = gcd(wv, d) divides d. Indeed, if A : Z/dZ → Z/dZ is a group automorphism
then using A to rename the decks we obtain Xd(wh, wv) ∼= Xd(Awh, Awv). If wv =
gcd(wv, d)l then let A be the multiplication by l on Z/d. Since gcd(l, d) = 1, A is an
automorphism for which A(gcd(wv, d)) = wv . Then after renaming the decks using
the inverse automorphism A−1 we obtain Xd(wh, wv) ∼= Xd(A−1wh, gcd(wv, d)). See
[5,12] for a more background and applications of cyclic covers.

We now determine those cyclic covers that are torus differentials, i.e. have genus 1.
To calculate the genus of Xd(wh, wv) we note, that the covering has gcd(wh, d) preim-
ages over p1, gcd(|wh − wv|, d) preimages over p2 and wv = gcd(wv, d) preimages
over p3 because it is cyclic. It follows that the respective branching orders are o1 =
d/ gcd(wh, d) at p1, o2 = d/ gcd(|wh−wv|, d) at p2 and o3 = d/ gcd(wv, d) = d/wv

at p3. That means we have an angle excess of (oi − 2)π around any preimage of pi for
i = 1, 2, 3.

Proposition 3.1. The genus gd,wh ,wv of Xd(wh, wv) is given by

gd,wh ,wv − 1 = (d − gcd(wh, d) − gcd(wv, d) − gcd(|wh − wv|, d))/2

= (d − wv − gcd(wh, d) − gcd(|wh − wv|, d))/2.

Proof. Write down the standard formula expressing the Euler characteristic of quadratic
differentials in terms of total angle deficit for singular points and total angle excess for
cone points:

2χ(Xd(wh, wv)) = d + gcd(wh, d)(2− d/ gcd(wh, d))

+ gcd(wv, d)(2− d/ gcd(wv, d)) + gcd(|wh − wv|, d)(2− d/ gcd(|wh − wv|, d))

= 2(−d + gcd(wh, d) + gcd(wv, d) + gcd(|wh − wv|, d)).

The result follows since χ(Xd(w1, w2)) = 2(1− gd,wh ,wv ). ��
By definition the degree of the pillowcase cover πd(wh, wv) : Xd(wh, wv)→P is d.

Proposition 3.2. If Xd(wh, wv) has genus 1, then d ∈ {3, 4, 6}.
Proof. A torus has vanishing Euler characteristic, thus from Proposition 3.1 we directly
derive the condition

d = gcd(wh, d) + gcd(wv, d) + gcd(|wh − wv|, d).

Dividing by d, we see that a torus presents a positive integer solution of the problem

1 = 1

a
+
1

b
+
1

c
,
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where a, b, c represent the natural numbers d/ gcd(wh, d), d/ gcd(wv, d), d/ gcd(|wh−
wv|, d). Without restriction of generality we may assume that any solution fulfills c ≥
b ≥ a > 0. It follows that 2 ≤ a ≤ 3.

If a = 2 then 1/b + 1/c = 1/2 which gives b ≤ 4. Therefore we obtain two
possibilities (b, c) = (3, 6) or (4, 4).

If a = 3 then 1/b + 1/c = 2/3 with c ≥ b ≥ 3. It leads to (b, c) = (3, 3). It follows
that we get only (3, 3, 3), (2, 4, 4), (2, 3, 6) as solutions. Since

gcd
(
gcd(wh, d), gcd(wv, d), gcd(|wh − wv|, d)

) = 1,

we obtain lcm(a, b, c) = d. It follows that d = 3, 4, 6 respectively. ��

3.4. Branched pillow case covers that are torus differentials. In spite of Proposition 3.2
all we need to do to exhaust the list of possible torus covers is to go over a short list of
possible cases. Because pF is assumed to be fixed the pillowcase has no automorphisms.
For d = 3, 4 and 6we need to find theweights 1 ≤ wv,wh < d with gcd(wh, wv, d) = 1
satisfying the condition

wv|d and d = gcd(wh, d) + wv + gcd(|wh − wv|, d).

The weights cannot be 0 or d, because the cover must be branched over all three points
p1, p2 and p3 to give a surface of genus larger than zero, the genus of the pillowcase.
Thus without loss of generality we can pick the weights wh, wv from {1, . . . , d − 1}.
For d = 6 we obtain the following weight pairs fulfilling the conditions:

(wh, wv) ∈ {(1, 3), (3, 1), (3, 2), (2, 3), (4, 1), (4, 3), (5, 2), (5, 3)}
The weights tell us the number of deck changes that occur when we (positively) cross
over either homology class (generator). By renaming the decks so that deck k becomes
deck d − k we obtain the cover Xd(d − wh, d − wv) from Xd(wh, wv). Thus those
are isomorphic, in particular for d = 6 we have X6(1, 3) ∼= X6(5, 3) and X6(2, 3) ∼=
X6(4, 3). For d = 3 and d = 4 the same line of arguments applies and leads to the
following list of covers:

Torus differentials of degree d = 3, 4 and 6

Degree d wh wv # π−1(p1) # π−1(p2) # π−1(p3) Surface

3 2 1 1 1 1 X3(2, 1)
4 2 1 2 1 1 X4(2, 1)

3 1 1 2 1 X4(3, 1)
3 2 1 1 2 X4(3, 2)

6 3 1 3 2 1 X6(3, 1)
3 2 3 1 2 X6(3, 2)
4 1 2 3 1 X6(4, 1)
4 3 2 1 3 X6(4, 3)
5 2 1 3 2 X6(5, 2)
5 3 1 2 3 X6(5, 3)

The group SL2(R) acts real linearly on the plane and defines a map on half-translation
surfaces by post composition with local coordinates. Alternatively one may take a poly-
gon representation of the surface and apply a matrix A ∈ SL2(R), viewed as linear map
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of R
2, to it. The edges of the polygon are then identified exactly as before the deforma-

tion. That defines an action of SL2(R) on surfaces with quadratic differential. Denote
by A · X the deformation of X by A ∈ SL2(R).

Let Xξ → X be the G-cover with branching in 	∗ ⊂ X determined by
ξ ∈ H1(X, 	∗;G). Then the deformation A · Xξ is a branched cover determined by
A∗ξ ∈ H1(A · X, 	∗;G).

The pillowcase is stabilized by all elements of SL2(Z), as one can easily check on
the two (parabolic) generators Ph := [

1 1
0 1

] ∈ SL2(Z) and Pv := [
1 0
1 1

] ∈ SL2(Z).
Stabilized means the original pillowcase can be obtained from the deformed pillowcase
by successively cutting off polygons, translating and if needed rotating them to another
boundary in tune with the edge identification rules of the pillowcase.

Let us consider any cover Xd(wh, wv) = Pξ (with ξ = whγ12 + wvγ23) and A ∈
SL2(Z). Since A · P = P , we have

A · Xd(wh, wv) = A · (Pξ

) = (
A · P)A∗ξ = PA∗ξ = Xd(〈A∗ξ, γv〉, 〈A∗ξ, γh〉)

and 〈A∗ξ, γh〉 = 〈ξ, A−1∗ γh〉, 〈A∗ξ, γv〉 = 〈ξ, A−1∗ γv〉. Moreover for the parabolic
generators Ph and Pv we have

(P−1
h )∗γh = γh, (P−1

h )∗γv = γh − γv, (P−1
v )∗γv = γv, (P−1

v )∗γh = γv − γh,

and hence

〈ξ, (P−1
h )∗γv〉 = 〈whγ12 + wvγ23, γh − γv〉 = wv − wh,

〈ξ, (P−1
h )∗γh〉 = 〈whγ12 + wvγ23, γh〉 = wv,

〈ξ, (P−1
v )∗γv〉 = 〈whγ12 + wvγ23, γv〉 = wh,

〈ξ, (P−1
v )∗γh〉 = 〈whγ12 + wvγ23, γv − γh〉 = wh − wv.

This yields the action of parabolic matrices on degree d pillowcase covers:

Ph · Xd(wh, wv) = Xd(wv − wh, wv) and Pv · Xd(wh, wv) = Xd(wh, wh − wv).

Since the group of maps generated by two involutions (x, y) 	→ (x, y−x) and (x, y) 	→
(y − x, y) has exactly 6 elements, so we obtain the following:

Proposition 3.3. The SL2(Z) orbit of a pillowcase cover is given by

SL2(Z) · Xd(wh, wv) =
{
Xd(wh, wv), Xd(wh, wh − wv), Xd(wv − wh, wv),

Xd(−wv,wh − wv), Xd(wv − wh,−wh), Xd(−wv,−wh)
}
.

Note, that for low degree this orbit is even smaller: The orbits of degree three and four
covers contain less than six tori. As can be easily seen from the proposition, compare the
table of surfaces, that the relevant torus differentials of fixed degree lie on one SL2(Z)

orbit.
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Fig. 12. The Ornithorynque as orientation cover of X3(2, 1)

Fig. 13. The Eierlegende Wollmilchsau as orientation cover of X4(2, 1)

Fig. 14. The orientation cover of X6(3, 1)

Orientation covers of some pillow case covers. We consider the orientation covers
Xd(2, 1), for d = 3, 4 and Xd(3, 1) for d = 6 drawn on Fig. 7. Recall that the orienta-
tion cover (X̂ , ω2) → (X, q) of a quadratic differential (X, q) is uniquely characterized
as the degree two cover, branched precisely over the cone points having an odd total
angle (in multiples of π ). There is a sheet exchanging involution ρ on X̂ that has the
preimages of the odd cone points as fixed-points. The involution is locally a rotation
by π , eventually followed by a translation. Using this one may construct orientation
covers given a polygonal representation. One considers two copies of the polygon and
whenever two edges were identified by a rotation on the original polygon, one identifies
any of those two edges as before but now to the corresponding edge of the other copy.
Turning any one copy by 180 degrees the new identifications become translations and
we have a translation surface. For the surfaces at hand this procedure is reflected in the
following Figs. 12, 13 and 14. The first two are splendid specimens in the zoo of square
tiled surfaces. If the notation square tiled did not immediately give it away, a look at
the figures will explain the idea of a square tiled surface. In fact, X̂3(2, 1) ∼= X̂2 is
the is known as the Ornithorynque and X̂4(2, 1) ∼= X̂3 is the Eierlegende Wollmilch-
sau already mentioned in the introduction. Both names reflect that the surfaces carry
an abundance of rather exceptional properties, for one all of them have all vanishing
Lyapunov exponents. To our best knowledge the orientation cover of X6(3, 1) is not a
well studied square tiled surface. On the other hand, we are not able to provide a direct
reason to motivate such research.
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4. Ergodicity of Translation Flows and Measured Foliations on Infinite Covers

In this sectionwe prove a useful criterion on ergodicity for translation flows onZ
d -covers

(see Theorem 4.6). The key Theorem 1.6 follows directly from this criterion.
For relevant background material concerning IETs and their relations to translation

surfaces, we refer the reader to [11,26,29–31].

4.1. Z
d covers. Let X̃ be a labeled unbranchedZ

d -cover of a compact connected surface
X and let p : X̃ → X be the covering map, i.e. there exists a properly discontinuous
Z
d -action on X̃ such that X̃/Z

d is homeomorphic to X . Then p : X̃ → X is the
composition of the natural projection X̃ → X̃/Z

d and the homeomorphism. Denote by
〈 · , · 〉 : H1(X, Z)×H1(X, Z) → Z the algebraic intersection form. Then any Z

d -cover
X̃ is determined by a d-tuple γ = (γ1, . . . , γd) ∈ H1(X, Z)d of independent homology
classes, so that if σ : [t0, t1] → X is a closed curve in X and σ̃ : [t0, t1] → X̃ is any its
lift to X̃ then

σ̃ (t1) = 〈γ, [σ ]〉 · σ̃ (t0),

where

〈γ, [σ ]〉 = (〈γ1, [σ ]〉, . . . , 〈γd , [σ ]〉) ∈ Z
d ([σ ] ∈ H1(X, Z))

and · denotes the action of Z
d on X̃ . The Z

d -cover corresponding to γ will be denoted
by X̃γ .

Remark 4.1. Note that the surface X̃γ is connected if and only if the group homomor-
phism H1(X, Z) � ξ 	→ 〈γ, ξ 〉 ∈ Z

d is surjective.

If q is a quadratic differential on X then the pull-back p∗(q) of q by p is also a
quadratic differential on X̃γ and will be denoted by q̃γ . For any θ ∈ R/πZ we denote
by F̃θ = F̃γ

θ the corresponding measurable foliation on (X̃γ , q̃γ ).
If (M, ω) is a compact translation surface and γ ∈ H1(M, Z)d is a d-tuple then the

translation flow on the Z
d -cover (M̃γ , ω̃γ ) in direction θ is denoted by (ϕ̃θ

t )t∈R.
Let (X, q) be a connected half-translation surface and denote by (M, ω) its orientation

cover which is a translation surface. Then there exist a branched covering map π : M →
X such that π∗(q) = ω2 and an idempotent σ : X → X such that π ◦ σ = π and
σ ∗(ω) = −ω.

The space H1(M, R) has an orthogonal (symplectic) splitting into spaces H+
1 (M, R)

and H−
1 (M, R) of σ∗-invariant and σ∗-anti-invariant homology classes, respectively.

Moreover, the subspace H+
1 (M, R) is canonically isomorphic to H1(X, R) via the map

π∗ : H+
1 (M, R) → H1(X, R), so we identify both spaces.

Remark 4.2. Suppose that (X, q) is a compact connected half-translation surface and q
is not the square of an abelian differential. Let γ ∈ (H1(X, Z))d be a d-tuple such that
the Z

d -cover X̃γ is connected. Because the cover is unbranched, the lifted quadratic
differential q̃γ is not the square of an abelian differential as well.

Since H+
1 (M, Z) and H1(X, Z) are identified, we can treat γ as a d-tuple in

(H+
1 (M, Z))d . Let us consider the corresponding Z

d -cover M̃γ . Then the maps π :
M → X and σ : M → M can be lifted to a branched covering map π̃ : M̃γ → X̃γ

and an involution σ̃ : M̃γ → M̃γ so that π̃ ◦ σ̃ = π̃ . Then π̃ establishes an orientation
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cover (M̃γ , ω̃γ ) of the half-translation surface (X̃γ , q̃γ ). Since the quadratic differential
q̃γ is not the square of an abelian differential, for every θ ∈ R/2πZ the ergodicity of
the measured foliation F̃θ of (X̃γ , q̃γ ) is equivalent to the ergodicity of the translation
flow (ϕ̃θ

t )t∈R on (M̃γ , ω̃γ ). Note, that the measure μω̃γ is an infinite Radon measure.

4.2. The Teichmüller flow and the Kontsevich–Zorich cocycle. Given a connected com-
pact oriented surface M of genus g, denote by Diff+(M) the group of orientation-
preserving homeomorphisms of M . Denote by Diff+0(M) the subgroup of ele-
ments Diff+(M) which are isotopic to the identity. Let us denote by �(M) :=
Diff+(M)/Diff+0(M) the mapping-class group. We will denote by T (M) (respectively
T1(M) ) the Teichmüller space of Abelian differentials (respectively of unit area Abelian
differentials), that is the space of orbits of the natural action of Diff+0(M) on the space of
allAbelian differentials onM (respectively, the oneswith total areaμω(M) = 1).Wewill
denote byM(M) (M1(M)) themoduli space of (unit area) Abelian differentials, that is
the space of orbits of the natural action of Diff+(M) on the space of (unit area) Abelian
differentials on M . Thus M(M) = T (M)/�(M) and M1(M) = T1(M)/�(M).

The moduli space M(M) is stratified according to the number and multiplicity of
the holomorphic one-forms zeros and the SL(2, R)-action respects this stratification.
Define the stratumM(κ1, . . . , κs) as the collection of translations surfaces (M, ω) such
ω has s zeros and the multiplicity of the zeros of ω is given by (κ1, . . . , κs). Then
κ1 + · · · + κs = 2g − 2.

Denote byQ(X) the moduli space of half-translation surfaces which is also naturally
stratified by the number and the types of singularities. We denote by Q(κ1, . . . , κs) the
stratum of quadratic differentials (X, q) which are not the squares of Abelian differen-
tials, and which have s singularities and their orders are (κ1, . . . , κs), where κi ≥ −1.
Then κ1 + · · · + κs = 4gX − 4, where gX is the genus of X .

The group SL(2, R) acts naturally on T1(M) andM1(M) as follows. Given a transla-
tion structureω, consider the charts given by local primitives of the holomorphic 1-form.
The new charts defined by postcomposition of these charts with an element of SL(2, R)

yield a new complex structure and a new differential that is Abelian with respect to
this new complex structure, thus a new translation structure. We denote by g · ω the
translation structure on M obtained acting by g ∈ SL(2, R) on a translation structure ω

on M .
The Teichmüller flow (gt )t∈R is the restriction of this action to the diagonal sub-

group (diag(et , e−t ))t∈R of SL(2, R) on T1(M) andM1(M). We will deal also with the
rotations (rθ )θ∈R/2πZ that acts on T1(M) and M1(M) by rθω = eiθω.

Theorem 4.3 (Theorem 2 in [24]). For every Abelian differential ω on a compact con-
nected surface M for almost all directions θ ∈ R/2πZ the vertical and horizontal flows
on (M, rθω) are uniquely ergodic.

Let us call a θ ∈ R/2πZ for which the assertion of the theorem holdsMasur generic.
The Kontsevich–Zorich (KZ) cocycle (GK Z

t )t∈R is the quotient of the trivial cocycle

gt × Id : T1(M)× H1(M, R) → T1(M)× H1(M, R)

by the action of the mapping-class group �(M). The mapping class group acts on the
fiber H1(M, R) by induced maps. The cocycle (GK Z

t )t∈R acts on the homology vector
bundle

H1(M, R) = (T1(M)× H1(M, R))/�(M)
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over the Teichmüller flow (gt )t∈R on the moduli space M1(M).
Clearly the fibers of the bundle H1(M, R) can be identified with H1(M, R). The

space H1(M, R) is endowedwith the symplectic form given by the algebraic intersection
number. This symplectic structure is preserved by the action of the mapping-class group
and hence is invariant under the action of SL(2, R).

The standard definition ofKZ-cocycle uses the cohomological bundle. The identifica-
tion of the homological and cohomological bundle and the correspondingKZ-cocycles is
established by the Poincaré duality P : H1(M, R) → H1(M, R). This correspondence
allows us to define the so called Hodge norm (see [9] for cohomological bundle) on each
fiber of the bundle H1(M, R). The norm on the fiber H1(M, R) over ω ∈ M1(M) will
be denoted by ‖ · ‖ω.

Let ω ∈ M1(M) and denote by M = SL(2, R)ω the closure of the SL(2, R)-
orbit of ω in M1(M). The celebrated result of Eskin, Mirzakhani and Mohammadi,
proved in [6,7], says that M ⊂ M1(M) is an affine (i.e. an affine subspace in periodic
coordinates) SL(2, R)-invariant immersed submanifold and there is an affine (i.e. the
affine areameasure in periodic coordinates) SL(2, R)-invariant probability measure νM
whose support isM. The above results say in addition, that the measure νM is ergodic
under the action of the Teichmüller flow. It follows, that νM-almost every element ofM
is Birkhoff generic, i.e. the pointwise ergodic theorem holds for the Teichmüller flow
and every continuous integrable function on M. The following recent result is more
refined and yields Birkhoff generic elements among rθω for θ ∈ R/2πZ.

Theorem 4.4 (Theorem 1.1 in [3]). For almost all θ ∈ R/2πZ we have

lim
T→∞

1

T

∫ T

0
φ(gtrθω) dt =

∫

M
φ dνM for every φ ∈ Cc(M1(M)).

All directions θ ∈ R/2πZ for which the assertion of the theorem holds are called
Birkhoff generic.

By Masur’s celebrated criterion [25], Birkhoff genericity implies Masur genericity.
Nevertheless, for the sake of clarity we will treat both separately.

Let V → M be an SL(2, R)-invariant subbundle ofH1(M, R) which is defined and
continuous over M. For every ω ∈ M we denote by Vω its fiber over ω.

Let us consider theKZ-cocycle (GV
t )t∈R restricted toV . ByOseledets’ theorem, there

exists Lyapunov exponents of (GV
t )t∈R with respect to the measure νM. If additionally,

the subbundle V is symplectic, its Lyapunov exponents with respect to the measure νM
are:

λV1 ≥ λV2 ≥ · · · ≥ λVd ≥ −λVd ≥ · · · ≥ −λV2 ≥ −λV1 .

Theorem 4.5 (Theorem 1.4 in [3]). Let λV1 = λ1 > λ2 > · · · > λs−1 > λs = −λV1 be
distinct Lyapunov exponents of (GV

t )t∈R with respect to νM. Then for a.e. θ ∈ R/2πZ

there exists a direct splitting of the fiber Vrθω =⊕s
i=1 U i

rθω such that for every ξ ∈ U i
rθω

we have

lim
t→∞

1

t
log ‖ξ‖gt rθω = λi . (4.1)

Each θ ∈ R/2πZ for which the assertion of the theorem holds is called Oseledets
generic. Then Vrθω has a direct splitting

Vrθω = E+
rθω ⊕ E0

rθω ⊕ E−
rθω
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into unstable, central and stable subspaces

E+
rθω =

{
ξ ∈ Vrθω : lim

t→+∞
1

t
log ‖ξ‖g−t rθω < 0

}
,

E0
rθω =

{
ξ ∈ Vrθω : lim

t→∞
1

t
log ‖ξ‖gt rθω = 0

}
,

E−
rθω =

{
ξ ∈ Vrθω : lim

t→+∞
1

t
log ‖ξ‖gt rθω < 0

}
.

Thedimensions of E+
rθω and E−

rθω are equal to the number of positiveLyapunovexponents

of (GV
t )t∈R.

One of the main objectives of this paper is to prove (in Sect. 4.5) the following
criterion on ergodicity for translation flows on Z

d -covers.

Theorem 4.6. Let (M, ω) be a compact connected translation surface and let M =
SL(2, R)ω. Suppose that V → M is a continuous SL(2, R)-invariant subbundle of
H1(M, R) such that all Lyapunov exponents of the KZ-cocycle (GV

t )t∈R vanish. Then
for every connected Z

d-cover (M̃γ , ω̃γ ) given by a d-tuple γ = (γ1, . . . , γd) ∈ (Vω ∩
H1(M, Z))d the directional flow in direction θ ∈ R/2πZ on the translation surface
(M̃γ , ω̃γ ) is ergodic for a.e. θ .

The following result is a key step of the proof of Theorem 4.6.

Theorem 4.7. Let V → M be a continuous SL(2, R)-invariant subbundle of
H1(M, R). If all Lyapunov exponents of the KZ-cocycle (GV

t )t∈R vanish then ‖ξ‖gω =
‖ξ‖ω for all ξ ∈ Vω and g ∈ SL(2, R).

Proof. The proof follows from two results in [13]. By assumption, V is an SL(2, R)-
invariant subbundle of the central Oseledets bundle E0 (defined νM-a.e. for the bundle
H1(M, R) → M). Therefore, in view of Theorem 3 in [13], V is a subbundle of the
annihilator Ann(BR) of the bilinear form BR. Since the bilinear form BR vanishes on
V , by Lemma 4.1 in [13], the Kontsevich–Zorich cocycle is isometric on V , which
completes the proof. ��

Suppose that (M, ω) is an orientation cover of a compact half-translation surface
(X, q). Then the SL(2, R)-invariant symplectic subspace H+

1 (M, R) determines an
SL(2, R)-invariant symplectic subbundleH+

1 which is defined and continuous overM.
The fibers of this bundle can be identified with the space H+

1 (M, R) = H1(X, R) so the
dimension of each fiber is 2gX , where gX is the genus of X . The Lyapunov exponents of
the bundleH+

1 are called the Lyapunov exponents of the half-translation surface (X, q).
We denote by λtop(q) the largest exponent.

Proof of Theorem 1.6. Theorem 4.6 applied to the subbundle H+
1 together with Rem-

ark 4.2 completes the proof. ��

4.3. Skew product representation. Let θ ∈ R/2πZ be a direction such that the flow
(ϕθ

t )t∈R on (M, ω) is ergodic and has no saddle connections. Let I ⊂ M \ 	 be an
interval transversal to the direction θ with no self-intersections. Then the Poincaré return
map T : I → I is an ergodic interval exchange transformation (IET) which satisfies the
Keane property. Denote by (Iα)α∈A the family of exchanged intervals. For every α ∈ A
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we will denote by ξα = ξα(ω, I ) ∈ H1(M, Z) the homology class of any loop formed
by the segment of orbit for (ϕθ

t )t∈R starting at any x ∈ Int Iα and ending at T x together
with the segment of I that joins T x and x , that we will denote by [T x, x].
Proposition 4.8 (see Lemma 2.1 in [15] for d = 1). For every γ ∈ H1(M, Z)d the
directional flow (ϕ̃θ

t )t∈R on the Z
d-cover (M̃γ , ω̃γ ) has a special representation over

the skew product Tψγ : I × Z
d → I × Z

d of the form Tψγ (x, n) = (T x, n + ψγ (x)),
where ψγ : I → Z

d is a piecewise constant function given by

ψγ (x) = 〈γ, ξα〉 =
(〈γ1, ξα〉, . . . , 〈γd , ξα〉

)
if x ∈ Iα for α ∈ A. (4.2)

In particular, the ergodicity of the flow (ϕ̃θ
t )t∈R on (M̃γ , ω̃γ ) is equivalent to the ergod-

icity of the skew product Tψγ : I × Z
d → I × Z

d .

Since the ergodicity of the flow (ϕ̃θ
t )t∈R is equivalent to the ergodicity of Tψγ , this

will allow us to apply the theory of essential values of cocycles to prove Theorem 4.6
in Sect. 4.5.

4.4. Ergodicity of skew products. In this subsection we recall some general facts about
cocycles. For relevant background material concerning skew products and infinite
measure-preserving dynamical systems, we refer the reader to [1,28].

LetG be a locally compact abelian second countable group.Wedenote by0 its identity
element, by BG its σ -algebra of Borel sets and by mG its Haar measure. Recall that, for
each ergodic automorphism T : (X,B, μ) → (X,B, μ) of a standard Borel probability
space, each measurable function ψ : X → G defines a skew product automorphism Tψ

which preserves the σ -finite measure μ× mG :

Tψ : (X × G,B × BG , μ × mG) → (X × G,B × BG, μ × mG),

Tψ(x, g) = (T x, g + ψ(x)),

Here we use G = Z
d . The function ψ : X → G determines also a cocycle ψ( · ) :

Z × X → G for the automorphism T by the formula

ψ(n)(x) =
{ ∑

0≤ j<n ψ(T j x) if n ≥ 0
−∑n≤ j<0 ψ(T j x) if n < 0.

Then T n
ψ(x, g) = (T nx, g + ψ(n)(x)) for every n ∈ Z.

An element g ∈ G is said to be an essential value of ψ , if for every open neighbour-
hood Vg of g in G and any set B ∈ B, μ(B) > 0, there exists n ∈ Z such that

μ(B ∩ T−n B ∩ {x ∈ X : ψ(n)(x) ∈ Vg}) > 0.

The set of essential values of ψ is denoted by E(ψ).

Proposition 4.9 (see Lemma 3.3 and Corollary 5.4 in [28]). The set of essential values
E(ψ) is a closed subgroup of G and the skew product Tψ is ergodic if and only if
E(ψ) = G.
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Proposition 4.10 (see Corollary 2.8 in [4]). Let (X, d) be a compact metric space, B
the σ–algebra of Borel sets and μ be a probability Borel measure on X. Suppose that
T : (X,B, μ) → (X,B, μ) is an ergodic measure–preserving automorphism and there
exists an increasing sequence of natural numbers (hn)n≥1 and a sequence of Borel sets
(Cn)n≥1 such that

μ(Cn) → α > 0, μ(Cn�T−1Cn) → 0 and sup
x∈Cn

d(x, T hn x) → 0.

If ψ : X → G is a measurable cocycle such that ψ(hn)(x) = g for all x ∈ Cn, then
g ∈ E(ψ).

4.5. Proof of Theorem 4.6. In this section we prove the following result. In view of
Theorems 4.3, 4.4 and 4.7, it proves Theorem 4.6.

Theorem 4.11. Let (M, ω) be a compact connected translation surface and let γ =
(γ1, . . . , γd) ∈ H1(M, Z)d be a d-tuple such that the Z

d-cover M̃γ is connected and
‖γi‖gω = ‖γi‖ω for all 1 ≤ i ≤ d and g ∈ SL(2, R). If a direction π/2− θ ∈ R/2πZ

is Birkhoff and Masur generic for ω then the directional flow in direction θ on (M̃γ , ω̃γ )

is ergodic.

Suppose that the directional flow (ϕθ
t )t∈R on (M, ω) in a direction θ ∈ R/2πZ is

ergodic andminimal. Let I ⊂ M \	 (	 is the set of zeros ofω) be an interval transversal
to the direction θ with no self-intersections. The Poincaré return map T : I → I is a
minimal ergodic IET. Denoted by Iα , α ∈ A the intervals exchanged by T . Let λα(ω, I )
stand for the length of the interval Iα .

Denote by τ : I → R+ the map giving the first return time to I of the flow (ϕθ
t )t∈R.

Then τ is constant on each Iα and we denote by τα = τα(ω, I ) > 0 its value on Iα for
all α ∈ A. Let us further denote by δ(ω, I ) > 0 the maximal number � > 0 for which
the set {ϕθ

t x : t ∈ [0,�), x ∈ I } does not contain any singular point (from 	).
Denote by (ϕ̃θ

t )t∈R the directional flow for a Z
d -cover (M̃γ , ω̃γ ) of (M, ω).

Recall that for every transversal interval I ⊂ M the Poincaré return map T : I → I
of the flow (ϕθ

t )t∈R is an IET exchanging subintervals (Iα)α∈A. Moreover, for every
α ∈ A we denote by ξα(I ) = ξα(ω, I ) ∈ H1(M, Z) the homology class of a trajectory
starting from the interval Iα until the first return to I and closed upwithin the interval. By
Proposition 4.8, the Poincaré return map T̃ of the flow (ϕ̃θ

t )t∈R to p−1(I ) (p : M̃γ → M
the covering map) is isomorphic to the skew product Tψ : I × Z

d → I × Z
d of the

form Tψ(x, n) = (T x, n + ψ(x)), where ψ = ψγ,I : I → Z
d is a piecewise constant

function given by

ψγ,I (x) = 〈γ, ξα(I )〉 = (〈γ1, ξα(I )〉, . . . , 〈γd , ξα(I )〉) if x ∈ Iα for α ∈ A. (4.3)

Suppose that J ⊂ I is a subinterval. Denote by S : J → J the Poincaré return map
to J for the flow (ϕθ

t )t∈R. Then S is also an IET and suppose it exchanges intervals
(Jα)α∈A′ (the set A′ may differ from A by at most two elements). The IET S is the
induced transformation for T on J . Moreover, all elements of Jα have the same first
return time to J for the transformation T . Let us denote this return time by hα ≥ 0 for
all α ∈ A′. Then I is the union of disjoint towers {T j Jα : 0 ≤ j < hα} for α ∈ A′.
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Lemma 4.12. Suppose that 0 ≤ h ≤ min{hα : α ∈ A′} is a number such that for every
0 ≤ j < h the transformation T j restricted to J is continuous. Then for every α ∈ A′
we have

ψ
(hα)
γ,I (x) = 〈γ, ξα(J )〉 and |T hα x − x | ≤ |J | (4.4)

for every x ∈ Cα :=⋃
0≤ j≤h T j Jα .

Proof. The proof goes in two steps. First we show (4.4) for the bases of the towers, i.e.
if x ∈ Jα for some α ∈ A′. Since hα is the first return time of x ∈ Jα to J , both x
and T hα x belong to J , so |T hα x − x | ≤ |J |. As for 0 ≤ j < h the transformation T j

acts on J as a translation, the inequality |T hα x − x | ≤ |J | extends to the whole tower
Cα =⋃

0≤ j≤h T j Jα .

Let ψγ,J : J → Z
d be the cocycle associated to the interval J . Then ψγ,J arises

from ψγ,I by inducing on the interval J ⊂ I . Therefore, for every x ∈ J the value
ψγ,J (x) is the sum of the values of ψγ,I along the T -orbit of x until the first return to
J . Hence

ψγ,J (x) =
∑

0≤ j<hα

ψγ,I (T
j x) = ψ

(hα)
γ,I (x) i f x ∈ Jα.

In view of (4.3) applied to the interval J , we have ψγ,J (x) = 〈γ, ξα(J )〉 for x ∈ Jα , so

ψ
(hα)
γ,I = 〈γ, ξα(J )〉 on Jα .

If x ∈ Cα then x = T j x0 with x0 ∈ Jα and 0 ≤ j ≤ h. Moreover,

ψ
(hα)
γ,I (x) − ψ

(hα)
γ,I (x0) = ψ

(hα)
γ,I (T j x0) − ψ

(hα)
γ,I (x0)

=
j−1∑

i=0

(ψγ,I (T
i T hα x0) − ψγ,I (T

i x0)).

Since x0 and T hα x0 = Sx0 belong to J , by assumption, for all 0 ≤ i < h the points
T i T hα x0 and T i x0 belong to the interval T i J ⊂ Iβ for some β ∈ A. Therefore,

ψγ,I (T
i T hα x0) = ψγ,I (T

i x0) for every 0 ≤ i < j.

It follows that ψ(hα)
γ,I (x) = ψ

(hα)
γ,I (x0) = 〈γ, ξα(J )〉. ��

Lemma 4.13. Let � > 0 be so, that the set {ϕθ
t x : t ∈ [0,�), x ∈ J } does not contain

any singular point. Let h = [�/|τ |], where |τ | = max{τα : α ∈ A}. Then for every
0 ≤ j < h the transformation T j restricted to J is continuous.

Proof. Suppose, contrary to our claim, that T j J contains an end x of some interval Iβ .
Then x = ϕθ

τ( j)(x0)
(x0) for some x0 ∈ J and there is 0 ≤ s < τ(x) such that ϕθ

s x is a

singular point. Therefore, ϕθ
τ( j)(x0)+s

x0 is a singular point and τ ( j)(x0)+s < ( j +1)|τ | ≤
h|τ | ≤ �, contrary to the assumption. ��

The following result follows directly from Lemmas A.3 and A.4 in [14].
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Lemma 4.14. For every (M, ω) there exist positive constants A,C, c > 0 such that
if 0 ∈ R/2πZ is Birkhoff and Masur generic then there exists a sequence of nested
horizontal intervals (Ik)k≥0 in (M, ω) and an increasing divergent sequence of real
numbers (tk)k≥0 such that t0 = 0 and for every k ≥ 0 the corresponding subintervals
of Ik are parameterized with the same set A and

1

c
‖ξ‖gtkω ≤ max

α

∣
∣〈ξα(gtkω, Ik), ξ 〉

∣
∣ ≤ c‖ξ‖gtkω for every ξ ∈ H1(M, R), (4.5)

λα(gtkω, Ik) δ(gtkω, Ik) ≥ A and
1

C
≤ τα(gtkω, Ik) ≤ C for any α ∈ A. (4.6)

Proof of Theorem 4.11. Assume that the total area of (M, ω) is 1. Takingω0 = rπ/2−θω

we have 0 ∈ R/2πZ is Birkhoff and Masur generic for ω0. Since the flow (ϕ̃θ
t )t∈R

on (M̃γ , ω̃γ ) coincides with the vertical flow on (M̃γ , (̃ω0)γ ), we need to prove the
ergodicity of the latter flow.

By Lemma 4.14, there exists a sequence of nested horizontal intervals (Ik)k≥0 in
(M, ω0) and an increasing divergent sequence of real numbers (tk)k≥0 such that (4.5)
and (4.6) hold for k ≥ 0 and t0 = 0.

Let I := I0 and for the flow (ϕ̃v
t )t∈R on (M̃γ , (̃ω0)γ ) denote by T : I → I and

ψ : I → Z
d the corresponding IET and cocycle respectively. For every k ≥ 1 the

Poincaré first return map Tk : Ik → Ik to Ik for the vertical flow (ϕv
t )t∈R on (M, ω0)

is an IET exchanging intervals (Ik)α , α ∈ A whose lengths in (M, ω0) are equal to
e−tkλα(gtkω0, Ik), α ∈ A, resp. In view of (4.6), the length of Ik in (M, ω0) is

|Ik | =
∑

α∈A
e−tkλα(gtkω0, Ik) ≤ Ce−tk

∑

α∈A
λα(gtkω0, Ik)τα(gtkω0, Ik) = Ce−tk .

Moreover, by the definition of δ, the set
{
ϕv
t (x) : t ∈

[
0, etk δ(gtkω0, Ik)

)
, x ∈ Ik

}

does not contain any singular points.
Denote by hkα ≥ 0 the first return time of the interval (Ik)α to Ik for the IET T . Let

hk :=
[
etk δ(gtkω0, Ik)/|τ(ω0, I )|

]
and Ck

α :=
⋃

0≤ j≤hk
T j (Ik)α.

Now Lemmas 4.12 and 4.13 applied to J = Ik and � = etk δ(gtkω0) give

ψ(hkα)(x) = 〈γ, ξα(gtkω0, Ik)〉 and |T hkα x − x | ≤ |Ik | ≤ Ce−tk for x ∈ Ck
α (4.7)

for every k ≥ 1 and α ∈ A. Moreover, by (4.6),

Leb(Ck
α) = (hk + 1)|(Ik)α| ≥ etk δ(gtkω0, Ik)

|τ(ω0, I )| e−tkλα(gtkω0, Ik) ≥ A

|τ(ω0, I )| . (4.8)

By assumption, in view of (4.5), we have

c−1‖γi‖gtkω0 ≤ max
α∈A

‖〈γi , ξα(gtkω0, Ik)〉‖ ≤ c‖γi‖gtkω0 = c‖γi‖ω0 for 1 ≤ i ≤ d.

Therefore for every α ∈ A the sequence {〈γ, ξα(gtkω0, Ik)〉}k≥1 in Z
d is bounded.

Passing to a subsequence, if necessary, we can assume the sequence is constant. In view
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of (4.7) and (4.8), Proposition 4.10 gives 〈γ, ξα(gtkω0, Ik)〉 ∈ E(ψ) for everyα ∈ A and
k ≥ 1. Recall that for every k ≥ 1 the homology classes ξα(gtkω0, Ik), α ∈ A generate
H1(M, Z). As M̃γ is connected, the homomorphism H1(M, Z) � ξ 	→ 〈γ, ξ 〉 ∈ Z

d is
surjective. Therefore, for every k ≥ 1 the vectors 〈γ, ξα(gtkω0, Ik)〉, α ∈ A generate
Z
d . Since E(ψ) is a group and contains all these vectors, we obtain E(ψ) = Z

d , so the
skew product Tψ is ergodic. In view of Proposition 4.8, the vertical flow on (M̃γ , (̃ω0)γ )

is ergodic, which completes the proof. ��

4.6. Some comments on Theorem 4.6. Letω ∈ M1(M) and denote byM = SL(2, R)ω

the closure of the SL(2, R)-orbit of ω in M1(M). Denote by νM the corresponding
affine SL(2, R)-invariant ergodic probability measure supported onM. In view of [6,8],
for any SL(2, R)-invariant symplectic subbundle V defined over M there exists an
SL(2, R)-invariant continuous direct decomposition

V = V1 ⊕ V2 ⊕ . . . ⊕ Vm

such that each subbundle V i is strongly irreducible. Denote by λV i

top the maximal Lya-

punov exponent of the reduced Kontsevich–Zorich cocycle (GV i

t )t∈R with respect to the
measure νM. As a step of the proof of Theorem 1.4 in [3] the authors showed also the
following result:

Theorem 4.15. If ξ ∈ V i
ω is non-zero then for a.e. θ ∈ R/2πZ we have

lim
t→∞

1

|t | log ‖ξ‖gt rθω = λV i

top.

A consequence of this result is the following:

Theorem 4.16. For every ω ∈ M1(M) and ξ ∈ H1(M, R) there exists λ(ω, ξ) ≥ 0
such that

lim
t→∞

1

|t | log ‖ξ‖gt rθω = λ(ω, ξ) for a.e. θ ∈ R/2πZ.

Proof. Let us consider the bundle H1(M, R) defined over M. Then there exists a con-
tinuous SL2(R)-invariant splitting

H1(M, R) = V1 ⊕ V2 ⊕ . . . ⊕ Vm (4.9)

such that each subbundle V i is strongly irreducible. Then ξ =∑m
i=1 ξi where ξi ∈ V i

ω.
Therefore, by Theorem 4.15, for a.e. θ we have

lim
t→∞

1

|t | log ‖ξ‖gt rθω = max{λV i

top : 1 ≤ i ≤ m, ξi �= 0}

which completes the proof. ��
The following result is a direct consequence of Theorem 4.6 and yields some rela-

tionship between the value of the Lyapunov exponent λ(ω, γ ) for γ ∈ H1(M, Z) and
the ergodic properties of translation flows on the Z

d -cover (M̃γ , ω̃γ ).
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Theorem 4.17. Let (M, ω) be a compact translation surface and let γ ∈ H1(M, Z)d be
so, that M̃γ is connected and λ(ω, γi ) = 0 for 1 ≤ i ≤ d. Then (ϕ̃θ

t )t∈R is ergodic for
almost every θ ∈ R/2πZ.

Proof. We present the arguments of the proof only for d = 1. In the higher dimensional
case, the proof runs along similar lines.

Let us consider the SL2(R)-invariant splitting (4.9) into strongly irreducible subbun-
dles and let γ = ∑m

i=1 γi with γi ∈ V i
ω. Since λ(ω, γ ) = 0, by Theorem 4.15, γi �= 0

implies λV i

top = 0. Let

Vγ :=
⊕

{1≤i≤m: γi �=0}
V i .

Then Vγ is a non-zero SL2(R)-invariant subbundle so that γ ∈ Vγ
ω and all Lyapunov

exponents of the restrictedKZ-cocycle (GVγ

t )t∈Rwith respect to themeasure νM vanish.
Then Theorem 4.6 provides the final argument. ��

Finally, we can formulate a conjecture which was stated so far informally in the
translation surface community. It completely describes the relationship between the
value of the Lyapunov exponent and the ergodic properties of translation flows on the
Z-covers on compact surfaces.

Conjecture. Let (M, ω) be a compact translation surface and let (M̃γ , ω̃γ ) be its con-
nected Z-cover given by γ ∈ H1(M, Z). Then

(i) if λ(ω, γ ) = 0 then (ϕ̃θ
t )t∈R is ergodic for almost every θ ∈ R/2πZ;

(ii) if λ(ω, γ ) > 0 then (ϕ̃θ
t )t∈R is non-ergodic for almost every θ ∈ R/2πZ.

The claim (i) is confirmed by Theorem 4.17. The truth of claim (ii) is suggested only
by a much weaker result proved in [15].

Remark 4.18. One can formulate the above conjecture also in the framework of branched
Z-covers, with branching over the zero set 	 of ω ∈ 
1(M). Each such cover is deter-
mined by a relative homology element γ ∈ H1(M, 	, Z) and so the corresponding
Lyapunov exponent λ(ω, γ ) is well defined. However, in this framework even the claim
(i) is not clear. For the Kontsevich–Zorich cocycle acting on the relative homologi-
cal bundle H1(M, 	, R) the key Theorem 4.7 does not hold. More precisely, the K-Z
cocycle can have infinite growth for SL(2, R)-invariant subbundles having zero Lya-
punov exponents. This fact obstructs the applicability of the method to prove ergodicity
presented here.

5. Non-ergodicity and Trapping for Typical Choice of Periodic System of Eaton
Lenses

In this section we present the proof of Theorem 1.2.
Let � ⊂ C be a lattice. For any quadratic differential q on the torus X := C/� we

denote by q̃ the pullback of q by the projection map p : C → C/�. Denote by Fθ and
F̃θ the measured foliations in a direction θ ∈ R/πZ derived from (X, q) and (C, q̃)

respectively. We call the foliation F̃θ trapped, if there exists a vector v ∈ S1 ⊂ C and
a constant C such that every leaf of F̃θ is trapped in an infinite strip of width C parallel
to v. Of course, every trapped foliation is highly non-ergodic.
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Let (M, ω) be the orientation cover of the half-translation torus (X, q) and let π :
M → X be the corresponding branched covering map. Then the space H+

1 (M, R) �
H1(X, R) of vectors invariant under the deck exchange map on homology is a two
dimensional real space. Denote by γ1, γ2 ∈ H1(X, Z) � H+

1 (M, Z) two homology
elements determining theZ

2-covering p : C → X . Sinceγ1, γ2 are linearly independent,
they span the space H1(X, R) � H+

1 (M, R). Let (M̃, ω̃) be theZ
2-cover of (M, ω) given

by the pair (γ1, γ2) ∈ H+
1 (M, Z)2. Denote by pM : M̃ → M the covering map. For

every θ ∈ R/2πZ let M+
θ be the set of points x ∈ M such that the positive semi-orbit

(ϕθ
t (x))t≥0 on (M, ω) is well defined.
Let D ⊂ M̃ be a bounded fundamental domain of the Z

2-cover such that the interior
of D is path-connected and the boundary of D is a finite union of intervals. For every
x ∈ M+

θ and t > 0 define the element σθ
t (x) ∈ H1(M, Z) as the homology class of the

loop formed by the segment of the orbit of x from x to ϕθ
t (x) closed up by the shortest

curve joining ϕθ
t (x) with x that does not cross pM (∂D).

The following result is a more general version of Theorem 3.2 in [17]. Since its proof
runs essentially as in [17], we omit it.

Proposition 5.1. Assume that for a direction θ ∈ R/2πZ there is a non-zero homology
class ξ ∈ H+

1 (M, R) = Rγ1 + Rγ2 and C > 0 such that

|〈σθ
t (x), ξ 〉| ≤ C for every x ∈ M+

θ and t > 0.

If the foliation Fθ has no vertical saddle connection the lifted foliation F̃θ is trapped.

Let M be the closure of the SL(2, R)-orbit of (M, ω) and denote by νM the affine

probability measure onM. Let us consider the restriction (G
H+

1
t )t∈R of the Kontsevich–

Zorich cocycle to the subbundle H+
1(M, R) → M. Recall that a.e. θ ∈ R/2πZ is

Oseledets generic for the subbundle. This implies the existence of the stable subspace
E−
rθω ⊂ H+

1 (M, R) whose dimension is equal to the number of positive Lyapunov

exponents of (G
H+

1
t )t∈R. Moreover, by Theorem 4.4 in [14] we have.

Proposition 5.2. Suppose that π/2 − θ ∈ R/2πZ is a Birkhoff, Oseledets and Masur
(BOM) generic direction for (M, ω). Then for every ξ ∈ E−

rπ/2−θω there exists C > 0

such that |〈σθ
t (x), ξ 〉| ≤ C for all x ∈ M+

θ and t > 0.

Since almost every direction is BOM generic, the previous two results yield the
following criterion.

Proposition 5.3. Suppose that the Lyapunov exponent λtop(q) of (C/�, q) is positive.
Then for a.e. θ ∈ R/πZ the measured foliation F̃θ on (C, q̃) is trapped.

To show the positivity of the Lyapunov exponents we will use Forni’s criterion:

Proposition 5.4 (Theorem 1.6 in [10]). Let (M, ω) be a translation surface of genus g.
LetM be the closure of the SL(2, R)-orbit of (M, ω) and denote by νM the affine proba-
bility measure onM. Suppose that all vertical regular orbits on (M, ω) are periodic and
there are g different periodic orbits O1, . . . ,Og such that M \ {O1, . . . ,Og} is homeo-
morphic to the 2g-holed sphere. Then all Lyapunov exponents of the Kontsevich–Zorich
cocycle with respect to the measure νM are positive.
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Recall that every SL(2, R)-invariant affine measure has a local product structure
in the sense of Definition 1.3 in [10]. By assumption, the vertical foliation on (M, ω)

is completely periodic in the sense of Definition 1.4 in [10]. The existence of periodic
vertical orbitsO1, . . . ,Og such that M \{O1, . . . ,Og} is homeomorphic to the 2g-holed
sphere implies that the vertical foliation is also Lagrangian. Recall Definition 1.4 in [10]:
If (M, ω) admits a completely periodic foliation it is called Lagrangian, if the subspace
of H1(M, R) generated by the regular leaves of the foliation is Lagrangian with respect
to the symplectic structure on H1(M, R) given by the intersection form. Since (M, ω)

belongs to the support of νM (i.e. M), it follows that the measure νM is cuspidal and
Lagrangian in the sense of Definition 1.5 in [10]. Therefore, Proposition 5.4 indeed
directly follows from Theorem 1.6 in [10].

Let � ⊂ C be a lattice and w ∈ � a non-zero vector. Let us fix a unit vector
v ∈ S1 ⊂ C, a k-tuple c = (c1, . . . , ck) of different points on the torus C/� and a k-
tuple r = (r1, . . . , rk) of positive numbers. Denote by qv,c,r the quadratic differential on
the torus C/� arising from the k slit-folds parallel to v, centered at points c1, . . . , ck ∈
C/� with respective radii r1, . . . , rk . If all slit-folds are pairwise disjoint, then qv,c,r ∈
Q((−1)2k, 2k).

For every 1 ≤ j ≤ k denote by S j (w) ⊂ C/� the shadow of the j-th slit in direction
w, i.e. S j (w) = {c j + sv + tw : s ∈ [−r j , r j ], t ∈ [0, 1]}. A quadratic differential qv,c,r
is called separated by the vector w ∈ �, if each shadow S j (w) is a proper cylinder (not
the whole torus or a linear loop) and any two different shadows S j (w), S j ′(w) are either
pairwise disjoint or the centers c j , c j ′ lie on the same linear loop parallel to the vector
w ∈ �.

Lemma 5.5. If qv,c,r is a quadratic differential onC/�which is separated by a non-zero
vector w ∈ � then the Lyapunov exponent λtop(qv,c,r ) is positive.

In fact, we show the stronger result that all Lyapunov exponents of the orientation
cover of the quadratic differential qv,c,r are positive.

Proof. Without loss of generalitywemay assume� = Z
2, sow = (0, 1) and v = (1, 0).

This assumption simplifies the argument. Let us divide the slit centers into N cliques
(1 ≤ N ≤ k). Centers that lie on the same vertical linear loop are in a clique. Denote
by x1, . . . , xN ∈ R/Z the horizontal coordinates of the cliques so that x1 < x2 < · · · <

xN < x1 + 1. We will also need cliques of the corresponding slit-folds; two slit-folds
are in the same clique, if and only if their shadows in the vertical direction intersect, see
Fig. 15.

Suppose that the j-th clique containsm j ≥ 1 slit-folds centered at c j,l := (x j , y j,l) ∈
C/� for 1 ≤ l ≤ m j so that y j,1 < y j,2 < · · · < y j,m j < y j,1 + 1. Then

∑N
j=1m j = k.

Since the quadratic differential is separated by the vertical direction, there are exactly
N vertical linear loops that separate the cliques of slit-folds. For 1 ≤ j ≤ N , denote by
s j a vertical upward-oriented linear loop separating the j-th and ( j + 1)-th cliques of
slit-folds, see Fig. 15.We adopt throughout the periodicity convention that the (N +1)-th
clique is the first one, i.e. xN+1 = x1.

Let (Mv,c,r , ωv,c,r ) be the orientation cover of (C/�, qv,c,r ). Using Forni’s criterion
we will show that all Lyapunov exponents of ωv,c,r are positive. This implies the posi-
tivity of λtop(qv,c,r ). Let π : (Mv,c,r , ωv,c,r ) → (C/�, qv,c,r ) be the natural projection.
Then the holomorphic one form ωv,c,r lies in M(12k) and the genus of Mv,c,r is k + 1.
More geometrically, Mv,c,r is the translation surface made of two copies of a slitted
torus C/� (denoted by T+ – left; and T− – right), where the slits replace the slit-folds
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Fig. 15. The half-translation surface (C/�, qv,c,r ) and its orientation cover (Mv,c,r , ωv,c,r )

on (C/�, qv,c,r ), see Fig. 15. Let σ : Mv,c,r → Mv,c,r be the involution that exchanges
the slitted tori T+ and T− by translation. Finally, each side of any slit on T+ and T− is
glued to its σ -image by a 180 degree rotation. Denote by π−1± : C/� → T± the two
branches of the inverse of π .

Note that all regular vertical orbits on (Mv,c,r , ωv,c,r ) are periodic. We distinguish
k + 2N such orbits:

• for every 1 ≤ j ≤ N let O±
j = π−1± (s j );

• for every 1 ≤ j ≤ N and 1 ≤ l ≤ m j the orbitO j,l is made of two vertical segments:
the first one joins π−1

+ (c j,l) and π−1
+ (c j,l+1) inside T+ and the second one joins

π−1− (c j,l+1) and π−1− (c j,l) inside T− (we adopt the convention that c j,m j+1 = c j,1).

Since π−1
+ (c j,l) = π−1− (c j,l) in Mv,c,r , the above two segments together yield a periodic

orbit O j,l .
From these k + 2N periodic orbits we choose k + 1, so that the surface obtained after

removing the distinguished k + 1 orbits from Mv,c,r is homeomorphic to the 2(k + 1)-
punctured sphere. The choice of the periodic orbits depends on the parity of N . At first
let us look at the surface

M := Mv,c,r \
( N⋃

j=1

O+
j ∪

N⋃

j=1

O−
j ∪

N⋃

j=1

m j⋃

l=1

O j,l

)
.

For every 1 ≤ j ≤ N let R±
j be the region ofT± that is bounded by the orbitO±

j and the

union
⋃m j+1

l=1 O j+1,l , see Fig. 15. Similarly, L±j is the region of T± bounded by the orbit

O±
j and the union

⋃m j
l=1O j,l . Then M is the union of 2N connected components and

each such component A±j is the union of L±j ∪ R∓
j−1 for 1 ≤ j ≤ N ; where we adopt the

convention that R±
0 = R±

N . The component A±j is homeomorphic to the m j -punctured

annulus ((m j + 2)–punctured sphere) and its boundary consists of orbits O±
j , O

∓
j−1 and

O j,l for 1 ≤ l ≤ m j , see Fig. 16.
Odd case If N is odd then we take: O+

1 and O j,l for 1 ≤ j ≤ N and 1 ≤ l ≤ m j .
Since

∑N
j=1m j = k, this yields a family of k + 1 vertical periodic orbits. Then the
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Fig. 16. The annulus A+j

surface

M1 := Mv,c,r \
(
O+
1 ∪

N⋃

j=1

m j⋃

l=1

O j,l

)

is made of the punctured annuli A+
j , A

−
j , 1 ≤ j ≤ N glued along the loops O+

j for

2 ≤ j ≤ N and O−
j for 1 ≤ j ≤ N . Each such gluing yields a pattern A+

j ,O
+
j , A

−
j+1

or A−j ,O−
j , A+

j+1; we adopt the convention that A±N+1 = A±1 . Since N is odd, all such
junctures taken together are arranged in the following pattern:

A−2 ,O−
2 , A+

3, . . . , A
−
N−1,O

−
N−1, A

+
N ,O+

N , A−1 ,O−
1 , A+

2 , . . . , A
+
N−1,O

+
N−1, A

−
N ,O−

N , A+
1 .

Since each annulus A±j has m j punctures and appears in the above sequence exactly

once, it follows that M1 is an annulus with 2
∑N

j=1m j = 2k punctures. Therefore, M1
is homeomorphic to the 2(k + 1)-punctured sphere.

Even case If N is even then we take k + 1 vertical periodic orbits: O+
1 , O

−
1 , O1,l for

2 ≤ l ≤ m j and O j,l for 2 ≤ j ≤ N and 1 ≤ l ≤ m j . Then the surface

M2 := Mv,c,r \
(
O+
1 ∪ O−

1 ∪
m1⋃

l=2

O1,l ∪
N⋃

j=2

m j⋃

l=1

O j,l

)

is made of the punctured annuli A+
j , A

−
j , 1 ≤ j ≤ N glued along the loops O+

j , O
−
j for

2 ≤ j ≤ N and O1,1. Each such gluing yields a pattern A+
j ,O

+
j , A

−
j+1 or A

−
j ,O−

j , A+
j+1

or A+
1,O1,1, A

−
1 . Since N is even, all such junctures together are arranged in the following

pattern:



642 K. Frączek, M. Schmoll

A−2 ,O−
2 , A+

3, . . . , A
+
N−1,O

+
N−1, A

−
N ,O−

N , A+
1 ,O1,1, A

−
1 ,O+

N , A+
N ,O−

N−1, A
+
N−1, . . .

. . . , A−3 ,O+
2 , A+

2 .

Since each annulus A±j has m j punctures and appears in the above sequence exactly

once, it follows that M2 is an annulus with 2
∑N

j=1m j = 2k punctures. Therefore, M1
is homeomorphic to the 2(k + 1)-punctured sphere.

Applying Proposition 5.4 to the translation surface (Mv,c,r , ωv,c,r ) then yields
the positivity of all Lyapunov exponents of ωv,c,r , and finally the positivity of
λtop(qv,c,r ). ��

Lemma 5.5 combined with Proposition 5.3 leads to a trapping criterion for slit-folds
systems q̃v,c,r . Recall that q̃v,c,r is the half-translation structure onC given by the system
of slit-folds parallel to the vector v, centered at {c1, . . . , ck} + � and radii r1, . . . , rk
respectively.

Corollary 5.6. If qv,c,r is a quadratic differential on C/� which is separated by a non-
zero vector w ∈ � then the measured foliation F̃θ of (C, q̃v,c,r ) is trapped for almost
every θ ∈ R/πZ.

Let S be an infinite system of Eaton lenses on C and let θ ∈ R/πZ. ThenPS,θ is an
invariant set for the geodesic flow consisting of four copies of each lens and two copies
of the complement of the lenses with planar geometry. This gives a natural projection
πS,θ : PS,θ → C associating the footpoint (in C) to any unit tangent vector in PS,θ .
We call the geodesic flow on PS,θ trapped, if

∃C>0 ∃u∈C,|u|=1 ∀t∈R ∀x∈PS,θ
|〈πS,θ (g

S,θ
t x) − πS,θ (x), u〉| ≤ C.

Remark 5.7. Note, that the geodesic flow onPS,θ is trapped, if and only if

∃0<C∈Q ∀N∈N ∃uN∈Q×Q,1≤|uN |≤2 ∀t∈Q∩[−N ,N ] ∀y∈Q×Q

(πS,θ (x) = y) !⇒ |〈πS,θ (g
S,θ
t x) − y, uN 〉| ≤ C.

Moreover, the geodesic flow on PS,θ is trapped, if and only if the direction θ foliation
on the corresponding slit-fold plane is trapped.

Let � be a lattice on C and let c = (c1, c2, . . . , ck) ∈ C
k be a vector such that the

points c j + w are pairwise distinct for 1 ≤ j ≤ k and w ∈ �. Each such vector is
called proper. A vector of radii r = (r1, r2, . . . , rk) ∈ R

k
>0 is called (�, c)-admissible

if dist(ci +�, c j +�) > ri + r j for i �= j . Admissibility guarantees that Eaton lenses of
radius r j centered at c j +� for 1 ≤ j ≤ k do not intersect. Recall, that such a�-periodic
system of Eaton lenses is denoted by L(�, c, r). Of course, the set of (�, c)-admissible
vectors is open in R

k .
Let A = {A1, . . . , Am} be a partition of {1, . . . , k}. Then for every r ∈ R

k and
x ∈ R

m denote by rA(x) = r(x) the vector in R
k defined by r(x) j = xlr j whenever

j ∈ Al . In particular, taking x = 1 = (1, . . . , 1) ∈ R
k gives r(1) = r .

Denote by Adm�,c,A ⊂ R
m
>0 the set of all x ∈ R

m
>0 such that the vector 1

A
(x) is

(�, c)-admissible. This is a non-empty open subset.
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Fig. 17. The set �c,r (θ, ξ)

Theorem 5.8. LetA be an m-element partition of {1, . . . , k}. Suppose that a vector r0 ∈
R
k
>0 is (�, c)-admissible. Then for every θ0 ∈ R/πZ there exists an open neighborhood

U of (1, θ0) in R
m
>0 × R/πZ such that for almost every (x, θ) ∈ U the vector rA0 (x)

is (�, c)-admissible and the geodesic flow on PL(�,c,r0(x)),θ is trapped, and hence
non-ergodic.

Proof. First we pass to the flat version of any admissible system L(�, c, r) and its
geodesic flow in direction θ ∈ R/πZ. The resulting object is the quadratic differential
q̃ei(θ+π/2),c,r on C and its foliation F̃θ . The πL(�,c,r),θ -projection of geodesic orbits on
PL(�,c,r),θ coincide with the leaves of the foliation F̃θ outside the lenses.

For every c ∈ C, r > 0, θ ∈ R/πZ and ξ ∈ R/πZ \ {θ ± π/2} let
�c,r (θ, ξ) = {

c + r teiθ (s tan(θ − ξ) + i) : t ∈ [−1, 1], s ∈ [0, 1]}(Fig. 17).
Since r0 is (�, c)-admissible, the line segments w + �c j ,(r0) j (θ0, θ0) are pairwise

disjoint for 1 ≤ j ≤ k and w ∈ �. Therefore we can choose ε > 0 such that for all
r ∈ r0

(
(0, (1+ε) sec ε)m

)
and θ, ξ ∈ (θ0−ε, θ0+ε) the setsw+�c j ,r j (θ, ξ) are pairwise

disjoint for 1 ≤ j ≤ k and w ∈ �. Then q̃ei(ξ+π/2),c,sec(θ−ξ)r is a railed deformation of
q̃ei(θ+π/2),c,r along the direction θ and so their foliations in direction θ are Whitehead
equivalent.

Since the set of directions arising from vectors in the lattice � is dense, there is
a vector w ∈ � such that w/|w| = ieiθ1 with |θ1 − θ0| < ε. Then all slit-folds of
q̃ieiθ1 ,c,sec(θ0−θ1)(1+ε)r0 are pairwise disjoint and parallel to the vector w ∈ �. Since all
shadows S j (w) for q̃ieiθ1 ,c,sec(θ0−θ1)(1+ε)r0 are linear loops such that S j (w), S j ′(w) are
either pairwise disjoint or S j (w) = S j ′(w) if the centers c j , c j ′ lie on the same linear
loop parallel to w ∈ �, by continuity, there exists δ > 0 such that if 0 < |θ − θ1| < δ

then q̃ieiθ ,c,sec(θ0−θ)(1+ε)r0 is separated by w ∈ �. Next, choose a direction θ2 �= θ1
so that |θ2 − θ0| < ε and |θ2 − θ1| < δ. Then q̃ieiθ2 ,c,sec(θ0−θ2)(1+ε)r0 is separated by
w ∈ �. It follows that q̃ieiθ2 ,c,sec(θ0−θ2)r0(x) is separated by w ∈ � for every x ∈
(1− ε, 1 + ε)m . Therefore, by Corollary 5.6, for every x ∈ (1− ε, 1 + ε)m and for a.e.
θ ∈ R/πZ (in particular, for a.e. θ ∈ (θ0 − ε, θ0 + ε)) the foliation F̃θ on C derived
from q̃ieiθ2 ,c,sec(θ0−θ2)r0(x) is trapped.

On the other hand for every x ∈ (1− ε, 1 + ε)m and θ ∈ (θ0 − ε, θ0 + ε) we have

cos(θ − θ2) sec(θ0 − θ2)x ∈ (0, (1 + ε) sec ε)m and θ, θ2 ∈ (θ0 − ε, θ0 + ε).
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Hence the quadratic differential q̃ieiθ2 ,c,sec(θ0−θ2)r0(x) is a railed deformation of
q̃ieiθ ,c,cos(θ−θ2) sec(θ0−θ2)r0(x) along the direction θ . It follows that for every x ∈
(1 − ε, 1 + ε)m and for a.e. θ ∈ (θ0 − ε, θ0 + ε) the foliation F̃θ on C derived
from q̃ieiθ ,c,cos(θ−θ2) sec(θ0−θ2)r0(x) is trapped, and hence the geodesic flow restricted
toPL(�,c,cos(θ−θ2) sec(θ0−θ2)r0(x)),θ is also trapped.

By Remark 5.7, trapping is a measurable condition. Then a Fubini argument shows,
that the geodesic flow on PL(�,c,r0(cos(θ−θ2) sec(θ0−θ2)x)),θ is trapped for a.e. (x, θ) ∈
(1− ε, 1 + ε)m × (θ0 − ε, θ0 + ε). Moreover, the map

(x, θ) 	→ (cos(θ − θ2) sec(θ0 − θ2)x, θ)

on (1− ε, 1 + ε)m × (θ0 − ε, θ0 + ε) is a C∞ diffeomorphism. Denote by U its image
which is an open neighborhood of (1, θ0). It follows that PL(�,c,r0(x)),θ is trapped for
a.e. (x, θ) ∈ U , which completes the proof. ��

As a corollary we obtain the following more general version of Theorem 1.2.

Corollary 5.9. For every lattice � ⊂ C, every proper vector of centers c ∈ C
k and

every partition A of {1, . . . , k} the geodesic flow on PL(�,c,1(r)),θ is trapped for a.e.
(r , θ) ∈ Adm�,c,A × R/πZ.

Example 1. Let � := Z(0, 4) ⊕ Z(4, 2). For every θ ∈ [0, π/4) let us consider the
�-periodic pattern of lenses

Lθ = L
(
�, (0,±(1 + i(1 + tan θ)), (2 sin θ, cos θ)

)
.

This is the pattern of lenses drawn on Fig. 2. By Theorem 1.4, for a.e. θ0 ∈ [0, π/4)
the geodesic flow on PLθ0 ,θ0 is ergodic. On the other hand each pair (Lθ0 , θ0) satisfies
the assumption of Theorem 5.8. Let us consider the partition A = {{1}, {2, 3}}. Then,
by Theorem 5.8, after almost every small perturbation of the direction θ0, the radius
of the central lens and the radii of the pair of symmetrically placed lenses, the ergodic
properties of the geodesic flow change dramatically to a highly non-ergodic trapped
flow.

Let us now consider the partitions {{1}, {2}, {3}} and {{1, 2, 3}}. By applying The-
orem 5.8 to those, we obtain another type of results saying, that almost every small
perturbation of (Lθ0 , θ0) leads to a trapped geodesic flow. In the first case all radii are
perturbed independently whereas in the second case all radii are perturbed simultane-
ously.

In summary, the curves of ergodic lens distributions described in the paper are very
exceptional. They are surrounded by highly non-ergodic systems. We have shown this
phenomenon only for a particular “ergodic” curve, but for the other “ergodic” curves it
can be shown along the same lines.

Moreover, we conjecture that the trapping property is measurably typical along many
curves transversal to the ergodic curves described in the paper. An interesting and highly
involved result of that type was proved in [16], where the authors consider curves arising
from fixed systems of lenses for which the direction θ varies.
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Appendix A. Eaton Lens Dynamics

To precisely describe the dynamics of light rays passing through anEaton lens, we denote
the lens of radius R > 0 and centered at (0, 0) by BR . The refractive index (RI for short)
in BR depends only on the distance from the center r := √

x2 + y2 ∈ (0, R] and is given
by the formula n(x, y) = n(r) = √

2R/r − 1; at the center we put n(0, 0) = +∞.
Suppose, for simplicity, that the refractive index n(x, y) is constant and equals 1 outside
BR . Recall that the dynamics of light rays can be described as the geodesic flow on
R
2 \ (0, 0) equipped with the Riemannian metric g = n · (d x ⊗ d x + d y ⊗ d y).

Of course, the geodesics are straight lines or semi-lines outside BR . The dynamics of
the geodesic flow inside BR was described for example in [21]. After passing to polar
coordinates (r, θ) we use the Euler-Lagrange equation to see that any geodesic inside
BR satisfies

d r

d θ
= ±

r
√

n(r)2r2 − n(r0)2r20
n(r0)r0

= ±r
√
r(2R − r)− r0(2R − r0)√

r0(2R − r0)
, (A.1)

where (r0, θ0) is a point of the geodesic minimizing the distance to the center. It follows
that for any point (r, θ) of the geodesic in BR we have

±(θ − θ0) =
∫ r

r0

√
r0(2R − r0)

u
√
u(2R − u) − r0(2R − r0)

d u

=
[
arcsin

Ru − r0(2R − r0)

u(R − r0)

]r

r0
= arcsin

Rr − r0(2R − r0)

r(R − r0)
+

π

2
.

Consequently

− cos(θ − θ0) = Rr − r0(2R − r0)

r(R − r0)
, (A.2)

and hence
(r cos(θ − θ0) + (R − r0)

R

)2
+

(r sin(θ − θ0))
2

R2 − (R − r0)2
= 1.

In particular inside of BR the geodesic is an arc of an ellipse. Let s := √
R2 − (R − r0)2

and rotate the geodesic by −θ0. Then the equation of the ellipse becomes

( x +
√
R2 − s2

R

)2
+
( y

s

)2 = 1.

Since the ellipse is centered at (−√R2 − s2, 0) and (−√R2 − s2,±s) are its inter-
section points with the boundary of BR , the geodesic has horizontal tangents at these
intersecting points. Rotating everything back to the original position we see, that the
direction of any geodesic is reversed after passing through BR . The only exception is
the trajectory that hits the center of the lens. For this trajectory we adopt the convention,
that at the center it turns and continues its motion backwards.

Now for every θ ∈ R/πZ consider the restriction of the geodesic flow (gθ
t )t∈R to its

invariant subset of the unit tangent bundle of R
2 consisting of all trajectories assuming

direction θ or π + θ outside BR . Denote by Pθ the phase space of that flow. Since all
flows (gθ

t )t∈R are isomorphic by rotations, we restrict our considerations to the horizontal
flow (gt )t∈R = (g0t )t∈R.
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Fig. 18. Flow directions inside and outside of an Eaton lens

Fig. 19. Phase space of the horizontal flow in a neighborhood of an Eaton lens

Denote by BR the interior of BR . Through every point of BR pass exactly four
trajectories of (gt )t∈R, while through every point of AR := R

2 \ BR pass exactly two, in
direction 0 and π , see Fig. 18. It follows, that Pθ consists of four copies of BR (B±±

R )
and two copies of AR (A±R ).

Let us take a closer look at the dynamics (gt )t∈R on the four copies of B±±
R . Since

they are related by a reflective symmetry or the reversal of time, we can restrict our
considerations to one of them, say B++

R in Fig. 19. Consider the transversal curve for the
flow (gt )t∈R represented by the dotted semicircleCR parameterized by (−√R2 − s2, s)
for s ∈ (−R, R). In viewof (A.1) and (A.2) the trajectory of the point (−√R2 − s2, s) ∈
CR travels on an ellipse that is in polar coordinates given by

− cos θ = Rr − s2

r
√
R2 − s2

and
d r

d θ
= r

√
r(2R − r)− s2

s
(A.3)

before it escapes B++
R . Let us write (r(t, s), θ(t, s)) for the polar coordinates of

gt+
√
R2−s2(−

√
R2 − s2, s), then (r(−√R2 − s2, s), θ(−√R2 − s2, s)) are the polar
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coordinates of the point (−√R2 − s2, s). Since the velocity vectors of the geodesic
flow have unit length with respect to the Riemannian metric g, we obtain

(∂r

∂t

)2
+ r2

(∂θ

∂t

)2 = 1

n2(r)
= r

2R − r
.

Because of (A.3), we have

∂θ

∂t
= ∂r

∂t

s

r
√
r(2R − r)− s2

(A.4)

and hence

r

2R − r
=
(∂r

∂t

)2(
1 + r2

s2

r2(r(2R − r)− s2)

)
=
(∂r

∂t

)2 r(2R − r)

r(2R − r)− s2
.

Therefore,
∂r

∂t
= −

√
r(2R − r)− s2

2R − r
. (A.5)

Hence

t +
√
R2 − s2 =

∫ r(t,s)

R

u − 2R
√
u(2R − u) − s2

d u

=
[
−
√
u(2R − u) − s2 + R arcsin

R − u√
R2 − s2

]r(t,s)

R

= −
√
r(2R − r)− s2 + R arcsin

R − r√
R2 − s2

+
√
R2 − s2

and

t = −
√
r(2R − r)− s2 + R arcsin

R − r√
R2 − s2

.

Let ts be the exit time of (−√R2 − s2, s) from B++
R . Since r(ts, s)minimizes the distance

to the origin, we have s2 = R2 − (R − r(ts, s))2 = r(ts, s)(2R − r(ts, s)). It follows
that

ts = R arcsin 1 = 1

2
πR.

Introduce new coordinates on B++
R given by (t, s). Then the set ER = BR ∪

([0, πR/2) × (−R, R)) is the domain of these coordinates and they coincide with the
cartesian coordinates on CR . Moreover, by definition, the geodesic flow (gt )t∈R in the
new coordinates is the unit horizontal translation in positive direction.

One can define the same type of coordinates on the other copies B+−
R , B−+

R and B−−
R .

Let us consider a measureμ onP0 that coincides with the Lebesguemeasure on A±R and
the Lebesgue measure in the new coordinates on each B±±

R . This is a (gt )t∈R-invariant
measure and we will calculate its density in the next paragraph.

In view of (A.5) and (A.4) we have

∂r

∂t
= −

√
r(2R − r)− s2

2R − r
and

∂θ

∂t
= − s

r(2R − r)
. (A.6)
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As

t = −
√
r(2R − r)− s2 + R arcsin

R − r√
R2 − s2

,

differentiating it in direction s we obtain

0 = −
∂r
∂s (R − r)− s

√
r(2R − r)− s2

+ R
− ∂r

∂s +
(R−r)s
R2−s2

√
r(2R − r)− s2

.

Hence
∂r

∂s
= s

R(2R − r)− s2

(R2 − s2)(2R − r)
. (A.7)

Differentiating the first equality of (A.3) in direction s we obtain

s
√
r(2R − r)− s2

r
√
R2 − s2

∂θ

∂s
= sin θ · ∂θ

∂s
= ∂r

∂s

s2

r2
√
R2 − s2

− s(R(2R − r)− s2)

r
√
R2 − s2(R2 − s2)

.

In view of (A.7), it follows that

∂θ

∂s
= 1
√
r(2R − r)− s2

( s2(R(2R − r)− s2)

r(R2 − s2)(2R − r)
− (R(2R − r)− s2)

R2 − s2

)

= − R(2R − r)− s2

(R2 − s2)

√
r(2R − r)− s2

r(2R − r)
.

(A.8)

Putting (A.6), (A.7) and (A.8) together, we have

∣
∣
∣
∂r

∂s
· ∂θ

∂t
− ∂r

∂t
· ∂θ

∂s

∣
∣
∣ =

∣
∣
∣
s2(R(2R − r)− s2)

r(R2 − s2)(2R − r)2
+

(r(2R − r)− s2)(R(2R − r)− s2)

r(R2 − s2)(2R − r)2

∣
∣
∣

= (R(2R − r)− s2)

(R2 − s2)(2R − r)
= 1

2R − r

(
1 +

R(R − r)

R2 − s2

)
.

By (A.3),

√
R2 − s2 =

√
r2 cos2 θ + 4R(R − r)− r cos θ

2
= 2R(R − r)
√
r2 cos2 θ + 4R(R − r) + r cos θ

.

Hence,

∣
∣
∣
∂r

∂s
· ∂θ

∂t
− ∂r

∂t
· ∂θ

∂s

∣
∣
∣ = 1

2R − r

(
1 +

(√
r2 cos2 θ + 4R(R − r) + r cos θ

)2

4R(R − r)

)

Therefore, the density of the invariant measure μ restricted to B++
R in the cartesian

coordinates is

ξR(x, y) = 2R − r

r

4R(R − r)

(
√
x2 + 4R(R − r) + x)2 + 4R(R − r)

.

On the other copies B±±
R the measure μ is given by ξR(±x, y) d x d y.
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Fig. 20. Linearized Eaton lens flow in phase space

For every θ ∈ R/πZ the flows (gθ
t )t∈R phase space Pθ is given by the rotation of

P0 by θ and the invariant measure μθ is the rotation of μ by the same angle.
Generally instead of one Eaton lens on the plane we deal with a patternL of infinitely

many pairwise disjoint Eaton lenses on R
2. We are interested in the dynamics of the

light rays provided by the geodesic flow (gLt )t∈R onR
2 without the centers of lenses; the

Riemannmetric is given by g(x,y) = n(x, y) ·(dx⊗dx +dy⊗dy). The local behavior of
the flow around any lens was described in detail previously. For every θ ∈ R/πZ there
exists an invariant setPL,θ in the unit tangent bundle, such that all trajectories onPL,θ

are tangent to±eiθ outside the lenses. The restriction of (gLt )t∈R toPL,θ is denoted by

(gL,θ
t )t∈R. Moreover, (gL,θ

t )t∈R possesses a natural invariant measure μL,θ equivalent
to the Lebesguemeasure onPL,θ . The density ofμL,θ is equal to one outside lenses and
inside every lens of radius R centered at (c1, c2) is determined by ξR(±(x−c1), y−c2)
depending on its copy in the phase space. Moreover, the density is continuous onPL,θ

and piecewise C∞.

A.1. From the geodesic flow to translation surfaces and measured foliations. For sim-
plicity we return to a single lens and the horizontal flow (gt )t∈R on P0. Representing
P0 in (t, s) coordinates, we can treat it as the union on A±R and D±±

R , see Fig. 20. More-
over, the new coordinates give rise to a translation structure on the surface P0. Since
the horizontal sides of D±±

R do not belong toP0, the surface is not closed. However, we
can complete the surface by adding the horizontal sides as in Fig. 21. Let us denote the
completed surface by P0. It has two singular points with the cone angle 6π which are
connected by two horizontal saddle connections labeled by A and B in Fig. 21. More-
over, the flow (gt )t∈R is measure-theoretically isomorphic to the horizontal translation
flow on the translation surface P0.

Let us consider an involution σ : P0 → P0 given by the translation between upper
and lower parts of P0 in Fig. 20. Then the quotient surface Q0 = P0/ < σ > is a
half-translation surface. It has two singular points (marked by circles) having cone angle
3π connected by a horizontal saddle connection labeled by A (and then continued as
A′) and two poles (marked by squares), see Fig. 22.
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Fig. 21. The completed linearized phase space is a translation surface

Fig. 22. The quadratic surface Q0

Ifwe consider an infinite patternL ofEaton lenses onR
2, then for every θ ∈ R/πZwe

can similarly represent the spacePL,θ as a translation surface which after a completion

is a closed translation surfacePL,θ . The translation flow (ϕ
L,θ
t )t∈R onPL,θ in direction

θ ismeasure-theoretically isomorphic to the flow (gL,θ
t )t∈R.Moreover, the surfacePL,θ

has an natural involution σ which maps a unit vector to the vector at the same foot-point
but oppositely directed. The quotient surfaceQL,θ = PL,θ / < σ > is a half-translation
surface that is the euclidian plane with a system of pockets each attached at the place of
the corresponding lens. Each pocket is a rotated (by θ ) version of the pocket in Fig. 22.
Its length is equal to the diameter of the corresponding lens and is perpendicular to θ .
Most relevant for us, the ergodicity of measured foliation FL

θ in direction θ onQL,θ is

equivalent to the ergodicity of (ϕL,θ
t )t∈, and hence to the ergodicity of the flow (gL,θ

t )t∈R.

The measured foliationFL
θ isWhitehead equivalent to the foliationFLL

θ where each
attached briefcase is replaced by the slit-fold stemming from the “flat lens” representation
of the same Eaton lens in direction θ , as in Fig. 23.

In summary, instead of studying the ergodic properties of the geodesic flow (gL,θ
t )t∈R

on the plane with a system of Eaton lenses it suffices to pass to the measured foliation
FLL

θ where each Eaton lens is replaced by the corresponding flat lens of the same center
and diameter as the lens attached perpendicular to θ .



On Ergodicity of Foliations on Z
d -Covers of Half-Translation Surfaces 651

Fig. 23. The half-translation equivalent to an Eaton lens

(1,1) (0,1)(1,0)

-(0,1) -(1,1) -(1,0)

Fig. 24. Homology generators and deck changes

Appendix B. Folds and Skeletons

In this section we describe examples of ergodic curves obtained from other torus differ-
entials. Startingwith some of the quadratic differentials in our table one obtains quadratic
differentials on the plane that are not pre-Eaton differentials. This section shows ways
how to convert those into pre-Eaton differentials. In particular, we need to consider
quadratic differentials on the plane that cut out holes and those need to be removed. The
holes are described by pillow-folds, that will be converted to an appropriate union of
slit-folds.

(0,0)

(-1,0)

(1,1) (0,2)

(1,0) (0,1)

(-1,1)

(0,-1)

(-1,-1) (-2,0)

Fig. 25. The universal homology cover X̃6(3, 1)
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Fig. 26. Skeleton representation of C6(3, 1)

B.1. Skeleton representation for Z
2-covers of Xd(a, b). First, we convert the standard

polygonal representation of a pillowcase cover Xd(a, b) into a pre-Eaton differential.
Recall from Sect. 3 that for X3(2, 1), X4(2, 1) and X6(3, 1) this can be done by a central
cut followed by turning one half underneath the other. After the half-turn the absolute
homology generators are arranged as shown in Fig. 24 for X6(3, 1). The arrangement
for the absolute homology of X3(2, 1) after the half-turn is similar: The two homology
generators overlap in the middle third of the rectangle representing the surface. Now
we can represent the universal cover X̃6(3, 1) → X6(3, 1) determined by the pair of
homology generators. Let us label the deck shifts as in Fig. 24, and the decks by Z

2.
Then, starting at deck (0, 0) we reach deck (1, 0), once crossing the left third of the
rectangles upper edge and we reach deck (0, 1) when crossing the right third. We enter
deck (1, 1) when crossing the middle third of the upper edge and so forth. The labeled
tiles of Fig. 25 show the cover. The rectangular holes lead to jumps of the directional
dynamics in the plane. In particular the skeleton describing the quadratic differential
contains boundaries of the spared rectangles besides the slit-folds, see Fig. 26. Let us
now forget the covering and just consider the skeleton in the plane. While previously
only the dynamics outside the spared rectangles was defined and investigated we now
extend the quadratic differential to the rectangles inside as follows: The folded parts of
any rectangle are genuine slit-folds and the edge pair identified by a translations are now
translation identified from the inside as well. That way we obtain a quadratic differential
on the whole plane that we denote by C6(3, 1). The notation, a combination of the
standard complex plane notation together with the weight notation of the pillow case
cover, will be used for other surfaces below. The “inside” of each rectangle is a pillow-
case carrying invariant foliations. The natural extension promotes an easy geometric
definition of the foliation: Given a direction θ ∈ R/πZ consider the non oriented lines
parallel to±eiθ inC. Then put a skeleton in the plane and identify the intersection points
of the leaves with the skeleton according to the respective rules, i.e. translation or central
rotation.
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Fig. 27. A railed deformation applied to both horizontal segments of a pillow-fold. The dotted lines indicate
some leaves of the direction foliation. The endpoints of the line segments, marked by a black dot, move along
a leaf

Fig. 28. Eaton lens configuration for C3(2, 1)

The extension of the quadratic differential, i.e. X̃6(3, 1), to the whole complex plane,
i.e. C6(3, 1), is a step towards the conversion of the skeleton into an admissible Eaton
lens configuration. In fact, this first step allows us to deform the “outside” quadratic
differential into a pre-Eaton differential, as shown in Fig. 27. In view of both, Eaton lens
dynamics and the respective quadratic differential foliation in the plane, the conversion
removes the jump of leaves over the rectangular gaps and replaces it by an equivalent
jumpfree dynamics. This deformation is shown in Fig. 27. It is a railed deformation
moving a pair of translation identified lines through two slit-folds, ultimately changing
the lines into a pair of slit-folds. Because singular points are broken up, this is not a railed
deformation in the strict sense of our definition, but it does not change the measurable
dynamics.

Pillow-folds and chip-folds. All we did so far for rectangular folds can be done for folds
built from a parallelogram.

Let [a, b] and [c, d] are two non-parallel line segments inC, so that c ∈ [a, (b+a)/2].
By [a, b]� [c, d]we denote the union of segments [a, b], [a+(d−c), b+(d−c)], [c, d]
and [b − (c − a), b − (c − a) + (d − c)]. Replacing all line segments in [a, b]� [c, d]
by slit-folds, we get a what we call a chip-fold denoted by 〉a, b〈�〉c, d〈. A pillow fold
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Fig. 29. Eaton lens configuration for C6(3, 1)

on the other hand is obtained by identifying two segments parallel to, say [c, d], with a
translation parallel to [a, b] and the two other segments with slit-folds. Let us denote this
fold by 〉a, b〈�|c, d|. Chip-folds are parts of the skeletons in Figs. 28 and 29. Chip-folds
and their generalization are necessary to replace the jumps, created by the translation
identification in pillow-folds.

If [a, b] and [c, d] are line segments, so that c ∈ [a, (b + a)/2], then for n ≥ 2 define
〉a, b〈� n·〉c, d〈 to be
(
n−1⋃

k=0

(〉a, b〈 ∪ 〉c, d〈 ∪ 〉b + a − c, b + a + d − 2c〈) + k(d − c)

)

∪ (〉a, b〈+n(d − c)
)
,

this is the fold configuration with n + 1 slit-folds parallel to [a, b]. We call this object
n-chip-fold. In particular, a 1-chip-fold is a chip-fold. Analogously 〉a, b〈� n · |c, d|
denotes the n-pillow-fold obtained by replacing all slit-folds of an n-chip-fold that are
parallel to [c, d] by line segments. These line segments are identified by a translation in
the direction of the vector

−→
ab.

Proposition B.1. Take a plane equipped with a single pillow-fold and consider a fixed
direction foliation on the outside of a pillow-fold. Then there is either an n-chip-fold, or
a pair of parallel slit-folds which has an outer measured foliation Whitehead equivalent
(up to a finite number of leaves) to the given measured foliation.

Proof. Since the problem is invariant under affine transformations we can consider a
pillow-fold 〉0, ib〈� |0, a| in the complex plane where a, b ∈ R+, so the segment [0, a]
is horizontal, and [0, ib] is vertical. For fixed θ ∈ R/πZ consider the outer foliation
for 〉0, ib〈 � |0, a|. If θ = π/2, we translate both horizontal sides to the center of the
rectangle. That is a Whitehead move and so the outer foliations are equivalent. The
resulting skeleton consists of two vertical slit-folds.
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Fig. 30. Eaton lens configuration for C6(3, 2)

Suppose | tan θ | ≤ b
a . That is, the (absolute) slope of the foliation is bounded by the

slope of the diagonal [0, a + ib] in the rectangle [0, ib] × [0, a]. In this case translate
the two horizontal edges parallel to the foliation into the rectangle and through the
vertical slit-folds. This is a railed deformation, so every point on the edges remains on
the same line (leaf) (including the slit-fold identification) of slope tan θ , as shown in
Fig. 27. Note, that the two horizontal edges form a loop at any time. Two slit-folds
appear, unless | tan θ | = b

a . In that case, both slit-folds fall together and we regard it
as a single slit-fold located at the center of the rectangle. By construction both outer
measured foliations differ by a Whitehead move that breaks up the singular point at the
vertex of the pillow-fold, so they are equivalent.

For larger angles we need to use an intermediate step. In fact, if θ is not covered
by the previous case(s), then there is a minimal n ≥ 2 such that | tan θ | ≤ n b

a . Then
change the given pillow-fold 〉0, ib〈 � |0, a| into an n-pillow-fold 〉0, ib〈 � n · |0, a/n|
by putting n− 1 successive a/n translates of the left vertical slit-fold into the rectangle.
Then for each of the n (translation equivalent) pillow-folds the previous conversion into
a union of slit-folds applies. This process changes those finitely many leaves hitting the
endpoints of the n − 1 new slit-folds that we need to put into the pillow case. Again we
find a measurably equivalent outer foliation. Note, that the inner foliation is changed by
this procedure, but this is irrelevant for our claim. ��

Let us call a skeleton in the plane standard skeleton, if it is a countable union of
pillow-folds and slit-folds, so that no pillow-fold contains other folds. For those we can
use Proposition B.1 inductively to obtain:

Corollary B.2. For any quadratic differential defined by a standard skeleton and any
direction θ ∈ R/πZ the outer measured foliation tangential to θ in the plane is up to
countably many leaves Whitehead equivalent to the direction foliation of a pre-Eaton-
differential in the plane.

The skeletons we consider are special, they have exactly one unbounded component.
With the boundary identifications given by the skeleton the unbounded component is
homeomorphic to a plane.

B.2. Other ergodic Eaton curves. Using the X3(2, 1), X6(3, 1) and X6(3, 2) torus dif-
ferentials, we present more examples of admissible ergodic Eaton lens curves. Skeletons
of the torus differentials allow us to write down differentials on the plane and represent
them geometrically by arrow diagrams as in Figs. 28, 29 and 30. In those particular cases
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all folds will be horizontal and vertical in cartesian coordinates. Because the skeleton
depends on the angle, see Proposition B.1, we only present the ergodic curve for small
angles. We do not give a formal proof of admissibility for those Eaton lens distributions,
it would go along the same lines as done in Proposition 2.4 for the Wollmilchsau differ-
ential. The figures give some clues how to work out the details, such as dividing tangent
lines between some lenses.
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