

Correction

Correction to: Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter

Iris Cong^{1,4}, Meng Cheng^{2,4}, Zhenghan Wang^{3,4}

- Department of Computer Science, University of California, Los Angeles, CA 90095, USA. E-mail: irisycong@engineering.ucla.edu
- Department of Physics, Yale University, New Haven, CT 06520-8120, USA. E-mail: m.cheng@yale.edu
- Department of Mathematics, University of California, Santa Barbara, CA 93106-6105, USA. E-mail: zhenghwa@microsoft.com
- ⁴ Microsoft Station Q, University of California, Santa Barbara, CA 93106-6105, USA

Published online: 16 April 2018 - © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Correction to: Commun. Math. Phys. 355, 645–689 (2017) https://doi.org/10.1007/s00220-017-2960-4

There were two errors in the original publication. First, the term B^K in Eq. (2.20) was not well-defined in the case of non-normal subgroups K; however, we found out that both the vertex terms A^K and the plaquette terms B^K are in fact redundant in Eq. (2.23) given the edge terms. The text from Eqs. (2.19–2.23) should read:

Let us now define some new projector terms, as in Ref. [10]:

$$L^{K}(e) := \frac{1}{|K|} \sum_{k \in K} \left(L_{+}^{k}(e) + L_{-}^{k}(e) \right), \tag{0.1}$$

$$T^{K}(e) := \sum_{k \in K} T_{+}^{k}(e) \tag{0.2}$$

The definitions of L^k and T^k for Eqs. (0.1–0.2) are based on Eqs. 2.1–2.4. Following Ref. [10], we can now define the following Hamiltonian:

$$H_{(G,1)}^{(K,1)} = \sum_{e} \left(\left(1 - T^K(e) \right) + \left(1 - L^K(e) \right) \right) \tag{0.3}$$

With this definition, it is no longer necessary to emphasize whether vertices/plaquettes/edges along the borders of gapped boundaries are contained in the hole; for simplicity, one may assume that the hole consists of all edges along and within the border.

Second, there is an error in Theorem 2.12. The theorem should read:

The original article can be found online at https://doi.org/10.1007/s00220-017-2960-4.

Theorem. Let (T, R) and (C, π) be given elementary excitations in the boundary and bulk, respectively. The term $Y_{\tau}^{(T,R);(\mathbf{u_2},\mathbf{v_2})}$ has a nonzero coefficient in the decomposition of $F_{\tau}^{(C,\pi);(\mathbf{u_1},\mathbf{v_1})}$ (for some quadruple $(\mathbf{u_1},\mathbf{v_1},\mathbf{u_2},\mathbf{v_2})$) if and only if the following two conditions hold:

- (1) The intersection $C \cap T$ is nonempty. When this condition holds, it is always possible to choose a double coset representative r_T that is also in C. We assume that such a choice is made, and this assumption is important because Eq. (0.7) will give different results otherwise.
- (2) There exists an $x \in G$ such that the following is true: Let $x \triangleright \pi$ denote the representation of $xE(C)x^{-1}$ obtained from π where y acts as $x^{-1}yx$. Let $\rho_{x\triangleright\pi}$ be the (possibly reducible) representation of the subgroup $(xE(C)x^{-1}) \cap K^{r_T}$ resulting from the restriction of $x \triangleright \pi$ to $(xE(C)x^{-1}) \cap K^{r_T}$; let ρ_R be the representation of the same subgroup formed by restricting R. Decompose $\rho_{x\triangleright\pi}$, ρ_R into irreducible representations of $(xE(C)x^{-1}) \cap K^{r_T}$:

$$\rho_{x \triangleright \pi} = \bigoplus_{\sigma} n_{\sigma}^{x \triangleright \pi} \sigma \tag{0.4}$$

$$\rho_R = \bigoplus_{\sigma} n_{\sigma}^R \sigma \tag{0.5}$$

There must exist some irreducible representation σ of $(xE(C)x^{-1}) \cap K^{r_T}$ such that $n_{\sigma}^{x \mapsto \pi} \neq 0$ and $n_{\sigma}^{R} \neq 0$.

In particular, let X(C) be a set of representatives of the double cosets $K \setminus G/E(C)$. For given (C, π) let us write the decomposition after condensation as

$$(C,\pi) = \bigoplus n_{(T,R)}^{(C,\pi)}(T,R).$$
 (0.6)

Then, we have

$$n_{(T,R)}^{(C,\pi)} = \sum_{\substack{x \in X(C) \text{ s.t. } xr_{c}x^{-1} \in T\\ \sigma \in ((xE(C)x^{-1}) \cap K^{TT})_{ir}}} n_{\sigma}^{R} n_{\sigma}^{x \triangleright \pi}$$
(0.7)

Furthermore, these coefficients imply that the two sides of Eq. (0.6) will always have the same quantum dimensions.