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Abstract: In this paper we prove complex bounds, also referred to as a priori bounds
forC3, and, in particular, for analytic maps of the interval. AnyC3 mapping of the inter-
val has an asymptotically holomorphic extension to a neighbourhood of the interval. We
associate to such amap, a complex boxmapping, which provides a kind ofMarkov struc-
ture for the dynamics.Moreover,we prove universal geometric bounds on the shape of the
domains and on the moduli between components of the range and domain. Such bounds
show that the first return maps to these domains are well controlled, and consequently
such bounds form one of the corner stones in many recent results in one-dimensional
dynamics, for example: renormalization theory, rigidity, density of hyperbolicity, and
local connectivity of Julia sets.
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1. Introduction and Statement of the Main Results

The purpose of this paper is to develop a unified technique that allows one to treat a real
analytic or even a C3 map of the interval as a complex dynamical system, where the
domain and range provide a Markov-like structure for the dynamics. This problem has
a long history, which we will discuss later. Our results are new for analytic maps, and,
in some cases, even when the mapping is a polynomial.

If the interval mapping is real analytic, the associated complex mapping is holomor-
phic, and when the mapping is only smooth, the complex extension is a quasiregular
mapping that is asymptotically holomorphic on its real trace. Crucially, we will obtain
geometric bounds (usually referred to as complex bounds or a priori bounds) for this
complex extension. In Sect. 1.6 we will explain why complex bounds are useful. The
following informal statement, which we will make more precise in the next subsection,
summarizes our results:

Main Theorem (Informal Statement). Let M ⊂ R be a compact interval. Assume
that f : M → M is a real analytic map (respectively a C3 map with critical points
of integer orders) with no critical points on ∂M , and a critical point c such that f is
persistently recurrent onω(c). Then there exist arbitrarily small, combinatorially defined
neighbourhoods Î ⊂ M of Crit( f ) ∩ ω(c) such that we can associate to the (real) first
return map to Î a complex box mapping (respectively a quasiregular box mapping) with
complex bounds.

The notion persistently recurrent on ω(c) is defined on p. 20.
Return maps which are not persistently recurrent on ω(c) are much easier to work

with, and complex box mappings will be constructed for such maps in [CvS].

Definition 1.1 (Complex box mapping). A mapping F : U → V is a complex box map-
ping if F is holomorphic and U ⊂ V are open subsets of the complex plane where

• V is a union of finitely many pairwise disjoint Jordan disks;
• every connected component V of V is either a connected component of U or V ∩U is

a union of Jordan disks with pairwise disjoint closures that are compactly contained
in V ;

• for each component U of U , F(U ) is a component of V and F |U is a proper map;

We say that F : U → V is a quasiregular complex box mapping, abbreviated qr box
mapping, if F is a quasiregular mapping that satisfies the remaining conditions of the
definition of a complex box mapping, see Sect. 5.3. When it will not cause confusion,
we will refer to qr box mappings simply as box mappings. As usual, a polynomial-like
mapping is a holomorphic, proper mapping F : U → V between topological disks
U � V ⊂ C. We call a mapping F : U → V , a qr polynomial-like map if U � V are
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topological disks in C and F : U → V is a proper mapping that can be expressed as
F = P ◦ h where h : U → U is quasiconformal and P : U → V is holomorphic.

A complex box mapping (or a qr box mapping) F : U → V is called real-symmetric
if U and V are both real-symmetric, and F(z) = F(z). The box mappings constructed
in this paper are real-symmetric, and indeed every construction in this paper is carried
out real-symmetrically.

We say that the map F : U → V has complex bounds (also referred to as a priori
bounds) if one has estimates on the geometry of U and V , see Sect. 1.1.2.

Throughout this paper,we only consider first returnmaps restricted to the components
of their domains that intersect ω(c), for a critical point c, and we will implicitly assume
this throughout.

Since f is persistently recurrent on ω(c), ω(c) is a minimal set for f , and hence it
is compact. Thus, because each component of U intersects ω(c), U has at most finitely
many components. Complex box mappings whose domains contain only finitely many
components are also known as generalized polynomial-like maps.

1.1. Some terminology. Before we can state themain results of this paper, we need some
terminology.

1.1.1. First return and landing maps. Consider a complex box mapping F : U → V .
We will say that P is a (complex) puzzle piece if P is a component of F−n(V ), where
V is any connected component of V and n ≥ 0. To a puzzle piece, we associate three
mappings: the (first) returnmapping, the (first) landingmap and the (first) entry map. Let

Dom(P) = {z ∈ U : Fk(z) ∈ P for some k ∈ N},
where we take N = {1, 2, 3, . . .}. For any z ∈ Dom(P), let k(z) ∈ N be minimal so
that Fk(z)(z) ∈ P . The first entry mapping to P is the mapping from Dom(P) to P
defined by z �→ Fk(z)(z). The first landing map to P is defined by z �→ Fk(z)(z) for
z ∈ Dom(P)\P and by the identity on P . We define the first return mapping to P as
the restriction of the first entry mapping to P:

RP : Dom(P) ∩ P → P, where RP (z) = Fk(z)(z).

Suppose that z ∈ Dom(P). The connected component of Dom(P) that contains z is
denoted by Lz(P) and will be called a first entry domain to P that contains z. We will
also call Lz(P) a return domain to P , if z ∈ Dom(P) ∩ P. We define the first landing
domain to P containing z by

L̂z(P) =
{

P if z ∈ P,

Lz(P) if z /∈ P.

We will also use these definitions in the real case where P ⊂ M is an interval.

1.1.2. Complex bounds (ρ-nice, ρ-free, ρ-bounded geometry). Let ρ > 0. A puzzle
piece P is called ρ-nice if for any x ∈ P ∩ ω(c) one has mod(P\Lx (P)) ≥ ρ, and
ρ-free if there are puzzle pieces P+ ⊃ P ⊃ P− such that (P+\P−) ∩ ω(c) = ∅,
mod(P+\P) ≥ ρ and mod(P\P−) ≥ ρ. We refer to the annulus P+\P−, which is
disjoint from ω(c), as free space. We say that a simply connected domain U has ρ-
bounded geometry with respect to x ∈ U if the Euclidian ball B(x, ρ · diam(U )) ⊂ U .
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A domain U is said to have ρ-bounded geometry if there is an x ∈ U such that U has
ρ-bounded geometry with respect to x .

Let V be the range of a (qr) complex box mapping. We say that V , respectively, is
ρ-nice, is ρ-free or has ρ-bounded geometry if V is the union of puzzle pieces V , such
that each V , respectively, is ρ-nice, is ρ-free or has ρ-bounded geometry.

If there exist ρ > 0, universal, and a neighbourhood V of Crit( f ) ∩ ω(c) such that
RV : Dom(V)∩V → V is a (qr) complex boxmapping such that one has that V is ρ-nice
and has ρ-bounded geometry, then RV is said to have complex bounds.

1.1.3. Extendible box mappings. If F : ∪ Uj → ∪Vi is a complex box mapping with
b critical points, we say that F is υ-extendible if there exists υ > 0 such that for each
i there are topological disks V ′

i ⊃ Vi with mod(V ′
i \V i ) > υ such that the following

hold:

(1) for each i , if k is such that F(Vi ) = Vk , then F |Vi extends to a branched covering
from V ′

i to V ′
k and there are no critical points of F in V ′

i \Vi ;
(2) for each component Uj of U , if k is such that F(Uj ) = Vk , then there exists a

topological disk U ′
j ⊃ Uj so that F |Uj extends to a holomorphic map from U ′

j to
V ′
k with no additional critical points in U ′

j\Uj ;
(3) If Uj ⊂ Vk , then U ′

j ⊂ Vk .

We will define υ-extendible for qr box mappings in the remarks following the statement
of Theorem 1.2.

The notions of δ-nice and δ-free have real analogues, see p. 24.

1.1.4. Remormalizable maps, periodic, central and terminating intervals. An interval I
is a periodic interval of f : M → M if there exists s > 1 such that I, f (I ), . . . , f s−1(I )
have pairwise disjoint interiors and f s(I ) ⊂ I with f s(∂ I ) ⊂ ∂ I . The integer s is called
the period of I . We say that a map f of the interval is renormalizable at x if it possesses
a periodic subinterval containing x , and that it is infinitely renormalizable at x if there
exist arbitrarily large integers p > 0 such that f has a periodic subinterval containing x
with period p.

Suppose that J is an interval and c ∈ J is a recurrent critical point of f . Let p ≥ 1 be
minimal so that f p(c) ∈ J. We say that the return to J is central if f p(c) ∈ Lc(J ). Let
L0
c(J ) = J and Ln

c (J ) = Lc(Ln−1
c (J )) for all n ≥ 1, then we say that J is terminating

if the returns of c to Ln
c (J ) are central for all n.

If J is terminating, we define J∞ = ∩n≥1Ln
c (J ); under these circumstances, J∞ is

a periodic interval of period p, and f is renormalizable at c.
Suppose that Î and Ĵ are unions of intervals.We say that amapping g : Ĵ → Î extends

to G : U → V if for each connected component J of Ĵ , there exists a unique connected
component U of U such that J ⊂ U and G|J = g|J . Moreover, we require that each
component U of U contains a component J of Ĵ , that each component V of V contains
a unique component I of Î , and that the maps G and g have the same critical points.

1.2. Complex bounds in the real analytic case. We can now state our main theorem for
analytic maps (see Sect. 2.1 for the definition of a real puzzle piece).

Theorem 1.1. Let M ⊂ R be a compact interval. Assume that f : M → M is a real ana-
lytic map with a critical point c such that f is persistently recurrent on ω(c). Then there
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exist ρ > 0 and combinatorially defined intervals (puzzle pieces) I � c of arbitrarily
small diameter so that the following holds. Let

Î :=
⋃

c′∈Crit( f )∩ω(c)

L̂c′(I ).

1. Suppose that f is non-renormalizable. Then the first return map to Î extends to a
complex box mapping

F : U → V so that V ∩ R = Î and

• for each component U of U , F |U has at most one critical point,
• each component of V is ρ-nice and ρ-free,
• each component of V has ρ-bounded geometry.

2. Suppose that I is a terminating interval for f . Then the return map to I∞ extends to
a polynomial-like map F : U → V such that mod(V \U ) > ρ.

Remarks. (a) If I is sufficiently small, then each component of L̂c′(I ), c′ ∈ Crit( f ) ∩
ω(c), contains exactly one critical point of f , so each component V of V contains
exactly one critical point of F .

(b) The intervals I will be obtained from the generalized enhanced nest defined on
p. 22. In the non-renormalizable case this nest coincides with the enhanced nest
from [KSvS]. In Theorems 10.1 and 10.18 we restate this theorem making the
choice of I explicit.

(c) When f is infinitely renormalizable, then the assertion holds for any periodic interval
I which is sufficiently small. If f is at most finitely renormalizable, then as in the
non-renormalizable case, I can be taken to be a sufficiently small pullback of some
fixed interval I0.

(d) The number ρ is universal, or beau, (a universal bound that holds eventually) in the
following sense: there exists ε > 0, which may depend on f , such that whenever
the combinatorially defined interval I has |I | < ε, Theorem 1.1 holds with ρ > 0
dependant only on the number of critical points in ω(c) and their orders, and not on
f . (It is crucial that we take I to be sufficiently small depending on f . To get beau
bounds, we use the real bounds from Sect. 3 and an argument similar to [dMvS,
Theorem IV.B] which states that there exists a beau ε > 0 so that for each f there
exists N so that each periodic orbit of period at least N has multiplier ≥ 1 + ε.)

(e) The reason that we do not include δ-free in the definition of complex bounds is
that we require that the free space be defined by puzzle pieces, and in the infinitely
renormalizable case, we do not prove this. However, in any case, the mapping F is
ρ-extendible.

The terminology ‘beau bounds’ was introduced by Dennis Sullivan. The underlying
concept is a crucial property for results on renormalization, see Sect. 1.6.

1.3. Complex bounds in the C3 setting. Let us now explicitly state our main result for
C3 interval mappings. Suppose that c ∈ Crit( f ) is a persistently recurrent critical point.
Let c0 ∈ ω(c) ∩ Crit( f ) be of even order, if there is such a critical point in ω(c),
and otherwise choose c0 arbitrarily. We let I0 ⊃ I1 ⊃ I2 ⊃ · · · denote the enhanced
nest about c0. See Sect. 2 for the definition of this nest. Whenever f is at most finitely
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renormalizable at c0, we assume that I0 is contained in the smallest periodic interval for
f containing c0. If I ⊂ R is an interval we let Dθ (I ) the Poincaré disk with angle θ

with real trace I , see p. 17 for the definition.

Theorem 1.2 (Complex bounds in the C3 case). Let M ⊂ R be a compact interval.
Suppose that f : M → M is C3 and its critical points are of integer order (i.e. f is
contained in the class A3

b defined in Sect. 1.10.2). There exists ρ > 0 and C > 0,
universal (depending only on the number of critical points of f and their order, i.e. on
b, but not on f ), such that for each n sufficiently large the following holds. Suppose that
c0 is a critical point such that f is persistently recurrent on ω(c0).

(1) Suppose that f is finitely renormalizable. Let I0 ⊃ I1 ⊃ I2 ⊃ · · · be the enhanced
nest for f about c0(constructed so that I0 is contained in the smallest periodic
interval of f that contains c0). Let În = ∪c∈ω(c0)∩Crit( f )L̂c(In). Then for all n
sufficiently big, the first return map to În extends to a κn-qr box mapping F : U → V
with Crit(F) = Crit( f ) that is ρ-extendible and such that V ∩ R = În; for each
component U of U , F |U is at most unicritical; the components of V are ρ-nice, ρ-
free; the components of U and V have ρ-bounded geometry. Moreover, there exists
θ ′ ∈ (0, π) such that for each component U of U or V , there exists an interval
ĨU ⊃ (1 + 2ρ)(U ∩ R) such that U is contained in Dθ ′( ĨU ).

(2) If f is infinitely renormalizable, then for all s sufficiently big, if J is a periodic
interval for f of period s, then f s : J → J extends to a κ(V )-qr polynomial-like
mapping F : U → V with Crit(F) = Crit( f ), mod(V \U ) ≥ ρ, U has ρ-bounded
geometry and diam(V ) < C |J |.
The number κn depends on maxV diam(V ), where the maximum is taken over the

component of V , κn, and κ(V ) depends only on diam(V ) and both κn and κ(V ), tend
to 1 as the corresponding diameters tend to 0.

1.4. Complex bounds for induced mappings. We remark that the proof of our results
imply the following corollary, which will be useful in applications.

Corollary 1.3. Let N denote the circle or interval. Suppose that f : N → N is C3

and its critical points are of integer order (i.e. f is contained in the class A3
b defined

in Sect. 1.10.2). Assume that M is a union of intervals in N and that M ′ is a union
of intervals J ′ ⊂ M such that for each interval J ′, there exists kJ ′ ∈ N such that
f kJ ′ (J ′) ⊂ M, and f kJ ′ does not have a critical point on ∂ J ′. Define F : M ′ → M on
each interval J ′ ⊂ M ′ by F |J ′ = f kJ ′ |J ′. Assume that c is a critical point of F such
that F is persistently recurrent on ω(c). Then the conclusion of Theorem 1.2 holds for
F at c.

For example, suppose that f : S1 → S1 is an analytic mapping of the circle that is
not injective. Then f has a periodic point p, see [CvS]. Let s be the period of p, and
let O = {p, f (p), . . . , f s−1(p)}. Then Y0 = S1\ f −1(O) is a partition of S1 by real
puzzle pieces, see Sect. 2.1. Suppose that f has critical point c0 such that f is persistently
recurrent at c0, and let Y0 be the component of Y0 that contains c0. Then the results of
this paper hold for the return mapping to Y0 restricted to the components of the domain
that intersect ω(c0).



Complex Bounds for Real Maps 1007

1.5. Previous results on complex bounds. Let us first give some historical background
before discussing in the next subsection why complex bounds are crucial for results
on renormalization, quasiconformal rigidity and ergodic properties of one-dimensional
dynamical systems. Complex bounds were first proved by Sullivan for certain infinitely
renormalizable unimodal maps [Su], see also [dMvS]. They were proved for real uni-
critical polynomials, in [LvS1,S1,LY] and [GS]. Let us now summarize some of the past
work for multimodal analytic maps with all critical points real and of even order:

• Complex boundswere proved for infinitely renormalizablemapswith bounded com-
binatorics in [Sm1].

• In [S3] complex bounds were proved for infinitely renormalizable maps. In addition,
for at most finitely renormalizable maps, Shen proves a somewhat weaker version of
complex bounds. Namely, the existence of complex box mappings with the property
that each domain of an iterate of the box mapping is contained in a Poincaré disk
with real trace of length comparable to the range of the (real) return map, see [S3,
Theorem 3’].

• Complex bounds, analogous to those in this paper, were proved for at most finitely
renormalizable real polynomials with all critical points even and real in [KSvS].

Complex bounds for various classes of unicritical analytic maps whose critical point
is of odd order, including covering maps of the circle, and certain real polynomial maps
and Blaschke products, were obtained in [LvS2]. The methods in that paper, and the
corresponding paper [Le1] in which real bounds are proved, do not seem to go through
to the case of two or more critical points of odd order. Indeed, also in our proof the
presence of odd critical points requires us to overcome significant additional difficulties.

We should note that if f is a non-renormalizable polynomial (not necessarily real)
with only hyperbolic periodic orbits in the complex plane, then the construction of a
complex box mapping follows immediately from the Yoccoz puzzle construction, see
[KvS]. In fact, if there are neutral periodic points which are of parabolic type, this
construction can be easily made as well: simply consider rays landing on repelling
periodic points in the boundary of one of the petals of the periodic point. However, if f
has a non-parabolic neutral orbit then in general it may be impossible to find a complex
boxmapping or even a periodic point with two rays landing on it. If f is a real polynomial
such rays, and therefore a complex box mapping, exists, but nevertheless it seems the
only way to obtain a complex box mapping for which each puzzle piece contains at most
one critical point is through complex bounds, see [KvS, Sect. 2.2].

If f is at most finitely renormalizable polynomial with only hyperbolic periodic
points, then the results in [KvS] imply that complex bounds indeed hold for f . The
method there relies on an important lemma by Kahn–Lyubich, see [KL1], and the results
in [KvS] do not require the polynomial to be real (and it does not matter whether the
critical points are of even or odd order). Because of this, the proof in [KSvS] can be
simplified: one can replace Sects. 8 to 11 in [KSvS] by the more general results derived
in [KvS]. However, the methods in [KvS] do not provide complex bounds when f is
infinitely renormalizable or when f is C3.

So combining the puzzle construction and the complex bounds from [KvS] shows
that if f is a polynomial that is at most finitely renormalizable and has only hyperbolic or
parabolic periodic points, then there exists a complex box mapping so that each puzzle
piece contains at most one critical point. But if f is a real polynomial which is either
infinitely renormalizable (possibly at a non-real critical point) or with a non-parabolic
periodic point (and a non-real critical point), then [KvS] does not provide complex
bounds.
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Thus, even for real polynomials our theorem is new: previous results did not establish
beau complex bounds for (at most) finitely renormalizable real polynomials with either
non-real critical points or real critical points of odd order, and also not for infinitely
renormalizable real polynomials with critical points of odd order.

Previous proofs of complex bounds often require dividing the proof into the (essen-
tially) bounded geometry and the big geometry cases. Having big geometry simplifies
the construction of a complex box mapping at a single level, but when there are no
bounds on the scaling factors, it is difficult to transfer estimates to deeper levels, see the
comment before Proposition 10.5.

The purpose of this paper is to treat all situations in a fully unifiedmanner, dealingwith
non-renormalizable and renormalizable maps, with any combinatorics, through essen-
tially the same inductive framework. Themethods we develop allow us to deal with criti-
cal points of any (integer) order. The construction builds on the one given in Sects. 8 to 11
of [KSvS], but encompasses the infinitely renormalizable case, and overcomes the issues
that arise from the presence of odd critical points. Another important feature of the proof
is that it allows one to associate quasiregular boxmappings toC3 maps, see Theorem 1.2.
This is also an important reason why we did not aim for short-cuts in the proof in the
setting of real analytic maps, which do not generalize to the setting of maps with asymp-
totically holomorphic extensions. In this paper we will not discuss complex bounds for
smooth homeomorphisms of the circle, but merely refer to [dFdM1,dFdM2,Ya].

For unicritical, (at most) finitely renormalizable complex polynomials without neu-
tral periodic orbits, moduli bounds were proved in [KL2]. We should emphasise that
complex bounds do not hold in general for complex maps; there are infinitely renor-
malizable complex quadratic maps for which complex bounds are known to fail, see for
example [Le2]. However, they do hold for unicritical maps with certain combinatorics,
see [Ka,KL3,KL4]. For an early work on non-renormalizable mappings with specific
combinatorics, where the shape of puzzle pieces was well controlled we draw the readers
attention to [Sm3].

1.6. The usefulness of complex bounds: applications. Because of the Koebe Distortion
Theorem and the behaviour of the mapping z �→ z�, one immediately sees that complex
bounds for F : U → V give control on the distortion of diffeomorphic mappings onto
components ofV and on the shapes of certain puzzle pieces. However, the implications of
complex bounds are much deeper. The results in this paper are an important ingredient in
results on the topology Julia sets, renormalization, quasiconformal rigidity and ergodic
properties.

1.6.1. Topological and ergodic properties. By methods that are by now standard, see
for instance [LvS3,S2] and [KvS], the results of this paper imply

Theorem 1.4. Suppose that f is a real polynomial with real critical points. Then the
Julia set of f is locally connected, and f supports no measurable invariant line field on
its Julia set.

Note that, complex bounds for reluctantly recurrent maps are easier to obtain and the
proof can be found in [CvS].

Before now, in the multicritical case, such a result was only known when all critical
points were of even order. In the unicritical case, local connectivity was proved in the
presence of one even critical point in [LvS1,LY,GS] and [HJ] and for the Julia sets of
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certain Blaschke products with a single critical point on the unit circle in [LvS2]. For
multicritical polynomials with all critical points real and of even order, local connectivity
was proved for certain infinitely renormalizable maps in [Sm1], in [S3] (in the case of
‘bounded geometry’) and without assumptions on the geometry in [KSvS]. Absence of
invariant line fields was first proved in [M1] and subsequently in [LvS3,LvS2,S2] and
[KvS].

1.6.2. Quasisymmetric rigidity. Complex bounds also play a key role in proving qua-
sisymmetric rigidity. In particular, complex bounds are a crucial hypothesis in the QC-
Criterion of [KSvS]. The results of this paper immediately extend the results of [KSvS]
to include polynomials with odd critical points:

Theorem 1.5. Suppose that f and f̃ are two real polynomials, with real critical points.
Assume that f and f̃ are topologically conjugate as dynamical systems on the real line,
that corresponding critical points for f and f̃ have the same order and that parabolic
points correspond to parabolic points, then f and f̃ are quasiconformally conjugate as
dynamical systems on the complex plane.

The results of this paper are a vital ingredient in extending this result for polynomials
to all analytic maps and to a broad class of C3 mappings.

Theorem 1.6 (Clark–van Strien [CvS]).Assume that f, g : [0, 1] → Rwith f ({0, 1}) ⊂
{0, 1} are real analytic and topologically conjugate. Alternatively, assume that
f, g : S1 → S1 are topologically conjugate and that f and g each have at least one
critical point or at least one periodic point. Moreover, assume that the topologically
conjugacy is a bijection between

• the sets of critical points and the orders of corresponding critical points are the
same;

• the set of parabolic periodic points.

Then the conjugacy between f and g is quasisymmetric.

For smooth mappings, we have:

Theorem 1.7 (Clark–van Strien [CvS]). Suppose that f, g : [0, 1] → [0, 1], or alterna-
tively that f, g : S1 → S1 each has least one critical point or at least one periodic point,
are C3, each with a finite number of critical points. Suppose that at each c ∈ Crit( f ),
one can locally express f (x) = [φ(x)]� + f (c) where φ is a C3 diffeomorphism with
φ(c) = 0 and � is an integer ≥ 2, and likewise for g. Assume that f and g have only
repelling periodic points. Suppose that f and g are topologically conjugate and that
the conjugacy is a bijection between Crit( f ) and Crit(g) and that the orders of corre-
sponding critical points is the same. Then f and g are quasisymmetrically conjugate.

Under some additional smoothness and genericity assumptions, we can remove the
condition that all periodic orbits be repelling, as in Theorem 1.6. These theorems extend
earlier work for quadratic polynomials [Ly2,GS2,GS3], and for polynomials without
odd critical points [KSvS]. Partial results in this direction are proved in [S3,LvS2].

Quasisymmetric rigidity is a crucial ingredient in proving density of hyperbolicity,
see [Ly2,GS2,GS3] for quadratic polynomials, for real polynomials without odd critical
points [KSvS] and [AKLS] for unicritical polynomials. Density of hyperbolicity in the
space of C2 maps of the interval was proved in [S3].
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Quasisymmetric rigidity can also be proved for a large class of real transcendental
maps, see [RvS1] and [RvS2]. Another motivation is to extend results about mono-
tonicity of entropy for real polynomials with only real critical points, see [BvS], to real
polynomials with non-real critical points. This is work in progress by the 2nd author
joint with Cheraghi.

1.6.3. Renormalization results. In the 1970s, Feigenbaum and Coullet–Tresser [Fe,TC]
observed surprising universal scaling laws in one-dimensional dynamics. They noticed
that, in the family

fλ : x �→ x2 + λ,

the sequence of points, λn, as λ decreases from 1/4, where the mapping fλn passes
through a period doubling bifurcation has the following property: the ratio

λn−1 − λn

λn − λn+1

converges, and even more, the limit is independent of the family of unimodal maps,
provided that family of maps is chosen so that each map in the family has a non-
degenerate critical point. They also observed similar universality properties of ω(0).
In the period doubling case, there is a sequence of periodic intervals Jn with period
2n under f , for which the ratios |Jn|/|Jn+1| converge to a fixed value, which does not
depend on the choice of family. To explain these observations, they introduced the period
doubling renormalization operator. They conjectured that this operator has a unique fixed
point and that this fixed point is hyperbolic with a one-dimensional unstable manifold.
Exponential convergence of renormalization has strong implications for the rigidity of
such maps. For example:

Theorem 1.8. Assume that f, g are real analytic infinitely renormalizable maps with
bounded geometry. Then any topological conjugacy between f and g is differentiable
at the critical point.

The original renormalization conjecture has been extended to cover all unimodal
infinitely renormalizable combinatorial types. Roughly, the generalized version of the
conjecture states that, there is a renormalization operator,R, that acts on an appropriate
space of functions, and has an invariant set,K, called the full renormalization horseshoe.
Furthermore, at each point f ∈ K,R has a one-dimensional unstable manifold, and the
stable manifold of f corresponds to its topological conjugacy class. This conjecture was
settled for quadratic maps by Lyubich, [Ly3,Ly5].

Partial proofs of such results were first obtained by [CE,La] using bounds obtained
with computer assistance. Sullivan, [Su], was the first to prove convergence of renormal-
ization for real analytic infinitely renormalizable maps of bounded type. It is precisely
for this reason that he derived complex bounds for such maps. A crucial ingredient in
the proof was to have that on a sufficiently small scale, the bounds are independent of
the map, i.e. that these bounds are beau, see p. 5. This means that there exists a com-
pact class C of maps, so that after renormalizing a map f , possibly a large number of
times, its renormalization is in C. Subsequent renormalization results, including expo-
nential convergence of renormalisation, were obtained by [M1,M2,Ly3,Ly5,dFdMP].
The most recent proof in [AL] of the convergence of renormalization shows that, in fact,
the property of complex bounds with beau estimates is essentially the only ingredient
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that is required. For analytic interval maps with several critical points, results on renor-
malization have been proved by Smania, [Sm2,Sm4,Sm5]. It is clear from the results
just cited that our results will be a key to extending results about the hyperbolicity of
renormalization to more general settings.

For critical circle maps, there is a renormalization theory that is closely related to the
theory for unimodal maps, see for example [Ya2,KT,dFdM1,dFdM2].

For maps that are not real-analytic, but smooth, it turns out that some renormal-
ization results can be obtained through asymptotically holomorphic extensions, see
[GdM,GMdM] for smooth critical circle maps and [CFS] for certain smooth infinitely
renormalizable interval maps.

In addition to explaining the universal scaling laws in both the phase and parameter
spaces observed by Feigenbaum and Coullet–Tresser, the hyperbolicity of renormaliza-
tion is a vital ingredient in the proof of the celebrated theorem that in the real family
z �→ z2 + c, c ∈ [−2, 1/4], almost every map is regular or stochastic, [Ly5]. The hyper-
bolicity of renormalization, together with the fact that the leaves of the lamination of
the space of polynomial-like maps by the hybrid classes are analytic manifolds, imply
that the set of infinitely renormalizable maps have measure zero in generic families of
unimodal maps. To complete the proof of the regular or stochastic theorem a parameter
exclusion argument and a geometric characterization of stochastic mappings are used to
show that in the set of non-regular, non-renormalizable parameters, almost every map is
stochastic, [Ly4,MN]. This result has been generalized and improved: in generic fam-
ilies of analytic unimodal maps almost every map is regular or Collet–Eckmann, see
[AM1,AM2,ALdM,ALS,BSvS,C].

1.7. An outline of the paper and a sketch of the proof. In this paper, we construct box
mappings with complex bounds around a critical point c0 with the property that f is
persistently recurrent on ω(c0); recall that either c0 is even or all critical points in ω(c0)
are odd. When f is not persistently recurrent at c0, one can go with bounded degree
from arbitrarily small scales around c0 to a fixed large scale; therefore for such critical
points the construction of complex bounds uses rather different methods, which can be
found in [KSvS2] and [CvS]. For maps with a persistently recurrent critical point c0, we
define a sequence of nested intervals around c0 called the generalized enhanced nest

I0 ⊃ I1 ⊃ I2 ⊃ · · · .

In the non-renormalizable setting, this generalized enhanced is identical to the enhanced
nest in [KSvS]; however, we extend the construction so that it also covers infinitely renor-
malizable maps. This nest allows us to construct quasi-box mappings, see Sect. 1.7.2, in
the infinitely renormalizable and non-renormalizable cases simultaneously. This is the
crucial step in the construction of complex box mappings.

The enhanced nest possesses key features that play important roles throughout the
proof. In the non-renormalizable case, each interval In+1 in the enhanced nest is a pull-
back of In with bounded degree depending only on the vector b. The combinatorics of the
enhanced nest are very well controlled—if a chain starts in a deep level of the enhanced
nest, and returns to it, we exploit the fact that the chain had to visit each higher level
several times prior to returning. Finally, the enhanced nest provides us with dynamically
defined space, free (disjoint) from ω(c0), even in the (infinitely) renormalizable case. It
is worth noticing that the enhanced nest is never a subsequence of the principal nest and
that while the combinatorics of the enhanced nest are far more complicated than those
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of the principal nest, the principal nest does not provide the same geometric control as
the enhanced nest.

1.7.1. Sections 3–8: developing the required tools. We use the same strategy to prove
complex bounds as was used in [KSvS], but we extend it to allow for odd critical points
and for infinitely renormalizable maps. For this reason we follow the notation from
[KSvS], and refer as much as possible to results and proofs from that paper. We have
attempted to indicate to which past results our statements correspond, even though the
proofs and some of the statements require modifications. It turned out that to over-
come the additional difficulties for dealing with this generality required new ideas.
In particular, many of the results or proofs in Sects. 6 and 8 have no analogues in
[KSvS].

Our aim is to construct a complex box mapping with complex bounds that extends
RIn for any n sufficiently large. Remember that we always restrict return maps to the
components that intersect ω(c0). Our main goal is the construction of a quasi-box map-
ping. A quasi-box mapping is similar to a box mapping, except that the components
of its domain need not be compactly contained in its range and we do not require
the components of its domain to be pairwise disjoint (see Definition 1.2). This con-
struction occupies most of the paper, Sections 3 to 9. In the final section, Sect. 10,
we make use of quasi-box mappings to build box mappings and we show complex
bounds.

To construct quasi-box mappings we use Poincaré disks based on intervals from the
generalizad enhanced nest. See p. 17, for the definition of the Poincaré disk Dθ (I ),
where I is an interval in R and θ ∈ (0, π). We let CI denote the slit complex plane
CI = C\(R\I ). Let us explain the basic idea behind the construction. Fix n large and
let Lx (In) be the landing domain to In containing a point x ∈ In ∩ ω(c0). Consider the
disjoint chain {G j }sj=0 given by Gs = In and G0 = Lx (In) and let

Us = Dθ (In−N ) ∩ CIn and Uj = CompG j
f −1(Uj+1),

for 0 ≤ j < s and some fixed 3 < N < n. Assume there exists a constant μ ∈ (0, 1) so
that

U0 ⊂ Dμθ (K ) ⊂ Us,

where K is an interval well-inside In−N with Lx (In) ⊂ K . Observe that the map
f s : U0 → Us is a (qr) branched covering map. Hence, we can construct a quasi-box
mapping F : U → V , by considering U equal to the union of all sets U0 constructed as
above, for points x ∈ In ∩ ω(c0), and range V = Dθ (In−N ). The key part of the proof
to show the existence of a beau bound on the constant μ, depending only on the number
of critical points of f and their orders, and a universal constant N so that the above
construction holds for all intervals In with n sufficiently large. To find such constants
we first study the geometric properties of the generalized enhanced nest, and then we
study pullbacks of Poincaré domains in various circumstances.

Let us now survey what is done in each section.
In Sect. 3, we prove the necessary “real bounds”. Before going into further detail,

we refer the reader to the beginning of Sect. 3 for the definitions of δ-nice and δ-free. It
is worth remarking that while some of the results in this section are very close to those
in [KSvS], the proofs usually differ in significant ways. For instance, when all critical



Complex Bounds for Real Maps 1013

Fig. 1. The Poincaré disk Dθ (I ) of angle θ based on an interval I

points of f are even as in [KSvS], all intervals In are δ-free. However, in our setting,
this need not be the case. Very roughly, using the terminology from Sect. 1.1.2, we show
the existence of a universal constant δ > 0 such that: if In is a non-terminating level of
the generalized enhanced nest, then

• In is δ-nice, and
• ((1 + 2δ)In+1\In+1) ∩ ω(c0) = ∅.

Bounded scaling factors between sufficiently many nearby levels in the enhanced
nest has important consequences for the geometry of ω(c0). For example, we show that
if there is a small return domain to In , then In+1 is small compared to In , and if In and
In+1 are non-terminating, then In is δ-free for some δ > 0 depending on |In|/|In+1|.
Furthermore, we are able to use the generalized enhanced nest and certain bounded
geometry conditions to control the geometry of the post-critical set for infinitely renor-
malizable maps, see Proposition 3.20. Control of the post-critical set is vital throughout
this paper since it makes it possible to control the shape of pullbacks of Poincaré disks
in the complex plane, which are the basic pieces we will use to construct quasi-box
mappings.

In Sect. 4, we present some necessary facts about Poincaré disks and show how to
pull them back by first return maps. When we pull back one of these domains (i.e. we
take its preimage) by a unicritical branched covering, knowing that the critical values of
the map are not close to the boundary of the disk, allows us to control the shape of this
pullback, see Lemmas 4.2 and 4.3. Of greatest importance to us is that we control the
loss of angle. The pullback of a Poincaré disk with angle θ is contained in a Poincaré
disk of angle θ ′ ≤ θ and we bound θ ′ from below (in terms of θ ), which gives us some
control on the geometry of the pullbacks (Figs. 1, 2).

Asymptotically holomorphic extensions were used by Lyubich to prove complex
bounds and quasisymmetric rigidity for the quadratic Fibonacci map [Ly1]. For an appli-
cation to infinitely renormalizable mappings with bounded combinatorics see [Su]. In
[GSS2] the theory of asymptotically holomorphic extensions was developed further,
and we use their results in our proof. In Sect. 5, we recall these results, and use them
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Fig. 2. The figure shows two cases where I is terminating together with the interval R(I ) marked in dots

to develop tools for dealing with C3 maps f : M → M . These maps yield quasireg-
ular extensions of C3 interval maps to a neighbourhood in the complex plane, which
are asymptotically holomorphic. The key property of these extensions is that, like ana-
lytic maps, they satisfy an “Almost Schwarz Inclusion Principle:” the loss of angle when
pulling back a Poincaré disk by a diffeomorphism is small, see Lemma 5.5.We also show
in this section that the results in Sect. 4 go through in the smooth setting. The reader
who is only interested in the main theorem in the real analytic setting can skip this
section.

In Sect. 6, we show how to pull back Poincaré disks in a few different situa-
tions: along monotone branches, by maps of bounded degree, and through long cas-
cades of central returns. All these arguments are complicated by the fact that our
map is not a polynomial; therefore we will lose angle even when we pull back by a
diffeomorphism.

In Propositions 6.1 and 6.3, the problem that we face is pulling back a slit Poincaré
disk Dθ (Ĝs) ∩ CGs along a chain {G j }sj=0 under which the chain {Ĝ j }sj=0 could have
any degree. To deal with this issue, we make use of dynamically defined free space
and the existence of fundamental domains. Of particular importance is Proposition 6.1
(which has no analogue in [KSvS]). This proposition allows us to pull back along a
single monotone branch for as long as we like, using fundamental domains of definite
size to control the loss of angle.

Proposition 6.3 allows us to pull back along long cascades of central returns. It is
similar to [KSvS, Proposition 11.1]; however, it also covers the case of terminating
intervals. Its proof, compared to its analogue in [KSvS], is complicated by the fact each
time we pullback along a monotone branch we lose some angle, so we have to bound
the number of times we switch between monotone branches. This argument is new and
non-trivial; ideas of this proof are also used in Sect. 7.

In Sect. 7 we use the notion of combinatorial depth of a chain from [KSvS]. For a
given critical point the combinatorial depth measures how close a chain comes to the
critical point c in terms of the number central cascades around c that the chain enters.
Proposition 7.1 bounds the loss of angle for the pullback of the Poincaré disk along a
chain in terms of its combinatorial depth.

In Sect. 8, we show how to control the loss of angle as we pull back from one level
of the enhanced nest to the next, under two different circumstances: bounded scaling
factors and big scaling factors. The first case, which occupies the majority of the section,
is roughly explained as follows. There exist si < si−1, λ ∈ (0, 1) and δ > 0, so that
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CompGsi
f −(si−1−si )(Dθ (In−i−1) ∩ CGsi−1

) ⊂ Dλθ ((1 + 2δ)−1 Ii ).

This argument and the strategy of the proof are subtle, in particular due the presence
of terminating intervals. We must control the combinatorial depth of (certain segments
of) the chain {G j }sij=0, which can be guaranteed only when the scaling factor between
In−i−1 and In−i+1 is bounded. In this part of the proof, the difference between the
non-renormalizable and the renormalizable cases is pronounced. Roughly, in the non-
renormalizable casewe are able to decompose themap f si−1−si |Dθ (In−i−1)∩CGsi−1

into
a bounded sequence of that maps that we can control, and use the results of the previous
sections to control the loss of angle at each stage. This is impossible to do when there
are terminating intervals in the generalized enhanced nest; if In−i−1 is terminating, In−i
is not a pullback of In−i−1. In this case, we pull back from a terminating interval in the
enhanced nest to the next level in two stages: first we pull back from the terminating
interval to the largest periodic interval contained in it, and then we pull back from the
periodic interval to the next level of the generalized enhanced nest. This strategy is
described in Diagrams 13 and 14.

When there are big scaling factors between levels of the enhanced nest, it is enough
to make use of the dynamically defined external free space to control the loss of angle.
Furthermore, big scaling factors allow us to construct complex box mappings without
the aid of quasi-box mappings.

1.7.2. Section 9: construction of quasi-boxmappings. In this sectionwe use an inductive
argument to construct a quasi-box mapping that extends the return mapping to any
interval In of the enhanced nest, provided n is sufficiently large. The notion of a quasi-
box mapping was introduced in [LvS1, Remark 12.4], used explicitly in [LvS2], and is
defined as follows:

Definition 1.2. LetUi and Vj be open Jordan disks in C, 0 ≤ j < b, i ∈ I where I is at
most countable. Set U = ∪Ui and V = ∪Vj . A mapping F : U → V is a holomorphic
quasi-box mapping if for each i , there exists j and a holomorphic branched covering
Fi : Ui → Vj , and the following hold:

• V0, . . . , Vb−1 are pairwise disjoint Jordan disks;
• every connected component Vj of V is either a connected component of U or the

intersection of Vj with U is a union of sets Ui where each of these is contained in
Vj , not necessarily compactly;

• if Ui ⊂ Vj , then Ui\Vj ⊂ R.

Notice that we do not assume the components of U are disjoint, so F : U → V may be
multi-valued, but F |Ui = Fi is well-defined as a single valued function on each Ui . If
we only require that Fi be quasi-regular on eachUi then we say that F is a qr quasi-box
mapping, see Sect. 5.3.When it will not cause confusion, wewill refer to thesemappings
as quasi-box mappings.

We define the filled Julia set of a quasi-box mapping F : U → V as the set

K (F) = {z ∈ U : Fk(z) ∈ U for all k = 0, 1, 2, . . .}.
To construct a qr quasi-box mapping we only need to control the loss of angle when

we pull back a Poincaré disks under a certain chain. The angle control that we have is
the same for both the asymptotically holomorphic extensions we use as it is for analytic
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maps, so the proofs in the smooth and analytic cases are essentially the same. It is worth
remarking that we do not control the dilatation of a qr quasi-box mapping; the presence
of long central cascades seems to make this impossible using our methods.

We start the construction of quasi-box mappings with a Poincaré disk, based on a slit
domain

Dθ (In−M ) ∩ CIn where CIn = C\(R\In)
and pull it back from one level of the enhanced nest to the next using the arguments in
Sect. 8.

If the scaling factor between the level In−i and In−i+1 is ever big enough, we can
easily construct a box mapping for the return map to a deeper puzzle piece, which gives
us a quasi-box mapping for the return map to deeper levels. So in what follows we
assume the scaling factors between the level In−i and In−i+1 are bounded.

The combinatorics of the enhanced nest make it possible to select times to pull back
to in such way that once we have pulled back to level In−i , the forward orbit of the
chain only visits In−i a couple of times. This bound is used in following way: if In−i is
comparable to In , then by the real bounds, the components of the domain of the return
map to In−i are comparable to In−i , so the derivative of the return mapping to In−i is
bounded. Since the number of returns of the chain Gsn−i , . . . ,Gs to In−i is bounded, we
have thatGsn−i is comparable to In , and hence to In−i too. In the presence of terminating
intervals, the proof of the existence of suitable times to pull back to, at each level, involves
a combinatorial analysis of the return maps. Let us explain the pull back argument in
more detail. Let x ∈ ω(c) ∩ In and consider the chain {G j }sj=0 where Gs = In and
G0 = Lx (In). From Sect. 8, we know there exist sn−M+1 < s, λ ∈ (0, 1) and δ > 0
such that

CompGsn−M+1
f −(s−sm−M+1)(Dπ/2(In−M ) ∩ CIn ) ⊂ Dλπ/2((1 + 2δ)−1 In−M+1).

In other words, as we pull back a point from one level of the enhanced nest to the next,
we know how much angle we lose. If we do not lose any angle; that is, for the set of
points in

CompGsn−M+1
f −(s−sm−M+1)(Dπ/2(In−M ) ∩ CIn ) ∩ Dπ/2(In−M+1),

we repeat the argument and control the loss of angle up to a time sn−M+2 < sn−M+1 with
a Poincaré disk based on In−M+2. This argument can be carried on inductively, because
of the combinatorics of the enhanced nest. If we lose angle when we pull back; that is,
for the set of points in

CompGsn−M+1
f −(s−sm−M+1)(Dπ/2(In−M )\Dπ/2(In−M+1)),

then this is a “jumping time” associated to this point (see [LY]), and also Fig. 11 on p.
61. In this case, since Gsn−M+1 is comparable to In−M+1, as assumed above, there exists
λ′ ∈ (0, 1) so that

CompGsn−M+1
f −(s−sm−M+1)(Dπ/2(In−M ) ∩ CIn )\Dπ/2(In−M+1) ⊂ Dλ′π/2(Gsn−M+1),

and we are able to capture this set by a Poincaré disk based on Gsn−M+1 without losing
too much angle. Since the chain {Gi }s−1

i=0 is disjoint, it is not hard to control the loss
of angle as we pull back all the way to the start. So there are two cases, given a point
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z ∈ Dπ/2(In−M ) ∩ CIn either the point f −(s−sn−i )(z) ⊂ Dπ/2(In−i ) for all i , or there
exists some i , for which sn−i gives a jumping time. In either case, choosing M properly,
we show f −s(z) ⊂ Dπ/2(In−1). Hence, the return map to In extends to a quasi-box
mapping. This is Theorem 9.3. It is important to remark that, throughout this section,
the presence of periodic intervals significantly complicates the arguments.

1.7.3. Section 10: construction of complex box mappings with complex bounds. In
this final section, we use quasi-box mappings to construct box mappings. In the non-
renormalizable case, we employ amethod that was first used in [LvS2]: we first construct
‘by hand’ a smooth box mapping with the desired topological properties: the domain
being compactly contained in the range and the components of the domain being disjoint,
and then intersect it with the quasi-box mapping to obtain a complex box mapping. In
the renormalizable case we make use of a result of [LY]. We then prove that complex
bounds hold for these complex box mappings. The work in this section is done primarily
to deal with the smooth, as opposed to the analytic, case. The complex bounds for at most
finitely renormalizable maps follow immediately from the “Upper and Lower Bounds,”
see [KSvS]:

Proposition 1.9 (Upper bounds). There exists a constant η > 0 such that for all n
sufficiently large the following hold.

• diam(In) ≤ η|In|, and;
• there exists a topological disk � ⊃ In such that (�\In) ∩ ω(c0) = ∅ and

mod(�\In) > 1/η.

Proposition 1.10 (Lower bounds). There exist beau constants η > 0 and ε > 0 such
that for all n > 0 with |In| < ε,

B(c0, η|In|) ⊂ In .

For infinitely renormalizable maps, the key estimate is to show that if F ′ : U ′ → V ′
is the quasi-box mapping map constructed in Sect. 9 that extends the return map to a
periodic interval J of sufficiently high period, then mod(V ′\K (F ′)) is bounded away
from zero. From this we obtain a polynomial-like map that extends the return map to J
with complex bounds from Lemma 10.17.

1.8. Relation to complex bounds for non-renormalizable polynomials: [KvS]. Up to
Sect. 10.2, this paper is concerned with the construction of a complex box mapping
associated to a realmap of the interval. Before this is accomplished, themethods of [KvS]
do not seem to apply. However, once we have constructed a complex box mapping, in
the analytic case, it is possible to replace the arguments of this paper with the arguments
of [KvS] to establish complex bounds.

In fact, it is possible to generalize [KvS, Lemma 9.1 (Small Distortion of Thin
Annuli)] to the case when F : U → V is quasiregular, and obtain a similar statement.
This gives an alternative approach to establishing complex bounds when f ∈ A3

b is
non-renormalizable. However, with the preparation that we have already done in this
paper, the approach of [KSvS] is more natural, and that is the route we take to prove
complex bounds.
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1.9. The complications of having smooth maps, with critical points of odd order which
are possibly infinitely renormalizable. Let us highlight some of the main complica-
tions in our proof, compared to the proof of complex bounds in [KSvS] in the non-
renormalizable case and to [S3] in the infinitely renormalizable one.

1.9.1. Diffeomorphic pullbacks. In both the analytic and the C3 settings, we have a loss
of angle along diffeomorphic pullbacks of Poincaré disks (see Lemmas 5.5 and 4.1). To
bound this loss, we need to ensure that certain chains of intervals are disjoint or have
that the sum of the lengths of their elements are bounded. This is not a problem in the
polynomial case where there is no loss of angle under diffeomorphic pullbacks.

1.9.2. Odd critical points. If ω(c0) contains only critical points of odd order, then the
real bounds require a more elaborate treatment than if at least one of the critical points
is even. This is due to the lack of symmetry around critical points of odd order, i.e. an
odd critical point need not be close to the centre of a first return domain. As a result, the
statement and the proof of the real bounds become more subtle. Indeed, Theorem 3.1
covers more cases than the corresponding statement in [KSvS], namely Proposition 8.1.

When there are anyodd critical points,weneed to dealwith saddle-cascades occurring
in monotone branches. We do this in Proposition 6.1. This is used in Proposition 6.3,
which is a key step in the proof, and it is a generalization of [KSvS, Lemma 11.1].
To prove this proposition, we need to control the number of times we switch from one
monotone branch to another since each time we switch we lose angle. To make the
argument work requires a subtle change to the proof of Lemma 11.1 in [KSvS].

1.9.3. Infinitely renormalizable maps. If the map is infinitely renormalizable, then the
argument used to prove complex bounds in [KSvS] no longer applies. For this reason we
define the generalized enhanced nest, see Sect. 2.5. One of the advantages of working
with this nest is that it has better geometric properties than the principle nest, which was
used in [S3]. Indeed, we use the control on the geometry of the post-critical set, which
we obtain under some straightforward bounded geometry conditions, to pull back from
one level of the generalized enhanced nest to the next. This is done in Sect. 8.1, see also
diagrams in Figs. 13 and 14, see p. 68.

1.10. Notation and terminology. Unless otherwise stated, we adopt the convention that
C > 0 is a large constant, and ε > 0 will be a small constant.

1.10.1. Scaled sets, Poincaré domains and components. We let R be the real line. We
will always use I to denote an interval in R. If I is a bounded interval, then write
I = (a + x, a − x) and for γ > 0 define γ I := (a + γ x, a − γ x). We let C denote
the complex plane. We let CI = C\(R\I ). We let H be the upper-half plane and H

−
be the lower-half plane. If θ ∈ (0, π), we denote by D+

θ (I ) (respectively D−
θ (I )) the

region in H (respectively H
−) bounded by I together with the circle arc subtending

I that meets the real axis with external angle θ at each boundary point of I . We let
Dθ (I ) = D+

θ (I ) ∪ D−
θ (I ) ∪ I . This set corresponds to the set of points with a fixed

distance to I in the Poincaré metric in CI . Given a set K ⊂ C we let Compx (K ) denote
the connected component of K containing x .
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1.10.2. Definition of the class of functions. We let Ak
b be the set of Ck maps of the

interval [0, 1], (i.e. are Ck on some small neighbourhood of [0, 1]), with critical points
(c1, . . . , cb) with integer orders b = (�1, . . . , �b), where b = |b| is the number of
critical points, such that at each point ci ∈ [0, 1] we can express f locally as f (x) =
[φi (x−ci )]�i + f (ci )where φi is a localCk diffeomorphism, φi (0) = 0 and �i > 0. If �i
is even (odd) we say that the corresponding critical point ci has even (odd) order.Wewill
call a critical point of evenorder a turningpoint.We letAb denote the set of suchmaps that
are analytic.As usual,wewill say that amap isunivalent if it is holomorphic and injective.

1.10.3. First return maps, pullbacks, periodic intervals and nice intervals. As usual, we
let ω(x) denote the omega-limit set of a point x .

Given a set K ⊂ C we will only consider branches of RK (the first return map to K ,
see p.3) that intersect ω(c0) for a fixed critical point c0. Where c0 will be chosen later.

Let f : M → M be a continuous interval map. An interval J is called a pullback
of an interval I if it is a component of f −s(I ) for some s ∈ N. If J is a pullback of
I by f −s , we associate to this pullback a chain of intervals {Ji }si=0 with Js = I and
Ji = Comp f i (J )( f

−1(Ji+1)) for i satisfying 0 ≤ i < s. We say that the order of the
chain {Ji }si=0 is N if precisely N of the intervals J0, . . . , Js−1 contain a critical point.

We say that an open interval J is nice if f n(x) /∈ int(J ) for each x ∈ ∂ J and n > 0.
This implies that for any k > n ≥ 0, if a component Jk of f −k(J ) intersects a component
Jn of f −n(J ) then Jk is contained in Jn ; so any two pullbacks of a nice interval are either
nested or disjoint. In particular, if the first return time of x to J is equal to s and we
consider the chain {Ji }si=0 with Js = I and Ji = Comp f i (x)( f

−1(Ji+1)) we get the
following: J0 = Lx (J ), the intervals J0, . . . Js−1 are pairwise disjoint and the order of
the chain {Ji }si=0 is bounded by the number of critical points of f .

We will say that two intervals I and J have nested or disjoint pullbacks if for any
m, n ∈ N, any component I1 of f −m(I ) and any component J1 of f −n(J ) either J1 and
I1 are nested or J1 and I1 are disjoint.

Give two nice intervals J ⊂ I , they are called a nice pair if all iterates of ∂ J remain
outside the interior of I . Under these circumstances, if J1, J2 are pullbacks of J and
I1, I2 are pullbacks of I with Ji ⊂ Ii for i = 1, 2 and I2 ⊂ I1, then either

J2 ⊂ I2 ⊂ J1 ⊂ I1 or J2 ⊂ I2 ⊂ I1\J1.

1.10.4. Notation table. At the end of the paper, there is a table of some of the notation
and terminology we use throughout.

2. The Generalized Enhanced Nest

2.1. Real puzzle pieces. Let us assume that f : M → M is aC3 map of the interval with
b < ∞ critical points and let c be a recurrent, non-periodic critical point. We say that
a set Z is admissible if it is a finite forward invariant set, disjoint from the postcritical
set of f such that every point of Z is a preimage of a repelling periodic point under an
iterate of f .

Given a Z admissible set, we will say that I is a (real) puzzle piece of depth n (with
respect to Z ) if it is a component of f −n(Y ), where Y is a component of M\ f −1(Z). We
observe that puzzle pieces are nice intervals, so any two puzzle pieces are either nested
or disjoint.
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2.2. Combinatorics of puzzle pieces. While the objects in this subsection are defined
for real puzzle pieces, the definitions in this subsection hold whether a puzzle piece is
real or complex.

We say that a puzzle piece is ω(c)-critical if it contains a critical point in ω(c). Let
P be an ω(c)-critical puzzle piece containing the critical point c′ ∈ ω(c). An ω(c)-
critical puzzle piece Q is a called a child of P if it is a unicritical pullback of P; that
is, there exists a positive integer n such that Q is a component of f −n(P) containing
a critical point in ω(c), and there exists a puzzle piece Q′ ⊃ f (Q) such that the map
f n−1 : Q′ → P is a diffeomorphism. A successor of P is a puzzle piece of the form
L̂c′(Q), where Q is a child of L̂c′′(P) for some critical point c′′ ∈ ω(c). By construction,
a successor of P is a pullback of P of order bounded by 2b − 1.

Let I be a puzzle piece containing a recurrent point x . We define the principal nest
around x as follows. We set I 0 = I and inductively define I n+1 = Lx (I n). Given a
puzzle piece I n the puzzle piece I n+1 will be called central, while any other return
domain to I n will be called non-central.

Let c be a recurrent, non-periodic, critical point and consider the principal nest I 0 ⊃
I 1 ⊃ I 2 ⊃ · · · about c. We define m̂ ∈ N ∪ {∞} to be the smallest number, if it exists,
such that a there is a critical point c′ of RI 0 |I 1 with (RI 0 |I 1)(c′) /∈ I m̂ . If no such integer
exists, we set m̂ = ∞. If m̂ < ∞ we say that I is non-terminating and otherwise we
say that I is terminating. In the terminating case, we let I∞ = ∩i≥0 I i .

2.3. Persistent recurrence. Amap f is called persistently recurrent onω(c) if c is recur-
rent, non-periodic and each ω(c)-critical puzzle piece has only finitely many children.
Under these circumstances, we will also say that f is persistently recurrent at c and that
c is a persistently recurrent critical point. If f is persistently recurrent on ω(c), then
ω(c) is minimal, but the converse of that statement is false. We observe the following,
if f is persistently recurrent on ω(c) each ω(c)-critical puzzle piece P has a smallest
successor, which we denote by �(P); and if Q is an entry domain to P intersecting
ω(c), then L̂c(Q) is a successor of P , and thus P ⊃ L̂c(Q) ⊃ �(P).

From [KSvS], pp. 771–772, we know the following:

Lemma 2.1. If f is persistently recurrent on ω(c), then for any ε > 0 there exists an
admissible set Zε such that any real puzzle piece of depth zero that intersects ω(c) has
length less than ε.

As a direct consequence of the No Wandering Intervals Theorem, see [vSV, p. 751],
we get that for any δ > 0 there exists ε(δ, f ) > 0 such that the length of any pullback
of a critical real puzzle piece with size less than ε has size less than δ. From this fact and
Lemma 2.1, we can assume that any real puzzle piece that intersects ω(c) has length less
than ε0, where we can choose ε0 > 0 as small as we like. We will use this observation
without further comment.

Remark. Suppose that c ∈ Crit( f ) and that f is persistently recurrent on ω(c). Then
for any sufficiently small nice interval I � c the following holds.

• The interval I contains no other point from Crit( f ).
• If c′ ∈ Crit( f ) is any critical point such that there exists a chain {Gi }si=0, with

Gs = I and G0 = Lx (I ) for x ∈ ω(c) ∩ I, and c′ ∈ G j for some 0 ≤ j < s, then
c′ ∈ ω(c).
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Assume f is persistently recurrent on ω(c). By Lemma 2.1 and the remark above we
know that (for I is sufficiently small) all critical values of f r |I 1 are contained in ω(c).
Since f is persistently recurrent, ω(c) is not a periodic orbit. These two facts, along
with [dMvS, Theorem III.4.1] imply f r |I 1 does not have a periodic attractor (otherwise
ω(c) would be a periodic orbit). Moreover, since ω(c) is minimal, and the period of all
attracting or parabolic cycles is bounded [dMvS, Chapter IV, Theorem B], there exists
a neighbourhood of ω(c) which does not intersect any immediate basin of a periodic
attractor or any parabolic cycle. Thus if I is sufficiently small, for any x ∈ ω(c), the
chain {G j }sj=0 with Gs = I and G0 = Lx (I ) avoids a neighbourhood of any immediate
basin of a periodic attractor or any parabolic point.

It will be useful for us to select a critical point c0 ∈ Crit( f ) about which we will
focus our construction. If ω(c) contains a turning point, we take c0 to be a turning point,
otherwise choose c0 ∈ ω(c)∩Crit( f ) arbitrarily. Observe that f is persistently recurrent
on ω(c0), so c0 is recurrent, non-periodic, ω(c0) is minimal and ω(c) = ω(c0).

2.4. Terminating intervals. Suppose that I � c0 is a terminating interval. Then, since c
is recurrent and non-periodic, RI has a critical point of even order, and hence c0 is of
even order too. Since c0 is a turning point, there exists a neighbourhood J ⊃ I of c0 and
an involution τ : J → J so that f = f ◦τ on J . Let r be the return time of c0 to I . Since
I is terminating, it follows that I∞ is a periodic interval. More precisely, f r (I∞) ⊂ I∞,
and f r (∂ I∞) ⊂ ∂ I∞ and all of the critical points of f r |I 1 are contained in I∞ along
with their orbits under f r . We let β denote the fixed point of f r on the boundary of I∞

Since c0 ∈ I∞, a periodic interval, and c0 is recurrent, f r |I∞ has at least one
repelling orientation reversing fixed point. Let α be the orientation reversing fixed of
f r |I∞ closest to c0; so (α, τ (α)) � c0 is the smallest τ -symmetric interval with one
repelling fixed point on its boundary.

Given a terminating interval I we define R(I ) as

R(I ) := (α, τ (α)).

See Fig. 12 for some examples. If R(I ) is a periodic interval, then it has period two
under RI and we say R(I ) is Feigenbaum.

We let Yi with−a ≤ i ≤ a denote the components of I∞\ f −r (α) labeled as follows:
Y0 = R(I ), Y−1 �= Y0 is the other component that contains α in its boundary and Y−a
and Ya are the components that contain β and τ(β), respectively, in their boundaries
(see Fig. 3). We let Ỹγ denote the monotone branch of f r |I∞ that contains γ , where
γ ∈ {α, β, τ (β)} (see Fig. 3).

2.5. The generalized enhanced nest. We will extend the construction of the enhanced
nest of [KSvS] to cover the renormalizable case. We will make use of the following
combinatorially defined return time.

Lemma 2.2 ([KSvS], Lemma 8.2). Let I � c be a ω(c0)-critical puzzle piece. Then
there exists a positive integer ν with f ν(c) ∈ I such that the following holds. Let
U0 = Compc f

−ν(I ) and U j = Comp f j (c) f
−(ν− j)(I ) for 0 ≤ j ≤ ν. Then

(1) #{ j : Uj ∩ Crit( f ) �= ∅, 0 ≤ j ≤ ν − 1} ≤ b2, and
(2) U0 ∩ ω(c) ⊂ Compc( f

−ν(L f ν (c)(I ))).
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α τ(α)

β τ(β)c0

Y0Y−1Y−2Y−3Y−4 Y1 Y2 Y3 Y4

a

α τ(α)

Ỹτ(β)ỸαỸβ

b

Fig. 3. a Partition of I∞. b Labelling of monotone branches

For each puzzle piece I � c0 we let ν = ν(I ) be the smallest positive integer with
the properties specified by Lemma 2.2. We define

A(I ) = Compc0 f
−ν(L f ν (c0)(I )),

B(I ) = Compc0 f
−ν(I ).

By construction A(I ) ⊂ B(I ) and (B(I )\A(I )) ∩ ω(c0) = ∅, giving a mechanism for
obtaining free space, i.e. space disjoint from ω(c0), on the outside and inside of the
interval B(A(I )). See Fig. 4.

Next, let T = 5b, where b is the number of critical points in ω(c), and define

E(I ) =
{

�TBA(I ) if I is non-terminating,
Lc0(R(I )) if I is terminating.

The generalized enhanced nest associated to a nice interval I � c0 is inductively
defined by

I0 = I and In+1 = E(In) for n ≥ 0.

For simplicity, we will refer to the elements from this nest as intervals from the
enhanced nest. However it is important to remark this definition differs from the one

free from ω(c0)

B(B(I))B(A(I))

A2(I)

Fig. 4. The intervals shown are A2(I ) ⊂ B(A(I )) ⊂ B2(I ). The pair of intervals B2(I )\A2(I ) is disjoint
from the postcritical set
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introduced in [KSvS] in the presence of terminating intervals. If In is non-terminating,
we let pn > 0 be so that In+1 is a component of f −pn (In). Under these circumstances,
Lemma 2.2 and the definition of successor imply that In+1 is a pullback of In of bounded
order; BA(In) is a pullback of In with order bounded from above by 2b2, and each
successor �i+1(BA(In)) is a pullback of order at most 2b−1 of �i (BA(In)). Thus In+1
is a pullback of In with order at most 2b2 + 5b(2b− 1). Note that if c0 is a critical point
of odd order, In is never terminating and so we always have that In+1 = �TBA(In).
Finally, the interval In is called Feigenbaum if it is periodic; necessarily of period two
under RIn−1 .

For each n ≥ 0, let r(In) be the minimal return time for x ∈ In ∩ ω(c0) back to In
and r̂(In) be the maximal entry time for x ∈ ω(c0) to In .

Although the following was stated in [KSvS], we provide a proof, since the proof
was not given in full in [KSvS] and the assumptions here are slightly weaker.

Lemma 2.3 (cf. [KSvS], Lemma8.3).Assume that In and In+1 are both non-terminating,
then the following holds:

(1) 3r(In+1) ≥ pn,
(2) r̂(In) ≤ (1/25b−1)r(In+1).

Proof. For each n ≥ 0 and for 0 ≤ j ≤ T − 1 define

Ln = A(In), Mn,0 = Kn = B(Ln) and Mn, j+1 = �(Mn, j ).

Let sn and tn be such that Ln is a pullback of In under f sn and Kn is a pullback of Ln
under f tn . For each 0 ≤ j ≤ T − 1 let qn, j be such that Mn, j+1 is a pullback of Mn, j
under f qn, j . Finally define pn = sn + tn + qn,1 + · · · + qn,T . Using the same proof given
in Lemma 8.2 on [KSvS] we get

(i) 2b2r(In+1) ≥ sn ≥ r(In),
(ii) b2r(Kn) ≥ tn ≥ r(Ln).

For each j consider the chain {G ji }qn, j
i=0, with G jqn, j

= Mn, j−1 and G j0 = Mn, j . By
definition of Mn, j we know that the interval G ji does not contain c0 if 0 < i < qn, j .
So we conclude that r(Mn, j ) ≥ qn, j . The fact that Mn, j−1 is non-terminating for every
0 ≤ j ≤ T implies that RMn, j−1(Mn, j ) ∩ Mn j = ∅. Therefore, qn, j ≥ 2r(Mn, j−1).
Putting these two inequalities together we get

(iii) r(Mn, j ) ≥ qn, j ≥ 2r(Mn, j−1).

Since Mn,1 is the smallest successor of Mn,0 and Mn,0 ⊂ In we have r̂(In) ≤ r̂(Mn,0) ≤
qn,1. Using this fact and equation (iii) we get

r̂(In) ≤ qn,1 ≤ 1

2
qn,2 ≤ · · · ≤ 1

2T−1 r(In+1).

The previous inequality together with equations (i) and (iii) gives us

pn = sn + tn + qn,1 + · · · + qn,T

≤ 2b2r(Ln) + b2r(Kn) + qn,1 + · · · + qn,T

≤ 2b2r(Kn) + b2r(Kn) + qn,1 + · · · + qn,T

≤ 2b2qn,1 + b2rqn,1/2 + qn,1 + · · · + qn,T
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≤ b2

2T−1 r(In+1) +
b2

2T−2 r(In+1) +

(
1

2T−1 + · · · + 1

2

)
r(In+1)

≤ 3b2

2T−2 r(In+1) +

(
1

2T−1 + · · · + 1

2

)
r(In+1)

≤ 3r(In+1).

��

3. Real Bounds Associated to the Enhanced Nest

In this section we will consider maps f ∈ A3
b and show geometric bounds for the

intervals of the generalized enhanced nest Before stating the main result we need to
introduce some terminology.

Given a constant ρ > 0, a nice interval I is called:

ρ-nice if for each x ∈ I ∩ ω(c0), (1 + 2ρ)Lx (I ) ⊂ I ;
ρ-free if ((1 + 2ρ)I\(1 + 2ρ)−1 I ) ∩ ω(c0) = ∅;
ρ-externally free if there exists a nice interval J ⊃ (1 + 2ρ)I, so that J ⊃ I is a

nice pair and J ∩ ω(c0) ⊂ I ;
ρ-internally free if there exists a nice interval J ′, so that (1 + 2ρ)J ′ ⊂ I,

J ′ ⊂ I is a nice pair and I ∩ ω(c0) ⊂ J ′.

We say that I is ρ-strongly nice if it is ρ-nice and if for each x, y ∈ I ∩ ω(c0) either
Lx (I ) = Ly(I ), (1 + 2ρ)Lx (I ) ∩ Ly(I ) = ∅ or (1 + 2ρ)Ly(I ) ∩ Lx (I ) = ∅. We will
say that an interval J is well-inside an interval I if (1 + 2ρ)J ⊂ I for ρ universal. If ρ

is large, then we say that J is deep-inside I .
The purpose of this section is to prove the following theorem.

Theorem 3.1 (Real geometry of the enhanced nest). Suppose that f ∈ A3
b. There exists

ε f > 0 such that the following holds. Assume that c0 is a critical point at which f
is persistently recurrent, and that either c0 has even order or that every critical point
in ω(c0) has odd order. Suppose that I0 � c0 is a nice interval with |I0| < ε f . Let
I0 ⊃ I1 ⊃ · · · be the generalized enhanced nest for f at c0. Then the following hold:

(a) There exists ρ > 0 such that if In is non-terminating, then In is ρ-nice. In addition,
if In−1 is non-terminating then In is ρ-externally and ρ-internally free, where the
externally free space is given by an interval J ⊃ (1+2ρ)In and the internal free space
is given by an interval J ′ ⊂ (1 + 2ρ)J ′ ⊂ In . Moreover, if c0 is even |J ′| ≥ ρ|In|;
if c0 is odd then for each ν > 0 there exists ρ′ > 0 so that if |In−1|/|In| < ν then
|J ′| ≥ ρ′|In|.

(b) Suppose that In−1 is terminating and In is non-terminating. Then for each ν > 0
there exists ρ′ > 0 so that if |In−1|/|In|, |In|/|In+1| < ν, then In is ρ′-free.

(c) For any C ′ > 0 there exists C > 0 such that if In is non-terminating and there is
some x ∈ ω(c0) ∩ In with (1 + 2C)Lx (In) ⊂ In then (1 + 2C ′)In+1 ⊂ In.

(d) For any C ′ > 0, there exists C > 0 such that if n ≥ 0, In is non-terminating and
C-nice, then In+1 is C ′-nice and C ′-externally free.

(e) Suppose that In is non-terminating, then for each ε′ > 0 there exists ε > 0 such that
if there is some x ∈ ω(c0) ∩ In with |Lx (In)| ≤ ε|In|, then |In+1| ≤ ε′|In|.

(f) For any C ′ > 0 there exists ε > 0 so that if In and In+1 are both non-terminating
and |In+1| ≤ ε|In|, then In+2 is a C ′-strongly nice and C ′-externally free.
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(g) For any C ′ > 0, there exists C > 0 such that if In is non-terminating, In+1 is
terminating and In ⊃ (1 + 2C)In+1, then I∞

n+1 is C
′-externally free.

Remark. (1) In the statements, the constants C,C ′ are large, while ε, ε′ are small. This
leads to intervalswhich are deep-inside, large free space, large ratios between intervals
etc. For this reason, the boundswithC,C ′ and ε, ε′ will be referred to as “big bounds”.

(2) If c0 is even, because of symmetry about the critical point, in Part (a) we have that
In+1 is ρ-nice and ρ-free. Also, in Part (a) notice that if |F ′| ≥ ρ′|In|, then the
components of In\F ′ have size comparable to In . If c0 is odd, then critical points
can be close to the boundary of the return domains. This causes the map to lose
free space inside the intervals. Because of this, the statement in Part (c) is no longer
sufficient for our purposes, so we supplement it with (e).

(3) To get internal free space, in general, we require that the lengths of the intervals in
few consecutive levels are comparable, see Corollary 3.25.

(4) In Part (a) the free space around In is given directly by the construction of the
enhanced nest, since return domains to In−1 arewell-inside In−1. The return domains
to In−1 can be close to the boundary, but when this happens they are very small. In
case In−1 is terminating, the free space, when we have it, is a consequence of certain
real bounds, rather than the construction of the enhanced nest.

Except for ε f , which depends on f , the above bounds are universal, or in Sullivan’s
terminology beau. In other words, one can choose the constants in the above theorem
so that they do not depend on f but only on the vector b = (�1, . . . , �b), provided we
begin the construction with an interval I0 small enough.

Theorem 3.1 generalizes Proposition 8.1 of [KSvS], to maps f that are C3 with
critical points of any order (i.e. not necessarily even order) and allowing for maps which
are possibly (infinitely) renormalizable. Proposition 3.20 is an addendum to Theorem 3.1
that will also be used later on. In the case of terminating intervals, some specific details
of the proof of Proposition 3.20 will be frequently used throughout the paper.

An important difference between this work and [KSvS] is that we no longer get that

(In\(1 + 2ρ)−1 In) ∩ ω(c0) = ∅
in the case where all critical points in ω(c) have odd order, which means that there can
be small return domains to In that intersect ω(c0) close to the boundary of In . This
complicates the proof significantly.

The proof of Theorem 3.1 occupies most of this section.

3.1. Distortion bounds and their consequences.

Theorem 3.2 ([vSV], Theorem C and [LiS], Theorem A). Suppose that f ∈ A3
b. Then

one has the following properties:

(1) Improved Macroscopic Koebe Principle. For each ξ > 0, there exists ξ ′ > 0 such
that if I is a nice interval, V is a nice interval that is ξ -well-inside I , x ∈ I and
f k(x) ∈ V with k ≥ 1 not necessarily minimal, then the pullback of V along
{x, f (x), . . . f k(x)} is ξ ′-well-inside the return domain to I containing x.

(2) Improved Koebe Principle. For each τ > 0, there exists K > 0 and ξ = ξ( f, τ ) > 0
satisfying the following. Let T ⊂ M be an open interval, and let J be a closed
subinterval of T such that the following hold:
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• J ∩ ω(c0) �= ∅,
• f n|T a diffeomorphism,
• | f n(T )| < ξ ,
• f n(J ) τ -well-inside f n(T ).

Then f n|J has bounded distortion; that is, for any x, y ∈ J,

|Df n(x)|
|Df n(y)| ≤ K .

Furthermore, K → 1 as τ → ∞.
(3) Negative Schwarzian derivative. For each critical point c that is not in the basin

of a periodic attractor, there exists a neighbourhood U of c such that whenever
f n(x) ∈ U for some x ∈ I and n ≥ 0, the Schwarzian derivative of f n+1 at x is
negative.

Theorem 3.2(2) follows from [LiS, Theorem A]. There the result is stated for map-
pingswith all periodic orbits repelling.However, theTheoremholds,without any change,
if we consider f restricted to puzzle pieces intersecting ω(c0); since all periodic points
contained in those pieces are repelling.

From now on we assume the following

Standing Assumptions:

• f ∈ A3
b is persistently recurrent on ω(c), where c ∈ Crit( f ).

• Either c0 ∈ ω(c) is even or c0 is odd and every critical point in ω(c) is odd.
• Any nice interval I that intersects ω(c0) is so small that for any chain {G j }sj=0 with

Gs = I and G0 ∩ ω(c) �= ∅ each G j avoids a neighbourhood of any immediate
basin of attraction of any periodic attractor or any parabolic cycle.

• If I is a nice interval containing a critical point c′ ∈ ω(c), then I is so small that the
remark on p. 20 holds for I .

• Suppose I and J are nice intervals with (1 + 2δ)J ⊂ I with δ > 0 universal. We
assume |I | < ξ, where ξ = min{ξ( f, τ ) : δ ≤ τ ≤ 1010}, and ξ( f, τ ) is the
constant given by Theorem 3.2 (2).

We can assume these since, as we have seen in Sect. 2.3, we can guarantee that puzzle
pieces intersectingω(c0) are arbitrarily small. It is worth observing that if (1+2C)J ⊂ I
for C large, then taking J ′ = (1 + 2(C − 1/2))J , we can apply the Improved Koebe
Principal with ξ = ξ( f, 1/2) > 0, so that when C is large our control on the distortion
given by Theorem 3.2 remains bounded.

Fact 9.1 of [KSvS] does not generalize to our present setting (the proof in [KSvS]
relies on the maps having negative Schwarzian derivative). However, the following ana-
logue holds.

Lemma 3.3 [KSvS, Fact 9.1]. For each N ∈ N and ρ > 0 there exists ρ′ > 0 such that
the following holds. Let {G j }sj=0 and {G ′

j }sj=0 be chains such that G j ⊂ G ′
j for all j ,

0 ≤ j ≤ s and G0 ∩ ω(c0) �= ∅. Assume that the order of {G ′
j }sj=0 is at most N and

that (1 + 2ρ)Gs ⊂ G ′
s . Then (1 + 2ρ′)G0 ⊂ G ′

0. Furthermore, for fixed N, ρ′ → ∞ as
ρ → ∞.

Proof. Let Ĝs = (1 + ρ)Gs and consider the chain {Ĝ j }sj=0 with G j ⊂ Ĝ j . Observe

that Ĝs is ρ/2-well-inside of G ′
s . Let 0 < s1 < · · · < s be the times j so that G ′

j



Complex Bounds for Real Maps 1027

contains a critical point. Then we can decompose f s : G ′
0 → G ′

s into at most N maps
of the form f : G ′

s j−1
→ G ′

s j−1+1
followed by f s j−s j−1−1 : G ′

s j−1+1
→ G ′

s j . It follows

from Theorem 3.2(2) that each of the factors f s j−s j−1+1|Ĝs j−1+1
has bounded distortion.

This, along with the fact that f has non-flat critical points, implies that existence of
ρ′ > 0 so that (1 + 2ρ′)G0 ⊂ Ĝ0 ⊂ G ′

0. ��
Two immediate consequences of the previous two results are:

Corollary 3.4. For each ρ > 0 there exists ρ′ > 0 so that the following holds. If I is
a nice interval, J = Lx (I ) for some x ∈ ω(c0) and (1 + 2ρ)J ⊂ I then, J is ρ′-nice.
Furthermore, if I is ρ-nice then ρ′ → ∞ as ρ → ∞.

Corollary 3.5. For each ρ > 0 and each integer N ≥ 0, there exists ρ′ > 0 so that the
following holds. Let I and J be nice intervals with J a pullback of I of order bounded
by N that intersects ω(c0). Then if I is ρ-free, J is ρ′-free. Furthermore, for fixed N ,

we get that ρ′ → ∞ as ρ → ∞.

Observe the above implies that if I is ρ-externally free then J is ρ′-externally free;
however,wedonot claim that if there existsρ > 0 such that (I\(1+2ρ)−1 I )∩ω(c0) = ∅,

then there exists ρ′ > 0 such that (J\(1 + 2ρ′)−1 J ) ∩ ω(c0) = ∅. This statement may
be wrong, because the internal free space that we pull back may be small compared to
the total interval J , unless we also have external free space to control the distortion of
the mapping.

The next two lemmas are closely related and are useful when a return domain to I is
not well-inside I .

Lemma 3.6 [vSV, Lemmas 2 and 3]. There exists a constant ρ = ρ(b) > 0 with the
following property. Let I be a nice interval, consider a point x ∈ I which returns to I
in time s and let I 1 = Lx (I ). Then either of the following holds:

(1) (1 + 2ρ)I 1 ⊂ I,
(2) there exists an interval Gs ⊃ (1 + 2ρ)I 1 with I ⊂ Gs, so that the chain {G j }sj=0

with G0 � x has intersection multiplicity bounded from above by a constant N that
depends only of the modality of f .

3.2. The existence of suitable fundamental domains. Let J ⊂ J ′ be intervals and assume
that g : J → J ′ is monotone. An interval J ∗ is called a fundamental domain for g if
it is of the form (x, g(x)) (or (g(x), x)). We will repeatedly use the property that the
pullbacks of a fundamental domain under iterates of g are disjoint.

Lemma 3.7. For each σ ∈ (0, 1) there exist κ > 0 and for each f ∈ A3
b there exists

an integer N such that the following holds. Let I be a nice interval and let J be a first
return domain of I with return time n > N . Assume that f n : J → I is an orientation
preserving diffeomorphism with fixed point p and let J ′ be a component of J\{p}. Then
for each x ∈ J ′ with |x − p| ≥ σ |J ′| there exists a fundamental domain F containing
x with |F | ≥ κ · d(F, p).

Proof. By Theorem IV.B in [dMvS] there exists δ1 > 0 so that for each f ∈ A3
b there

exists N so that Df n(p) ≥ 1+ δ1 provided the period n of p is at least N . For simplicity
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assume that p = 0 and that [0, x] ⊂ J ′. Write l = {0}, j = [0, σ x], r = [σ x, x],
t = [0, x] and g = f n . Define the cross-ratio distortion

B(g, t, j) = |g( j)||g(t)|
|g(l)||g(r)| · |l||r |

|t || j | .

Take y = σ x and take δ > 0 so that g(σ x)/(σ x) = 1 + δ. Then

B(g, t, j) = 1

g′(0)
g(σ x)

(σ x)

g(x)

x

x − σ x

g(x) − g(σ x)
≤ 1 + δ

1 + δ1

1 − σ

1 − σ(1 + δ),

since g(x) ≥ x . We would like to show that δ uniformly bounded from below for all
x ∈ J ′. If this is not the case, taking δ > 0 small we get B(g, t, j) < 1 contradicting
Theorem 2.1 of Chapter 4 of [dMvS]; which states that B(g, t, j) ≥ 1. ��

3.3. The principal nest. Recall that if I is a nice interval that contains a recurrent point
x , then the principal nest about x is defined inductively by I 0 = I and I n+1 = Lx (I n).
The next lemma is an important bound on the geometry of intervals in the principal nest.

Lemma 3.8 [vSV, TheoremA]. There exists δ > 0 such that if I is a nice interval, x ∈ I
is recurrent and RI (x) /∈ Lx (I ), then for each d ∈ N if RLd

x (I )
(x) /∈ Ld+1

x (I ), then

(1 + 2δ)Ld+2
x (I ) ⊂ Ld+1

x (I ).

Lemma 3.9 [S3, Lemma 5.5]. There exists a constant ρ = ρ(b) > 0 with the following
property. Let I be a periodic interval of sufficiently large period s. Then (1 + 2ρ)I does
not contain f i (I ) for i = 1, . . . , s−1. Moreover, the chain {G j }sj=0 with Gs = (1+2ρ)I
and G0 ⊃ I has the following two properties

• {G j }sj=0 has intersection multiplicity at most four and
• the map f s does not have a critical point in G0\I .

We say that I := I 0 ⊃ I 1 ⊃ · · · ⊃ Im is a central cascade if m ≥ 2 and the return
time of Im to the intervals I 0, I 1, . . . , Im−1 is always the same.

Lemma 3.10 (cf. [KSvS], Lemma 9.5). For any δ > 0 there exist κ > 0 and C > 0 with
the following properties. Let I be a nice interval (as usual, assumed to be sufficiently
small), having a central cascade I := I 0 ⊃ I 1 ⊃ · · · ⊃ Im with m ≥ 2 and let r be the
return time of I 1 to I 0.

(1) If |I 2| ≥ δ|I 0|, then for any critical point c of the map RI |I 2 we have
| f r (c) − c| ≥ κ|I 0| and |Df r (x)| ≤ C f or all x ∈ I 2.

(2) If |I 1| ≥ δ|I 0| and we let Ĩ = (1 + 2δ)I and Ĩ 1 = CompI 1( f
−r ( Ĩ )) the following

holds. Suppose that f r extends to a map from Ĩ 1 to Ĩ , with the same set of critical
points as f r |I 1, that can be decomposed into a finite composition of maps with
bounded distortion and polynomials. Then for any critical point c of the map RI |I 1
we have

| f r (c) − c| ≥ κ|I 0|, and |Df r (x)| ≤ C f or all x ∈ I 1.
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Proof. As before, let b = (�1, . . . , �b). By Lemma 3.6; Theorem 3.2 and since c ∈ I 2,
there exist beau constants ρ′ > 0, K < ∞ and an integer N (only depending on b) and
an interval J with either J = I 2 or with J of the form (c− δ, c+ δ) so that |J | ≥ ρ′|I 2|,
f r (J ) ⊂ (1 + ρ′)I0 and so that f r : J → f r (J ) can be written as a composition of
at most N maps whose distortion is bounded by K and polynomials z �→ z�i . Taking
J = I 2 the 2nd inequality in (1) follows. To prove the 1st inequality, take J as above of
the form (c − δ, c + δ). So there exists a beau constant K̂ < ∞ so that for all ε ∈ (0, 1)
one has |Df (x)| ≤ ε K̂ | f (J )|/|J | for all x ∈ (c − εδ, c + εδ) and |Df r−1(y)| ≤
K̂ N−1| f r (J )|/|J | for all y ∈ f (J ). It follows that |Df r (x)| ≤ ε K̂ N | f r (J )|/|J | for all
x ∈ (c−εδ, c+εδ) and | f r (J )|/|J | ≤ ((1+ρ′)/ρ′)|I0|/|I2| ≤ ((1+ρ′)/(δρ′) := K ∗. If
we take ε > 0 so that ε K̂ N K ∗ < 1/2 then |Df r (x)| ≤ (1/2) for all x ∈ (c−εδ, c+εδ).
Now choose κ = ε/(16δρ′) and assume by contradiction that | f r (c)−c| ≤ κ|I 0|. Then
| f r (c) − c| ≤ (ε/(16δρ′)|I 0| ≤ ε/(16ρ′)|I 2| ≤ (ε/16)|J | = εδ/8. Thus we get that
f r maps (c − εδ, c + εδ) into itself and |Df r (x)| ≤ 1/2 on this interval. Hence f r has
an attracting fixed point, which contradicts that ω(c) is minimal. Thus we have proved
the 1st inequality in (1) by contradiction. The inequalities in (2) follow as in (1). ��

3.4. Geometry of pullbacks.

Lemma 3.11. Let I be a nice interval. Assume z′ /∈ I has first entry time to I equal to
k > 0 and that there exists l > k such that f l(z′) ∈ I . Letting z = f k(z′), I 1 = Lz(I ),
Î = Lz′(I ) and K̂ = Lz′( Î ), we have that K̂ ⊂ Lz′(I 1).

Proof. Since Î is a pullback of I and K̂ is a pullback of Î , K̂ is a pullback of I , by say f s .
Since k is the first entry time of z′ to I we have that k < s. Let K ′ = Compz f

−(s−k)(I ).
Since z′ ∈ K̂ , z ∈ K ′ and I 1 is a pullback of I containing z, we have that K ′ ⊂ I 1.
Hence K̂ ⊂ Lz′(I 1). ��
Lemma 3.12 (cf. [S3] Proposition 4.1). For any C > 0 and any d ∈ N, there exists
C ′ > 0 so that the following holds. Assume I ⊃ J are nice intervals with nested
or disjoint pullbacks and J ⊃ Ld

x (I ) for some x ∈ ω(c0). If (1 + 2C ′)J ⊂ I , then
(1 + 2C)Ly(J ) ⊂ Ly(I ) for any y ∈ ω(c0).

If c0 is odd, then for any δ > 0 and C > 0 there is exists C ′ > 0 so that the following
holds. Let I be a nice interval with ((1 + 2δ)I\I ) ∩ ω(c0) = ∅. Suppose that J ⊂ I
is a nice interval with J ⊃ Lx (I ) for some x ∈ ω(c0). If |J | ≤ |I |/(1 + 2C ′) then
|Ly(J )| ≤ |Ly(I )|/(1 + 2C) for any y ∈ ω(c0).

Proof. We will prove the first part of the lemma by induction on d. Let us begin with
the case d = 1. In [vSV, Theorem B2], the result is stated for J = Lc(I ), but the proof
holds for J ⊃ Lc(I ) provided J, I are a nice pair (definition p.18). The fact that d = 1
implies that I and J are a nice pair so the result follows. Before we prove the general
case, we observe that the constant C ′ will depend on d. Assume the result holds for
all d ′ < d and let us show it for d. Since y ∈ ω(c0), there exists s > 0, minimal, so
that z = f s(y) ∈ J . Consider the chains {G j }sj=0 with Gs = J and G0 = Ly(J ) and
{G ′

j }sj=0 with G ′
s = I and G ′

0 = Compy f
−s(I ). Let 0 < s′ < s be maximal so that

f s
′
(y) ∈ I . If there exists no such s′, then z is the first entry time of y to both I and J , so

the chain {G ′
j }sj=1 is disjoint, therefore it has order bounded by b. In this case the result

follows from Lemma 3.3. If s′ is defined, let z′ = f s
′+1(y) and Î = G ′

s′+1. Observe
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Î = Lz′(I ). Since I is small and it intersects ω(c0) the entry time of f s
′
(y) to I is

bigger than one, so z′ /∈ I . Let J ′ = Gs′+1. By the definition of s′, the chain {G ′
j }sj=s′+1

is disjoint, so Lemma 3.3 implies that J ′ is deep-inside Î . Observe that Li
z(I ) = Li

x (I )

for i < d since z ∈ J . From Lemma 3.11 we conclude that J ′ ⊃ Ld−1
z′ ( Î ), and the result

follows from the induction hypothesis.
The proof of the 2nd part of the lemma is fairly involved and will be given in the next

subsection. ��

3.4.1. Proof of the 2nd part of Lemma3.12. If I is a nice interval that contains a recurrent
point x , then define

Cx (I ) :=
{

Im if I is non-terminating and
I∞ otherwise,

where m is minimal such that RI (x) /∈ Im We will sometimes omit the x from the
notation when it will not cause confusion.

By [vSV, Lemma 15], if U ⊂ I is a nice interval and U ∩ Lx (I ) = ∅, then any
pullback of U that contains x is contained in Cx (I ).

Lemma 3.13 (cf. [vSV], Lemma 16). Let δ > 0 and suppose that c0 is odd (so every
critical point inω(c0) is odd). There exists a functionρ1 : R

+ → R
+ such thatρ1(ε) → 0

as ε → 0 with the following properties. Let I 0 be a nice interval containing a point
c ∈ ω(c0)with ((1+2δ)I 0\I 0)∩ω(c0) = ∅. Let V be an interval such that |V |/|I 0| < ε

and such that V ⊂ I 0 is a nice pair. Suppose that f s(x) ∈ V for some s > 0 and some
x ∈ I 0 ∩ ω(c0). Let Gs = V, Ĝs = I 0 and let {G j }sj=0, {Ĝ j }sj=0 be the chains so that

Ĝi = Comp f i (x)( f
−(s−i)(Ĝs)) and Gi = Comp f i (x)( f

−(s−i)(Gs)).

Then there exist t , 0 ≤ t < s and an interval Ĝ1
t with Gt ⊂ Ĝ1

t ⊂ L f t (x)(I 0) such that

|Gt |
|Ĝ1

t |
< ρ1(ε).

If t > 0, then:

(1) Gt ⊂ Ĝ1
t is a nice pair and

(2) each pullback of Ĝ1
t that intersects c is contained in Cc(I 0).

Proof. Let I 1 = Lc(I 0). Let φ : I 1 → I 0 be the first return map of I 1 to I 0. Since
((1 + 2δ)I 0\I 0) ∩ ω(c0) = ∅, by the Improved Koebe Principle, Theorem 3.2(2), any
first entry map to I 0 decomposes into at most b maps of the form z �→ z�, where �

is odd, followed by a diffeomorphism with bounded distortion. Hence, there exists a
function ρ̂ : R

+ → R
+ with ρ̂(ε) → 0 as ε → 0 so that any pullback, V ′, of V by a

first entry map to I0 satisfies

|V ′|
|LV ′(I 0)| < ρ̂(ε).

It is worth noticing that this is where we use the fact that all critical points in ω(c0) are
odd.
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Let 0 =: t0 < t1 < · · · < tk := s be the integers such that f t j (x) ∈ I 0. By the
preceding comment,

|Gtk−1 |
|Ĝtk−1 |

= |Gtk−1 |
|L f tk−1 (x)(I

0)| < ρ̂(ε).

Hence, if f tk−1(x) /∈ I 1, then all required properties hold for t = tk−1 taking Ĝ1
t =

L f t (x)(I 0) and ρ1 = ρ̂, so from now on we assume that f tk−1(z) ∈ I 1. Now let k′ be
minimal such that

f tk′ (x), f tk′+1(x), . . . , f tk−1(x) ∈ I 1.

Since RI 0 |I 1 is monotone, we have that Ĝtk′ ⊂ Ĝtk′+1 ⊂ · · · ⊂ Ĝtk−1 = I 1 ⊂ Ĝtk = I 0.

We can assume that |I 1|
|I 0| is not small: otherwise, if k′ > 0, the required properties hold

for t = tk′−1 and Ĝ1
t = L f t (x)(I 0), and if k′ = 0, we set t = 0 and Ĝ1

t = I 1. This
means that we can additionally assume that V ⊂ I 0\I 1: since V ⊂ I 0 is a nice pair, if
this was not the case, we would have I 1 ⊂ V, but then I 1 would be very small compared
to I 0.

Claim. There exists a function ρ1, as above such that

|Gk′ |
|I 1| ≤ ρ1(ε).

Proof of claim. We will assume that φ : I 1 → I 0 is orientation preserving (if it is not,
we replace it by its second iterate). Let p be a fixed point of φ : I 1 → I 0, let Ĝti ,±
denote the components of Ĝti \{p} where Ĝti ,+ is on the same side of p as V .

Case 1. If the union of two adjacent fundamental domains, Ĝtk ,+\Ĝtk−2,+ is much bigger
than V , then we are done since the pullback of Ĝtk ,+\Ĝtk−2,+ under the first return map
to I 1 has intersection multiplicity bounded by three.

Case 2. The condition of Case 1 does not hold, but |Ĝtk−1,+\Ĝtk−2,+| is much bigger than
|Ĝtk−2 |. Then Gti is much smaller than I0 for all i = k′, . . . , k. Using this statement for
i = k′ + 1 and pulling back once more we are done.

Case 3. |Ĝtk−1,+\Ĝtk−2,+| is much smaller than |Ĝtk−2,+|. By the decomposition of the
return map into maps with bounded distortion followed by a polynomial, the derivative
of φ : Ĝtk−2 → I 1 is bounded. Hence, since Gtk−1 is very small in I 1 and Gtk−1 ⊂
Ĝtk−1\Ĝtk−3 , we have that |Gtk−1 | is very small compared to |Ĝtk−1\Ĝtk−3 |. The proof
now follows as in Case 1. ✓

To complete the proof of the lemma, if k′ > 0, take t = tk′−1 and Ĝ1
t = L f t (x)(I 0),

and if k′ = 0, take t = 0 and Ĝ1
t = Lx (I 1). ��

We now prove the second part of Lemma 3.12.
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Lemma 3.14 (cf. [vSV] Proposition 5). Suppose c0 is odd. Assume that I ⊃ J are nice
intervals such that their pullbacks are either nested or disjoint, with ((1 + 2δ)I\I ) ∩
ω(c0) = ∅. Let y ∈ ω(c0) ∩ I . Then for any ε > 0, there exists ε′ > 0 such that if
J ⊃ Ly(I ) and

|J |
|I | < ε′,

then for any x ∈ ω(c0),

|Lx (J )|
|Lx (I )| < ε.

Proof. Notice that if I ⊃ J ⊃ Lx (I ) and I and J are nice intervals with nested or
disjoint pullbacks, then I ⊃ J is a nice pair.

Let s be the entry time of x to J . Let Ĝ0
s = I and Gs = J , and define chains {Ĝ0

i }si=0

and {Gi }si=0 so that Gi ⊂ Ĝ0
i are the pullbacks of Gs ⊂ Ĝ0

s containing f i (x). Let

s1 be maximal so that Ĝ0
s1 contains a critical point of f . If no such s1 exists, we set

s1 = 0. Then by the Improved Koebe Principle, there exists a function ρ̂ : R
+ → R

+

with ρ̂(ε) → 0 as ε → 0 such that

|Gs1 |
|Ĝ0

s1 |
< ρ̂(ε).

If s1 = 0, then the proof is finished. If s1 > 0, let c1 be the critical point in Ĝ0
s1 . Note

that Ĝ0
s1 ⊃ Gs1 is a nice pair. Now let t1 and Ĝ1

t1 be the time and the interval given by
the previous lemma. Then

|Gt1 |
|Ĝ1

t1 |
≤ ρ1 ◦ ρ̂(ε).

If t1 = 0, this completes the proof. Otherwise, Gt1 ⊂ Ĝ1
t1 is a nice pair, and moreover,

any pullback of Ĝ1
t1 that intersects c1 is contained in Cc1(Ĝ0

s1).
Repeating this construction inductively, we obtain a sequence of times t0 ≥ s1 >

t1 > · · · > sκ−1 > tκ−1 ≥ sκ ≥ tκ = 0 and a sequence of nice pairs Gti ⊂ Ĝi
ti ,

i = 0, 1, . . . , κ − 1 such that

(1) for i = 1, . . . , κ , |Gsi |/|Ĝi
si | < ρ̂((ρ1 ◦ ρ̂)i−1(ε));

(2) for i = 0, 1, . . . , κ , |Gti |/|Ĝi
ti | < (ρ1 ◦ ρ̂)i (ε);

(3) if Ĝi
ti , Ĝ

j
t j , with i < j , both contain the same critical point c, then Ĝ j

t j ⊂ Cc(Ĝi
ti ).

If κ is not large, the proposition follows immediately. If κ is large, we use a different
argument. By the last property, there is a critical point c and a sequence i(1) < i(2) <

· · · < i(r), with r > κ/(b − 1), such that

Ĝi(1)
ni(1) ⊃ Cc(Ĝi(1)

ni(1) ) ⊃ Ĝi(2)
ni(2) ⊃ Cc(Ĝi(2)

ni(2) ) ⊃ · · · ⊃ Ĝi(r)
ni(r) ⊃ Gni(r) .

By Lemma 3.8, it follows that Cc(Ĝi( j+1)
ni( j+1) ) is δ-well-inside Cc(Ĝi( j)

ni( j) ), so that

Lx (Cc(Ĝi( j+1)
ni( j+1))

) is δ′-well-inside Lx (Cc(Ĝi( j)
ni( j) )). Since this holds for j = 1, . . . , r − 1,
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Lx (Ĝ
i(1)
ni(1) ) contains a (1 + 2δ′)r−2-scaled neighbourhood of Lx (Ĝ

i(r)
ni(r) ). Since Lx (J ) =

G0 ⊂ Lx (Ĝ
i(r)
ni(r) ) and Lx (Ĝ

i(1)
ni(1) ) ⊂ Lx (I ). Hence Lx (I ) is a (1 + 2δ′)r−2-scaled neigh-

bourhood of Lx (J ). This completes the argument if κ and hence r is large. ��
This concludes the proof of Lemma 3.12.

Lemma 3.15 (cf. [KSvS], Lemma 9.6). For any C > 0 and δ > 0 there exists C ′ > 0
such that the following holds. Let I be a nice interval and J a pullback of I with
I ⊃ (1 + 2C ′)J and c0 ∈ J . Assume that either

• c0 is a critical point of even order or
• I is δ-nice.

Then for any x ∈ ω(c0), we have that (1 + 2C)Lx (J ) ⊂ Lx (I ).

Remark. The proof of this lemma in the case when c0 is a critical point of odd order
is significantly more difficult than when it has even order. The reason for this is that
if I ⊃ K ⊃ J � c0 are intervals so that J deep-inside I , then unless I , K and J are
symmetric with respect to c0 it is quite possible that K not well-inside I and also that J
is not well-inside K . A similar issue arises in the proof of Lemma 3.16.

Proof. Assume that x ∈ ω(c0). Observe that since f is persistently recurrent on ω(c0)
and c0 ∈ J , there exists k > 0 such that f k(x) ∈ J . Let I n = Ln

c0(I ) and define
m(0) = 0 andm(1) < m(2) < · · · as the positive integers such that RIm(i)−1(c0) /∈ Im(i).
Let k0 be maximal such that J ⊂ Im(k0). Notice that J could be equal to Im(k0).

Claim 1. We can assume that k0 is uniformly bounded.

Proof of Claim 1. By Lemma 3.8, for any i with 1 < i ≤ k0 − 1 the interval
Im(i) contains a definite neighbourhood of Im(i)+1. By the Theorem 3.2 (1), we
know that Lx (Im(i)) contains a definite neighbourhood of Lx (Im(i)+1). As Lx (J ) ⊂
Lx (Lc0(I

m(k0−1)+1)) and Lx (Im(1)) ⊂ Lx (I 0), the lemma follows if k0 is sufficiently
large. ✓

Case 1. Assume that c0 is even. Suppose first that k0 = 0. If additionally, m(1) < 4
or if I j ⊂ J for j ∈ {1, 2, 3} we get that J ⊃ I 4 = L4

c0(I ), and the result follows
from Lemma 3.12. So we assume J ⊂ I 2 and m(1) ≥ 4. If |I j |/|I j+1| > C1/3 is
large for j ∈ {0, 1} and some C1 > 1, then (1 + 2C1)I j+1 ⊂ I j . From Lemma 3.12,
and making C1 larger if necessary, we know that (1 + 2C)Lx (I j+1) ⊂ Lx (I j ). Since
Lx (J ) ⊂ Lx (I j+1) ⊂ Lx (I j ) ⊂ Lx (I 0), the result follows. On the other hand if
|I 0|/|I 2| is not large, Lemma 3.10 implies that |Im(1)−1| is comparable to |I 0|, so J is
deep-inside Im(1)−1 and the lemma follows from Lemma 3.12.

Let us now assume that k0 > 0. Then, there are two possibilities: either

• |Im( j)|/|Im( j+1)| is close to one for all 0 ≤ j ≤ k0 − 1 or
• there exist j0 with 0 ≤ j0 ≤ k0 − 1 so that |Im( j0)|/|Im( j0+1)| is large.
In either case the result follows from the case k0 = 0 applied to intervals I ′ and J ′ with
J ⊂ J ′ ⊂ I ′ ⊂ I 0 as follows. In the first case, we consider I ′ = Im(k0−1) and J ′ = J ,
and in the second case we consider I ′ = Im( j0) and J ′ = Im( j0+1). This concludes the
proof when c0 is even.

Case 2. Assume c0 is odd. Then all critical points in ω(c0) are odd. Let m′ ∈ N be so
that Im

′ ⊂ J ⊂ Im
′−1. If m′ < 6 the result follows from Lemma 3.12, so from now on

we will assume J ⊂ I 5. Since I is δ-nice by Corollary 3.4 there exits δ′ > 0 so that I 1

and I 2 are δ′-nice.
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Claim 2. We can assume that |I 1| is comparable to |I 3| and that there exists a large
constant C2 = C2(C, δ) > 1 such that (1 + 2C2)J ⊂ I 2.

Proof of Claim 2. We can assume that |I 2| is comparable to |I 1|. Indeed, if |I 2| is very
small compared |I 1|, thenbecause I 1 iswell-inside I 0 weget that I 2 is deep-inside I 0 and
the lemma follows from Lemma 3.12. Similarly, we can assume that |I 3| is comparable
to |I 2|. Therefore, from now on, we can and will assume that |I 3| is comparable to
|I 1|. If |J | is comparable to |I 1|, then, since J is deep-inside of I 0, we have that I 1 is
deep-inside I 0, and the result follows from Lemma 3.12. So we can assume |J | is small
compared to |I 1| and indeed also to |I 3|. Furthermore, since J ⊂ I 3, (1 + 2δ′)I 3 ⊂ I 2

and |J | is small compared to |I 3| we get that J is deep-inside I 2. ✓

Let us first study the cases when k0 = 0 or when k0 = 1 and Im(1)+1 ⊂ J ⊂ Im(1).

Observe that sincem′ > 6wemust have thatm(1) > 5. Let r be the return time of c0 into
I 0 and let f r : I 1 → I 0 be the return map. Since c0 is odd, f r |I 1 is a homeomorphism.
Let L ′ = (1 + δ′)I 1 and L = Compc0 f

−r (L) ⊃ I 2. By the choice of δ′ we know
that L ⊂ I 0 and Theorem 3.2(2) implies that f r : L → L ′ is a (finite) composition
of polynomials and maps with bounded distortion. From Claim 2, we can assume that
|I 1| is comparable to |I 2|, so Lemma 3.10(2) implies that |Df r | is bounded from above
on I 2 and that |c − f r (c)|/|I2| is bounded from below for any c ∈ Crit( f r |I 2). Even
more, if we let g = ( f r |I 1)−1 we get that |c0 − g(c0)|/|I2| is bounded from below. The
map f r |I 1 is monotone so by definition of Im(1) the points c0, g(c0) and f r (c0) are
contained in Im(1)−1, and c0 lies between g(c0) and f r (c0). Since |c0 − g(c0)|/|I2| and
|c0 − f r (c0)|/|I2| are bounded from below, {g(c0), c0, f r (c0)} ⊂ Im(1)−1, c0 ∈ J, and
J is deep-inside I 2,we have that J is deep-inside Im(1)−1.Weare assuming J ⊃ Im(1)+1,

so in this case the lemma follows from Lemma 3.12.
Next, let us assume that Im(2) ⊂ J ⊂ Im(1)+1. If |Im(1)+1| is comparable to |J |,

then Im(1)+1 is deep-inside I 2. Applying the case k0 = 1 to the intervals I ′ = I 2 and
J ′ = Im(1)+1,we get that (1+2C)Lx (J ′) ⊂ Lx (I 2). SinceLx (J ) ⊂ Lx (J ′)we are done
in this case. Assume that |J | is small compared to |Im(1)+1|. Let k > 0 beminimal so that
f k(c0) ⊂ I 0\I 1 and let K = L f k (c0)(I ). Since J ⊂ Im(1)+1 and k is minimal we have
that c0 visits K before returning to Im(1). Since I is δ-nice and K is a return domain to I 0,
we can apply Theorem 3.2 (1) to find δ′ > 0 so that K ′ = (1 + 2δ′)L f k (c0)(I

m(1)) ⊂ K .

Let {G ′
i }ki=0 be the chain given by K = G ′

k and G ′
0 = Lc0(K ) and {Gi }ki=0 be the

chain given by K ′ = Gk and G0 = Lc0(K
′). Since k is the first entry time of c0 to

K each of these chains has order bounded by b. By Lemma 3.3 there exists δ2 > 0 so
that (1 + 2δ2)Lc0(K

′) ⊂ Lc0(K ) ⊂ Im(1). Since Im(1)+1 ⊂ Lc0(K
′) and J is small

compared to Im(1)+1, we have that J is deep-inside Im(1). Since Im(2) ⊂ J ⊂ Im(1)+1,
taking I ′ = Im(1) and J ′ = J the result follows from the case k0 = 0.

Finally, let us now consider the case when k0 ≥ 2. Recall, k0 is maximal such that
J ⊂ Im(k0). If J is deep-inside Im(k0), the result follows from the case k0 = 0, so assume
this is not the case. There are two possibilities, either

(1) J is small compared to Im(k0) and d(∂ Im(k0), J )/|J | is bounded from above or
(2) |J | is comparable to |Im(k0)|.
Assume that (1) holds. From the definition of the intervals Im(i) and the fact that k0 ≥
2, since Im(k0) ⊂ Lc0(I

m(k0−1)), we can apply Lemma 3.8 to find δ3 > 0 so that
(1 + 2δ3)Im(k0) ⊂ Im(k0−1). This implies that J is deep-inside of Im(k0−1). Taking
I ′ = Im(k0−1) and J ′ = J, the result follows either from the case Im(1)+1 ⊂ J ⊂ Im(1)

or from the case Im(2) ⊂ J ⊂ Im(1)+1. So we can assume that (2) holds; that is, |J |



Complex Bounds for Real Maps 1035

is comparable to |Im(k0)|. Then Im(k0) is small compared to I 0. Since, by Claim 1, k0
is bounded from above, we must have that one of the ratios |Im( j)|/|Im( j+1)| is big for
some j ∈ {0, . . . k0 − 1}. Let j0 be maximal with this property. If j0 = 0, then |Im(1)| is
comparable to |J |, and |Im( j)| is comparable to |Im( j+1)|, for any other j ∈ 1, . . . k0 − 1.
This gives us that |Im(1)| is comparable to |J |, so that J ′ = Im(1) must be deep-inside
I ′ = I 0, and we argue as in the case when k0 = 0. Suppose j0 = 1. Since I is δ-
nice, Im(1)+1 is well-inside Im(1), so Im(2) is deep-inside Im(1). Setting I ′ = Im(1) and
J ′ = Im(2). If j0 > 1, then by Lemma 3.8 and the definition of the intervals Im( j),
we have that Im( j0+1) is well-inside Im( j0), so Im( j0+1) is deep-inside Im( j0−1). We take
I ′ = Im( j0+1) and J ′ = Im( j0−1). In either of these last two cases, we conclude the proof
as we did when (1) holds. ��
Lemma 3.16 (cf. [KSvS], Lemma 9.7). For each δ, ρ > 0 and each integer N ≥ 0,
there exist ρ′, δ′ > 0 so that the following holds. Let I and J be nice intervals with
I ⊃ (1+2ρ)J ⊃ J � c0 and J is a pullback of I with order bounded by N. Let {G j }sj=0
be the chain associated to the pullback and assume one of the following conditions holds:

• c0 is a critical point of even order.
• c0 is a critical point of odd order, I is δ-nice and Gi ∩ J = ∅ for i = 1, 2, . . . , s−1.

Then J is ρ′-nice, where ρ′ is defined by a function ρ′ = ρ′(ρ) > 0 depending on N
and δ such that ρ′ → ∞ as ρ → ∞.

Proof. Let {G j }sj=0 be the chain withGs = I andG0 = J . Let us first assume that none

of the intervals from the chain {Gi }s−1
i=1 intersect J . Given x ∈ J ∩ ω(c0) so that r is the

return time of x to J we must have that r ≥ s. Let y = f s(x). By the previous lemma
we know that there exists ρ1 > 0, ρ1 → ∞ as ρ → ∞, so that (1 + 2ρ1)Ly(J ) ⊂
Ly(I ). Lemma 3.3 implies the existence of ρ′ > 0, ρ′ → ∞ as ρ1 → ∞, so that
(1 + 2ρ′)Compx f

−s(Ly(J )) ⊂ J , which means that (1 + 2ρ′)Lx (J ) ⊂ J .

Assume there exists an element of {Gi }s−1
i=1 that intersects J . Let s′ < s be maximal

so that Gs′ ∩ J �= ∅. By assumption we must have that c0 is a critical point of even order,
so by symmetry we have that for ρ2 = ρ/2 either (1+2ρ2)Gs′ ⊂ I or (1+2ρ2)J ⊂ Gs′ .
Assume (1 + 2ρ2)Gs′ ⊂ I . The maximality of s′ implies that none of the elements of
the chain {Gi }s−1

i=s′+1 intersect J . So we can apply the previous argument to find ρ3 > 0
such that Gs′ is ρ3−nice. This means that (1 + 2ρ3)J ⊂ Gs′ . If we are in this case or in
the case that (1 + 2ρ2)J ⊂ Gs′ the proof follows by applying the previous argument at
most N − 1 times, since J is a pullback of Gs′ of order less than N .

Remark. the first part of the proof also shows the following. Assume that c0 is a critical
point of odd order and that there exists exactly one s′ ∈ {1, 2, . . . , s − 1} such that
Gs′ ∩ J �= ∅. Then, if x ∈ J is such that f k(x) /∈ J , where k > 0 is minimal so that
f k(x) ∈ Gs′ , we have that (1 + 2ρ′)Lx (J ) ⊂ J . ��

Before we continue, recall that �(I ) is the smallest successor of I ; so �(I ) is a
pullback of I of order bounded by 2b − 1.

Lemma 3.17 (cf. [KSvS], Lemma 9.8). There exists a universal constant δ > 0 such
that if I is a nice interval containing c0 and both I and Cc0(I ) are non-terminating, then
(1 + 2δ)�2(I ) ⊂ I .
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Proof. Let I be a nice interval containing a point c0. If U is a nice interval in I that is
disjoint from Lc0(I ), then any pullback ofU that contains c0 is contained in Cc0(I ), see
[vSV, Lemma 15].

Since I is non-terminating,ω(c0) intersects a non-central domain of the returnmap to
I and therefore, by the above statement,�(I ) ⊂ Cc0(I ). Since Cc0(I ) is non-terminating,
ω(c0) intersects a non-central domain of the return map to Cc0(I ), so again we have
that any pullback of this domain is contained in C2c0(I ). Hence �2(I ) ⊂ C2c0(I ). By
Lemma 3.8, it follows that (1 + 2δ)�2(I ) ⊂ Cc0(I ). ��
Lemma 3.18. Suppose that I � c0 is a nice interval and additionally if c0 is odd, that
I is δ-nice for some δ > 0. Then, there exists a constant δ̂ > 0, that is universal if c0
is even, and δ̂ = δ̂(δ) if c0 is odd, so that if �2(I ) is non-terminating, then �3(I ) is
δ̂-nice. Moreover, for each ρ > 0 there exists ρ′ > 0 with ρ′ → ∞ as ρ → ∞, so that
if (1 + 2ρ)�2(I ) ⊂ I , then (1 + 2ρ′)�3(I ) ⊂ �2(I ) and �3(I ) is ρ′-nice.

Proof. Assume c0 is even. Since �2(I ) is non-terminating, both �(I ) and Cc0(I ) are
non-terminating. So the result follows from Lemmas 3.17 and 3.16. If c0 is odd then we
argue as follows. Let J be a successor of I , and let {J j }kj=0 be the chain with J0 = J and
Jk = I. Then, it is not hard to see that the only elements of the chain containing the point
c0 are G0 and Gk . This means that is we consider the chain {G j }sj=0 with G0 = �2(I )

and Gs = I there is only one s′, 0 < s′ < s, with Gs′ ∩ �2(I ) �= ∅. Using the remark
at the end of the proof of Lemma 3.16 it follows that all but one of the domains of
the first return map to �2(I ) is ρ-well-inside �2(I ). Since �2(I ) is non-terminating,
the orbit of �3(I ) passes through a non-central return domain of �2(I ). It follows that
(1 + 2ρ)�3(I ) ⊂ �2(I ). From Lemma 3.16 it follows that �3(I ) is ρ′(ρ)-nice. ��
Lemma 3.19 (cf. [KSvS], Lemma 9.9).For any ρ > 0 there exists ρ′ > 0, with ρ′ → ∞
as ρ → ∞, such that if I is a ρ-nice interval containing c0, then (1 + 2ρ′)A(I )\A(I )
is disjoint from ω(c0) and contained in B(I ). Moreover, if c0 is of even order, then
B(I )\(1+2ρ′)−1B(I ) is disjoint fromω(c0). If c0 is of odd order, then for each ν > 0 and
eachρ > 0 there existsρ′′ > 0, so that if |A(I )|/|B(I )| ≥ ν, thenB(I )\(1+2ρ′′)−1B(I )
is disjoint from ω(c0).

Proof. By definition we know that B(I ) and A(I ) are both pullbacks of I of bounded
order (where the bound depends only on b). Since I is ρ-nice we can apply Lemma 3.3
to find ρ′ > 0 so that (1 + 2ρ′)A(I ) ⊂ B(I ). By definition B(I )\A(I ) is disjoint
from ω(c0). So (1 + 2ρ′)A(I )\A(I ) is disjoint from ω(c0). If |A(I )| is comparable to
|B(I )| then the above implies the existence of ρ′′ > 0 so that B(I )\(1 + 2ρ′′)−1B(I ) ⊂
B(I )\A(I ) and the result follows. So the only case left to consider is when c0 is even and
|A(I )| is small compared to |B(I )|. Since c0 is even, this implies A(I ) is deep-inside
B(I ), so the components of B(I )\A(I ) have size comparable to B(I ) and the result
follows. ��

3.5. Geometry of periodic intervals. In this subsection, we study the geometry of ter-
minating intervals. Before we begin, let us refer the reader to Sect. 2 for the relevant
notation. Recall that given Ii , a terminating interval from generalized enhanced nest,
R(Ii−1) is Feigenbaum if and only if it is a periodic interval, necessarily of period two.

Proposition 3.20. For each ν > 0 there exists ρ > 0 such that the following holds.
Assume that Ii−1 is a terminating interval from the enhanced nest.
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(1) IfR(Ii−1) is terminating and not periodic, then R(Ii−1) is ρ-free.
(2) IfR(Ii−1) and R2(Ii−1) are Feigenbaum, then R(Ii−1) is ρ-free.
(3) IfR(Ii−1) is non-terminating and |R(Ii−1)|/|Ii+1| < ν, then R(Ii−1) is ρ-free.
(4) If R(Ii−1) is Feigenbaum, R(Ii ) is not periodic and |Ii |/|Ii+2| < ν, then R(Ii−1)

is ρ-free.

Proof. Let r > 0 be minimal so that f r (c0) ∈ Ii−1. Since Ii−1 is terminating,
I∞
i−1 = ∩n≥0 I ni−1, f r (c0) ∈ I∞

i−1, and f r |I∞
i−1 maps I∞

i−1 into itself. Thus, we have
that Ln

c0(I
∞
i−1) = I∞

i−1, for all n ∈ N, is an infinite central cascade. Since Ii−1 is termi-
nating, we know that Ii = Lc0(R(Ii−1)).

Apply Lemma 3.10 with δ = 1, fixed, to obtain constants C, κ > 0 such that:

(a) If c ∈ Crit f r |I∞
i−1

we have | f r (c) − c| ≥ κ|I∞
i−1|;

(b) |Df r (x)| ≤ C for all x ∈ I∞
i−1;

(c) Given c ∈ Crit f r |I∞
i−1

and p = f r (p) both in I∞
i−1, we have |p − c| ≥ κ|I∞

i−1|,
where the third statement follows from the first two. We will refer to these estimates
throughout the proof.

Let V0 be the closure of the landing domain toR(Ii−1) containing α in its boundary
and V̂0 = Compα f −r (V0) ∪ V0.
Proof of 1. Since R(Ii−1) is terminating and not Feigenbaum, f r (V0) = R(Ii−1), and
V0 is disjoint from ω(c0). This implies that V̂0 is disjoint from ω(c0). By (a) and (b)
there exists ρ > 0 such that |V0| > ρ|R(Ii−1)|, and |V̂0| is comparable to |Ii−1|. Since
c0 is even, the result follows by symmetry.

Proof of 2. Let us assume R(Ii−1) is not ρ-free. Then there exist m ∈ N such that
f 2rm(c0) is close to the boundary ofR(Ii−1). Regardless of whether f 2rm(c0) is close
to α or τ(α), we must have that f 2r(m+1)(c0) is close to α, which is a contradiction.
To see this, observe that if R2(Ii−1) is Feigenbaum, either f 2rm(c0) or f 2r(m+1)(c0)
must be contained in R2(Ii−1), which is well-insideR(Ii−1) by (b) and (c). So it cannot
happen that both f 2rm(c0) and f 2r(m+1)(c0) are close to the boundary ofR(Ii−1).

Proof of 3. Assume R(Ii−1) is non-terminating and |R(Ii−1)|/|Ii+1| < ν. The return
map to Ii restricted to V0 is equal to f 2r . If V0 does not intersect ω(c0), we are done, so
let us assume V0 intersects ω(c0). Let Vj+1 be the pullback of Vj under f 2r containing
α for j ∈ N. Observe that (b) implies that |V1| is comparable |R(Ii−1)|, so ifω(c0) does
not intersect V1 the proposition follows. Let us assume V1 contains some point in ω(c0).
We will show that f 2r |V1 is monotone. Let c′ be the turning point of f 2r |V0 closest to α.
By construction c′ is an absolute maximum (or minimum if τ(α) < α). If f 2r (c′) is not
in V0, then f 2r |V1 is monotone. If f 2r (c′) ∈ V0, then f 2r (V0) ⊂ V0, which contradicts
the fact that ω(c0) is minimal. Since α is an orientation reversing fixed point of f r ,
we have that f 2r |V1 is an orientation preserving monotone map with at most b critical
points. Define V̂1 = Compα f −r (V1) ∪ V1 and V̂ j+1 = Compα f −r (V̂ j ) for j ∈ N. Let
c′′ ∈ Crit( f 2r )∩V1 be the critical point closest to α. If c′′ is not defined, then let c′′ = c′
and n0 = 1. Otherwise, let n0 be maximal such that c′′ ∈ Vn0 . Statement (c) implies that
there exists κ ′ > 0 so that |Vn0 | > κ ′|R(Ii−1)| The proposition follows if Vn0 does not
intersectω(c0), so wewill assume that Vn0 intersectsω(c0). Notice that for every n > n0
the map f (n0−n)r : V̂n → V̂n0 is a diffeomorphism. Assume Vn0+2 = [α, y]. Then by
Lemma 3.7, we know that there exists M > 0 so that |y− f 2r (y)| > M |R(Ii−1)|. Since
the derivative of f r is bounded on I∞

i−1, we can find ρ > 0 such that

(1 + 2ρ)V̂n0+2 ⊂ V̂n0+1.
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By Theorem 3.2 (1) we know that there exists δ2 > 0 such that for any n ∈ Nwith n > 2

(1 + 2δ2)V̂n0+n+1 ⊂ V̂n0+n . (3.1)

The minimality of ω(c0) implies that there exist m = n0 + 2 +m′ maximal such that
V̂m ∩ ω(c0) �= ∅. Let k0 ∈ N be minimal with the property that f k0r (c0) ∈ V̂m . Define
k < k0 maximal such that f kr (c0) ∈ R(Ii−1). By the definition of k, we have that
f k0r (c0) is the first entry of f kr (c0) to both V̂m and V̂1. For each j ≥ n0 +2 let V ′

j be the

pullback of V̂ j along the orbit { f k0r (c0), f k0r−1(c0), . . . , f kr (c0)} containing f kr (c0).
Notice that the intervals V ′

j are nice intervals. Applying Lemma 3.3 we can find δ3 > 0
such that (1 + 2δ3)V ′

j+1 ⊂ V ′
j . Using Theorem 3.2 (1) we can find δ4 > 0 such that

(1 + 2δ4)Lc0(V
′
j+1) ⊂ Lc0(V

′
j ). So

(1 + 2m′δ4)Lc0(V
′
m) ⊂ Lc0(V

′
1).

From this we can conclude that given any ν > 0 there exists m′ ∈ N such that if
m = n0 + 2 +m′ and Vm ∩ ω(c0) �= ∅, then |R(Ii−1)|/|Ii+1| > ν. This is because |I∞

i−1|
is always comparable to |R(Ii−1)| and

Ii+1 ⊂ �2(R(Ii−1)) ⊂ Lc0(Vm) ⊂ Lc0(V̂m) ⊂ I∞
i−1. (3.2)

It remains to show that �2(R(Ii−1)) ⊂ Lc0(Vm). To this end, let x be f k0(c0) the
image of c0 under the first landing map of c0 to Vm . Then Lc0Lx�(R(Ii−1)) contains
�2R(Ii−1), sinceLc0Lx�(R(Ii−1)) is the pullback of�(R(Ii−1)) by two landingmaps,
and so it has to be bigger than the last child of �(R(Ii−1)). But now Lc0Lx�(R(Ii−1))

is contained in Lc0(Vm).

Proof of 4. Assume R(Ii−1) is Feigenbaum, R(Ii ) is not Feigenbaum and |Ii |/|Ii+2|
< ν. Since R(Ii−1) is Feigenbaum, we know that R(Ii−1) = Ii . Since R(Ii−1) is
Feigenbaum, and the return time of c0 to Ii−1 is r , we have that the return time of c0
to Ii is equal to 2r . Let α be the fixed point of f r contained in the boundary of Ii . By
statement (c), the distance between c0 and α is comparable to |I∞

i−1|, so |Ii | and |I∞
i−1|

are comparable.
Let α′ be the orientation reversing fixed point of f 2r contained in the boundary of

R(Ii ). Let W1 be the closure of the component of Ii\{ f −2r (α′)} that contains α in its
boundary. Let Ŵ1 be the interior ofW1∪Compα f −r (W1) and Ŵ j+1 = Compα f −r (Ŵ j )

for j ∈ N. Observe that Ŵ j ⊂ I∞
i−1 for all j ∈ N. Since Ii is Feigenbaum, (a) and (b)

imply that |W2| is comparable to |Ii |. Ifω(c0)does not intersectW2, Ii is δ-free, so assume
ω(c0) intersects W2. Observe that f 2r |W1 is monotone. Using the same argument as in
the proof of 3 we can find δ2 > 0 and n0 ∈ N such that given any j > 3

(1 + 2δ2)Ŵn0+ j+1 ⊂ Ŵn0+ j .

If Ii is not δ-free there exists, m′ big such that the orbit of c0 enters Ŵm , with
m = n0 + 2 + m′. Let k ∈ N be minimal so that f rk(c0) ∈ Ŵm . Let k0 < k be
minimal so that f rk0(c0) ∈ Ii . By Theorem 3.2 (1) there exists δ4 > 0 such that
(1 + 2m′δ4)Lc0(L f rk (c0)(Ŵm)) ⊂ I∞

i−1. So we have that Ii+2 is deep-inside I∞
i−1, since

Ii+2 ⊂ �(R(Ii )) ⊂ Lc0(L f rk0 (c0)(R(Ii ))) ⊂ Lc0(L f rk0 (c0)(Ŵm)). (3.3)

We know that |Ii | and |I∞
i−1| are comparable, so Ii+2 being deep-inside I∞

i−1 contradicts|Ii |/|Ii+2| < ν. ��
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Corollary 3.21. There exists δ > 0 and for each ρ > 0 there exists ρ′ > 0 such that the
following holds. Let Ii−1 be a terminating interval from the enhanced nest.

• Assume R(Ii−1) is non-periodic. Let V0 be the component of f −2r (R(Ii−1)) that
contains α in its boundary and W0 be the component of f −2r (R(Ii−1)) that contains
τ(α) in its boundary. If x ∈ R(Ii−1) and Lx (R(Ii−1)) is different from V0 and W0,
then Lx (R(Ii−1)) is δ-nice.

• If R(Ii−1) is ρ-free, then Lx (R(Ii−1)) is ρ′-free.

Proof. Let V1 be the component of f −4r (R(Ii−1)) that contains α in its boundary and
W1 be the component of f −4r (R(Ii−1)) that contains τ(α) in its boundary. From the
proof of Proposition 3.20we know that there exists ρ1 > 0 such that |V1| ≥ ρ1|R(Ii−1)|.
SinceW1 is the symmetric component, with respect to c0, corresponding to V1 the same
bounds hold forW1. The bounds on the size of V1 andW1 imply thatLx (R(Ii−1)) is ρ1-
well-insideR(Ii−1) if Lx (R(Ii−1))∩{α, τ(α)} = ∅. This fact, along with Theorem 3.2
(1) imply the existence of δ > 0 such that Lx (R(Ii−1)) is δ-nice. If R(Ii−1) is ρ-free,
we can apply Corollary 3.5 to get that Lx (R(Ii−1)) is ρ′-free, for some ρ′ > 0. ��

Below we will make use of the sets Y j and Ỹγ introduced on p. 21.

Lemma 3.22. There exists ρ > 0 with the following property. Let Ii be a terminating
interval of the enhanced nest and Y j be a component of I∞

i \( f r |I∞
i )−1(α). Given a

point x ∈ Y j the following holds.

(1) If Y j does not intersect Ỹα and −a < j < a, then Y j is ρ-nice.
(2) Assume j > −a and the first return time of x to Y j equal to f kr . If there exist

0 < j0 ≤ k such that f r j0(x) /∈ Ỹα , then Lx (Y j ) is ρ-nice.
(3) If j = −a and the return time of x to Y j is bigger than f r , then Lx (Y j ) is ρ-nice.

Proof. Let Ỹ0 = Y0 ∩ Ỹα and Ỹ−1 = Y−1 ∩ Ỹα. By Lemma 3.10, we can find κ > 0
such than |Ỹ0|, |Ỹ−1| > κ|I∞

i |. It follows immediately that there exists ρ′ > 0 such that
the following holds. Given Y j with j > −a and J = Comp f −r (Y j ) ⊂ Y� for some
� ∈ {−a, . . . , a}, if J ∩ Ỹα = ∅ then (1 + 2ρ′)J ⊂ Y�. This implies (1). To prove (2),
take x ∈ Y j with first return time to Y j equal to f kr and such that f r j0(x) /∈ Ỹα for
some 0 < j0 ≤ k. Then, (1 + 2ρ′)Lx (Y j ) ⊂ Y j . By Theorem 3.2, we know that here
exists ρ > 0 such that Lx (Y j ) is ρ-nice. One can prove (3) in a similar way. ��

3.6. Proof of Theorem 3.1. We will prove Theorem 3.1 in two separate stages. First we
will show parts (a) to (e).

Part (a). If In−1 is non-terminating, In = �2(�T−2(B(A(In−1)))), and by Lemma 3.18
we get that In is ρ1-nice for some ρ1 > 0 which depends only on b. If In−1 is terminating
the result follows from Corollary 3.21 and the observation that In being non-terminating
implies that In = Lx (R(In−1)) is different from V0 and W0. In conclusion, if In is
non-terminating we have that In is ρ1-nice.

Now assume In−1 is non-terminating. Let ν1 ∈ N be so that BA(In−1) =
Compc0 f

−ν1(A(In−1)), and A2(In−1) = Compc0 f
−ν1(L f ν1 (c0)A(In−1)). Since B

(In−1)\A(In−1) is free from ω(c0), we get that B2(In−1) = Compc0 f
−ν1(B(In−1)).

By construction, we know that B2(In−1)\BA(In−1) is free from ω(c0) and
that the poscritical set of BA(In−1) is contained in A2(In−1). Moreover, the pairs
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B2(In−1) ⊃ BA(In−1) and BA(In−1) ⊃ A2(In−1) are both nice pairs. By the above,
we have that In−1 is ρ1-nice, Lemma 3.19 implies the existence of ρ2 > 0 such
that (1 + 2ρ2)A(In−1) ⊂ B(In−1). Since B2(In−1) is a pullback of bounded order
(depending only on b) of B(In−1), Lemma 3.3 implies the existence of ρ3 > 0
so that (1 + 2ρ3)BA(In−1) ⊂ B2(In−1). By an analogous argument we get that
(1 + 2ρ3)A2(In−1) ⊂ BA(In−1). So BA(In−1) is internally and externally free. Since
In is a pullback of bounded order of BA(In−1), the result follows from Lemma 3.19.
Observe that the external free space is given by Jn = �T (B2(In−1)), the internal free
space is given by J ′

n = �T (A2(In−1)), and both Jn ⊃ In and In ⊃ J ′
n are nice pairs.

Finally, if c0 is even the components of In\J ′
n are comparable to |In|. If c0 is odd,

then by the 2nd part of Lemma 3.19 there exists ρ4(ν) > 0 so that if |In−1|/|In| < ν,
|J ′

n| ≥ ρ4|In|.
Part (b). Since In is non-terminating, we know that R(In−1) is non-terminating. By
Proposition 3.20 (3) there exists ρ > 0 so that R(In−1) is ρ-free. The result follows
from the definition of In and Corollary 3.5.

Part (c).ByLemma3.12, (1+2C ′)Lc0(Lx (In)) ⊂ Lc0(In).Since�(In) ⊂ Lc0(Lx (In)),
the result follows.

Part (d). The first part follows directly from Corollary 3.4. To show the second part,
observe that if In is C-nice, then by Lemma 3.3 there exists C ′′ > 0, C ′′ → ∞ as
C → ∞, so that (1 + 2C ′′)A(I ) ⊂ B(I ). So the result follows from Corollary 3.5.

Part (e). If |In+1| < ε′/2|In| we are done, so let us assume this is not the case. Let
us first assume that In−1 is terminating. For each ε′′ > 0 there exists C > 0 so that
if |In| < ε′′|R(In−1)|, then (1 + 2C)In ⊂ R(In−1). By Lemma 3.12 we know that
In is C ′-nice, for some C ′(C) > 0 (C ′ → ∞ as C → ∞). The result follows if
ε′′ is sufficiently small, so let us assume this is not the case. So there exists ν > 0
so that |R(In−1)|/|In|, |In|/|In+1| < ν. By Proposition 3.20 and the definition of In,
there exists ρ > 0 such that In is ρ-free. Then since |Lx (In)| < ε|In|, there exists
C ′′ > 0 (C ′′ → ∞ as ε → 0) such that (1 + 2C ′′)Lx (In) ⊂ In and the statement
follows by Part (c). A similar argument works when In−1 is non-terminating and c0 is
even. Assume In−1 is non-terminating and c0 is odd, then by Part (a) In is ρ-nice and
ρ-externally free. The second part of Lemma 3.12 implies that taking ε sufficiently small
|Lc0(Lx (In))| ≤ ε′|Lc0(In)|, and the result follows.

In order to prove the remaining part of the theorem we will need two extra lemmas,
and the following definition. We say that an interval J ⊂ I is ε-small in I if |J | ≤ ε|I |.
Lemma 3.23. Given ε ∈ (0, 1), ρ > 0 and N ∈ N exists ε′ > 0 so that the following
holds. Assume that c0 is oddand that I is aρ-nice intervalwith ((1+2ρ)I\I )∩ω(c0) = ∅.

Let J ⊂ I be a pullback of I of order N with c0 ∈ J. If

|J |
|I | < ε′,

then for each x ∈ J ∩ ω(c0) we have that Lx (J ) is ε-small compared to J.

Proof. Let us begin by showing the following claim.

Claim. For each ν > 0 there exists ν′ > 0 such that if J is ν′-small in I then for any
y ∈ ω(c0), Ly(J ) is ν-small in Ly(I ).
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Proof of claim. Let y ∈ ω(c0). There are two cases. Let us first assume J ⊃ Lz(I )
for some z ∈ ω(c0). Then, the claim follows directly form Lemma 3.14. So assume
there exists z ∈ ω(c0) so that J ⊂ Lz(I ). If J is comparable to Lz(I ), then Lz(I )
is small in I and the claim follows from Lemma 3.14 applied to Lz(I ) and I , since
Ly(J ) ⊂ Ly(Lz(I )), and the landing domains to Lz(I ) are small compared to the
landing domains to I . Now, if Lz(I ) is much larger than J , we get that J is deep inside
of I, and the claim follows from Lemma 3.15.✓

Let {G j }sj=0 be the chain with Gs = I and G0 = J . Let x ∈ J ∩ ω(c0) be fixed,
and let k be its first return time to J . Let us first assume k ≥ s and let y = f s(x). By
the claim, Ly(J ) is ε′′-small compared to Ly(I ), for some ε′′ > 0 with ε′′ → 0 as
ε′ → 0. Since I is ρ−nice this implies Ly(J ) is deep-inside I, and the result follows
from Lemma 3.3.

Assume that k < s. Observe that by definition of k, Gk contains J . Consider the
times k ≤ si < s with s0 = k and si < si+1 such that J ⊂ Gsi . Recall there are at most
n < N such times. Our aim is to show that J is small in Gk , so the proof follows form
the argument above. We will do this by showing that J is small compared to each Gsi ,
for i = 0, . . . n. If J is small compared to Gsn we are done for n, so let us assume Gsn
is comparable to J . By the argument above we know that for any z ∈ ω(c0) ∩ Gsn we
have that Lz(Gsn ) is εn-small compared to Gsn , with εn → 0 as ε′ → 0. In particular,
Gsn−1 is small compared to Gsn , so J is small compared to Gsn , contradiction. So J is
small compared to Gsn . Applying this argument n − k times we show J is εk-small in
Gk, with εk → 0 as ε′ → 0, and the result follows. ��
Lemma 3.24. Suppose that In−1 and In are non-terminating. Then for any C > 0, there
exists ε > 0 such that if

|In|
|In−1| < ε,

then

(1) �(I 1n ) is C-nice;
(2) In+1 is C-strongly nice and C-externally free.

Proof. First we will show that (1) holds. If c0 is a critical point of even order, then for
any C ′ > 0, there exists ε > 0 such that if |In|/|In−1| < ε, then (1+ 2C ′)In ⊂ In−1. By
Lemma 3.16, if C ′ is chosen large enough, then In will be C ′′-nice. Finally, since �(I 1n )

is a pullback of In of bounded order (only depending on b) we can apply Lemma 3.16
to prove (1). So from now on we will assume that c0 is of odd order. Since c0 is odd all
intervals from the enhanced nest are non-terminating. In particular, by Theorem 3.1 (a)
we have that there existsρ > 0 such that that In−1 and In are bothρ-nice andρ-externally
free.

In particular,

In ⊂ (1 + 2ρ)In ⊂ �TB2(In−1) =: Fn .
By the proof Part (a) of Theorem 3.1, we know that Fn\In is disjoint from ω(c0), and
In ⊂ Fn is a nice pair. By Lemma 3.23, every component of the return map to In is
ε′-small in In , so we have that every component of the domain of the return map to In
that intersects ω(c0), in particular I 1n , is C

′-well-inside Fn with C ′ → ∞ as ε′ → 0.
To see that �(I 1n ) is C-nice, let x ∈ I 1n ∩ ω(c0). Note that by Lemma 3.14 we have

that the return domains to I 1n are small compared to I 1n . The first return map from I 1n
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to In extends to a map from a domain J̃ ⊃ I 1n to Fn . Since Fn\In is disjoint from
ω(c0), ( J̃\I 1n ) ∩ ω(c0) = ∅, the first return map from Lx (I 1n ) to I 1n extends to a map
from J ′ ⊃ Lx (I 1n ) to J̃ , and there exists a constant C1, C1 → ∞ as ε → 0 such that
(1 + 2C1)Lx (I 1n ) ⊂ J ′. Since I 1n is non-terminating, we have that J ′ ⊂ I 1n , for all but
one component: the component of the domain of the return map to I 1n that has the same
return time to I 1n as I 1n has to In . For this one component, J ′ = J̃ . As in Lemma 3.18,
there exists C , C → ∞ as C1 → ∞, such that �(I 1n ) is C-nice.

Now we show that (2) holds. Observe that the map f ν : B(In) → In extends to a
domain F̃n , so that f ν : F̃n → Fn has the same critical points as f v|B(In).

By Lemma 3.23, we know that the landing domains to In are small compared to
In, which implies that A(In) is C ′-well-inside F̃n , for some C ′ > 0 with C ′ → ∞
as ε → 0. In addition, F̃n\A(In) is disjoint from ω(c0). If we let Hn+1 := �TB(F̃n),
then Hn+1\In+1 is disjoint from ω(c0). By Lemma 3.3 there exists C ′′ > 0 so that
(1 + 2C ′′)In+1 ⊂ Hn+1, where C ′′ → ∞ as C ′ → ∞. So In+1 is C ′′-externally free.
Observe that the return time of any x ∈ ω(c0) ∩ In+1 to In+1 is the same as its return
time to Hn+1. Thus, there exists a constant C > 0, C → ∞ as C ′′ → ∞, such that for
each x ∈ ω(c0) ∩ Hn+1 we have that

Lx (In+1) ⊂ (1 + 2C)Lx (In+1) ⊂ Lx (Hn+1) ⊂ In+1.

Moreover, each component of the domain of the return map to Hn that intersects ω(c0)
contains a unique component of the domain of the return map to In+1 that intersects
ω(c0). Hence In+1 is C-strongly nice, where C → ∞ as ε → 0. ��

Now we can prove the remaining part of Theorem 3.1.

Part (f). The fact that In+2 is C ′-strongly nice and C ′-externally free follows from
Lemma 3.24.

Part (g). By Lemma 3.15, there exists C ′′ > 0 (C ′′ → ∞ as C → ∞) such that if
(1 + 2C)In+1 ⊂ In , then (1 + 2C ′′)I 1n+1 ⊂ In+1. The result follows from this and the fact
that ω(c0) ∩ In+1 ⊂ I∞

n+1.

3.7. Existence of free space. As a corollary to Theorem 3.1 and Proposition 3.20, we
have the following:

Corollary 3.25. For each ν > 0 there exists ρ > 0 such that if Ii is an interval from the
enhanced nest, then

(1) if Ii−1 is terminating and |Ii−1|/|Ii+2| < ν, then Ii is ρ-free;
(2) if Ii−1 and Ii are non-terminating, and |Ii−1|/|Ii | < ν, then Ii is ρ-free;
(3) if Ii−1 is non-terminating and Ii is terminating, then Ii is ρ-free.

Proof. The first part follows from Proposition 3.20 and Lemma 3.3, and the second and
third from Theorem 3.1. ��
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4. Poincaré Disks and Tools for Dealing with Analytic Maps

To construct box mappings we will make use of Poincaré disks. In this section, we
study the basic properties of Poincaré disks and their pullbacks under analytic maps, so
throughout this section we consider maps f ∈ Ab. An analytic map f on the interval
extends uniquely to a holomorphic mapping on a neighbourhood of the interval, and we
will also use f to denote this extension. We recall that given an interval I, the Poincaré
disk with angle θ based on I is denoted by Dθ (I ). For a definition, see Sect. 1.10, p. 17.

Lemma 4.1 (Almost Schwarz Inclusion [dFdM2]). There exist K < ∞, a0 > 0 and a
function θ : (0, a0) → (0,∞) satisfying θ(a) → 0 and a/θ(a) → 0 as a → 0 such
that the following holds. Let F : D → C be univalent and real-symmetric, and assume
that I ⊂ R is an interval containing 0 with |I | < a ∈ (0, a0). Let I ′ = F(I ). Then

(a) for all θ ≥ θ(|I |), we have
F(Dθ (I )) ⊂ D(1−K |I |1+δ)θ (I

′),

where 0 < δ < 1 is a universal constant;
(b) for all θ ∈ (π/2, π) we have

F(Dπ−θ (I )) ⊂ Dπ−K |I |θ (I ′).

Lemma 4.2 (cf. [S3], Lemma 7.4). Let � ≥ 2 be an integer and consider P(z) = z�.
Then, for each θ ∈ (0, π) the following holds.

• Suppose � is even and let K ≥ 1. Then there exists λ = λ(K , �) ∈ (0, 1) such that

P−1(Dθ (−K , 1)) ⊂ Dλθ (−1, 1)).

• Suppose that � is an odd integer. Let K > 0. Then there exists λ = λ(�) ∈ (0, 1)
such that

P−1(Dθ (−K �, 1)) ⊂ Dλθ ((−K , 1)).

Proof. We will give the proof in the case that � is odd; the proof in the even case is
similar. Since the problem is invariant under scaling, we can assume that K ≥ 1. We
will argue by contradiction. If the lemma is false, then for every λ > 0, there exist
θ1/λ ∈ (0, π) and z�1/λ ∈ Dθ (−K �, 1) such that z1/λ /∈ Dλθ (−K , 1). Note that we may
as well assume that θ ∈ (0, π/2), so that is what we will do. For each integer n ≥ 1, let
λn = 1/n and let θn and zn be the corresponding θ1/λ and z1/λ.

Since zn /∈ Dθn/n(−K , 1),

arg
zn − 1

zn + K
≤ θn

n
,

so that

tan arg
zn − 1

zn + K
≤ tan

θn

n
.

Writing zn = rneitn , we have

arg
zn − 1

zn + K
= arg(zn − 1) − arg(zn + K )
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= arctan
( rn sin tn
rn cos tn − 1

)
− arctan

( rn sin tn
rn cos tn + K

)
.

So, taking the tangent gives us

rn sin tn(K + 1)

r2n + rn(−1 + K ) cos tn − K
=

rn sin tn
rn cos tn−1 − rn sin tn

rn cos tn+K

1 +
(

rn sin tn
r cos tn−1

)(
rn sin tn

rn cos tn+K

) = tan arg
zn − 1

zn + K
≤ tan

θn

n
.

Similarly, letting wn = z�n = r�
ne

i�tn , we have

r�
n sin �tn(K � + 1)

r2�n + r�
n(−1 + K �) cos �tn − K �

= tan arg
wn − 1

wn + K �
≥ tan(θn).

Dividing the second inequality by the first one, we have that

r�
n sin �tn(K � + 1)(r2n + rn(−1 + K ) cos tn − K )

(r2�n + r�
n(−1 + K �) cos �tn − K �)rn sin tn(K + 1)

≥ tan θn

tan(θn/n)
(4.1)

Observe this expression becomes very large as n → ∞. Since sin �tn/ sin tn is bounded
from above, and cancelling an rn in the numerator and denominator, this is equivalent to

r�−1
n (K � + 1)(r2n + rn(−1 + K ) cos tn − K )

(r2�n + r�
n(−1 + K �) cos �tn − K �)(K + 1)

� r�+1
n + r�

n(K − 1) cos tn − r�−1
n K

r2�n + r�
n(−1 + K �) cos �tn − K �

(4.2)
becoming very large as n tends to infinity. We will show that this is impossible.

Let Rn = rn/K . Equation 4.2 is comparable to

r�+1
n K �−1 + r�

n K
� cos tn − r�

n K
�−1 cos tn − r�−1

n K �

r2�n + r�
n K

� cos �tn − r�
n cos �tn − K �

,

which equals

r�+1
n

K �+1 +
r�
n

K � cos tn − r�
n cos tn
K �+1 − r�−1

n
K �

r2�n
K 2� +

r�
n

K � cos �tn − r�
n cos �tn
K 2� − 1

K �

= R�+1
n + R�

n cos tn − R�
n
K cos tn − R�−1

n
K

R2�
n + R�

n cos �tn − R�
n

K � cos �tn − 1
K �

in the scaled coordinates. Since this expression becomes very large as n → ∞, by
comparing powers of Rn , we see that Rn is bounded. Since zn /∈ Dθn/n(−K , 1), we
have that tn → 0 or tn → π . First consider the case that tn → 0. Then as n → ∞,

arg
( zn − 1

zn + K

)
� arg(zn − 1) and arg

( z�n − 1

z�n + K �

)
� arg(z�n − 1).

However, since zn /∈ Dθn/n(−K , 1) and z�n ∈ Dθn (−K �, 1), combining these estimates
with (4.1) we have that

arg(z�n − 1)

arg(zn − 1)
→ ∞.
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We will show that this is impossible. Suppose that rn does not converge to 1. Then, since
tn → 0, neither r�

n cos(�tn) − 1 nor rn cos(tn) − 1 converges to 0. But now we see that

arg(z�n − 1)

arg(zn − 1)
=

arctan r�
n sin(�tn)

r�
n cos(�tn)−1

arctan rn sin(tn)
rn cos(tn)−1

�
r�
n sin(�tn)

r�
n cos(�tn)−1
rn sin(tn)

rn cos(tn)−1

� r�
n sin(�tn)

rn sin(tn)

is bounded. So we can assume that rn → 1.
Then we have that

arg(z�n − 1)

arg(zn − 1)
= arg((zn − 1)(z�−1

n + z�−2
n + · · · + 1))

arg(zn − 1)

= arg((zn − 1) + arg(z�−1
n + z�−1

n + · · · + 1)

arg(zn − 1)
= 1 +

arg(z�−1
n + z�−1

n + · · · + 1)

arg(zn − 1)
,

(4.3)

which is bounded, since there exists a constant C > 0 such that

arg(z�−1
n + z�−1

n + · · · + 1) ≤ C arg(zn − 1)

as zn → 1.
Now, suppose that tn → π . Then as n → ∞,

arg
( zn − 1

zn + K

)
� π − arg(zn + K ), and arg

( z�n − 1

z�n + K �

)
� π − arg(z�n + K �).

But now we have that as n → ∞
π − arg(z�n + K �)

π − arg(zn + K )
→ ∞,

but arguing just as we did in the case when tn → 0 we see that this is impossible.
Suppose that rn does not converge to−K . Then, since tn → π , neither K � −r�

n cos(�tn)
nor K − rn cos(tn) converges to 0. But now we see that

π − arg(z�n + K �)

π − arg(zn + K )
=

arctan r�
n sin(�tn)

K �−r�
n cos(�tn)

arctan rn sin(tn)
K−rn cos(tn)

�
r�
n sin(�tn)

K �−r�
n cos(�tn)

rn sin(tn)
K−rn cos(tn)

� r�
n sin(�tn)

rn sin(tn)

is bounded. So we can assume that rn → −K . Now, a similar calculation to the one in
(4.3) shows that

π − arg(z�n + K �)

π − arg(zn + K )

must be bounded, which again yields a contradiction.
The proof when � is even is similar and is a natural generalization of [S3, Lemma

7.4], see [KSvS, Lemma 13.2]. ��
The next lemma is straight forward.

Lemma 4.3 (cf. [KSvS], Lemma 13.3). Let � ≥ 2 be an integer and consider P(z) = z�.
For any A > 0 and any θ ∈ (0, π), there exists θ ′ ∈ (0, π) such that the following holds.
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• If � is even, then

P−1(Dθ ((−A, 1))) ⊃ Dθ ′((−1, 1)).

• If � is odd, then there exists θ ′ such that

P−1(Dθ ((−A�, 1))) ⊃ Dθ ′((−A, 1)).

Although we state the next lemma for any integer � ≥ 2, it will only be used to deal
with inflection points.

Lemma 4.4. Let � ≥ 2 be an integer and consider P(z) = z�. For each C < ∞, there
exists λ ∈ (0, 1), depending on � and C, so that for all θ ∈ (0, π/2) the following holds.
Let I1 ⊂ [0, 1) and I2 ⊂ (−1, 0] be intervals and assume that

|I1| ≥ 1/C,

and that w ∈ Dθ (I2). Let z ∈ P−1(w) be so that |arg(z)| < π/�. Then

z ∈ Dλθ (I1) ∪ A

where A = ∅ if 0 ∈ I1 and otherwise A is the component bounded by the lines arg(z) =
±π/� and the boundary of Dλθ (I1).

Proof. Fix θ < π/4. Let I1 = (α, β) and take z ∈ ∂Dλθ (α, β). Setting z = reit and
arguing as in the proof of Lemma 4.2, we have that

tan arg
z − β

z − α
= r(β − α) sin t

r2 − r(β + α) cos t + βα
= tan λθ.

Hence,

r2 +

(
−(β + α) cos t − (β − α)

tan λθ
sin t

)
r + αβ = 0.

This equation has two solutions,

r± = 1

2

((
(α+β) cos t +

(β − α) sin t

tan λθ

)
±

√(
(α+β) cos t +

(β−α) sin t

tan λθ

)2−4αβ

)
.

Given t ∈ (0, π/�) we denote by z± = r±eit . To prove the lemma, it suffices to show
that we can take λ > 0 small so that for all t ∈ (0, π/�) we have z�+ /∈ Dθ (−1, 0), see
Fig. 5. This is equivalent to showing that

tan arg
z�+

z�+ + 1
≤ tan θ, i.e. r�

+ ≥ sin(�t)

tan θ
− cos(�t). (4.4)

From the equation for r+ we have

r+ >
1

2
(β + α) cos t +

β − α

2 tan λθ
sin t.

Hence

r�
+ ≥ 1

2�−1 (β + α)�−1 cos�−1 t
β − α

2 tan λθ
sin t +

(β − α)�

2� tan� λθ
sin� t. (4.5)
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I2 I10

I10

−1

−1 1

1

z�

Fig. 5. The pullback of Poincaré disks as in Lemma 4.4

Provided we take λ > 0 sufficiently small (here λ depends on β − α and �), for each
t ∈ (0, π/�) the right hand side of this expression dominates the r.h.s. of (4.4). Indeed, if
cos(t) is not small (which holds automatically if � > 2, because t ∈ (0, π/�)), then we
the first and second term in the r.h.s. of (4.5) dominate respectively the first and second
term in the r.h.s. of (4.4) (provided we choose λ > 0 small). If cos(t) is small, then
sin(t) is not small, and the 2nd term in (4.5) dominates the r.h.s. of (4.4), provided we
choose λ > 0 small. ��

Lemma 4.5 [KSvS, Lemma 13.4]. One can compare Poincaré disks in the following
ways.

(a) There exists θ0 such that for each A > 1 and each θ ∈ (0, π),

Dθ ([−1, 1]) ⊂ Dmin{θ A/2,θ0}([−A, A]).

(b) For each λ ∈ (0, 1) and δ > 0 there exists λ′ ∈ (0, 1) such that for each θ ∈ (0, π),

Dλθ ([−1, 1])\Dθ (−1 − δ, 1 + δ) ⊂ Dλ′θ ([−1 − δ,−1]).

(c) For each λ ∈ (0, 1) and δ > 0 there exists λ′ ∈ (0, 1) such that for each θ ∈ (0, π)

Dλθ ([−1, 1])\Dθ ([−1 − δ, 1 + δ]) ⊂ Dλ′θ ([1, 1 + δ]).

(d) For each λ ∈ (0, 1) and δ > 0 there exists λ′ > 0 such that for each interval
J ⊂ [−1, 1] and each θ > 0,

Dλθ ([−1, 1])\Dθ (−1 − δ, 1 + δ]) ⊂ Dλ′θ |J |(J ).
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4.1. Pulling back Poincaré disks under disjoint orbits. In this subsection we will show
how to pull back Poincaré disks along a chain of intervals under a map f ∈ Ab. We
remind the reader that we always assume that the Standing Assumptions on p. 26 hold.

Lemma 4.6 (cf. [KSvS], Lemma 13.5). For any δ > 0 there exists λ > 0 and for each
θ ∈ (0, π) there exists ε > 0 so that following holds. Let {Hj }sj=0 and {H ′

j }sj=0 be
two chains with Hj ⊂ H ′

j for all j = 0, . . . , s and H0 ∩ ω(c0) �= ∅. Assume that the
following hold:

(a) |H ′
s | ≤ ε,

(b) H ′
s ⊃ (1 + 2δ)Hs,

(c) the chain {H ′
j }s−1

j=0 is disjoint,

(d) Hi\(1 + 2δ)−1Hi , i = 0, . . . , s − 1 does not contain a critical point.

Let Us = Dθ (Hs), and U0 = CompH0
( f −s(Us)). Then

U ⊂ Dλθ (H0).

Proof. The Lebesgue measure of ω(c0) is zero (see [vSV, Theorem E]), so if H ′
s is

sufficiently small the set ∪s
i=0H

′
i is a small neighbourhood of a subset of ω(c0), and we

can assume that
∑s

i=0 |H ′
i | is small.

First suppose that only H ′
0 contains a critical point. By the Improved Koebe Principle,

Theorem 3.2 (2), we can find ρ1, δ1 > 0 such that H ′
j ⊃ (1 + 2ρ1)Hj and Hj\(1 +

2δ1)−1Hj contains no critical points of f for 1 ≤ j ≤ s. By Lemma 4.1 there exists
λ1 > 0 such that

U1 ⊂ Dλ1θ (H1).

Since H1\(1 + 2δ1)−1H1 contains no critical values of f we can apply Lemma 4.2 to
find λ2 > 0 such that

U0 ⊂ Dλ2θ (H0).

Since the critical points of f are non-flat, there exists δ2 > 0 such that H ′
0 ⊃ (1+2δ2)H0,

and (H0\(1+2δ2)−1H0)∩Crit( f ) = ∅.Thus the lemma follows by applying the previous
argument at most b times. ��

This lemma implies the following corollaries.

Corollary 4.7. Suppose that instead of (d) in the above lemma there exists δ′ ∈ (0, δ)
so that the sets (1 + 2δ′)Hj\Hj are free from critical points for all j ∈ {0, . . . s}. Then
there exist an interval H ′, λ′ ∈ (0, 1) and δ′′ > 0 such that

Û = CompH0
f −s(Dθ (Hs)) ⊂ Dλ′θ (H

′)

where H0 ⊂ H ′ ⊂ (1 + 2δ′′)H ′ ⊂ H ′
0.

Corollary 4.8. For each δ > 0 there exist δ′ > 0 and λ ∈ (0, 1), and for each θ ∈ (0, π)

there exists ε′ > 0 such that the following holds for all ε ∈ (0, ε′). Let I be a nice interval
with |I | < ε and let be J a domain of the first entry map to I with first entry time equal
to s > 0. Let {Hj }sj=0 be a chain with (1 + 2δ)Hs ⊂ I , H0 ⊂ J and H0 ∩ ω(c0) �= ∅.
Then there exists an interval H ′ with H0 ⊂ H ′ ⊂ (1 + 2δ′)H ′ ⊂ J so that

CompH0
f −s(Dθ (Hs)) ⊂ Dλθ (H

′).
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5. Tools for Dealing with C3 Maps

In this section, we will develop the additional tools required for dealing with C3 maps.
A reader who is primarily interested in the real analytic case can skip this section.

5.1. Quasiconformal and quasiregular mappings. We will find it convenient to make
use of the analytic definition of quasiconformal and quasiregular mappings, since this
approach facilitates the definition of quasiregularmappings.We refer the reader to [AIM]
for additional background on these classes of mappings.

We define

∂α f (z) = cos(α) fx (z) + sin(α) fy(z), α ∈ [0, 2π).

Suppose thatU and V are domains inC. Amapping f : U → V is called κ-quasiregular,
abbreviated κ-qr, if it is orientation-preserving, f is in the Sobolev spaceW 1,2

loc (U ), and
the directional derivatives satisfy

max
α

|∂α f (z)| ≤ κ min
α

|∂α f (z)|

for almost every z ∈ �. If, in addition f is a homeomorphism, then f is called κ-
quasiconformal, abbreviated κ-qc.

We call the constant κ the quasiconformal distortion of f .
This definition of quasiconformal mappings is equivalent to the following geometric

definition. A mapping f : U → V is κ-quasiconformal if and only if for any annulus
A ⊂ U ,

1

κ
mod(A) ≤ mod( f (A)) ≤ κ mod(A).

We say that a mapping f : U → V is quasiregular (quasiconformal) if it is κ-
quasiregular (κ-quasiconformal) for some κ .

We assume that f ∈ W 1,2
loc (U ) since it implies that Jac( f ) = | fz |2 − | fz̄ |2 is locally-

integrable. For the reader who is familiar with qc mappings, but not qr mappings, let us
remark that for homeomorphisms f ∈ W 1,1

loc (U ), implies f ∈ W 1,2
loc (U ); however, for

quasiregular mappings it is not sufficient to assume only that f ∈ W 1,1
loc (U ).

Recall that

fz = ∂ f = ∂ f

∂z
= 1

2

(
∂ f

∂x
− i

∂ f

∂y

)
, and fz̄ = ∂̄ f = ∂ f

∂ z̄
= 1

2

(
∂ f

∂x
+ i

∂ f

∂y

)
.

Theorem 5.1. Suppose that f : U → V is a homeomorphism in W 1,2
loc (U ) then f is

κ-quasiconformal if and only if

∂ f

∂ z̄
(z) = μ f (z)

∂ f

∂z
(z) for almost every z ∈ U,

where μ f is a bounded measurable function satisfying

‖μ f ‖∞ ≤ κ − 1

κ + 1
< 1.
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The function μ f is called the Beltrami coefficient of f .
If f is a κ-quasiconformal mapping with Beltrami coefficient μ f , let κ( f ) be the

minimal κ so that the quasiconformal distortion of f is bounded by κ . We have that

‖μ f ‖∞ = κ( f ) − 1

κ( f ) + 1
and κ( f ) = 1 + ‖μ f ‖∞

1 − ‖μ f ‖∞
.

We will drop the subscript on the Beltrami differential when it is clear to what mapping
we are referring.

By Weyl’s Lemma a 1-quasiconformal mapping is conformal and a 1-quasiregular
mapping is holomorphic (see [AIM], Lemma A.6.10). The following are some basic
properties of quasiconformal mappings.

Proposition 5.2. Let f : U → V be a κ-qc mapping onto V and let g : V → C be a
κ ′-qc mapping. Then

• f is differentiable a.e. on U.
• f −1 : V → U is κ-qc.
• g ◦ f : U → C is κ ′κ-qc.

Quasiregular mappings can be factored into a qc mapping followed by a holomorphic
mapping.

Proposition 5.3 (Stoilow factorization). Suppose that f is quasiregular and defined on
a simply connected domain �. Then f = h ◦ g. where g : � → � is quasiconformal
and h is holomorphic on �.

It follows that if f : U → C is a quasiregular mapping, then f is open and discrete.
Moreover, if f : U → C is quasiregular, then there exists k ∈ [0, 1) such that | fz̄ | ≤
k| fz | almost everywhere in U , and we have

∂ f

∂ z̄
= μ(z)

∂ f

∂z
, μ f := fz̄

fz
with ‖μ f ‖∞ ≤ k.

5.2. Asymptotically holomorphic extensions of a C3 mapping. LetK �= ∅ be a compact
subset of R

2, U an open neighbourhood of K and f : U → C a C1 map. We say that f
is asymptotically holomorphic of order t , t ≥ 1, on K ⊂ R

2 if for every (x, y) ∈ K

∂

∂ z̄
f (x, y) = 0,

and

∂
∂ z̄ f (x, y)

d((x, y),K)t−1 → 0

uniformly as (x, y) → K for (x, y) ∈ U\K.
In our applications of asymptotically holomorphic extensions, K will be an interval

contained in the real line.
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Lemma 5.4 [GSS2, Lemma 2.1]. Suppose that f : [0, 1] → [0, 1] is a C3 mapping.
Let 0 = u0 < v0 = u1 < v1 = u2 < · · · = un < vn = 1 be a partition of
the interval such that on each interval (ui , vi ), f is either a diffeomorphism, hi , with
h′
i (ui ), h

′
i (vi ) �= 0, or f can be expressed in the form f (x) = f (ζi )(1 − hi (x)�) for

ζi ∈ (ui , vi ) ∩ Crit( f ) and hi is a diffeomorphism such that h′
i (ui ), h

′
i (vi ) �= 0, and

hi (ζi ) = 0. In either case, the diffeomorphism hi has aC3-extension to a diffeomorphism
Hi defined on a neighbourhood U of the interval [ui , vi ] in the complex plane and Hi is
asymptotically holomorphic of order 3 on [ui , vi ] in U. Moreover, the neighbourhood
U and the extension Hi are symmetric with respect to the real axis.

Wewill also use f to denote the asymptotically holomorphic extension of order three
of a map f , and whenever we refer to an asymptotically holomorphic extension wemean
the asymptotically holomorphic extension of order three given by Lemma 5.4. We refer
the reader to [GSS2] for background on asymptotically holomorphic extensions of real
maps. Let us remark that in general κ-quasiregular mappings are only differentiable
almost everywhere; however, in our setting, they are C3.

An equivalent definition of κ-quasiconformal is the following: H : U → V is κ-
quasiconformal iff H ∈ W 1,2

loc (U ) and

|DH(z)|2 < κ J (H, z), (5.1)

where DH = Hz + Hz̄ and J (H, z) = |Hz |2 −|Hz̄|2. Direct calculation shows that if H
is an asymptotically holomorphic extension given by Lemma 5.4 at a point x ∈ R, then
J (H, x) = |h′(x)|2. Since each h is a diffeomorphism, we can assume that this quantity
is bounded away from 0 by μ. Calculating,

Hz̄(x + iy) = 1

2

(∂H

∂x
(x + iy) + i

∂H

∂y
(x + iy)

)
< C |y|2.

This implies that

|Hz(x + iy)| = 1

2

∣∣∣∂H
∂x

(x + iy) − i
∂H

∂y
(x + iy)

∣∣∣ � |h′(x)|.

Thus, if |y| < η, H is 1 + η2-quasiconformal, close to the real line we have that
J (H, x + iy) is close to both |Hz(x + iy)|2 and |h(x)|2. Thus

1 + η2 >
|DH(z)|2
J (H, z)

� |Hz(z)|2
|Hz(z)|2 + 2

|Hz(z)||Hz̄(z)|
|Hz(z)|2 +

|Hz̄(z)|2
|Hz(z)|2 = (1 + μH (z))2.

It immediately follows that

μH (z) = O(|Im(z)|2).
Proposition 5.5 ([GSS2], Proposition 2). Let f : I → R be a C3 diffeomorphism from
a compact interval I with non-empty interior into the real line. There exists ζ > 0 and
δ > 0 such that if J is an interval contained in I , 0 < α < π and diam(Dα(J )) < δ,

then

f (Dα(J )) ⊂ Dα̃( f (J )),

where α̃ = α − ζ |J | diam Dα(J ), and α̃ < π .
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This proposition gives an easy generalization and improvement of the Almost
Schwarz Inclusion Principle, Lemma 4.1.

Corollary 5.6 (Almost Schwarz Inclusion in the asymptotically holomorphic case). For
every small a > 0, there exists α(a) > 0 satisfying α(a) → 0 and a/α(a) → 0 as
α → 0, such that the following holds. Let f : I → R be a C3 diffeomorphism from a
compact interval I ⊃ {0, a} into the real line, with f (0) = 0 and f (a) = a. Let f be a
C3 extension of f to a complex neighbourhood of I , with f asymptotically holomorphic
of order 3 on I . Then there exists ζ > 0 and δ > 0 such that if α(a) < α < π and
diam(Dα([0, a])) < δ, then

f (Dα([0, a])) ⊂ D(1−ζa1+κ )α([0, a]),
where κ ∈ (0, 1) can be taken arbitrarily close to 1.

Proof. Fix α0 ∈ (0, π/4). Suppose first that α < α0 < π/2. Proposition 5.5, we have
that

f (Dα([0, a])) ⊂ Dã([0, a]),
where α̃ = α − ζa diam(Dα([0, a])) = α − ζa a

sin α
. Then since α is small, we have that

sin α � α, so that

α̃ = α
(
1 − ζ

a2

α2

)
.

Suppose that δ ∈ (0, 1), and let α(a) = a1/2−δ/2. Notice that as a → 0, α(a) → 0 and
a/α(a) = a1/2+δ/2 → 0. Now for any α > α(a), we have that

α̃ � α
(
1 − ζ

a2

α2

)
≥ α

(
1 − ζ

a2

a1−δ

)
= α(1 − ζa1+δ).

Hence

f (Dα([0, a])) ⊂ D(1−ζa1+δ)α([0, a]).
Since this holds for all δ ∈ (0, 1), we are done.

On the other hand, suppose that α > α0, then

α̃ = α − ζa diam(Dα([0, a])) � α − ζa2 = α
(
1 − ζ

a2

α

)
.

Take any δ ∈ (0, 1) and let α(a) = aδ . Note that as a → 0 both α(a) and a/α(a) → 0.
Moreover, if α > α(a), then we have

α̃ � α
(
1 − ζ

a2

α

)
≥ α(1 − ζa2−δ).

Hence

f (Dα([0, a])) ⊂ D(1−ζa2−δ)α([0, a]).
��
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Remark. The previous corollary implies that Lemma 4.6 and its corollaries in Sect. 4.1
also hold in the asymptotically holomorphic case if we consider maps C3 provided that
the Standing Assumptions on p. 26 hold. We will use them in this generality without
further comment.

The same argument used to prove Proposition 5.5 can be used to prove:

Corollary 5.7. Let f : I → R be a C3 diffeomorphism from a compact interval I with
non-empty interior into the real line. There exists ζ > 0 and δ > 0 such that if J is an
interval contained in I , 0 < α < π and diam(Dα(J )) < δ, then

f (Dα(J )) ⊃ Dα̃( f (J )),

where α̃ = α + ζ |J | diam Dα(J ).

5.3. κ-qr box mappings. Let U and V be open Jordan disks in C. We say that a map
F : U → V is a κ-qr branched covering if it can be decomposed as F = G ◦ H where
H : U → U is κ-qc homeomorphism and G : U → V is a holomorphic branched
covering.

A mapping F : U → V is qr quasi-box mapping if the following holds. The domain
U , is a possibly countable, union of open Jordan disks Ui , V is a union of finitely many
open Jordan disks Vj with j = 0, . . . , n − 1 and:

• V0, . . . , Vn−1 are pairwise disjoint;
• every connected component Vj ∈ V is either a connected component of U or the

intersection of Vj with U is a union of Ui ’s, each of these contained in Vj (not
necessarily compactly);

• if Ui ⊂ Vj , then Ui\Vj ⊂ R.
• For each i , there exists j such that F |Ui : Ui → Vj is a qr branched covering.

A κ-qr box mapping is defined analogously: we modify the definition of a complex
box mapping on p. 2 to only require that on each component U of U that F |U is a κ-
quasiregular covering map onto a component of V . These mappings are κ-qr branched
coverings because of the Stoilow Factorization Theorem, see for example Corollary
5.5.2 in [AIM].

5.4. Additional tools for asymptotically holomorphic maps. To prove complex bounds
for asymptotically holomorphic maps, we will need to control their quasiconformal
distortion. First, we have the following useful estimate:

Lemma 5.8 (Theorem B [LiS]). Let f be C3 with all periodic orbits hyperbolic
repelling. Then for any α there exists η = η(α) such that for any interval T and any
s ∈ N, if f s : T → f s(T ) is a diffeomorphism, then

s∑
i=0

| f i (T )|1+α < η.
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In the next lemma, we prove that when we pull back a Poincaré disk Dθ (Js) by a
diffeomorphism, f s : J0 → Js , the total loss of angle is small; so we can estimate the
diameters of the pullbacks by the lengths of their real traces. Since the extension of f is
asymptotically holomprphic of order three, this will give a bound on the quasiconformal
distortion of the extension of f s in terms of

∑s−1
j=0 |J j |2.

Given an interval I, let

μ(I ) = max
J

|J |,

where the maximum is taken over all pullbacks J of I. Let μ′(I ) = maxJ |J |, where
the maximum is taken over all diffeomorphic pullbacks J of I . By [K, Lemma 5.2], if
I ∩ ω(c0) �= ∅, there exists a constant τ1 ≥ 1 such that μ′(I ) ≤ τ1|I |. Consequently, if
I ∩ ω(c0) �= ∅, then μ(I ) tends to zero as |I | tends to zero.

If f is persistently recurrent on c0 and the Standing Assumptions on p. 26 hold we
obtain the following two results.

Lemma 5.9. For any θ ∈ (0, π/2), there exist ε′ > 0 and θ̃ ∈ (0, π/2) such that for
any ε ∈ (0, ε′) the following holds. Let f be an asymptotically holomorphic extension
of a C3 mapping f . Suppose that |Js | < ε, J0 ∩ ω(c0) �= ∅ and f s : J0 → Js is a
diffeomorphism. Let {J j }sj=0 be the chain such that J j = Comp f j (J0) f

−(s− j)(Js). Let
Us = Dθ (Js), and set

U j = CompJ j ( f
−(s− j)(Us)) for j = 0, . . . , s.

Then U j ⊂ Dθ̃ (J j ). Moreover, we can make the difference θ − θ̃ as small as we like by
taking ε sufficiently small.

Proof. Since f is C3, f has an extension to an asymptotically holomorphic map of
order 3 on M . Since we are under the Standing Assumptions of Sect. 2, we can apply
Lemma 5.8 to find η = η(1/2) such that

∑s
i=0 |Ji |2 < ηmax0≤i≤k |Ji |1/2. There

exists a constant η1 > 0 so that for any i , 0 ≤ i ≤ s, and α ∈ (0, π/2), we have
diam(Dα(Ji )) ≤ η1|Ji |/ sin α. Let K be equal to the constant ζ from Proposition 5.5.
Let θ̃ ∈ (0, θ) and define

θs = θ̃ + (η1K/ sin θ̃ )

s∑
i=0

|Ji |2 ≤ θ̃ + (η2/ sin θ̃ ) max
0≤i≤k

|Ji |1/2,

where η2 = ηη1K . We can assume that the difference θ − θ̃ is as small as we like.
Provided that ε > 0 is small enough, we have that 0 < θ̃ < θs < θ, and that for each i ,
Dθ̃ (Ji ) is contained in the domain of the asymptotically holomorphic extension of f .

Now, set

θ j = θ j+1 − K |J j+1| diam(Dθ j+1(J j+1)).

We prove that

θ j ≥ θ̃ + (η1K/ sin θ̃ )

j∑
i=0

|Ji |2,
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for j = 0, 1, . . . , s by induction. It holds for θs by definition. Suppose that it holds for
θ j+1. Since

θ j+1 ≥ θ̃ + (η1K/ sin θ̃ )

j+1∑
i=0

|Ji |2,

we obviously have that θ j+1 > θ̃. So that

θ j = θ j+1 − K |J j+1| diam(Dθ j+1(J j+1)) ≥ θ j+1 − η1K |J j+1|2/ sin θ j+1

≥ θ̃ + (η1K/ sin θ̃ )

j+1∑
i=0

|Ji |2 − η1K |J j+1|2/ sin θ j+1

≥ θ̃ + (η1K/ sin θ̃ )

j+1∑
i=0

|Ji |2 − η1K |J j+1|2/ sin θ̃

≥ θ̃ + (η1K/ sin θ̃ )

j∑
i=0

|Ji |2 ≥ θ̃ .

��
Remark. As we can see from Lemma 5.9 the loss of angle when we pull back Poincaré
disks under asymptotic holomorphic extensions decreases at small scales. In the rest of
the paper, the loss of angle will be calculated for intervals of a given size, so the same
bounds will hold at smaller scales. This fact will be implicitly assumed from now on.

Lemma 5.10. For any θ ∈ (0, π), δ > 0 and N ∈ N there exists η > 0 and ε > 0 such
that the following holds. Assume that Js � c0 is a δ-nice real puzzle piece with |Js | < ε

and that either

(1) c0 is even and Js is δ-free or
(2) that c0 is odd and all critical points in ω(c0) are odd.

Suppose that the chain {Ji }si=0 has order bounded by N and J0 ∩ ω(c0) �= ∅. Then the
asymptotically holomorphic extension

f s : CompJ0 f
−s(Dθ (Js)) → Dθ (Js)

is (1 + η|μ(Js)|1/2)-quasiregular.
Proof. Let Us = Dθ (Js) and set U j = CompJ j f

−(s− j)(Us). Observe that f s |U0 is a
proper map of bounded degree. Let k1 < s be maximal such that Jk1 contains a critical
value of f . Notice that if c0 is even, there exists a constant δ′ > 0 such that Jk1 is δ′-free.
Let k′

1 ≥ k1 be minimal so that Jk′
1

⊂ Js . Since f s−k′
1 |Jk′

1
is a diffeomorphism, the sum

s∑
k=k′

1

|Jk |2 ≤ η1 max
k=k′

1,...,s−1
|Jk |1/2
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where η1 = η1(1/2) is the constant from Lemma 5.8. Then by Lemma 5.9, there exists
a constant η′ > 0 such that for any point zk ∈ Uk, k = k′

1, k
′
1 + 1, . . . , s − 1,

|μ(zk)| = ∂ f

∂ f
(zk) ≤ η′(Im(zk)

2) ≤ η′(diam(Uk))
2 ≤ η′|Jk |2.

Where the first inequality follows from the fact that f is asymptotically holomorphic of
order three.

So we get that there exists a constant η′′ > 0 such that

s∑
k=k′

1

|μ(zk)| ≤ η′′ max
k=k′

1,...,s−1
|Jk |1/2.

Let s1 < k1 bemaximal so that Js1 ⊂ Js .The domains Js1 , Js1+1, . . . , Jk′
1
are disjoint

and small when Jk′
1
is small, so, since either all critical points in ω(c0) are odd or c0 is

δ′-free by Lemma 4.2, diam f −1(Uk1) � |Jk1−1|. Thus, estimating as before, if z ∈ Uk′
1
,

k′
1−1∑
t=s1

|μ(zt )| ≤ η′′ max
k=s1,s1+1+···k′

1−1
|Jk |1/2.

We repeat this argument letting k2 < s1 be maximal so that Jk2 contains a critical
value of f . If no such k2 exists, set k2 = 0. Let k′

2 ≥ k2 be minimal so that Jk′
2

⊂ Js1
and s2 < k′

2 maximal so that Js2 ⊂ Js1 , and if no such s2 exists, set s2 = 0. Proceeding
inductively, let p be maximal so that sp �= 0.

Let z ∈ J0 Then

s∑
k=0

|μ( f k(z))| =
sp∑
k=0

|μ( f k(z))| +
p∑

j=1

s j−1∑
k=s j

|μ( f k(z))| ≤ η′′
p∑

j=1

max
k=s j ,...s j−1−1

|Jk |1/2.

Since maxk=s j ,...s j−1−1 |Jk |1/2 decays exponentially (every Jk is δ′ = δ′(δ, N ) > 0
nice), the result follows. ��

6. Pulling Back a Poincaré Disc Through High Iterates of First Return Maps

The results in this section apply to both maps f ∈ Ab and maps f ∈ A3
b for which the

asymptotically holomorphic extensions are as in Sect. 5.2. Recall, we will always work
under the Standing Assumptions on p. 26.

6.1. Pullbacks through a monotone branch.

Proposition 6.1. For each δ > 0 and C > 0 there exist δ′ > 0 and λ′ ∈ (0, 1), and
for each θ ∈ (0, π) there exists ε > 0 such that the following holds. Let I 0 be an
interval with |I 0| < ε and let I 1 ⊂ I 0 be a first return domain to I 0. Let r be so that
RI 0 |I 1 = f r . Assume f r |I 1 is monotone and can be decomposed into at most b maps
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of the form g ◦ p� ◦ h, where p� = x� for some odd integer � > 0 and g and h are
diffeomorphisms with bounded distortion. Assume

| f r (c) − c| ≥ δ|I 1| and |Df r (x)| ≤ C

for all critical points c of f r |I 1 and all x ∈ I 1. Let {G j }prj=0 be a disjoint chain with

( f r |I 1)(G jr ) = G( j+1)r for j = 0 . . . p − 1, Gpr ⊂ I 0 and G0 ∩ ω(c0) �= ∅. Assume
there exist disjoint intervals K , F1, F2 ⊂ I 0 with the following properties.

• Gpr ⊂ K ,

• F1 and F2 are contained in fundamental domains for f r |I 1• |Fi | > δ|I 0| for i = 1, 2, and
• K is contained in the convex hull of F1 and F2.

Let

V = Dθ (K ) ∩ CGpr and Ui = CompGi
f −(pr−i)(V ), for i = 0, . . . , pr.

Then for each z ∈ U0 there exists an interval K ′ such that

z ∈ Dλ′θ (K
′),

where G0 ⊂ K ′ ⊂ (1 + 2δ′)K ′ ⊂ I 1.

Proof. Without loss of generality wewill assume themap f r |I 1 is orientation preserving
and that its fixed point p is equal to 0. The orientation reversing case will follow from the
orientation preserving case by considering by f 2r instead of f r and applying Lemma 4.6
once.

Since f r |I 1 has no periodic attractors we have that for each of its critical points c
there exists a maximal m(c) > 0 so that f r j (c) ∈ I 1 of all 0 ≤ j ≤ m(c). Consider
� = ∪{c, . . . , f m(c)(c)},where the union is taken over all critical points of f r |I 1 . Since
each Fk is contained in a fundamental domain, Fk ∩ � contains at most b points for
k = 1, 2. So by slightly shrinking Fk, if necessary, we can assume �∩ Fk = ∅ and that
the convex hull of F1 and F2 is δ/2-well inside I 0. Observe this means that no pullback
of Fk under f r |I 1 contains a critical point for k = 1, 2.

Wewill first prove the proposition for the unicritical case. Unless is specify otherwise,
wewill assume that all pullbacks of Poincaré domains under f are taken under the branch
of f −1 that maps Gi+1 to Gi for i ∈ {0, . . . pr − 1}. Observe that the inverse branches
of f extend to the complex plane and we are able to express which inverse branch we
are using by choosing the domain : when we write f −1 : CG j+1 → C, we always mean
the choice of inverse branch that maps G j+1 to G j . Consider the chain {Hj }rj=0, with

Hr = I 0 and H0 = I 1.
Let c be the critical point of f r |I 1 .Wewill denote by c j = f j (c) for j ∈ Z,where the

inverse images of c will be taken under the pullbacks defined above. Since c is a critical
point of f r , there exists i (maximal) so that 0 ≤ i < r and ci = c′ for c′ ∈ Crit( f ). To
orient ourselves we will assume c > 0. From the fact that f r has no periodic attractors,
and that f r (0) = 0, we have that 0 < c−r < c < cr . The case c < 0 is analogous to
this one, taking into consideration that in this case cr < c < c−r < 0.

We can assume that cr is not contained in Gpr . Otherwise, let Jr be the convex hull
of F1 and F2. Since Jr\(1 + δ)−1 Jr is disjoint from �, we can apply Corollary 4.7 to
find λ̂ > 0 so that U(p−1)r ⊂ D

λ̂θ
(J0) ∩ CG(p−1)r ,where f r (J0) = Jr . Since G(p−1)r

does not contain cr we can start the proof at time (p − 1)r , instead of pr .
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We will first consider the case when Gpr is in the right hand component of R\{cr },
G0 is in the left one, and F1 and F2 are in opposite components. Without loss of
generality assume F2 and Gpr are on the same component of R\{cr }. Note that the
relative position of F1 and F2 with respect to 0 has not been specified; see Fig. 6 for a
possible configuration.

Let Rpr = F2 and L pr = F1 and consider the chain {R j }prj=(p−1)r given by the

pullbacks under the branches of f −1 which map G j+1 to G j . Observe that all intervals
R j are contained in R for (p − 1)r ≤ j ≤ pr . On the other hand, if we consider
the pullbacks of L pr under the same maps, we get that L(p−1)r+i+1 is not in the same
component of R\{c′} as G(p−1)r+i+1 (see Fig. 7).

This means that the pullback of L(p−1)r+i+1 under the branch of f −1 which maps
G(p−1)r+i+1 to G(p−1)r+i does not lie in the real line.

By Lemma 4.5, there exists λ ∈ (0, 1) so that

V ⊂ Dλθ (L pr ) ∪ Dλθ (Rpr ) ∪ A,

where A is the bounded component of the complement of Dλθ (L pr ) ∪ Dλθ (Rpr ). In
order to control the pullbacks of points in V we will, separately, control the pullbacks
of points in Dλθ (L pr ), Dλθ (Rpr ) and A.

Let q bemaximalwith 0 ≤ q < p and so thatGqr andGpr are in the same component
of R\{cr }. From the choice of q, the intervals R jr and G jr are in the same component
of R\{cr } for j = q, . . . , p.

To pullback Dλθ (Rpr ). Let z pr ∈ Dλθ (Rpr ) and consider the sequence of points
{z j }prj=0, where z

j is preimage of z j+1 under the branch of f −1 specified above.

(a) Assume that q = 0 or that q > 0 and the intervals G(q−1)r and R(q−1)r lie in the
same component of R\{cr }. Then, since the chain {R j }prj=(q−1)r is disjoint we can
apply Lemma 5.9 to find λ0 ∈ (0, 1) so that

z0 ∈ Dλ0θ (R0).

Observe that R0 lies between 0 and Rpr and that the distance between R0 and 0
is comparable to |R0|. So there exists δ0 > 0 so that (1 + 2δ0)R0 ⊂ I 1, and the
proposition follows.

(b) Assume that q > 0 and the intervals G(q−1)r and R(q−1)r lie in opposite components
of R\{cr }. Apply Lemma 5.9 to find λ1 ∈ (0, 1) so that

z(q−1)r ∈ Dλ1θ (R(q−1)r ).

cr Gpr F 20F 1

fr(c)

=G0

Fig. 6. Configuration w.r.t. cr (the critical value of f r )

ci+1 G(p−1)r+i+1 R(p−1)r+i+1L(p−1)r+i+1 =

f(c′)

Fig. 7. Pullback at time i + 1
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If q = 1 then (q − 1)r = 0 and the result follows as in (a). If q > 1, then by
Lemma 5.9, we can choose λ2 > 0 so that

z(q−2)r+i+1 ∈ Dλ2θ (R(q−2)r+i+1).

Observe that R(q−2)r+i+1 and G(q−2)r+i+1 are in different components of R\{ci+1}.
By the assumptions on f r ,weknow that the interval (c−r− j , c j ) has size comparable
to |Hj | for j ∈ {i, i + 1}. So we can apply Lemma 4.4 to find λ3 > 0 so that image
of Dλ2θ (R(q−2)r+i+1) under the branch that maps G(q−2)r+r+i to G(q−2)r+r+i−1 is
contained in Dλ3θ (c−r−i , ci ). See Fig. 8.
In particular

z(q−2)r+i ∈ Dλ3θ (c−r−i , ci ).

Finally, if we let R′
(q−2)r+i = (c−r−i , ci ) and we consider the chain {R′

j }(q−2)r+i
j=0 the

result follows as in Case (a).

In conclusion, exist an interval K̃ ⊂ I 1 and constants λ̃ ∈ (0, 1) and δ̃ > 0 so that
(1 + 2δ̃)K̃ ⊂ I 1 and for all z pr ∈ Dλ̃θ (Rpr ) we have that

z0 ∈ Dλ̃θ (K̃ ).

To pullback Dλθ (L pr ). Pick z pr ∈ Dλθ (L pr ) and consider the sequence of points
{z j }prj=0, where z

j is the preimage of z j+1 under the branch of f −1 specified above.
By Lemma 5.9, there exists λ′

1 > 0 so that

z(p−1)r+i+1 ∈ Dλ′
1θ

(L(p−1)r+i+1).

By assumption L(p−1)r+i+1 and G(p−1)r+i+1 are in different components of R\{ci+1}.
Let L̂ = ( f −1|CGi+1

)(Dλ′
1θ

(L(p−1)r+i+1)). By Lemma 4.4, there exists λ′
2 > 0 so that

L̂ ⊂ Dθ (ci , wi ) ∪ Dλ′
2θ

(R(p−1)r+i ) ∪ A′

where A′ is the bounded component of the complement of Dθ (ci , wi )∪Dλ′
2θ

(R(p−1)r+i )

andwi is defined as follows. If cr ∈ I 1, letwi = c2r−i . If cr /∈ I 1, letwi be the boundary

f(c′) = ci+1G(q−2)r+i+1
R(q−2)r+i+1

c′ = ci
c−r−iG(q−2)r+i

f

c−r−i−1

Fig. 8. Controlling the loss of angle after f (c′) (c′ ∈ Crit( f ))
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point of Hi that lies on the same side of ci as G(p−1)r+i . In either case, the size of the
interval (ci , wi ) is comparable to |R(p−1)r+i | and |Hi |. See Fig. 9.

Consider the chain {Bj }r−1
j=0 with Br−1 = (ci , wi ) and B0 the pullback of Br−1

contained in Hi+1. By Lemma 5.9, we can choose λ′
3 > 0 so that

CompB0( f
−(r−1)Dθ (Br−1)) ⊂ Dλ′

3θ
(B0).

By Lemma 4.4, we can choose λ′
4 > 0 so that the component of the inverse image of

Dλ′
3θ

(B0) under f that lies on the same side of ci as G(p−1)r+i , denoted by B̂, satisfies
the following

B̂ ⊂ Dθ (ci , wi ) ∪ Dλ′
4θ

(R(p−1)r+i ) ∪ C ′

whereC ′ is the bounded component of the complement to Dθ (ci , wi )∪Dλ′
4θ

(R(p−1)r+i ).
See Fig. 10.

Thus,

z(p−1)r+i ∈ Dθ (ci , wi ) ∪ Dλ′
4θ

(R(p−1)r+i ) ∪ C ′.

By definition of λ′
4 we have that one of the following holds:

(i) zkr+i ∈ Dθ (ci , wi ) for all k ∈ {q − 1, . . . p − 1}. In particular, z(q−1)r+i ∈
Dθ (ci , wi ). If we let R′

(q−1)r+i = (ci , wi ), the proposition follows as in (a); con-

sidering the chain {R′
j }(q−1)r+i

j=0 , instead of the chain {R j }(q−1)r+i
j=0 .

c′ = ci G(p−1)r+i

Dθ(ci, wi) Dλ′
2θ(R(p−1)r+i)

L̂

R(p−1)r+iwi

Fig. 9. Use two domains to control the loss of angle at ci = c′ ∈ Crit( f )

c′ = ci G(p−1)r+i

Dθ(ci, wi) Dλ′
4θ(R(p−1)r+i)

B̂

R(p−1)r+iwi

Fig. 10. Adjust the angle at ci = c′ ∈ Crit( f )
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(ii) There exists k ∈ {q − 1, . . . p − 1} so that zkr+i ∈ Dλ4θ (R(p−1)r+i ). Then define
R′
kr+i = R(p−1)r+i and apply arguments (a) or (b) above.

(iii) zkr+i ∈ C ′ for all k ∈ {q − 2, . . . p − 1}. In particular, z(q−2)r+i ∈ C ′. From Cases
(i) and (ii) we know that there exist δ′

5 > 0, λ′
5 ∈ (0, 1) and intervals K1 and K2

which are δ′
5-well inside I 1 so that the following holds. If z(q−2)r+i ∈ Dθ (ci , wi )

then z0 ∈ Dλ′
5θ

(K1). And if z(q−2)r+i ∈ Dλ′
4θ

(R(p−1)r+i ) then z0 ∈ Dλ′
5θ

(K2). So

by the continuity of f , if z(q−2)+i ∈ C ′ we have that z0 is contained in the bounded
component of the complement of Dλ′

5θ
(K1) ∪ Dλ′

5θ
(K2). If we let K3 denote the

convex hull of K1 and K2 we have that z0 ∈ Dλ′
5θ

(K3). Finally, the existence of
λ′
5 implies that |K1| is comparable to |K3|. Since K1 is a fundamental domain, or

contained in one, the distance between K1 and 0 is comparable to |K1|. So there
exists δ′

6 > 0 so that K3 is δ′
6-well inside I 1, and the proposition follows.

To pullback A. Making λ′
4 smaller, if necessary, we can make sure that the following

holds. Given z pr ∈ Dλθ (Rpr ) then z(p−1)r+i ∈ Dλ′
4θ

(R(p−1)r+i ). Observe this implies
that given z pr ∈ A then

z(p−1)r+i ∈ Dθ (ci , wi ) ∪ Dλ′
4θ

(R(p−1)r+i ) ∪ C ′,

and the proposition follows from one of the previous cases.
This completes the proof of the proposition in this case. The arguments given in this

proof also deal with the case when Gpr and G0 lie on the same side of cr and when F1

and F2 lie on the same side of 0. Thus the unicritical case follows.
If f r |I 1 is multicritical it will have at most b critical points. It is clear that, by the

monotonicity of f r |I 1 , the proposition in this case follows by applying the unicritical
case at most b + 1 times. ��
Remark 1. From the proof of Proposition 6.1weget the extra information that K ⊂ [x, y]
where x, y ∈ I 0 are of one the two following types:

• x ∈ {c j−r , c
j , c jr }, for j ∈ {1,m} and y ∈ ∂ I 0;

• x ∈ {c j−r , c
j , c jr } and y ∈ {c j+1−r , c j+1, c j+1r }, for j ∈ {1, . . .m − 1}.

Remark 2. We cannot take real pullbacks of the fundamental domains at each step when
there are critical points since we cannot control the order of the pullback of the larger
interval (F1, F2).

Remark 3. If f r is a diffeomorphism, we do not require the bound on the derivative.

6.2. Pullbacks for which the modality is bounded.

Proposition 6.2. For any δ > 0 and N ∈ N there exists λ > 0, and for any θ ∈ (0, π)

there exists ε > 0 so that the following holds. Let I be a nice interval with |I | < ε.
Suppose that either:

(1) I is δ-free or
(2) c0 is odd.

Let J be an N-modal pullback of I by f t for some t > 0 with J ∩ ω(c0) �= ∅. Let
V = Dθ (I ) and Ui := Comp f i (J ) f

−(t−i)(V ). Then U0 ⊂ Dλθ (J ).
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Proof. If we are in case (1), then we have the following. Let {G j }tj=0 be the chain with
Gt = I and G0 = J . Since I is δ-internally free, F ′ ⊂ I is a nice pair, ω(c0) ∩ I ⊂ F ′
and F ′ ⊂ (1 + 2δ)−1 I . Let {Hj }tj=0 be the chain corresponding to the pullbacks of F ′,
with Hj ⊂ G j . Let F

±
j be the components ofG j\Hj . Observe thatGt , Ht is a nice pair,

so their pullbacks are also nice pairs. Since each of the intervals G j intersects ω(c0)
whereasG j ∩Hj does not intersectω(c0) it follows that the intervals F

±
j are all disjoint.

Moreover, since Hj ⊂ (1 + 2δ′)−1G j , it follows that the intervals F+
j and F−

j are not
small compared to G j .

Decompose f t : J → I as f t |J = DN+1◦ P�N ◦· · ·◦ P�2 ◦D2 ◦ P�1 ◦D1, where each
Di is a diffeomorphism and P�i : z �→ z�i . The result follows by using Lemma 5.9 to
control the loss of angle when we pull back by a Di and Lemma 4.2 when we pull back
by a polynomial. The first paragraph of this proof ensures that whenever we pullback
by an even polynomial, the critical value is not close to the boundary. ��

6.3. Pulling back through a non-monotone branch. In this subsection we will control
pullbacks of Poincaré disks through a long cascade of central returns in the principal
nest.

Let I be a nice interval containing a critical point c ∈ ω(c0). Recall the definition of
the principal nest: I 0 = I and if I n is defined, we set I n+1 = Lc(I n) for n ∈ N. Let r be
so that RI |I 1 = f r . If f r |I 1 has a turning point, define m̃ to beminimal with the property
that there is a turning point c′ of f r |I 1 such that f r (c′) /∈ I m̃ . Note that if I is periodic,
I = I 1 = I 2 = · · · and m̃ = ∞. In this case f r (I m̃) ⊂ I m̃ and f r (∂ I m̃) ⊂ ∂ I m̃ , so f
is renormalizable and I m̃ = I∞ is periodic. Under the above assumptions we have the
following.

Proposition 6.3 (cf. [KSvS], Lemma 11.1). There exists a constant ρ̂ > 0 and for each
δ > 0 there exist δ′ > 0 and λ ∈ (0, 1) so that for each θ ∈ (0, π) there exists ε > 0
with the following properties. Let I 0 = I , I 1 = Lc(I ) and assume that |I | < ε and
(1 + 2δ)I 1 ⊂ I . Let r be so that RI 0 |I 1 = f r . Additionally, if c is odd assume f r |I 1
is monotone. Let {G j }prj=0 be a disjoint chain with G jr ⊂ I 1 for all 0 ≤ j ≤ p − 1,

so that pullbacks of G pr and I are nested or disjoint. Let {Ĝ j }prj=0 be a chain with

G pr ⊂ Ĝ pr ⊂ (1 + 2δ)Ĝ pr ⊂ I and G0 ⊂ Ĝ0 and define

V = Dθ (Ĝ pr ) ∩ CGpr and U = CompG0
f −pr (V ).

If c is even, then for each z ∈ U, there exists an interval K such that either

z ∈ Dλθ (K ) and G0 ⊂ K ⊂ (1 + 2δ′)K ⊂ I (6.1)

or there exists 0 ≤ p′ ≤ p and intervals K ⊂ I ′ ⊂ I m̃ with

f p
′r (z) ∈ Dλθ (K ) and G p′r ⊂ K ⊂ (1 + 2δ′)K ⊂ I ′ (6.2)

where I ′ is ρ̂-nice if m̃ < ∞.
If c is odd, then for each z ∈ U, there exists an interval K such that (6.1) holds.
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Proof. Let z ∈ U . If p ≤ 10 or if m̃ = 1, then we can apply Corollary 4.8 finitely many
times to complete the proof. If p ≤ 10, then (6.1) holds and if m̃ = 1, then (6.2) holds
for p′ = p − 1, so we will assume that p > 10 and m̃ ≥ 2.

Let us first assume that the RI restricted to I 1 is monotone. Apply Corollary 4.8
twice to find λ1 > 0 so that f (p−2)r (z) ⊂ Dλ1θ (I

2). If the size of I 2 is comparable to
the size of I 1 we can apply Lemma 3.10 to f r |I 2 . Since (1 + 2δ)I 1 ⊂ I 0 there exists
δ1 > 0 so that I 2 is δ1 well-inside I 1. Using the connected components of I 1\(1+ δ1)I 2

we can find suitable fundamental domains and apply Proposition 6.1 to show (6.1).
If |I 2|/|I 1| < ε, for ε > 0 small, we get that I 2 is deep-inside J = (1 + δ)I 1.

Since J is well-inside I and f r is monotone there exists C = C(ε) > 0 so that
Ĵ = Compc0 f

−r (J ) ⊂ (1 + 2C) Ĵ ⊂ J . Note that C → ∞ as ε → 0. Since m̃ > 1,
there are no critical points or critical values of f r |I 1 contained in I\I 1, so we can apply
Lemma 4.6 to find λ2 ∈ (0, 1) so that Compc f

−r Dλ1θ ⊂ Dλ2θ (J
′). Making ε small

enough we get the following. Given x ∈ Ĵ

Compc f
−r Dλ1θ (J ) ⊂ Dλ2θ (J

′) ⊂ Dλ1θ (J ),

so we get (6.1).
From now on we will assume that c is even.

Claim 1. There exists a (universal) constant ν ∈ (0, 1) such that if |I 2|/|I 0| ≤ ν then
(6.1) holds.

Proof of Claim 1. Assume |I 2|/|I 0| ≤ ν. Since c is even, there exists C = C(ν) so that
(1 + 2C)I 2 ⊂ I 0, which in turn implies that there exists a constant C ′ = C ′(ν) so that
(1 + 2C ′)I 2 ⊂ I 1. Recall that f (p−2)r (z) ∈ Dλ1θ (I

2). By Corollary 4.8, there exists
λ3 ∈ (0, 1) such that for each x ∈ I 2,

Compx f
−r (Dλ1θ (0.5I

1)) ⊂ Dλ3θ (I
2).

If ν is sufficiently small, depending only on the choice of 0.5, then

Dλ3θ (I
2) ⊂ Dλ1θ (0.5I

1),

from which it follows that (6.1) holds. ✓

From now on, we will assume that |I 2|/|I 0| > ν.
Let E1 and E2 be the outer monotone branches of f r |I 1. In order to be definite, let

E1 be so that f r |E1 is orientation preserving. Let cl be the turning point in ∂E1 and cr
the turning point in ∂E2

Claim 2. There exist universal constants κ1, κ2 > 0 and C > 1 such that

(1) for any critical point c of f r |I 2, dist( f r (c), c) ≥ κ1|I 0|;
(2) |( f r )′(x)| ≤ C for any x ∈ I 2;
(3) either f r (I m̃) ∩ I m̃ = ∅ or |Ei ∩ I m̃ | ≥ κ2|I 0|, for i = 1, 2.

Proof of Claim 2. From Claim 1 we have that |I 2|/|I 0| > ν, so (1) and (2) follow from
Lemma 3.10. Statement (3) follows from Statements (1) and (2).✓

Claim 3. It is enough to prove the proposition for the case that Gpr ⊂ I m̃ and f pr (z) ∈
D

λ̂θ
(J )\Dθ (I 1) for some constant λ̂ ∈ (0, 1) and δ̂ > 0 (which do not depend on

θ) and some interval I 2 ⊂ J ⊂ (1 + 2δ̂)J ⊂ I 1. In particular, we can assume that
f r (I m̃) ∩ I m̃ �= ∅ (because otherwise (6.1) holds).
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Proof of Claim 3. If necessary we can apply Corollary 4.8 to obtain λ4 ∈ (0, 1) so
that f (p−1)r (z) ∈ Dλ4θ (I

1). Replacing p by p − 1 and θ by λ4θ we may assume that
Ĝ pr ⊂ I 1 and f pr (z) ∈ Dθ (I 1). If z ∈ Dθ (I 1), then (6.1) holds and the proof is
completed. So we may assume that there exists a maximal q with 0 ≤ q < p such that
f qr (z) /∈ Dθ (I 1). Since f (q+1)r (z) ∈ Dθ (I 1), by Corollary 4.8 there exist δ2 > 0 and
λ5 ∈ (0, 1) such that

f qr (z) ∈ Dλ5θ (J )\Dθ (I
1), (6.3)

where J is an interval with I 2 ⊂ J ⊂ (1 + 2δ2)J ⊂ I 1 (see Fig. 11).
Let us first see what happens if f r (I m̃) ∩ I m̃ = ∅. In this case the only way that

an interval G j could have a pullback under f r is if it is a pullback under E1. Assume
this is the case. Claim 1 and Lemma 4.5 allow us to find δ3, λ6 > 0 and K an interval
δ3−well-inside E1 such that f qr (z) ∈ Dλ6θ (K ). We can find fundamental domains
of size comparable to I 1 for the map f r |E1 : E1 → f r (E1) as follows. On one side
the fundamental domain is given by an interval in I 0\I 1 and on the other side it is
given by the cl and f r (cl). Applying Proposition 6.1 we get (6.1). From now on assume
f r (I m̃) ∩ I m̃ �= ∅.

If q ≤ 2, then by applying Corollary 4.8 at most twice, we obtain (6.1). So we may
assume that q ≥ 3. If Gqr ⊂ I m̃ , then the claim follows from (6.3). So we will assume
that Gqr �⊂ I m̃ . From this assumption and the fact that the intervals Gi are disjoint we
get that if Gqr �⊂ E1, then Gqr ∩ E1 = ∅. In this case we apply Corollary 4.8 once
and the argument used define q and (6.3) to prove the claim. If Gqr ⊂ E1 let q ′ ≥ 0
be minimal so that for all i with q ′ ≤ i ≤ q, Gir ⊂ E1. Note that I 1 is well-inside
I 0 (and therefore I 2 is well-inside I 1) and since m̂ > 1 all critical points of f r |I 1 are
contained in I 2. Observe that since I 1 is well-inside I 0 and by (1) and (2) of Claim
2 that ( f r |E1)

−1(E1) is well-inside E1. We can apply Proposition 6.1 to f r |E1 and
therefore we obtain λ7 > 0 so that f q

′r (z) ∈ Dλ7θ (E1 ∩ I 1). If q ′ = 0, 1, then applying
Corollary 4.8 gives (6.1). By the choice of q ′, Gir ⊂ I m̃ for all 0 ≤ i ≤ q ′ − 2.
If f (q ′−2)r (z) ∈ Dθ (I 1), then we can repeat the above argument choosing an integer
q < q ′ − 2 as above. Hence the claim follows.✓

Since f r is a composition of folding maps, f r (I m̃ ∩ E1) = f r (I m̃ ∩ E2) = f r (I m̃).
Let J1, J2 be theoutermost connected components of ( f |I m̃)−r (I m̃) that intersect E1, E2
respectively. Note that cl and cr are the turning points in the boundaries of E1 and
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Fig. 11. The sets Dθ (I 1) and Dλ1θ (J ). The point z is ‘jumping’ and we will capture it by J
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Fig. 12. Two examples of cases where m̃ < ∞ and one with m̃ = ∞ and I m̃ = ∩m≥0 I
m . The intervals

E1, E2 are marked in solid lines; the dashed lines refer to the intervals J1, J2 and the dotted lines are Ji j

E2 respectively. Let J1,1 and J1,2 (if it exists) be the two outermost components of
( f |J1)−r (J1) such that f r |J1, j , j = 1, 2 is monotone. See Fig. 12.

Claim 4. If I m̃ is well-inside I m̃−1 then (6.1) or (6.2) holds for p′ = p−1 and I ′ = I m̃ .
Let us remark that when we say well-inside, we mean that (1 + 2η)I m̃ ⊂ I m̃−1 for

some universal η > 0, one is welcome to think of η as being the constant δ > 0 from
Lemma 3.8.

Proof of Claim 4. By Claim 2 w have that |I m̃ | is comparable to |I 0|, and by Claim 3
we have that f pr (z) ∈ D

λ̂θ
(J )\Dθ (I 1). Hence by Lemma 4.5 there exists a constant

λ8 ∈ (0, 1) so that f pr (z) ∈ Dλ8θ (I
m̃). Since I m̃ is well-inside I m̃−1, by Corollary 4.8

we obtain constant λ9 ∈ (0, 1), so that f (p−1)r (z) ∈ Dλ9θ (K
′) for some interval K ′

which is well-inside I m̃ by Lemma 3.3. ✓

Let us describe the current situation. The interval I m̃ is not well-inside I m̃−1, and
|I m̃ | is comparable to |I 0|. Moreover, there exists a universal constant κ3 ∈ (0, 1) such
that the intervals Ji , J1,i , i = 1, 2 all have length at least κ3|I m̃ |, the intervals J1, J2
and J1,2 are not necessarily well-inside I m̃ , and J1,2 is not necessarily well-inside J1.
Moreover, we can assume that the properties from Claim 3 hold (and in particular that
Gpr ⊂ I m̃).

Claim 5. There exists a constant κ4 ∈ (0, 1) so that each critical point c′ of f r |I m̃ is
contained in (1 + 2κ4)−1 I m̃ and f r (J1,1)\J1,1 contains an interval of size κ4|J1,1|.
Proof of Claim 5. The first statement follows from the Claim 4, from Lemma 3.10 and
since f r |I m̃ has no attracting fixed points. The second statement follows from the first
one and Claim 2. ✓

Claim 6. There exist δ0 > 0, λ0 ∈ (0, 1) depending on δ and for each z ∈ U there exists
an interval K0 such that either (6.1) holds with K = K0 and δ′ = δ0 or there exists
p0 < p such that

f p0r (z) ∈ Dλ0θ (K0) and Gp0r ⊂ K0 ⊂ (1 + 2δ)K0 ⊂ I m̃ . (6.4)

Proof of Claim 6. If G(p−1)r ∩ J1,1 = ∅, then by Claim 5, G(p−2)r is well-inside I m̃

and by applying Lemma 4.6 twice we obtain Eq. (6.4) for p0 = p − 2 for some interval
K0 ⊃ G(p−2)r which is well-inside I m̃ . So let p1 < p be minimal so thatGir ∩ J1,1 �= ∅
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for i = p1, . . . , p − 1. Suppose first that p − p1 ≥ 2. We pull back twice using
Corollary 4.8, to obtain an interval K1 which is well-inside J1,1. One component of
f r (J1,1)\J1,1 is a fundamental domain to one side of K1 and one component of I 0\I 1
is a fundamental domain to the other side. Claims 4 and 5 imply that the fundamental
domains and the gap between them all have length comparable to I m̃ . So we can apply
Proposition 6.1 to f r |J1,1 → f r (J1,1) ⊂ I m̃ and thus obtain an interval K ′ which is
well-inside J1,1 and a constant λ10 > 0 so that f p1r (z) ∈ Dλ10θ (K

′). If p1 = 0, then
(6.1) holds and if p1 > 0 (including the case p − p1 < 2), then G(p1−1)r ∩ J1,1 = ∅,

and we argue as in beginning of the proof of this claim. ✓

Claim 7. If m̃ < ∞, then there exist 0 ≤ p′ ≤ p0, δ′ > 0 and λ′ ∈ (0, 1) so that

f p
′r (z) ∈ Dλ′θ (K

′) and Gp′r ⊂ K ′ ⊂ (1 + 2δ′)K ′ ⊂ I m̃, (6.5)

where either p′ = 0 or where p′ > 0 and (1 + 2δ′)K ′ ⊂ I ′, where I ′ is a ρ̂-nice interval
in I m̃ which is equal to LGp′r (I

m̃) or to LGp′r (LG(p′−1)r
(I m̃)).

Proof of Claim 7. Let Ak be the component of f −r (I m̃) containing Gkr . As before we
can assume that p0 ≥ 1. Let p1 ≤ p0 beminimal so that for all i with p1 ≤ i < p0,Gir is
a pullback of G(i+1)r through J1,1. If p1 is less than 3, then (6.1) holds by Corollary 4.8,
so we will assume that p1 > 3. Because of Claim 5, as in Claim 6, we can apply
Proposition 6.1 to f r : J1,1 → f r (J1,1) ⊂ I m̃ . If p1 < p0, then this implies that there
exist δ′

1 > 0, λ′
1 ∈ (0, 1) and an interval K ′

1 so that

f p1r (z) ⊂ Dλ′
1θ

(K ′
1),

where Gp1r ⊂ K ′
1 ⊂ (1 + 2δ′

1)K
′
1 ⊂ J1,1 = Ap1 . So in any case we get that there exist

δ′
2 > 0, λ′

2 ∈ (0, 1) and an interval K ′
2 so that

f (p1−1)r (z) ⊂ Dλ′
2θ

(K ′
2),

whereGp1r ⊂ K ′
2 ⊂ (1+2δ′

2)K
′
2 ⊂ Ap1−1 (herewe use thatGp1r ⊂ K ′

1 ⊂ (1+2δ′
1)K

′
1).

To finish the proof, we show that we can pull back until we arrive in a return domain to
a nice interval that is ρ-well-inside that nice interval,for a universal ρ, so that the return
domain is ρ̂-nice, for ρ̂ > 0, universal, by Corollary 3.4.

In the remainder of the proof, when we say that an interval J well-inside an interval
I , we mean that (1 + 2η)J ⊂ I , where η depends only on the universal constants from
Claims 2,3 and 5. Note that Ap1−1 is well-inside I m̃ unless Ap1−1 = J1 or J2. So unless
Ap1−1 = J1 or J2 the claim follows taking I ′ = Ap1−1. If Ap1−1 = J1, then we are done
if G(p1−1)r is contained in a landing domain to J1 that is well-inside J1. The only way
that this does not happen is if G(p1−1)r ⊂ J1,2. So suppose that this is the case. Under
one more pullback G(p1−2)r is either inside a return domain to I m̃ that is well-inside I m̃

or inside a return domain to J1 that is well-inside J1 or it is contained in J2. We are done
except in the last case, but then we do the following. If Ap1−1 = J2, we pull back once
more. If Ap1−2 is not J1 or J2 we are done. If Ap1−2 = J2 and J2 is not monotone, then
we are well-inside a landing domain to J2 that is well-inside J2. Suppose J2 is monotone.
Pulling back once more, we are done unless Ap1−3 = J1. In this case we are done after
one more pullback. So the claim and the proposition follow from Corollary 4.8. ��
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7. Pulling Back a Poincaré Disc Along a Chain with Bounded Combinatorial
Depth

The results in this section apply to maps f ∈ Ab and to asymptotically holomorphic
extensions of maps f ∈ A3

b, as in Sect. 5.2. Once again, we recall that we always assume
that the Standing Assumptions on p. 26 hold.

Let I be a nice interval containing the critical point c0, and let m ≥ 1 be minimal so
that RI (c0) /∈ Im . Notice that m ≥ m̂ (defined on p. 20). Recall,

C(I ) :=
{

Im if I is non-terminating and
I∞ otherwise.

If J is a return domain to an arbitrary nice interval I , and {Gi }ri=0 is the chain with
Gr = I and G0 = J where r is the return time of J to I , we define

Crit(I ; J ) =
( r−1⋃
i=0

Gi

)
∩ Crit( f ).

Similarly, if G = {G j }sj=0 is an arbitrary chain such that the pullbacks of Gs and I are
either nested or disjoint, G0 ⊂ I and 0 = n0 < n1 < · · · < n p = s are the integers
with Gni ⊂ I , we define

Crit(I ; G) =
p−1⋃
i=0

Crit(I ;LGni
(I )).

For any nice interval I and any critical point c we define

kc(I, G) = inf{kc ≥ 0 : there exists no j = 1, 2, . . . , s − 1 with G j ⊂ Ckc (L̂c(I ))},
where we take C0(L̂c(I )) = L̂c(I ) and

k(I, G) =
∑

c∈Crit(I ;G)

kc(I, G).

The combinatorial depth of the chain G with respect to I is defined to be k(I ; G). Note
that k(I, G) is well-defined even if I does not contain a critical point. If J and I are nice
intervals with nested or disjoint pullbacks and c ∈ J ⊂ I , then we define

k(I, J ) = min{k ≥ 0 : Ck(I ) ⊂ J }
and take

k̂(I, J ) =
∑

c∈Crit( f )
k(L̂c′(I ), L̂c′(J )).

Remark. In the presence of terminating intervals it is possible for the combinatorial
depth to be infinite. Let {G j }sj=0 be a chain and suppose that Cnc (I ) is terminating. Then

for all k > n, Ckc (I ) = Cn+1c (I ), so if some interval Gk0 is contained in Cn+1c (I ) we get
that k(I, {G j }sj=0) is infinite.



1068 T. Clark, S. van Strien, S. Trejo

Proposition 7.1 (cf. [KSvS], Proposition 11.2). For each δ > 0, k ≥ 0 and N ≥ 0 there
exist μ(k, N , δ) ∈ (0, 1) and δ′ > 0, and for each θ ∈ (0, π) there exists ε > 0 so that
the following holds. Let I be a δ-nice interval with |I | < ε. Suppose thatG := {Gi }si=0 is
a chain such that G0,Gs are nice intervals contained in I , the pullbacks of Gs and I are
nested or disjoint, the intervals G0, . . . ,Gs−1 are pairwise disjoint and G0∩ω(c0) �= ∅.

Assume that

k(I, G) ≤ k and #Crit(I ; G) ≤ N .

Let Ĝs be an interval with Gs ⊂ Ĝs ⊂ (1 + 2δ)Ĝs ⊂ I . Let V = Dθ (Ĝs) ∩ CGs and
Ui = CompGi

f −(s−i)(V ) for i = 0, . . . , s. Then, there exists an interval Î ⊃ G0 with

(1 + 2δ′) Î ⊂ I such that

U0 ⊂ Dμ(k,N ,δ)θ ( Î ).

Proof. The proof of this proposition goes by induction on (N , k)with the lexicographical
ordering. If N = 0, then all the branches are diffeomorphisms, so the proposition follows
because the sum of the lengths of the intervals Ĝ0, . . . , Ĝs−1 is uniformly bounded.
This can be seen as follows: let F : J → I be equal to the first return map to I
restricted to its diffeomorphic branches. Let Jn be a domain of Fn and Jn+1 ⊂ Jn a
domain of Fn+1. Since Fn : Jn → I is a diffeomorphism, by Theorem 3.2 (2) Fn|Jn
has bounded distortion. Since each component of J is δ-well-inside I , it follows that
there exists κ ∈ (0, 1) depending only on δ such that |Jn+1| ≤ κ|Jn|. It follows that the
sum of the lengths of the intervals Ĝi contained in I is universally bounded, and now
Theorem 3.2 (2) implies that the sum of the lengths of the intervals Ĝi is universally
bounded.

Assume now that the statement holds for all (N ′, k′) for which either N ′ < N or
N ′ = N and k′ < k. Wewill prove that the statement holds for (N , k). LetG = {G j }sj=0
be a chain as above with k(I, G) = k and #Crit(I ; G) = N .

Without loss of generality we can assume that I ∩Crit( f ) �= ∅. If this is not the case
we can define t < s to be maximal so that Gt ⊂ Lc(I ), for a critical point c ∈ Crit( f ).
Suppose that for no t ′, t < t ′ < s, we have that Gt ′ ⊂ I , then Gs is the first entry of
Gt into I , so we can pull back to time t using Lemma 4.8. Otherwise, let t < t ′ < s be
minimal so that Gt ′ ⊂ I. Using the argument for N = 0, we pull back from time s to
time t ′ and using Lemma 4.8 to pull back from time t ′ to time t . In either case, we obtain

Ut ⊂ Dλ0θ (Ht ) ∩ CGt ,

where Gt ⊂ Ĝt ⊂ Ht ⊂ (1 + 2δ0)Ht ⊂ Lc(I ), where λ0 ∈ (0, 1) and δ0 > 0 depend
on δ. Since I is δ-nice, Lemma 3.3 implies that after shrinking δ0, if necessary, Lc(I ) is
δ0-nice.

From now on we will assume that I contains a critical point c. Let I 1 = Lc(I ). Let
s′ < s be maximal such that Gs′ ⊂ I . Applying Lemma 4.8 we get that

Us′ ⊂ Dλ1θ (Hs′) ∩ CGs′ ,

where Gs′ ⊂ Ĝs′ ⊂ Hs′ ⊂ (1 + 2δ1)Hs′ ⊂ LGs′ (I ), where λ1 ∈ (0, 1) and δ1 > 0
depend on δ. Depending on the position of Gs′ we have two cases.

Case 1. Gs′ ⊂ I\I 1. Let J = LGs′ (I ). By Corollary 3.4, there exists δ′′ > 0 so that J
is δ′′-nice. Define s1 < s′ minimal such that Gs1 ⊂ J . If there exists no such s1, then
Gs′ is the first entry of G0 to J and the proposition follows from Lemma 4.8.
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Let us assume s1 is defined. The structure of the real puzzle and the fact that c escapes
I 1 imply that Lc(J ) ⊂ Cc(I ). It follows easily from this fact and the definition of k that
if any of the intervals Gs1 , . . . ,Gs′ enters Cc(I ), then

k(J, {G j }s′j=s1) ≤ k(I, {G j }sj=0) − 1 = k − 1,

and if none of the intervals Gs1 , . . . ,Gs′ enters Cc(I ), then Crit(J, {G j }s′j=s1
) < N .

In either case, replacing I by J we may apply the induction hypothesis to the chain
{G j }s′j=s1

to obtain

Us1 ⊂ Dλ2θ (Hs1) ∩ CGs1
,

where Gs1 ⊂ Ĝs1 ⊂ Hs1 ⊂ (1 + 2δ2)Hs1 ⊂ J , where λ2 ∈ (0, 1) and δ2 > 0 depend on
δ, N and k. By the minimality of s1 and Lemma 4.8 we have that

U0 ⊂ Dλ3θ (H0) ∩ CG0 ,

where G0 ⊂ Ĝ0 ⊂ H0 ⊂ (1 + 2δ3)H0 ⊂ I, with δ3 > 0 and λ3 ∈ (0, 1) depending
only on δ2. This completes the proof in this case.

Case 2. Gs′ ⊂ I 1. There are two possibilities: either the return map to I restricted to I 1

is monotone or it has a turning point.
If the return map is monotone, let 0 ≤ t ′′ ≤ s′ be minimal so that Gt ′′ ⊂ I 1 and

G j ∩ (I\I 1) = ∅ for all j = t ′′, . . . , s′. We apply Proposition 6.1 to find λ′′ ∈ (0, 1) so
that

Ut ′′ ⊂ Dλ′′θ (I
2).

If t ′′ = 0, we have proved the proposition. If t ′′ > 0, there exists 0 ≤ q < t ′′ maximal
such that Gq ⊂ I . By definition of q we have that Gq ⊂ I\I 1 and repeating Case 1, we
obtain the induction statement.

Assume that the return map to I restricted to I 1 is not monotone. Let 0 ≤ s′′ < s′
be maximal such that Gs′′ ⊂ I . If s′′ = 0 the proposition follows from Lemma 4.8, so
suppose 0 < s′′. If Gs′′ ⊂ I\I 1, then the proposition follows from Case 1, so let us
assume Gs′′ ⊂ I 1. Let r1 ≤ s′ be maximal such that Gr1 ⊂ L̂c′(I ), where c′ ∈ Crit( f )
is a turning point. Note that s′′ < r1 ≤ s′. Let J = Lc′(I ). By Lemma 4.8, we have that

Ur1 ⊂ Dλ′
1θ

(Hr1) ∩ CGr1
,

where Gr1 ⊂ Ĝr1 ⊂ Hr1 ⊂ (1 + 2δ′
1)Hr1 ⊂ J, and λ′

1 ∈ (0, 1) and δ′
1 > 0 both

depend only on δ. Once again, making δ′
1 smaller, if necessary, we may assume that J

is a δ′
1-nice. Let q

′ ≤ r1 be minimal such that Gq ⊂ J and let r ′
1 < r1 be maximal

such that Gr ′
1

⊂ J . If r ′
1 = q ′, the proposition follows from Lemma 4.8, so we assume

q ′ < r ′
1. Then we have two possibilities: either Gr ′

1
⊂ J\J 1 or Gr ′

1
⊂ J 1. If the first

holds, then we are in Case 1 and we obtain the induction statement.
AssumeGr ′

1
⊂ J 1. Let t1 ≤ r ′

1 beminimal so thatGt1 ⊂ J 1 andG j∩(J\J 1) = ∅ for
all t1 ≤ j ≤ r ′

1 with G j ⊂ J. Note that if J � c is terminating, since Gt1 ∩ ω(c0) �= ∅,
then Gt1 ⊂ J∞, so k(Lc(I ), G) is infinite. Hence we have that J is non-terminating.
By Proposition 6.3 we obtain α, ρ̂ > 0, λ′

2 ∈ (0, 1) and for each z ∈ Ut1 an interval K
so that either
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(a) f t1(z) ∈ Dλ′
2θ

(K ) and Gt1 ⊂ K ⊂ (1 + 2α)K ⊂ J or

(b) there exist r2 with t1 ≤ r2 ≤ r ′
1 and a ρ̂-nice interval J ′ ⊂ J m̂ , so that f r2(z) ∈

Dλ′
2θ

(K ) and Gr2 ⊂ K ⊂ (1 + 2α)K ⊂ J ′.

If (a) holds, then the same argument used for t ′′ in the monotone case proves the propo-
sition. If (b) holds, then by the definition of m̃, there exists c′′ ∈ Crit(J, G) which enters
J\J 1 before it enters J m̃ ⊃ J ′. Let q ′ be minimal such that for every q ′ ≤ j ≤ r2
with G j ⊂ J we have that G j ⊂ J m̃ . If we take q ′ ≤ r ≤ r2 minimal so that
Gr ⊂ J ′, then c′′ /∈ Crit(J ′, {G j }r2j=r ), and therefore #Crit(J

′, {G j }r2j=r ) < N . Replac-

ing I with J ′, and applying the induction hypothesis to the chain {G j }r2j=r , we have that

f r (z) ∈ Dλ′
3θ

( Ĵ ′), where Ĵ ′ is an interval such that Gr ⊂ Ĵ ′ ⊂ (1 + 2α′) Ĵ ′ ⊂ J ′ and
λ′
3 ∈ (0, 1) depend only on α, N and k. IfG0, . . . ,Gr−1 avoid J ′, then Lemma 4.8 com-

pletes the proof of the proposition. Otherwise, there exists r3 < q ′ so that Gr3 ⊂ J\J 1.
Let r3 be maximal with respect to this property. Then Gr3 , . . . ,Gr−1 avoid J ′ and so
applying Lemma 4.8 we obtain f r3(z) ∈ Dλ′′θ ( Ĵ ′′) for some interval Ĵ ′′ satisfying
Gr3 ⊂ Ĵ ′′ ⊂ (1 + 2α′′) Ĵ ′′ ⊂ J where α′′ > 0 depends on α′, and λ′′ ∈ (0, 1) depends
on α′, N and k. Applying Case 1, replacing s with r3 completes the proof in this case. ��

8. Pulling Back a Poincaré Disc One Step Along the Enhanced Nest

The results in this section apply to maps f ∈ Ab and to asymptotic holomorphic exten-
sions of maps f ∈ A3

b, as in Sect. 5.2. We recall that we always assume that the Standing
Assumptions on p. 26 hold.

First, we state and prove a lemmawhich relates a bound on the scaling factors between
two levelswith some combinatorial information.

Lemma 8.1. For each ν ≥ 1, there exists K ∈ N with the following properties. Assume
that Ii and Ii+1 are non-terminating and that both

|Ii |/|Ii+1| and |Ii+1|/|Ii+2| ≤ ν.

Then

k(Ii , Ii+1) and k(Lc(Ii ),Lc(Ii+1)) ≤ K for each c ∈ Crit( f ) ∩ ω(c0).

Proof. If k(Ii , Ii+1) is large, then by Lemma 3.8, |Ii |/|Ii+1| is large. If c is a critical
point and k(Lc(Ii ),Lc(Ii+1)) is large, then by Lemma 3.15 |Lc0Lc(Ii )|/|Lc0Lc(Ii+1)|
is large too. By construction, we have that

Ii ⊃ Lc0Lc(Ii ) ⊃ �(Ii ) ⊃ Ii+1

and

Ii+1 ⊃ Lc0Lc(Ii+1) ⊃ �(Ii+1) ⊃ Ii+2.

So, if |Lc0Lc(Ii )|/|Lc0Lc(Ii+1)| is large, and since Ii ⊃ Lc0Lc(Ii ) ⊃ Ii+1 ⊃
Lc0Lc(Ii+1) ⊃ Ii+2, either |Ii |/|Ii+1| or |Ii+1|/|Ii+2| is large, which contradicts our
assumption. ��
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8.1. The renormalizable case. In this subsection, we deal with pullbacks along consec-
utive intervals of the enhanced nest in the presence of terminating intervals.

Figures 13 and 14 show how these pullbacks are structured.
In the next proposition we will deal with the first step of the pullback when Ii−1 is

non-terminating and Ii is terminating, see Fig. 13.

Ii−1 non-terminating
and Ii terminating

Î ⊂ Ii−1 terminating

R(Ii)

R(Ii) R(Ii) R(Ii)Feigenbaumterminating non-terminating

R(Ii) = Ii+1Ii+1 Ii+1

Proposition 8.2

Corollary 8.4

Corollary 4.8 Proposition 8.5

=
=

=
=

Fig. 13. Pulling back a Poincaré disk based on Ii−1 to one based on Ii+1 when Ii−1 is non-terminating and Ii
is terminating. We start at the top of the diagram and the arrows indicate pulling back. The= symbol indicates
that there is nothing to do

Ii−1 terminating

R(Ii−1)

Feigenbaumterminating non-terminating

R(Ii) = IiIi Ii

Proposition 7.3

Corollary 4.8 Proposition 7.5

R(Ii−1) R(Ii−1) R(Ii−1)

= ==
=

Fig. 14. Pulling back a Poincaré disk based on Ii−1 to one based on Ii when Ii−1 is terminating. We start at
the top of the diagram and the arrows indicate pulling back. The = symbol indicates that there is nothing to
do
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Proposition 8.2. For any ν ≥ 1 there exists λ ∈ (0, 1), and for each θ ∈ (0, π) there
exists ε > 0 such that the following holds. Suppose that Ii−1 is non-terminating, Ii is
terminating, |Ii−1| < ε and

|Ii−2|
|Ii+1| < ν.

Let r be such that f r |I∞
i

= RI∞
i

. Let {G j }sj=0 be a disjoint chain with G0 ⊂ I∞
i and

G0 ∩ ω(c0) �= ∅. Assume that Gsi−1 ⊂ Ii−1 for some si−1 > 2r. Then there exists
s′
i < si−1 with Gs′i ⊂ I∞

i such that if

Usi−1 = Dθ (Ii−1) ∩ CGsi−1
and U0 = CompG0

f −si−1(Usi−1),

then there is an interval K which is well-inside Î such that

Us′i ⊂ Dλθ (K ),

where Î ⊃ I∞
i−1 is the largest terminating interval in the principal nest

Ii−1 = I 0i−1 ⊃ I 1i−1 ⊃ · · · .

Moreover, there are at most two integers j with s′
i ≤ j ≤ si−1 and G j ∩ Ii �= ∅.

Remark. The time s′
i is chosen so that the base of the Poincaré domain containingUs′i is

contained in Î . Pulling back to time s′
i is the first step needed to eventually get a Poincaré

disk based on Ii+1 (see Fig. 13).

Proof. Let Ii−1 = I 0 ⊃ I 1 ⊃ I 2 ⊃ I 3 ⊃ · · · be the principal nest about c0. Let
m(0) = 0 and let m(0) < m(1) < m(2) < m(3) · · · < m(l) be the levels the of
principal nest such that RIm(i)−1(c0) /∈ Im(i), i = 1, 2, . . . , l. Note that l < ∞ since Ii
is terminating. By definition Im(l) is terminating, so Im(l) ⊃ I∞

i and the return time of
Im(l)+1 to Im(l) is r . We will begin by defining a time j0 from which we will be able to
pull back to a time s′

i , as in the statement of the proposition, along a bounded number of
monotone branches in the principal nest about c0 and first return maps. We will first pick
a sequence of times ki ≤ k′

i that give us good control of the orbit of c0 in the principal
nest, I 0 ⊃ I 1 ⊃ I 2 ⊃ · · · ⊃ Im(l).

Let kl < si−1 be maximal such that Gkl ⊂ I∞
i . Let

kl < kl−1 ≤ k′
l−1 < kl−2 ≤ · · · < k0 ≤ k′

0 < k∗ ≤ j0 ≤ si−1

be defined as follows. See Fig. 15 for an illustration of this sequence. Let kl−1 > kl
be minimal such that f kl−1(c0) ∈ Im(l)−1. Since Gkl ⊂ I∞

i , kl−1 coincides with the
minimal time > kl such that Gkl−1 ⊂ Im(l)−1 and f kl−1(c0) /∈ Im(l). Assuming that
k j is defined, let k′

j be maximal such that for all k, k j ≤ k ≤ k′
j , if f k(c0) ∈ Im( j),

then f k(c0) ∈ Lc0(I
m( j)), and define k j−1 = k′

j + n j where n j is the return time of

L
f
k′j (c0)

(Im( j)) = Lc0(I
m( j)) to Im( j)−1. Note that the return of f k

′
j (c0) to Im( j)−1 is

non-central, i.e. f k j−1(c0) is not contained in Im( j). With k′
0 defined, we set k∗ = k′

0 +q0,
where q0 is the return time of L

f k
′
0 (c0)

(Im(0)) = Im(0)+1 to Im(0). Notice that f k∗(c0) /∈
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c0

fk∗(c0)
Lft∗ (c0)(I

m(0))
Im(0)

Im(1)
fk0(c0)

fk′
0(c0)

Im(0)+1

fk′
1(c0)

...

Im(l)
Im(l)−1

fkl−1(c0)

Im(0)+2

...

Im(1)+1

Im(1)+2

Gj0

Gkl

Fig. 15. Finding k∗

Im(0)+1. Let j0, si−1 − r < j0 ≤ si−1 be such that G j0 ⊂ L f k∗ (c0)(I
∞
i ); remember r is

the period of I∞
i . Since si−1 > 2r , we know that j0 ≥ k∗.

The pullback of G j0 will follow the same path as the pullback of f k∗(c0) since they
are both contained in the orbit of I∞

i−1. We will use this property below Claim 2, see
Fig. 16.

Combinatorial Remark 1. Note that by the definition of j0 there exists at most one
interval G j with j0 ≤ j ≤ si−1 with G j ⊂ I∞

i .

We start by pulling back along the first part of the chain, from time si−1 to time j0.
The loss of angle along this segment of the chain will be controlled by Proposition 7.1,
so we need find a way to split the chain into smaller segments, each of them with
bounded combinatorial depth. The argument is complicated by the fact that the chain
may enter a terminating component of the landing map to Ii that contains a critical point
and therefore has infinite combinatorial depth. Let us study the combinatorial depth of
the chain {G j }si−1

j= j0
with respect to the interval Ii−1. By construction, there exists at

most one interval G j with j0 < j ≤ si−1 and G j ⊂ I∞
i−1. Since Ii ⊂ I∞

i−1, for each
c ∈ Crit(Ii−1; {G j }si−1

j= j0
), there exists at most one interval G j with j0 < j < si−1 such

that G j ⊂ L̂c(Ii ). Let t1 be maximal so that j0 < t1 < si−1 and L̂Gt1
(Ii ) contains a

critical point. If t1 is not defined,let t1 = j0. Let t ′1 > t1 be minimal such that Gt ′1 ⊂ Ii−1

and let G = {G j }si−1
j=t ′1

. There exist two possibilities either

(i) k(Ii−1, G) is finite or
(ii) k(Ii−1, G) = ∞.

First, we estimate the combinatorial depth of the chain G if (i) holds.

Claim 1. If k(Ii−1, G) is finite there exists a = a(ν) > 0 such that k(Ii−1, G) < a.

Assume k(Ii−1, G) > a, where a will be chosen later. By the definition of com-
binatorial depth, there exists c′ ∈ Crit(Ii−1; G) such that k(Ii−1, {G j }mc′

j=nc′ ) > a/b.
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Gj0

Gj′
0

Gj1

Im̃(1)

fq0

fq0

fnq0

Im̃(0)

Im̃(0)+1

Gj0−q0 fq0

Fig. 16. Pulling back from time j0 to j1

Let a∗ be the integer part of a/b and let c′ ∈ Crit(Ii−1; G) be so that mc′ is max-
imal and k(Ii−1, {G j }mc′

j=nc′ ) > a∗. By the definition of combinatorial depth, there

exists G j ⊂ Ca∗(L̂c′(Ii−1)). Assume j ′ is maximal with t ′1 ≤ j ′ ≤ si−1 and
G j ′ ⊂ Ca∗(L̂c′(Ii−1)); since j ′ > t1, Lc′(Ii ) ⊂ Ca∗(L̂c′(Ii−1)). Since k(Ii−1, G) is

finite none of the intervals Cn(L̂c′(Ii−1)) is terminating for 1 ≤ n ≤ a∗. By Lemma 3.8
there exists ρ > 0 such that for any 1 < n < a∗

(1 + 2ρ)Cn+1(L̂c′(Ii−1)) ⊂ Cn(L̂c′(Ii−1)).

If c′ = c0, and a is sufficiently big, so a∗ is sufficiently big, this would imply
|Ii−1|/|Ii+1| > ν. So let us assume c′ �= c0. For each n < a∗ let pn be minimal
such that f pn (c0) ⊂ Cn(L̂c′(Ii−1)); pn is the first entry time of c0 to Cn(L̂c′(Ii−1)). Let
Cn
n and Cn

n+1 be the pullbacks of Cn(L̂c′(Ii−1)) and Cn+1(L̂c′(Ii−1)) containing c0 along
the orbit c0, f (c0), . . . , f pn (c0), respectively. By Theorem 3.2 (1) there exists ρ′ > 0
such that for any n < a∗

(1 + 2ρ′)Cn
n+1 ⊂ Cn

n .

Note that an ≤ an+1 so

Cn+1
n+1 ⊂ Cn

n+1 ⊂ Cn
n .

If a is big enough, so a∗ is big enough, this implies that �(Ii ) ⊂ Lc0(Lc′(Ii )) is deep-
inside Ii−1, which contradicts |Ii−1|/|Ii+1| < ν. ✓

Remark. From the proof of Claim 1 we get the following. Assume that none of the
intervals Cn(L̂c′(Ii−1)) is terminating for 1 ≤ n ≤ n0 and that there exists G j ∈ G with
G j ⊂ Cn0(L̂c′(Ii−1)). Then n0 < a. Now we pull back from time si−1 to time j0.

Claim 2. There exist λ0 ∈ (0, 1) and an interval K0 ⊃ G j0 that is well-inside Im(0) =
Ii−1, so that

Uj0 ⊂ Dλ0θ (K0).
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By Theorem 3.1(a) we know that there exists ρ > 0 so that Ii−1 is ρ-nice. Since
|Ii−2|/|Ii+1| < ν, Corollary 3.25 implies there exists δ > 0 such that Ii−1 is δ-free.
Shrinking δ, if necessary, we can assume that Ii−1 is δ-nice and δ-free. Let t < si−1 be
maximal so that Gt ⊂ Ii−1. Since Ii−1 is δ-free we can apply Lemma 4.6 to find λ′ > 0
so that

Ut ⊂ Dλ′θ (LGt (Ii−1)),

with (1 + 2δ)LGt (Ii−1) ⊂ Ii−1. There are two cases to consider:

Case (i): k(Ii−1, G) is finite.
Since we are assuming |Ii−1|/|Ii+1| < ν, Claim 1 tells us that k(Ii−1, G) < a. In

this case Proposition 7.1 allows us to control the loss of angle from time t to time t ′1.
Since Gt ′1 is the first entry of Gt1 to Ii−1 we can control the loss of angle from time t ′1
to time t1 using Corollary 4.8; this means that we can find an interval J1 and constants
λ1, δ1 > 0 such that

Ut1 ⊂ Dλ1θ (J1)

withGt1 ⊂ J1 ⊂ (1+2δ1)J1 ⊂ L̂Gt1
(Ii−1). Let j0 ≤ t2 < t1 bemaximal so that L̂Gt2

(Ii )
contains a critical point. If t2 is not defined, the proposition follows after one application
of Corollary 4.8. If t2 is defined let t ′2 with t2 < t ′2 ≤ t1 be minimal such thatGt ′2 ⊂ Ii−1.

If we let G = {G j }t1j=t ′2
, either Case (i) or Case (ii) holds. If Case (i) holds, we repeat

the previous argument. See below for the argument in Case (ii). The proposition follows
after repeating this argument at most once for each point c ∈ Crit(Ii−1; {G j }t1−1

j= j0
), so

at most b − 1 times.

Case (ii), k(Ii−1, G) = ∞. By the definition of combinatorial depth, there exist n ∈ N,
t ′1 ≤ j ≤ si−1 and a point c ∈ Crit(Ii−1; G), so that G j ⊂ Cn(L̂c(Ii−1)), where
Cn(L̂c(Ii−1)) is a periodic interval. For each c ∈ Crit(Ii−1; G), pick nc minimal and mc

maximal so that t ′1 ≤ nc ≤ mc ≤ si−1 and Gnc ,Gmc ⊂ L̂c(Ii−1). Let c ∈ Crit(Ii−1; G)

be such thatmc ismaximal. From the remark at the end ofClaim1weknow the following.
There exists m < a such that Cm(L̂c(Ii−1)) is periodic, otherwise |Ii1 |/|Ii+1| > ν. Let
m0 be minimal such that Cm0(L̂c(Ii−1)) is a periodic interval. Let P = Cm0(L̂c(Ii−1)).
By the choice of c there existsG j ⊂ P . Evenmore, sinceP is a periodic interval andGkl
is the only element of the chain contained in Ii , there exists only one interval Gt̂1 ⊂ P
with j0 ≤ t̂1 < si−1. By the definition of t̂1 and the choice of cwe can use Proposition 7.1
and Corollary 4.8 to control the loss of angle from time si−1 to time t̂1. Thus, there exists
an interval J1 and constants λ1, δ1 > 0 with Gt̂1 ⊂ J1 ⊂ (1 + 2δ1)J1 ⊂ L̂c(Ii−1) such
that

Ut̂1 ⊂ Dλ1θ (J1).

Pick j0 ≤ t2 < t̂1 maximal such that Gt2 ⊂ Cn(Lc′(Ii−1)) for some c′ ∈
Crit(Ii−1; {G j }t̂1j= j0

) and Cn(Lc′(Ii−1)) terminating; if t2 is not defined let t2 = j0.

Let t̂2 < t̂1 be maximal such that Gt̂2 ⊂ L̂c′(Ii−1). Proposition 7.1 and Corollary 4.8
allow us to control the loss of angle from time t̂1 to time t2. The proof follows repeating
the previous argument at most once for each critical point of f , so at most b times. ✓
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Let us continue with the proof of the proposition. Now that we have pulled back to
time j0 we pull back to the desired time s′

i = j0 − k∗. By the choice of j0 we can restrict
all but a bounded number of these pullbacks to monotone branches of return maps to
intervals in the principal nest. See Fig. 16 for an idea of how this will be done. Let us first
define the following times; let m̃(1) < m̃(2) < · · · < m̃(k) be the levels of the principal
nest such that there exists a turning point c of RI m̃(i)−1 such that RI m̃(i)−1(c) /∈ I m̃(i),

i = 1, 2, . . . k. Set m̃(0) = 0, so that I m̃(0) = I 0 = Ii−1. Notice that the terminating
interval Ĩ is equal to I m̃(k) and that the return timeof c0 to Ĩ is r . Let j ′0 < j0 beminimal so
that for all t , j ′0 ≤ t < j0, we have that if Gt ⊂ I m̃(0), then Gt ⊂ I m̃(0)+1\I m̃(1). Define
j1 < j ′0 to be maximal so that G j1 ⊂ I m̃(1). Similarly, define j ′1 > j2 > j ′2 > · · · jk .

If m̃(1) = m̃(0) + 1 or m̃(0) + 2, then by applying Corollary 4.8 once or twice there
exist λ1 ∈ (0, 1), and an interval K1 that is well-inside I m̃(1) such that

Uj1 ⊂ Dλ1θ (K1),

so suppose that m̃(1) > m̃(0) + 2. Let q0 be such that f q0 |I m̃(0)+1 = RI m̃(0) |I m̃(0)+1.
Since |I m̃(0)+1|/|I m̃(0)+2| < ν, and I m̃(0)+1 is well-inside I m̃(0), Lemma 3.10 implies
that there exists κ0 > 0 and C such that for any critical point c of RI m̃(0)+1 |I m̃(0)+2,

| f q0(c) − c| ≥ κ0|I m̃(0)|, and |D( f q0)(x)| ≤ C for all x ∈ I m̃(0)+2.

Since f q0 is a first return map, by Corollary 4.8, there exist λ′ ∈ (0, 1) and an interval
K ′ which is well-inside I m̃(0)+1 such that

Uj0−q0 ⊂ Dλ′θ (K
′).

Wehave thatG j0−2q0 ⊂ I m̃(0)+2\I m̃(1). Let c1 be the turningpoint of f q0 on the boundary
of the monotone branch of f q0 containing G j0−2q0 . Let Y denote this monotone branch.
We will now pull back to get the base of the Poincaré disk inside of Y . Since c1 ∈ I m̃(1),
G j0−q0 does not contain f q0(c1). Let c′ be the critical point of f with the property that
f k(c1) = c′ with 0 ≤ k < q0 maximal. Let α be the fixed point of f q0 closest to
c0 and let α′ ∈ Compc′ f q0−k(I m̃(0)+1) be the preimage of α that lies on the opposite
side of c′ to G j0−2q0+k . By Lemma 3.10, |c1 − α| is comparable to |I m̃(0)|, so there
exists an interval J0 ⊂ (c1, α) such that |J0| > δ0|I m̃(0)| and J0 does not contain any
critical values of f q0 . Let J ′

0 be the pullback of J0 in (c′, α′), and let J ′
1 be the pullback

by f −(q0−k) of the connected component of Im(0)+1\Im(0)+2 on the same side of c1 as
G j0−q0 , so that the convex hull of J

′
0 ∪ J ′

1 contains G j0−2q0+k . There exists δ′
0 > 0 such

that |J ′
0|, |J ′

1| > δ′
0|Lc′(I m̃(0)+1)|. Let K ′′ be the convex hull of J ′

0 ∪ J ′
1. There exists

δ′′ > 0 and an interval K ′
0 which is well-inside K ′′ such that |K ′

0| is comparable to
|Lc′(Im(0))| and (1 − 2δ′′)K ′

0\(1 − 2δ′′)−1K ′
0 contains no critical values of f k . Since

G j0−2q0+k does not contain c′ by Lemma 4.4, there exists λ′
0 ∈ (0, 1)

Uj0−2q0+k ⊂ Dλ′
0θ

(K ′
0).

Since K ′
0 is δ′′-free we can apply by Lemma 4.6 to find λ1 ∈ (0, 1) and an interval K1

that is well-inside Y , such that G j0−2q0 ⊂ K1 and

Uj0−2q0 ⊂ Dλ1θ (K1).
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Now, we use an argument similar to the one in the proof of Claim 6 of Proposition 6.3
to pull back to a Poincaré disk based in I m̃(1). By Proposition 6.1 and at most one
application of Corollary 4.8, we have that there exists λ2 ∈ (0, 1) such that

Uj ′0 ⊂ Dλ2θ (Y ′),

where Y ′ is an outermost monotone branch of f q0 |I m̃(0)+1. So we have that there exists
λ3 ∈ (0, 1) and an interval K3 that is well-inside I m̃(1) such that

Uj1 ⊂ Dλ3(K3).

Let q1 be the return time of I m̃(1)+1 to I m̃(1). By Corollary 4.8, we have that there exists
λ4 ∈ (0, 1) and an interval K4 which is well-inside I m̃(1)+1 such that

Uj1−q1 ⊂ Dλ4θ (K4).

Observe that G j1−q1 ⊂ Im(1)+1\Im(1)+2.
Since Im(0) = Ii−1 is δ-nice, there exists δ1 > 0 such that Im(1)+1 is δ1-nice. If

j ∈ {0, . . . , k − 1} is such that there exists j ′ ∈ {0, . . . , l − 1} such that m̃( j) = m( j ′),
then by Lemma 3.8 there exists δ′

1 > 0 such that I m̃( j)+1 is δ′
1-nice. If this is not the case,

then Lc0(I
m̃( j)) is well-inside I m̃( j), since there exist two turning points c1, c2, critical

points of f q0 , such that Lc0(I
m̃( j)) ⊂ (c1, c2), and by Lemma 3.10, the interval (c1, c2)

is well-inside I m̃( j). Shrinking δ1 if necessary, I m̃( j)+1 is δ1-nice for all j = 0, . . . , k.
Since |Ii−1|/|Ii | < ν, k is bounded. We complete the proof the proposition by repeating
the previous argument, to pull back from time m̃(0) to m̃(1), k − 1 times.

Combinatorial Remark 2. Note that there exist at most two intervalsG j with s′
i ≤ j ≤

si−1 and G j ⊂ I∞
i , and one of them is Gs′i . Thus, there exists at most one interval G j

with s′
i ≤ j ≤ si−1 with G j ⊂ Ii+1. ��

In the next proposition, we will deal with the first step of the pullback when Ii−1 is
terminating, see Fig. 14.

Proposition 8.3. For each ν ≥ 1 there exist μ = μ(ν) ∈ (0, 1) and δ > 0, and for
each θ ∈ (0, π) there exists ε > 0 such that the following holds. Assume that Ii−1 is
terminating with |Ii−1| < ε and that

|Ii−2|
|Ii+1| < ν.

Let {G j }sj=0 be a disjoint chainwith Gs = In,G0 ⊂ In for some n > i andG0∩ω(c0) �=
∅. Suppose si−1 ≤ s is such that at least three of the intervals G0,G1, . . .Gsi−1 are
contained in Ii+1. Then there exists ri−1 < si−1 with Gri−1 ⊂ R(Ii−1) such that if

Usi−1 = Dθ (Ii−1) ∩ CGsi−1
and U j = CompG j

f −(si−1− j)(Usi−1),

then there exists an interval K so that

Uri−1 ⊂ Dμθ (K ),

and (1+2δ)K ⊂ R(Ii−1).Moreover, there are atmost three times j with ri−1 ≤ j ≤ si−1
and G j ⊂ Ii+1.



1078 T. Clark, S. van Strien, S. Trejo

Proof. Let r be the period of I∞
i−1. Since Ii−1 is terminating, I∞

i−1 is a periodic inter-
val, and R(Ii−1) is bounded between αi−1 and τ(αi−1), where αi−1 is the orientation
reversing fixed point of RIi−1 closest to c0. To be definite let Y−1 �= Y0 be the other
component of I∞

i−1\( f r |I∞
i−1)

−1(α) that contains αi−1 in its boundary, let Y−a be the
component containing β, the fixed point of RI∞

i−1
contained in ∂ I∞

i−1, and Ya be the
component containing τ(β) in its boundary. For simplicity, we will denote αi−1 by α.

Step 1: Pulling back to I∞
i−1. We define a time s∞

i−1 with 0 ≤ s∞
i−1 < si−1 so that the

following holds. There exist λ0 ∈ (0, 1) and an interval K0 well-inside I∞
i−1 so that

Us∞i−1
⊂ Dλ0θ (K0).

Since Ii−1 is terminating, only one component of its return domain intersects ω(c0), so
Gsi−1 ⊂ I∞

i−1. Let us first pull back by one iterate of f r . Since |Ii−2|/|Ii+1| < ν we
can apply Corollary 3.25 to find ρ > 0 so that Ii−1 is ρ-free. Notice that since Ii−1
is terminating, all critical points of f r |I 1i−1 are contained in I∞

i−1. Let 0 < j ≤ r be
minimal so that L f r− j (c0)(Ii−1) contains a turning point c′ of f and c′ /∈ Gsi−1− j . Then
Gsi−1− j is contained in an interval bounded on one side by a preimage α̂ of α (such that
f r− j (α̂) = α) and on the other either by c′ or by a boundary point of L f r− j (c0)(Ii−1).
Let α′ be the symmetric point to α̂ with respect to c′. Since Ii−1 is ρ-free we can apply
Lemma 3.10(2) to conclude that |c′ − α′| is comparable to |L f r− j (c0)(Ii−1)|. As in the
previous lemma, this means that there exist an interval K ′, λ′ ∈ (0, 1) and δ′ > 0 such
that

Usi−1− j ⊂ Dλ′θ (K
′),

where K ′ is an interval that is bounded on one side by a boundary point x of
L f r− j (c0)(Ii−1) and on the other by a point x ′ ∈ (c′ − δ′|L f r− j (c0)(Ii−1)|, c′ +
δ′|L f r− j (c0)(Ii−1)|), on the opposite side of c′ as x . Additionally, we can assume K ′
has the property that (1+ δ′)K ′\(1+ δ′)−1K ′ is disjoint from ∪{ f (c), f 2(c), . . . f r (c)},
where the union is taken over all critical points c of f . Replacing L f r− j (c0)(Ii−1) by K ′
and repeating this process at most once for each critical point of f , we have that there
exists an interval K1 ⊂ I 1i−1, λ1 ∈ (0, 1) and δ1 > 0 such that

Usi−1−r ⊂ Dλ1θ (K1),

where K1 is of one of the following types.

(a) Assume Gsi−1−r is contained in one of the two outermost monotone branches of
f r |I 1i−1. Then K1 is bounded between a boundary point x1 of Lc0(Ii−1) and a point
x2 ∈ (c1 − δ1|I∞

i−1|, c1 + δ1|I∞
i−1|) on the opposite side of c1 as x1 where c1 is an

outermost turning point of f r ;
(b) Assume Gsi−1−r is contained in I∞

i−1 minus the two outermost monotone branches
of f r |I 1i−1. Then there exist turning points c1 < c2 of f r and points x1 ∈ (c1 −
δ1|I∞

i−1|, c1) ⊂ I∞
i−1 and x2 ∈ (c2, c′ + δ1|I∞

i−1|) ⊂ I∞
i−1 such that K1 = (x1, x2) is

well-inside I∞
i−1;

(c) Assume that Gsi−1−r contains one of the turning points from the two outermost
monotone branches of f r |I 1i−1. Then, K1 is bounded on one side by a boundary point
x1 of Lc0(Ii−1) and on the other side by a point x2 ∈ (c0 − δ1|I∞

i−1, c0 + δ1|I∞
i−1|)

on the opposite side of c0 as x1.
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Suppose first that (a) holds. Let Y denote the outermost monotone branch of f r |I 1i−1
containing Gsi−1−r and let c be the turning point on its boundary. If Y is the orientation
reversing branch, pulling back under one more iterate of f r , as in the proof of Claim
6 of Proposition 6.3, we obtain an interval K2 that is well-inside I∞

i−1, and λ2 ∈ (0, 1)
such that

Usi−1−2r ⊂ Dλ2θ (K2),

and s∞
i−1 = si−1 − 2r . We know that si−1 − 2r > 0, since at least two of

G0,G1, . . .Gsi−1−1 are contained in Ii+1. Evenmore, the only interval inGs∞i−1
,Gs∞i−1+1

,

. . . ,Gsi−1−1 that could be contained in Ii+1 is Gs∞i−1
. Now suppose that Y is the orienta-

tion preserving branch. Let q ≥ 1 bemaximal so thatGsi−1−qr ⊂ Y and for t, 1 ≤ t ≤ q,
Gsi−1−tr ⊂ Y . If q = 1, then either

• there exists an interval K2 which is well-inside I∞
i−1, and λ2 ∈ (0, 1) such that

Usi−1−2r (z) ⊂ Dλ2θ (K2),

and s∞
i−1 = si−1 − 2r or

• Gsi−1−2r is contained in the outermost orientation reversing branch of f r |I 1i−1,
si−1 − 3r > 0 and, as above, we have that there exists an interval K2 which is
well-inside I∞

i−1, and λ2 ∈ (0, 1) such that

Usi−1−3r (z) ⊂ Dλ2θ (K2).

So suppose that q > 1. Let c−1 be the preimage of c under f r contained in Y . By
Lemma 3.10, the interval (c−1, c) has length comparable to Ii−1, and by Lemmas 3.9
and 3.7 there exists a fundamental domain for f r |Y contained in I 1i−1\I∞

i−1 of size
comparable to Ii−1. So by Proposition 6.1, there exists λ2 > 0 such that

Usi−1−qr ⊂ Dλ2θ (Y).

Arguing as in the case when q = 1, we have that s∞
i−1 = si−1 − (q + 1)r or s∞

i−1 =
si−1 − (q + 2)r , and there exist an interval K3 which is well-inside I∞

i−1 and λ3 ∈ (0, 1)
such that

Us∞i−1
⊂ Dλ3θ (K3).

Now, suppose that either (b) or (c) holds. If (b) holds, then si−1 − r = s∞
i−1 and we

are done with this step. If (c) holds, applying the argument at the start of Step 1 to pull
back once under f r , we have that either (a) or (b) holds, since the chain {G j }si−1

j=0 is
disjoint. In any case, we have that there exists an interval K0 which is well-inside I∞

i−1,
and λ0 ∈ (0, 1) such that

Us∞i−1
⊂ Dλ0θ (K0).

Combinatorial Remark 3. Note that there exist at most two intervals G j ⊂ R(Ii−1)

with s∞
i−1 ≤ j ≤ si−1, so there exists at most one interval G j ⊂ Ii+1 with s∞

i−1 ≤ j ≤
si−1.
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Since c is a critical point of f r , we have that |c − α| is comparable to |I∞
i−1|, so we

can choose the previous constants so that there exists δ0 > 0 such that (1 + δ0)K0\(1 +
2δ0)−1K0 does not contain α. From now on, we will consider pullbacks by f r |I∞

i−1.

Step 2: Pulling back to a ρ̂-nice interval.We define a time t , with 0 < t < s∞
i−1 with the

following properties. There exist a ρ̂-nice interval X , for ρ̂ > 0 universal, and λ′′ > 0
so that Gt ⊂ X and Ut ⊂ Dλ′′θ (K ′′), for an interval K ′′ that is well-inside X . We will
make use of the intervals Y j defined in Sect. 2 to find X . Remember Y0 = R(Ii−1); Y−a
contains β, the fixed point of f r in the boundary of I∞

i−1; and Ya contains τ(β).

Step 2(a). First, suppose that α /∈ K0, then pulling back once under RI∞
i−1

, we can find
an interval K ′

1, and a λ′
1 ∈ (0, 1) such thatUs∞i−1−r ⊂ Dλ′

1θ
(K ′

1)where K
′
1 is well-inside

Y j for some j . If j = 0 we set ri−1 = s∞
i−1 − r and we are done with the proof of

this proposition in this case. Note that if j = 0 there are at most two times j with
ri−1 ≤ j ≤ si−1 and G j ⊂ Ii+1. In the remainder of this step, we will assume that
j �= 0. Note that this implies that s∞

i−1 − r > 0.

Case 1: If j /∈ {a,−a, 1}, then by Lemma 3.22 we know that Y j is ρ̂-nice, so we set
X = Y j and t = s∞

i−1 − r . Note that in this case there exists no G j with G j ⊂ R(Ii−1)

and t ≤ j ≤ s∞
i−1 − r.

Case 2: If j = a, then s∞
i−1 − 2r > 0 and after one more pull back by f r we can find an

interval K ′
2 and a λ′

2 ∈ (0, 1) such that Us∞i−1−2r ⊂ Dλ′
2θ

(K ′
2) where K ′

2 is well-inside
Y j ′ . Since K ′

1 ⊂ Ya , we have that j ′ /∈ {a,−a}. If j ′ /∈ {0, 1} we set t = s∞
i−1 − 2r > 0

and X = Y j ′ and go to Step 3. Note that if j ′ /∈ {0, 1} there exists no G j ⊂ R(Ii−1)

with t ≤ j ≤ s∞
i−1 − r. If j ′ = 0, we set ri−1 = s∞

i−1 − 2r and we are done with the
proof of the proposition. If j ′ = −1 we go to Case 4.

Case 3: If j = −a, let q be such that qr = s∞
i−1 − r , and let q ′ ≤ q be minimal so that

for k, q ′ ≤ k ≤ q, Gkr ⊂ Y−a . Since f r |Y−a is monotone we can apply Proposition 6.1
to control the loss of angle until time q ′r . Then after pulling back once more, we can
find an interval K ′

2 and a λ′
2 ∈ (0, 1) such that U(q ′−1)r (z) ⊂ Dλ′

2θ
(K ′

2). Let Y j ′ be the
puzzle piece containing K ′

2, then K ′
2 is well-inside Y j ′ . If j ′ = 0 we set ri−1 = (q ′ −1)r

and we are done with the proof of the proposition. If j ′ /∈ {−a, 1}, then Y j ′ is δ′-nice
for some δ′ > 0 so we set X = Y j ′ and t = (q ′ − 1)r . Note that if j ′ /∈ {−a, 0, 1} there
exists no G j ⊂ R(Ii−1) with t ≤ j ≤ s∞

i−1 − r. If j ′ = a, go to Case 2, and if j ′ = 1
go to Case 4.

Case 4: Suppose that j = −1. If Gs∞i−1−2r is contained Y0, we set ri−1 = s∞
i−1 − 2r and

we are done with the proof of the proposition; if Gs∞i−1−2r ⊂ Y j ′ with j ′ /∈ {a,−a} we
set t = s∞

i−1 − 2r and X = Y j ′ ; if Gs∞i−1−r ⊂ Y j ′ with j ′ ∈ {a,−a}, we complete the
proof of this step using the appropriate previous case. Observe that if we go from Case
2 to Case 4 and back to Case 2 or from Case 3 to Case 4 and back to Case 3, then by
Lemma 3.22 we can set X = LGt (Ya) or X = LGt (Y−a), for a suitable time t .

Combinatorial Remark 4. If after applying Step 2(a) we have not proved the proposi-
tion, then there exists no G j ⊂ R(Ii−1) with t ≤ j ≤ s∞

i−1 − r . This means that there
exists at most one G j ⊂ Ii+1 with t ≤ j ≤ si−1.

Step 2(b). Suppose that α ∈ (1 + δ0)K0. Recall that K0 ⊃ Gs∞i−1
. First, as in Step 1 of

this proposition, pulling back by one iterate of f r we have that there exists an interval
K ′
1 which is well-inside I∞

i−1 and λ′
1 ∈ (0, 1) such that
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Us∞i−1−r ⊂ Dλ′
1θ

(K ′
1).

If Gs∞i−1−r is not contained in Ỹα we are in Step 2(a). Otherwise, Gs∞i−1−r ⊂ Ỹα and we

can ensure that the pullback of K ′
1 under f r |Ỹα is well-inside Ỹα . Let p be such that

pr = s∞
i−1−r , and let p′ ≤ p beminimal so that for j , p′ ≤ j ≤ p,G jr ⊂ Ỹα . We have

that Ỹα is bounded by two turning points, so by Lemma 3.10 we can find fundamental
domains for the map from this monotone branch to itself of size comparable to |I∞

i−1|.
By Proposition 6.1 we can control the loss of angle until time p′r . Observe that for
p′ ≤ k ≤ p only Gpr could be in Ii+1. Let j1 be such that Gp′r−r ⊂ Y j1 . Since Gp′r−r
is not contained in Y0 ∪ Y−1 we are in Step (2a).

Combinatorial Remark 5. If after applying Steps 2(a) and 2(b) we have not proved the
proposition, then there exists no G j ⊂ R(Ii−1) with t ≤ j ≤ s∞

i−1 − r . This means
that between time si−1 and time t , we can have at most one visit to Ii+1. Even more, if
R(Ii−1) is non-periodic, there exists at most two intervals G j ⊂ Ii with t ≤ j ≤ s∞

i−1.

Step 3: Pulling back toR(Ii−1). Let ri−1 < t be maximal with Gri−1 ⊂ R(Ii−1). Let t ′,
ri−1 < t ′ < t , beminimalwith the property thatGt ′ ⊂ X . SinceGri−1 is the only element
of the chain contained inR(Ii−1) we know that for each c ∈ Crit(X; {G j }tj=ri−1

) there

exists at most one interval G j such that G j ⊂ L̂c(R(Ii−1)). Let t1 < t be maximal so
that Gt1 ⊂ L̂c(R(Ii−1)). If t1 is not defined let t1 = ri−1. Let t ′1 > t1 be minimal such
that Gt ′1 ⊂ X and let G = {G j }tj=t ′1

. There are two cases to consider:

(i) k(X, G) < ∞ or
(ii) k(X, G) = ∞.

For each c ∈ Crit(X; G) pick t ′1 ≤ nc < t minimal such that Gnc ⊂ Lc(X) and
t ′1 ≤ mc ≤ t maximal such that Gmc ⊂ Lc(X).

Claim. If k(X, G) is finite, there exists a = a(ν) > 0 such that k(X, G) < a.

The proof of this claim is analogous to the proof of Claim 1 of Proposition 8.2; one
only needs to substitute Ii−1 by X and Ii by R(Ii−1). Following the proof we get that
if a is large enough and c′ = c0, then |R(Ii−1)|/|Ii+1| > ν. If a is large enough and
c′ �= c0 we get that |R(Ii−1)|/|�(R(Ii−1))| > ν ✓

Case (i).Sincewe are assuming |R(Ii−1)|/|Ii+1| < ν the claim tells us that k(X, G) < a.
In this case the proposition follows arguing as in Case (i) of Proposition 8.2, substituting
j0 by ri−1 and Ii−1 by X in the proof.

Case (ii). In this case the proposition follows arguing as in Case (ii) of Proposition 8.2,
substituting j0 by ri−1, si−1 by t , Ii−1 by X and Ii by R(Ii−1) in the proof.

From Combinatorial Remark 5 we get that at most three intervals in the chain
{G j }si−1

j=ri−1
are contained in Ii+1 and the proposition follows. Observe that if exactly

three of these intervals are contained in Ii−1, Gsi−1 and Gri−1 are both contained in Ii+1.
Moreover, if R(Ii−1) is non-periodic there exists at most three intervals G j ⊂ Ii with
ri−1 ≤ j ≤ s∞

i−1. If there are exactly three of these intervals contained in Ii , Gsi−1 and
Gri−1 are both contained in Ii . ��
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Combinatorial Remark 6. It is important to observe that in the proof of Proposition 8.3
we do not have control on the number of visits to Ii if R(Ii−1) is periodic. However, if
Ii �= R(Ii−1) we can prove the proposition assuming that at least three of the intervals
G0, . . . ,Gsi−1 are contained in Ii (instead of in Ii+1).

The proof of the previous proposition also shows the following.

Corollary 8.4. In the setting of the previous proposition, suppose that Î is a terminating
interval with Ii−1 ⊂ Î ⊂ Ii−2. Let K̂ be an interval δ′-well-inside Î for some δ′ > 0
with Gsi−1 ⊂ K̂ . Let

Usi−1 = Dθ (K̂ ) ∩ CGsi−1
and U j = CompG j

f −(si−1− j)(Usi−1).

Then there exist an interval K and δ > 0 such that

Uri−1 ⊂ Dμθ (K ),

and (1+2δ)K ⊂ R(Ii−1).Moreover, there are atmost three times j with ri−1 ≤ j ≤ si−1
and G j ⊂ Ii+1.

Corollary 8.4 is the result we need to apply after Proposition 8.2 in Fig. 13. In this
application the interval Î will satisfy Ii ⊂ Î ⊂ Ii−1, and the time si−1 will be substituted
by the time s′

i obtained from Proposition 8.2 (rather than the time si ). In the next section
we will show that s′

i satisfies the assumption needed in Proposition 8.3.
Thenext proposition completes the results needed to complete the pullbacks described

in Figs. 13 and 14. Note that in Fig. 13 we use Proposition 8.5 for Ii instead of Ii−1, so
the indexes have to be changed accordingly.

Proposition 8.5. For each ν > 0 there existsμ = μ(ν) ∈ (0, 1) and for each θ ∈ (0, π)

there exists ε > 0 such that the following holds. Let Ii−1 be terminating with |Ii−1| < ε.
Assume that R(Ii−1) is non-terminating and that

|Ii−2|
|Ii+1| < ν.

Assume n > i and consider a disjoint chain {G j }sj=0 with Gs = In, G0 ⊂ In, G0 ∩
ω(c0) �= ∅ and Gri−1 ⊂ R(Ii−1) for some 0 < ri−1 ≤ s. Let si be maximal so that
Gsi ⊂ Ii with 0 ≤ si < ri−1 and define

Uri−1 = Dθ (R(Ii−1)) ∩ CGri−1
and U j = CompG j

f −(ri−1− j)(Uri−1).

Then

Usi ⊂ Dμθ (Ii ).

Moreover, there are at most two times j with G j ⊂ Ii and si ≤ j ≤ ri−1.
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Proof. Let r be the period of I∞
i−1. By Proposition 3.20,R(Ii−1) is ρ-free. Let s′ < ri−1

be maximal so that Gs′ ⊂ R(Ii−1). Let Î := LGs′ (R(Ii−1)). By Lemma 4.6, pulling
back once under the return map to R(Ii−1) we have that

Us′ ⊂ Dλθ ( Î ),

for λ ∈ (0, 1) and Gs′ ⊂ Î ⊂ R(Ii−1). If Î = Ii we are done, so we suppose that this is
not the case. As in Corollary 3.21 we define V0 to be the component of f −2r (R(Ii−1))

that contains α in its boundary,W0 to be the component of f −2r (R(Ii−1)) that contains
τ(α) in its boundary, V1 be the component of f −4r (R(Ii−1)) that contains α in its
boundary, andW1 be the component of f −4r (R(Ii−1)) that contains τ(α) in its boundary.

Case 1: By Corollary 3.21, if Î is different from V0 and from W0, then there exists
ρ′ > 0 such that Î is ρ′-nice and ρ′-free. Let s′′ be minimal such that Gs′′ ⊂ Î with
si < s′′ ≤ s′. For each critical point c, there is at most one jc such that G jc ⊂ L̂c(Ii )

with s′′ ≤ jc < s′. Let jc be the maximal such G jc ⊂ L̂c(Ii ) for s′′ ≤ jc < s′,
where the maximum is taken over all c ∈ Crit( f ). If jc is not defined let jc = s′′. If
jc > s′′ let s1 be minimal with Gs1 ⊂ Î and jc < s1 ≤ s′. Then if Ii is non-terminating,
k( Î , {G j }s′j=s1

) is bounded by a constant K (ν) by Proposition 8.1. If Ii is terminating,

we split the chain into at most b parts, one for each critical point in Crit( Î , {G j }s′j=s1
),

on which we can control the loss of angle using Corollary 4.8 and Proposition 7.1 as
in Case (ii) of Proposition 8.2. In any case, we can find λ1 ∈ (0, 1) and an interval K1

which is well-inside Î such that

Us′′ ⊂ Dλ1θ (K1).

By Corollary 4.8 there exists μ ∈ (0, 1) so that

Usi ⊂ Dμθ (Ii ) (8.1)

Case 2: If Î = W0 let p be maximal such that Gp ⊂ R(Ii−1) and si ≤ p < s′. Our goal
in this case is to get inside a ρ-nice interval, so that we can make use of the argument of
the previous case. Applying Lemma 4.6 we can find λ′ > 0 such that

Up ⊂ Dλ′θ (J ),

where J = LGp (W0). If p = si we are done with the proof of the proposition, so let
us assume this is not the case. If J is not contained in V0 or W0, then Corollary 3.21
implies that there exists ρ′ > 0 such that J ⊂ LGp (R(Ii−1)) for some LGp (R(Ii−1))

which is ρ′-nice and ρ′-free. In this case we can proceed as in Case 1 to get (8.1). If
J ⊂ V0, then the fact that V0 has size comparable to the size of R(Ii−1) implies there
exists ρ1 > 0 such that (1 + 2ρ1)J ⊂ V0. Applying Theorem 3.2 (2) we can find ρ′

1 > 0
so that the following holds. Given x ∈ J ∩ ω(c0), (1 + 2ρ′

1)Lx (J ) ⊂ Lx (V0) ⊂ J .
Which means that J is ρ′

1-nice. Shrinking ρ′
1 if necessary we can assume that J is ρ′

1-
free. Now we can proceed as in Case 1 to get (8.1). If J ⊂ W0, then a similar argument
implies the existence of ρ′

1 > 0 so that the following holds. Given x ∈ J ∩ ω(c0), then
(1 + 2ρ′

1)Lx (J ) ⊂ Lx (W0) = J . Which means that J is ρ′
1-nice. Again, shrinking ρ′

1 if
necessary we can assume that J is ρ′

1-free.

Case 3: Assume Î = V0. If Gs′ is at most the second return of Gsi under the first
return map to R(Ii−1), then we can get (8.1) applying Lemma 4.6 at most twice, so
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let us assume this is not the case. In this case we will pull back along the outermost
orientation preserving monotone branch to end up in a ρ-nice interval or in W0 as
in the previous cases. We do not make use of Proposition 6.1, since we do not have
fundamental domains on both sides of this branch. Instead, we use the free space to give
us intervals at the boundary of V0 whose pullbacks shrink exponentially. We will use the
same notation as in the proof of (3) in Proposition 3.20. Let V̂0 = Compα f −r (V0)∪V0,
V̂1 = Compα f −r (V1) ∪ V1 and V̂ j+1 = Compα f −r (V̂ j ) for j ∈ N. From the proof
of Proposition 3.20 we know that f 2r |V1 is monotone and that there exists δ1 > 0
such that (1 + 2δ1)V̂2 ⊂ V̂1. Since Gsi ⊂ Ii there exists G j with si ≤ j < s′ such
that G j ⊂ Lx (R(Ii−1)), for some Lx (R(Ii−1)) different from V0. Let q ′ be minimal
such that si ≤ q ′ < s′, Gq ′ is not contained in V1 and for each q ′ < j < s′ with
G j ⊂ R(Ii−1) we have that G j ⊂ V1. Set q = s′ − 2r , note that s′ − 2r > 0 by
assumption. By Lemma 4.6 we can find λ1 ∈ (0, 1) so that

Uq ⊂ Dλ1θ (V2).

If q ′ = q, under one more pull back we are in one of the previous cases so assume
q > q ′. Since V̂2 is ρ′ well-inside V̂1 and R(Ii−1) is δ-free, taking δ′′ = min{ρ′, δ}
we get that V2 is δ′′ well-inside the monotone branch of f r containing α. Let Vn0+N
be as in Case 3 of the proof of Proposition 3.20. Then, Vn0+N ∩ ω(c0) = ∅ and the
size of Vn0+N is comparable to the size of V0. Let V be the preimage of Vn0+N under
f 2r |V1 . If there is a turning point c of f 2r |V0 let Ṽ be the preimage of Vn0+N under f 2r

that is symmetric to V with respect to c. If f 2r |V0 is monotone let V ′ be the preimage
of Vn0+N under f 2r that contains τ(α) and let Ṽ be the preimage of V ′ under f 2r |V0 .
We can apply Lemma 3.10 to f r |I∞

i−1
, so we get real bounds for f 2r |V0 ; these bounds

along with the definition of Vn0+N imply that the sizes of V and Ṽ are comparable to the
size of V0. By construction, the pullbacks of Ṽ under f 2r |V1 are disjoint. The pullbacks
of V under f 2r are not disjoint but they will shrink exponentially. To see this, define
Fq = V and Fj = ( f 2r |V1)−1(Fj+1) for q ′ ≤ j < q. By Theorem 3.2 (2), there exists
η ∈ (0, 1) universal such that for each j , j = q ′, . . . , q − 1, |Fj+1| < η|Fj |. Hence∑q

j=q ′ |Fj | is bounded by a constant depending on ε. We can apply the same proof
used in Proposition 6.1 to pull back from time q to time q ′. In this case the fact that the
pullbacks of V are not disjoint will not matter since we have exponential contraction
of the chain {Fj }qj=q ′ and this is enough to control the loss of angle. Thus, we can find
λ2 ∈ (0, 1) so that

Uq ′ ⊂ Dλ2θ (V2).

Let t1 < q ′ be maximal such that Gt1 ⊂ R(Ii−1),. If Gt1 ∩ V0 = ∅ we can apply
Lemma 4.6, since V0 is ρ′-free, to get to Case 2 or Case 3. If Ĝt1 ⊂ V0, then after one
more pull back we end up either in one of the previous cases or inside a landing domain
to V0 that is well-inside V0, which will be δ′′-nice, δ′′-free, for some δ′′ > 0, and argue
as in Case 1. ��

Combinatorial Remark 7. If in the previous proposition there exist two intervalsG j ⊂
Ii , we must have that Gsi and Gri−1 are such intervals.
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8.2. The non-renormalizable case.

Proposition 8.6 (Non-renormalizable case). For each ν > 0 there exists μ = μ(ν) ∈
(0, 1) and for each θ ∈ (0, π) there exists ε > 0 such that the following holds. Suppose
that Ii−1 and Ii are non-terminating, |Ii−1| < ε and

|Ii−2|
|Ii+1| < ν.

Assume n > i and consider a disjoint chain {G j }sj=0 with Gs = In, G0 ⊂ In, Gsi−1 ⊂
Ii−1 for 0 < si−1 ≤ s. Let pi−1 be so that Ii is a pullback of Ii−1 under f pi−1 . Suppose
x ∈ G0∩ω(c0) is so that f si−1(x) ∈ Ii−1 for some pi−1 < si−1 ≤ s and that f s

′
i (x) ∈ Ii

for some 0 ≤ s′
i < si−1 − pi−1. Assume that

#{k; s′
i ≤ k ≤ si−1 and f k(x) ∈ Ii } ≤ 4.

Let

Usi−1 = Dθ (Ii−1) ∩ CGsi−1
and U j = CompG j

f −(si−1− j)(Usi−1).

Then

Us′i ⊂ Dμθ (Ii ).

where μ = μ(ν, δ).

Proof. By Corollary 3.25 there exists δ > 0 such that Ii−1 is δ-free. Since f s
′
i (x) ∈ Ii ,

f pi−1+s′i (x) ∈ Ii−1, f si−1(x) ∈ Ii−1 and s′
i < si−1 − pi−1 we can decompose f si−1 in

the following way f si−1(x) = Rq
Ii−1

◦ f pi−1 ◦ f s
′
i (x) with q ≥ 1. Let f s

′ = Rq−1
Ii−1

◦
f pi−1 ◦ f s

′
i (x). By Proposition 6.2 we know that there exists λ > 0 such that

Us′ ⊂ Dλθ (L f s′ (x)(Ii−1))

with Gs′ ⊂ L f s′ (x)(Ii−1) ⊂ (1 + 2δ)L f s′ (x)(Ii−1) ⊂ Ii−1. Let s′′ be maximal with
s′
i + pi−1 ≤ s′′ + pi−1 ≤ s′ and Gs′′ ⊂ Ii . If s′ = s′′ + pi−1, do nothing. If s′′ + pi−1 < s′
let s′′ + pi−1 = k0 < k1 < · · · < km = s′ be such that Gk j ∈ Ii−1. By maximality of
s′′ and Lemma 2.3 there are at most three intervals Gk j such that Gk j ⊂ Ii . Let k j0 be
maximal such that j0 ∈ {0, . . .m} and Gk j0

∈ Ii . Proposition 7.1 allows to control the
loss of angle when we pull back from time s′ to time k j0+1 and Corollary 4.8 controls
the loss of angle pulling back from time k j0+1 to k j0 . Repeating this procedure at most
three times, we have that

Us′′+pi−1 ⊂ Dλ′μθ (K
′),

where K ′ is well-inside Ii−1 and μ depends only on k̂(Ii−1, Ii ), which by Lemma 8.1
is bounded by a constant that depends on ν. If Ii−2 is non-terminating, then Ii−1 is δ-
externally free, δ-internally free, and Ii is a pullback of Ii−1 of bounded order (depending
only on b), so, since |Ii−1|/|Ii | < ν, we can apply Proposition 6.2 and find μ′ > 0 such
that

Us′′ ⊂ Dμ′θ (Ii ).
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If Ii−2 is terminating, then as in the Case 3 of the proof of the previous proposition,
there are puzzle pieces U and V attached to α and τ(α) in R(Ii−2), that are disjoint
from ω(c0) and with size comparable to |R(Ii−2)|, pulling these back to Ii−1 we obtain
puzzle pieces U1, V1 attached to ∂ Ii−1, with size comparable to |Ii−1| that are disjoint
from ω(c0). So arguing as in Proposition 6.2, we get that

Us′′ ⊂ Dμ′θ (Ii ).

If s′′ = s′
i we are done. In case s

′′ > s′
i . Since Ii−1 is δ-free Corollary 3.5 implies that Ii is

δ′-free, for some δ′ > 0. This and the fact that #{k; s′
i ≤ k ≤ si−1 and f k(x) ∈ Ii } < 4

allows us to prove the proposition applying Lemma 4.6 at most twice. ��

8.3. Large scaling factors. In the remainder of this section we show that as soon as one
has a large scaling factor, the corresponding first return map extends to an analytic box
mapping or a qr box mapping, see Definitions 1.1 and 1.2. The results are stated for
maps in A3

b, but if the maps are in Ab the qr box mappings are box mappings.

Proposition 8.7. There exist ε > 0 and ν1 ≥ 1 such that the following holds. Suppose
that Ii−2 and Ii−1 are non-terminating and |Ii−2| < ε. If

|Ii−2|
|Ii−1| > ν1,

then

(1) the first return map to �(I 1i−1) restricted to components that intersect ω(c0) extends
to a qr quasi-box mapping with range Dπ/2(�(I 1i−1));

(2) if Ii is non-terminating, then the first return map to Ii restricted to the components
of the domain intersecting ω(c0) extends to a qr box mapping with range Dπ/2(Ii ).

Proof. Let us prove the first statement. To simplify the notation let J = �(I 1i−1). By
Theorem 3.1 (a) there exists ρ > 0 so that Ii−1 is ρ-externally free. Moreover, if c0 is
even we know that Ii−1\(1 + 2ρ)−1 Ii−1 is disjoint from ω(c0). Since J is a pullback
of Ii−1 of bounded order there exists ρ′ > 0 so that J is ρ′-externally free; if c0 is
even we additionally have that J\(1 + 2ρ′)−1 J is disjoint from ω(c0). Fix C > 0 from
Lemma 3.24, then J is C-nice. Pick x ∈ J ∩ω(c0) and let s be the return time of x to J .
Since J is ρ′-externally free the return time of x to (1 + 2ρ′)J is s. Let us first consider
the case when c0 is even. Let V = Dπ/2(J ) and U = Compx f

−s(V ). Since, in this
case, J\(1+2ρ′)−1 J is disjoint from ω(c0) we can apply Lemma 4.6 to find λ ∈ (0, 1),
depending only on ρ, so that U ⊂ Dλπ/2(Lx (J )). Taking C be big enough we get that

Dλπ/2(Lx (J )) ⊂ Dπ/2((1 + 2C)Lx (J )) ⊂ Dπ/2(J ).

In this case the first part of the proposition follows taking ν > 1/ε, where ε is the constant
associated to C in Lemma 3.24. Let us now assume that c0 is odd; then all the critical
points in ω(c0) are odd. Since J is ρ′-externally free, Ĩ := (1+ρ′)J is ρ′′-free for some
ρ′′ > 0 that depends only on ρ. Note that since J is ρ′-externally free Lx ( Ĩ ) ⊂ J . Let
V = Dπ/2( Ĩ ) and U = Compx f

−s(V ). Since Ĩ is ρ′′-free we can apply Lemma 4.6 to
find λ′ ∈ (0, 1), depending on ρ, so thatU ⊂ Dλ′π/2(Lx ( Ĩ )). Since all the critical points
in ω(c0) are odd f s |Lx (J ) and f s |Lx ( Î )

(the return maps to J and Ĩ ) are monotone and
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there exists κ > 0, depending on ρ, the number of critical points of f and their orders,
so that |Lx (J )| > κ|Lx ( Ĩ )|. This means that there exists C ′ > 0 depending on κ and C ,
with C ′ → ∞ as C → ∞, so that

(1 + 2C ′)Lx ( Ĩ ) ⊂ J,

since (1 + 2C)Lx (J ) ⊂ J . Taking C big enough we get

Dλ′π/2(Lx ( Ĩ )) ⊂ Dπ/2((1 + 2C ′)Lx ( Ĩ )) ⊂ Dπ/2(J ).

In this case the first part of the proposition follows taking ν > 1/ε, where ε is the
constant associated to C in Lemma 3.24.

Let us now prove the second statement. By Theorem 3.1 (a), Ii is ρ-externally free.
Moreover, if c0 is even we know that Ii\(1 + 2ρ)−1 Ii is disjoint from ω(c0). Fix x ∈
ω(c0)∩ Ii .We know the return time of x to Ii is the same as its return time to (1+2ρ)Ii ; let
this common return time be equal to q. Let F̃n be defined as in the proof of Lemma 3.24.
From Lemma 3.24 we know that there exists C > 0 so that Ii is C−strongly nice and
that

Lx (Ii ) ⊂ (1 + 2C)Lx (Ii ) ⊂ Lx (�
TB(F̃n)) ⊂ Ii .

Note that (1 + C)Lx (Ii ) is compactly contained in Lx (�
TB(F̃n)). Recall that given

x, y ∈ Ii so that Lx (Ii ) is different from Ly(Ii ), then Lx (�
TB(F̃n)) is disjoint from

Ly(�
TB(F̃n)). Assume c0 is even and let V = Dπ/2(Ii ) and U = Compx f

−q(V ).

Since, in this case, Ii\(1 + 2ρ)−1 Ii is disjoint from ω(c0) we can apply Lemma 4.6 to
find λ1 ∈ (0, 1) so that U ⊂ Dλ1π/2(Lx (Ii )). Taking C sufficiently large we get that

Dλ1π/2(Lx (Ii )) ⊂ Dπ/2((1 + C)Lx (Ii )),

so the proposition follows in this case. If c0 is odd we let Ĩ = (1 + ρ)Ii . By definition, Ĩ
is ρ1-free for some ρ1 > 0. Let V = Dπ/2( Ĩ ) andU = Compx f

−q(V ). By Lemma 4.6
there exists a constant λ2 ∈ (0, 1) so thatU ⊂ Dλ2π/2(Lx ( Ĩ )).We know that |Lx (Ii )| >

κ|Lx ( Ĩ )|. This means that there exists C ′ > 0 depending on κ and C , with C ′ → ∞ as
C → ∞, so that

(1 + 2C ′)Lx ( Ĩ ) ⊂ Lx (�
TB(F̃n)).

Making C big enough we get

Dλ2π/2(Lx ( Ĩ )) ⊂ Dπ/2((1 + C ′)Lx ( Ĩ )).

Since (1 + C ′)Lx ( Ĩ ) is compactly contained in Lx (�
TB(F̃n)) the proposition follows.

��
Corollary 8.8. There exist ε > 0 and ν1 ≥ 1 such that the following holds. Suppose
that Ii−2 and Ii−1 are non-terminating, |Ii−2| < ε, and

|Ii−2|
|Ii−1| > ν1.

Let Îi = ∪L̂c(Ii ), where the union is taken over all c ∈ Crit( f ) ∩ ω(c0). Then, the
first return map to Îi restricted to the domains intersecting ω(c0) extends to a qr box
mapping F : U → V , where F |U is at most unicritical for all U ∈ U . Furthermore,
there exists a universal constant ρ > 0 so that each component in U has ρ-bounded
geometry.
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Proof. Let ν1 ≥ 1 from Proposition 8.7. Observe that since Ii is ρ-externally free, taking
ν1 larger if necessary, we can guarantee the following. For each c ∈ Crit( f )∩ω(c0), c �=
c0, let rc > 0 beminimal so that f rc (c) ∈ Ii , Vc0 = Dπ/2(Ii ) and Vc = Compc f

−rc (V0).
Then for any two distinct c, c′ ∈ Crit( f )∩ω(c0), we have that Vc∩Vc′ = ∅. Thus the qr
box mapping given by Proposition 8.7 induces a qr box mapping F : U → V where V is
a neighbourhood of Crit( f ) ∩ ω(c0), where the map F |U has at most one critical point
for each U ∈ U . Recall that there exists a constant δ > 0 such that either Ii is δ-free or
all the critical points in ω(c0) are odd. By Corollary 5.7 and Lemma 4.3, there exists a
constant θ ′ = θ ′(δ) ∈ (π/2, π) such that if Ii is δ-free, then each component U of U
contains Dθ ′(U ∩ R). Whether Ii is δ-free or not, since F is a quasiregular map with
bounded degree and bounded qc distortion, there exists δ′ > 0 such that each component
of U has δ′-bounded geometry. ��
Lemma 8.9. There exist constants ν1 ≥ 1 and ε > 0 such that the following holds.
Suppose that Ii−1 is terminating, |Ii−1| < ε and

|Ii−1|/|I∞
i−1| > ν1.

Then the first return map to I∞
i−1 extends to a qr box mapping with range Dπ/2(I 2i−1).

Proof. Let r be the return time of c0 to Ii−1. By Lemma 3.10 we know that given
δ1 > 0 there exists κ > 0 so that if |I 2i−1| > δ1|Ii−1|, then |I∞

i−1| > κ|Ii−1|. This
means that taking ν1 small enough there exists C ′ > 0, C ′ → ∞ as ν1 → ∞ so that
(1+2C ′)I 2i−1 ⊂ Ii−1. Since Ii−1 is terminating, c0 is an even critical point, either I 1i−1 is
deep-inside Ii−1 or I 2i−1 is deep-inside I 1i−1. In any case we get that I

2
i−1 is deep-inside

I 1i−1 and I 3i−1 is deep-inside I 2i−1. In particular I 2i−1 is δ-free for some δ > 0. Note that
we can fix δ so that I 2i−1 is δ-free for all ν1 > C0 for some C0 > 0. Let V = Dπ/2(I 2i−1)

and U = Compc0 f
−r (V ). By Lemma 4.6 there exists λ ∈ (0, 1), depending on δ, so

that

U ⊂ Dλπ/2(I
3
i−1).

Making ν1 big enough we can guarantee that (1 + 2C ′′)I 3i−1 ⊂ I 2i−1 for some C ′′ =
C ′′(ν1) > 0 so that

Dλπ/2(I
3
i−1) ⊂ Dπ/2((1 + C ′′)(I 3i−1))

note that (1 + C ′′)(I 3i−1) is compactly contained in I 2i−1, so the proposition follows. ��
A direct consequence of the previous lemma we have:

Corollary 8.10. There exist constants ν1 ≥ 1 and ε > 0 such that the following holds.
Suppose that Ii−1 is non-terminating, Ii is terminating, |Ii−1| < ε and

|Ii−1|/|Ii | > ν1.

Then the first return map to I∞
i extends to a qr box mapping with range Dπ/2(I 2i ).

Proof. Since Ii is terminating c0 is even and Ii and Ii\(1 + δ)−1 Ii ∩ ω(c0) is empty.
Since Ii−1 is non-terminating we can apply Corollary 3.4 to conclude I 1i is deep-inside
Ii . Hence there exists C > 0 large so that (1 + 2C)I 1i \Ii is disjoint from ω(c0), and the
proof follows as in the previous lemma. ��
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Combining the results from this section we obtain the following:

Proposition 8.11. There exist constants ν1 ≥ 1 and ε > 0 such that the following holds.
Suppose that Ii−1 is terminating, |Ii−1| < ε and

|Ii−1|/|Ii | > ν1.

Then we have one of the following:

(1) the first return map to I∞
i−1 extends to a qr box mapping with range Dπ/2(I 2i−1);

(2) Ii is terminating and the first return map to I∞
i extends to a qr box mapping with

range Dπ/2(I 2i );
(3) Ii and Ii+1 are non-terminating and the first return map to Ii+1 restricted to the

components of the domain intersecting ω(c0) extends to a qr box mapping with
range Dπ/2(Ii+1);

(4) Ii is non-terminating, Ii+1 is terminating and the first return map to I∞
i+1 extends to

a qr box mapping with range Dπ/2(I 2i+1).

Proof. Note that since Ii−1 is terminating, c0 is even. If I∞
i−1 is small compared to

Ii−1, by Lemma 8.9, (1) holds. So assume the size of I∞
i−1 is comparable to the size

of Ii−1. By Lemma 3.10, the size of R(Ii−1) is comparable to the size of Ii−1. In
particular,R(Ii−1) is not periodic, for otherwise we would have that |Ii | is comparable
to |Ii−1|. Since Ii is deep-inside R(Ii−1), Corollary 3.4 implies that Ii is C-nice for
some C > 0, with C → ∞ as ν1 → ∞. If Ii is terminating, we can take C so big
that (1 + 2C ′)I∞

i ⊂ Ii with C ′ → ∞ as C → ∞, and (2) follows from Lemma 8.9. If
Ii is non-terminating, by Theorem 3.1 (d), Ii+1 is C ′′-nice and C ′′-externally free, with
C ′′ → ∞ as C → ∞. If Ii+1 is terminating, (4) follows from Corollary 8.10. If Ii+1
is non-terminating we argue as follows. Let x ∈ ω(c0) ∩ Ii+1, with return time to Ii+1
equal to r . Let V = Dπ/2(Ii+1) and U = Compx f

−r (V ). By 4.6 we know there exists
λ ∈ (0, 1) so thatU ⊂ Dλπ/2(Lx (IIi+1)). MakingC ′′ sufficiently large we can guarantee

Dλπ/2(Lx (Ii+1)) ⊂ Dπ/2((1 + C ′′)Lx (Ii+1)) ⊂ V .

Since the intervals (1 + C ′′)Lx (Ii+1) are pairwise disjoint (3) holds. ��

The following result will be used in Sect. 10 to prove complex bounds for renormal-
izable maps.

9. Extension to a QR Quasi-Box Mapping

The results in this section apply to maps f ∈ Ab and to asymptotic holomorphic exten-
sions of maps f ∈ A3

b, as in Sect. 5.2. We recall that we assume that the Standing
Assumptions on p. 26 hold.

In this section, we will prove that we can associate to f a qr quasi-box mapping
(see Theorem 9.3). In particular, if f is a real analytic map the qr quasi-box mapping is
quasi-box mapping (Definition 1.2)
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9.1. Some inductive statements used in the construction of a quasi-box mapping. Let
{Ii }i≥0 be the generalized enhanced nest, defined in Sect. 2. In the following, we will
consider points x ∈ In ∩ω(c0) and their corresponding first return domainsLx (In).Our
aim is to show that the first return map to In restricted to the union of these components
can be extended to a qr quasi-boxmapping with range Dθ (In−M )∩CIn , for someM > 0
universal.

Recall that, if the interval In− j−1 is non-terminating there exists pn− j−1 > 0 so that
In− j is a pullback of In− j−1 by f pn− j−1 .

Proposition 9.1. For every ν ≥ 1 there exists μ = μ(ν) and for each θ ∈ (0, π) there
exists ε > 0 such that the following holds. Assume n > 5 and |In| < ε. Let J = Lx (In)
for a point x ∈ In ∩ ω(c0), and let s > 0 be its first return time to In. Let {G j }sj=0
be the chain with Gs = In and G0 = J . Fix M ∈ N, 4 < M < n. Assume that for
j = 0, 1, . . . , M

|In− j−1|
|In− j | < ν.

Then there exist integers

sn−4 < · · · < sn−M−1 < sn−M := s

so that the following holds:

(1) Gsn−i ⊂ In−i ;
(2) if In−i and In−i+1 are periodic, Gsn−i ⊂ In−i+1;
(3) if In−i is non-periodic, there exist atmost six intervals G j ⊂ In−i with sn−i ≤ j ≤ s;
(4) if In−i is periodic, there exist atmost five intervals G j ⊂ In−i+1 with sn−i+1 ≤ j ≤ s.

For each i ∈ {4, . . . , M − 1} we let
Usn−i−1 = Dθ (In−i−1) ∩ CGsn−i−1

and U j = CompG j
f −(sn−i−1− j)(Usn−i−1),

for 0 ≤ j ≤ sn−i−1, then

(i) if In−i−1 and In−i are non-terminating,

Usn−i ⊂ Dμθ (LGsn−i
(In−i ));

(ii) if In−i−1 is non-terminating, In−i is terminating and i > 5, then there exists an
interval K such that

Usn−i+1 ⊂ Dμθ (K ),

where Gsn−i+1 ⊂ K and K is well-inside In−i+1;
(iii) if In−i−1 is terminating, then there exists an interval K such that

Usn−i ⊂ Dμθ (K ),

where Gsn−i ⊂ K, and K is well-inside In−i .
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Proof. The proof of this proposition will be divided into steps. First we will construct
the sequence of times sn−i and then we will do the pullbacks.

Step 1: definition of sn−i . We state how we will define the time sn−i if sn−i−1 is defined.

Case (a). Assume In−i−1 and In−i are both non-terminating and there are at least
four intervals G j ⊂ In−i with 0 ≤ j ≤ sn−i−1. By Lemma 2.3 (1), we can choose
s′
n−i < sn−i−1 maximal withGsn−i ⊂ In−i and sn−i−1−s′

n−i > pn−i−1.Bymaximality
of s′

n−i and Lemma 2.3 there are at most three times j , s′
n−i ≤ j ≤ sn−i−1 such that

G j ⊂ In−i and none of the intervals G j with sn−i ≤ j ≤ sn−i−1 are contained in
In−i+1. Since there are at least four intervals G j ⊂ In−i with 0 ≤ j ≤ sn−i−1 we can
define sn−i to be maximal with sn−i < s′

n−i and Gsn−i ⊂ In−i . Observe that there are at
most four intervals G j ⊂ In−i with sn−i ≤ j ≤ sn−i−1 and one of them is Gsn−i .

Case (b). Assume In−i−1 is non-terminating, In−i is terminating and there are at least
three intervals G j ⊂ In−i with 0 ≤ j ≤ sn−i−1. Let r be the return time of c0 to In−i .
Since there are at least three intervals G j ⊂ In−i with 0 ≤ j ≤ sn−i−1, si−1 > 2r and
we can define sn−i = s′

n−i , where s
′
n−i is as in Proposition 8.2. Observe that with this

definition there are at most two intervals G j ⊂ In−i with sn−i ≤ j ≤ sn−i−1, and one
of them is Gsn−i .

Case (c). Assume In−i−1 is terminating, In−i �= R(In−i−1) and there are at least four
intervals G j ⊂ In−i with 0 ≤ j ≤ sn−i−1. FromCombinatorial Remark 6we can define
rn−i−1 < sn−i−1 as in Proposition 8.3 so that there are at most three intervalsG j ⊂ In−i
with rn−i−1 ≤ j ≤ sn−i−1. Thus we can define sn−i < rn−i to be maximal such that
Gsn−i ⊂ In−i . Even more, if there are four intervals G j ⊂ In−i with sn−i ≤ j ≤ sn−i−1
we must have that Gsn−i−1 , Grn−i−1 and Gsn−i are in In−i .

Case (d). Assume In−i−1 is terminating, In−i = R(In−i−1) and there are at least three
intervals G j ⊂ In−i+1 with 0 ≤ j ≤ sn−i−1. In this case, we define rn−i−1 < sn−i−1
as in Proposition 8.3. If In−i+1 �= R(In−i ) or In−i+1 = R(In−i ) and Grn−i−1 ⊂ In−i+1
let sn−i = rn−i−1. Observe that with this definition there are at most three intervals
G j ⊂ In−i+1 with sn−i ≤ j ≤ sn−i−1. If In−i+1 = R(In−i ) and Grn−i−1 � In−i+1, then
by Proposition 8.3 there are at most two intervals G j ⊂ In−i+1 with sn−i ≤ j ≤ sn−i−1.

If we let q be the return time of c0 to In−i we must have that Grn−i−1−q ⊂ In−i+1. So
in this case we define sn−i = rn−i−1 − q. Observe that with this definition there are at
most three intervals G j ⊂ In−i+1 with sn−i ≤ j ≤ sn−i−1. Even more, if there exist
three intervals G j ⊂ In−i+1 with sn−i ≤ j ≤ sn−i−1 we must have that Gsn−i−1 and
Gsn−i are in In−i+1.

Step 2: construction of the sequence sn−4 < · · · < sn−M.Wewill construct the sequence
of times sn−i inductively. To do so we need to check that once sn−i−1 has been defined
we still have enough visits to In−i or In−i+1, depending on the case, to define sn−i
as in Step 1. Note that if i + 1 > 4 there exist at least 16 intervals G j ⊂ In−i and
that there are at least 8 intervals G j ⊂ In−i+1. Let us prove the basis of the induction.
Since M > 4 there exist at least 16 intervals G j ⊂ In−M+1 and at least 8 of them are
contained in In−M+2. So we can define sn−M+1 using the corresponding case from Step
1. Observe that if In−M+1 is different from R(In−M ) there exist at most four intervals
G j ⊂ In−M+1 with sn−M+1 ≤ j ≤ s. This shows the induction step in this case. If
In−M+1 �= R(In−M ), then by Step 1 we know that there exist at most three intervals
G j ⊂ In−M+2 with sn−M+1 ≤ j. Since at least 8 intervals G j ⊂ In−M+2 we can define
sn−M+2 < sn−M+1 maximal with Gsn−M+2 ⊂ In−M+2. In this case there exist at most
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four intervals G j ⊂ In−M+2 with sn−M+2 ≤ j ≤ s and the induction step follows. The
statement of the proposition says the following: if In−i is non-periodic, there exist at
most six intervals G j ⊂ In−+1i with sn−i+1 ≤ j ≤ s; if In−i is periodic, there exist at
most six intervals G j ⊂ In−i+1 with sn−i ≤ j ≤ s. It is easy to see that the bound is
in fact six, and not four like the basis of the induction suggests, by constructing sn−M+2
and sn−M+3; we will leave this to the reader.

Assume sn−i−1 < sn−i−2 < · · · < sn−M are defined, and that they definition has
been made according the corresponding case in Step.1 Now we construct the time sn−i ,
for i > M − 1. Note that if we want to define sn−i we must have that i + 1 > 4.
Case(a’): assume In−i−1 and In−i are non-terminating. Since In−i−1 is non-terminating
the induction hypothesis tells us that there exist at most six intervals G j ⊂ In−i−1 with
sn−i−1 ≤ j ≤ s; one of them is Gs . Thus, there exist at most three intervals G j ⊂ In−i
with sn−i−1 ≤ j ≤ s. Since G0,Gs ⊂ In−i+1, Lemma 2.3 (2) tells us that there exist at
least sixteen intervals G j ⊂ In−i with 0 ≤ j ≤ s. So there are at least thirteen intervals
G j ⊂ In−i with 0 ≤ j ≤ sn−i−1, and we can define sn−i as in Case (a). Observe that
with this definition we still have that there exist at most six intervals G j ⊂ In−i with
sn−i ≤ j ≤ s.

Case(b’): assume In−i−1 is non-terminating and In−i is terminating and i > 5. By
the same argument given in the previous case, we know that there exist at most three
intervalsG j ⊂ In−i with sn−i−1 ≤ j ≤ s. Since i +1 > 4 there exist at least 16 intervals
G j ⊂ In−i , so at least 13 intervals G j ⊂ In−i for 0 ≤ j ≤ sn−i−1. This means that we
can define sn−i as in Case (b). Observe that with this definition we still have that there
exist at most six intervals G j ⊂ In−i with sn−i ≤ j ≤ s.

Case(c’): Assume In−i−1 is terminating In−i �= R(In−i−1). We have two cases, depend-
ing on if In−i−1 is or not periodic.

Case(c’-a): Assume In−i−1 is non-periodic. By the induction hypothesis and the argu-
ment given inCase (b’),weknow that at least 13 intervalsG j ⊂ In−i for 0 ≤ j ≤ sn−i−1.

This means that we can define sn−i as in Case (c). Observe that with this definition we
still have that there exist at most six intervals G j ⊂ In−i with sn−i ≤ j ≤ s.

Case(c’-b): Assume In−i−1 = R(In−i−2). Then, by Case (d) we know that sn−i−1 =
rn−i−2 is as in Proposition 8.3. By the induction hypothesis there exist at most five
intervals G j ⊂ In−i with sn−i−1 ≤ j ≤ s. Since i + 1 > 4 there exist at least 16
intervals G j ⊂ In−i , so at least 12 intervals G j ⊂ In−i for 0 ≤ j ≤ sn−i−1. This means
that we can define sn−i as in Case (c).

Case(d’): assume In−i−1 is terminating and In−i = R(In−i−1). As in the previous case
we need to consider two cases, depending if In−i−1 is or not periodic.

Case(d’-a): Assume In−i−1 is non-periodic. Arguing as in the Case (c′ − a) we get that
there exist at most three intervals G j ⊂ In−i with sn−i−1 ≤ j ≤ s, and at most two
of them are in In−i+1. Since i + 1 > 4 there exist at least 8 intervals G j ⊂ In−i+1, so
there exist at least 6 intervals G j ⊂ In−i+1 for 0 ≤ j ≤ sn−i−1. This means that we can
define sn−i as in Case (d). Observe that with this definition we still have that there exist
at most five intervals G j ⊂ In−i+1 with sn−i ≤ j ≤ s.

Case(d’-b): Assume In−i−1 = R(In−i−2). By the induction hypothesis, we know that
there exist at most five intervals G j ⊂ In−i with sn−i−1 ≤ j ≤ s, and at most three of
them are contained in In−i+1. Since i +1 > 4 there exist at least 8 intervalsG j ⊂ In−i+1,

so there exist at least 5 intervals G j ⊂ In−i+1 for 0 ≤ j ≤ sn−i−1. This means that we
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can define sn−i as in Case (d). Observe that with this definition we still have that there
exist at most five intervals G j ⊂ In−i+1 with sn−i ≤ j ≤ s.

So the sequence sn−4 . . . , < sn−M = s is well defined.

Step 3: pulling back.Now, we will make use of the way the times sn−i have been defined
to prove (i), (ii) and (iii). For this part of the proof it will be useful to see Figs. 13 and 14.
Fix i ∈ {4, . . . , M − 1}, and let

Usn−i−1 = Dθ (In−i−1) ∩ CGsn−i−1
and U j = CompG j

f −(sn−i−1− j)(Usn−i−1),

where 0 ≤ j ≤ sn−i−1.

Case(a’). By the definition of sn−i we can apply Proposition 8.6 to prove (i).

Case(b’). In this case we will prove that (ii) holds. For this we need sn−i−1, sn−i and
sn−i+1 to be defined, so we assume i > 5. By definition of sn−i we can apply Proposi-
tion 8.2 to find an interval K ′ well-inside Î and λ′ ∈ (0, 1) so that

Usn−i ⊂ Dλ′θ (K
′).

Since In−i is terminating sn−i+1 ≤ rn−i and we can apply Corollary 8.4 to find λ′′ > 0
and an interval K ′′ well-insideR(In−i ) so that

Urn−i ⊂ Dλ′′θ (K
′′).

If In−i+1 = R(In−i ), then sn−i+1 = rn−i and (ii) holds. If sn−i+1 < rn−i we apply
Proposition 8.5 to get (ii).

Case(c’). if In−i−1 is terminating and In−i �= R(In−i−1). Then we can apply Proposi-
tion 8.3 to pull back from time sn−i−1 to time rn−i−1, and Proposition 8.5 to pull back
from time rn−i−1 to time sn−i , so (iii) holds.

Case(d’). By the definition of sn−i , (iii) holds from Proposition 8.3 and at most one
application of Corollary 4.8. ��

From now on, sn−4 < · · · < sn−M will denote the sequence defined in the above
proposition and we will assume that n is large.

Lemma 9.2. For each ν ≥ 1 there exists C > 0 and for each θ ∈ (0, π) there exists
ε > 0 such that the following holds. Suppose that |In| < ε and fix M ∈ N, with
4 < M < n. Assume that for j = 0, 1, . . . , M

|In− j |
|In− j+1| < ν.

Given x ∈ In ∩ ω(c0) consider the chain {G j }sj=0 with Gs = In and G0 = Lx (In). For
i ∈ {4, . . . , M − 1} let
w ∈ CompG0

f −sn−i−1(Vn−i−1) ∩ CG0 where Vn−i−1 := Dθ (In−i−1) ∩ CGsn−i−1
.

Then, if � is the order of c0 the following holds:

(1) if In−i−1 and In−i are non-terminating, either

wsn−i ∈ Dθ (In−i ) or w ∈ Dθ ′(In−i ),

where θ ′ = Cθ
( |In−i |

|In |
)�−1;
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(2) if In−i−1 is non-terminating and In−i is terminating and i > 5, then either

wsn−i+1 ∈ Dθ (In−i+1) or w ∈ Dθ ′(In−i+1),

where θ ′ = Cθ
( |In−i+1|

|In |
)�−1;

(3) if In−i−1 is terminating, then either

wsn−i ∈ Dθ (In−i ) or w ∈ Dθ ′(In−i ),

where θ ′ = Cθ
( |In−i |

|In |
)�−1

.

Proof. We will first show the real bounds that will be needed in the proof. By Corol-
lary 3.25, there exists δ > 0 so that In−M , . . . , In−1 are δ-free. Since we are assuming
|In−1| is comparable to |In+1|, Corollary 3.25 or Proposition 3.20, depending on the
definition of In , imply that In is δ-free except if In = R(In−1) and it is periodic; in this
case the we need |In−1| to be comparable to |In+2| to conclude that In is δ-free, which we
do not have. In this particular case, we will use a slightly different argument involving
the interval In−1 and its pullbacks, instead of the intervals G j . To do so we will define
a new chain as follows. If In = R(In−1) and it is periodic let {Ĝ j }sj=0 be the chain with

Ĝs = In−1 and Ĝ j = CompG j
f −1(Ĝ j+1) for 0 ≤ j < s − 1. Note that the intersection

multiplicity of this chain is bounded by two, since the chain {G j }s−1
j=0 is disjoint and In

has period two inside In−1. By Corollary 3.5, there exists δ̂ > 0 so that if Gs = In is
δ-free, then G j is δ̂-free for all 0 ≤ j ≤ s, and if Ĝs has been defined, then Ĝ j is δ̂-free
for all 0 ≤ j ≤ s, since Ĝs = In−1 is δ-free. Finally, by Theorem 3.1 we know that if
In−i−1 is non-terminating, then it is ρ̂-nice for some ρ̂ > 0.

Step 1: Pulling back to an interval well-inside an interval in the enhanced nest. Let
Uj = CompG j

f −(sn−i−1− j)(Vn−i−1) for 0 ≤ j ≤ sn−i−1. We will study each of the
cases from the statement separately.

(1) If In−i−1 and In−i are non-terminating.ByProposition 9.1 there existsμ ∈ (0, 1) and
an interval K well-inside In−i such thatUsn−i ⊂ Dμθ (K ),where K = LGsn−i

(In−i )

and Gsn−i ⊂ K . In this case, let I f
n−i be the pullback of In−i−1 under f pn−i−1−1

containing f (In−i ). In this case define i0 = n − i and s∗ = sn−i .
(2) If In−i−1 is non-terminating and In−i is terminating and i > 5. By Proposition 9.1

there exists μ ∈ (0, 1) and an interval K well-inside In−i+1 such that Usn−i+1 ⊂
Dμθ (K ), with Gsn−i+1 ⊂ K . Assume the return time of c0 to R(In−i ) is equal to q

and let I f
n−i+1 be the pullback ofR(In−i ) under f q−1 containing f (In−i+1). In this

case define i0 = n − i + 1 and s∗ = sn−i+1.
(3) If In−i−1 is terminating we have two cases.

(a) If In−i �= R(In−i−1).ByProposition 9.1 there existsμ ∈ (0, 1) and an interval K
well-inside In−i such thatUsn−i ⊂ Dμθ (K ),with Gsn−i ⊂ K . Assume the return

time of c0 to R(In−i−1) is equal to q and let I f
n−i be the pullback of R(In−i−1)

under f q−1 containing f (In−i ). In this case define i0 = n − i and s∗ = sn−i .
(b) If In−i = R(In−i−1). By Proposition 9.1 there exists μ ∈ (0, 1) and an interval

K well-inside In−i such that Usn−i ⊂ Dμθ (K ), with Gsn−i ⊂ K . Assume the

return time of c0 to In−i is equal to q and let I f
n−i be the pullback of In−i under

f q−1 containing f (In−i ). In this case define i0 = n − i and s∗ = sn−i .
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Observe that, independently of the case, the definition of i0 and s∗ give the following:

Us∗ ⊂ Dμθ (K ),

and Gs∗ ⊂ K ⊂ In−i0 . We always have that

Compc0 f
−1(I f

i0
) = In−i0 .

We know that In−i0−1 is δ-free. If In−i0−1 is terminating, Proposition 3.20 tells us
that there exists δ′ > 0 so thatR(In−i0−1) is δ′-free. So shrinking δ, if necessary, we can
assume that if In−i0−1 is terminating, In−i0−1 andR(In−i0−1) are δ-free. By definition,

I f
n−i0

is a pullback of bounded order of a δ-free interval so, regardless of the definition

of i0, the interval I
f
n−i0

is δ′′-free for some δ′′ > 0. In the remainder of the proof Ck , for
k ∈ N, stands for a positive constant that depends only on the previous constants.Observe
that, in any case, if ws∗ ∈ Dθ (In−i0) we are done with the proof of the proposition, so
let us assume ws∗ /∈ Dθ (In−i0). Then

ws∗ ∈ Dμθ (K )\Dθ (In−i0).

By Lemma 4.5 we have that there exists C1 > 0 so that

ws∗ ∈ D
C1

|Gs∗ |
|In−i0

| θ
(Gs∗).

Step 2: Pulling back to the start. If In−i0 is non-periodic, then by Proposition 9.1 we
know that f s−s∗ : Gs∗ → Gs = In is at most a sixth iterate of the first return map
RIn−i0

. So there exists ν0 > 0 so that |Gs∗ |/|In| ≥ ν0. Indeed, if |Gs∗ |/|In| is small,
then the derivative of RIn−i0

would be big at some point. Then, since In−i0 is δ-free
Theorem 3.2 would imply that one of the components of the domain of RIn−i0

is small
compared to |In−i0 |. Theorem 3.1 or Lemma 3.10, depending on whether In−i0 is non-
terminating or terminating, allows us to conclude that In−i0+1 is small compared to
In−i0 , which is a contradiction. If In−i0 is periodic, then by Proposition 9.1 we know
that f s−s∗ : Gs∗ → Gs = In is at most a fifth iterate of the first return map RIn−i0+1

,

so we conclude that |Gs∗ |/|In| ≥ ν0 using the same argument as before. Similarly, if
In = R(In−1) and it is periodic, we have that |Ĝs∗ |/|In−1| ≥ ν0.

Assume In �= R(In−1). Then, since Gs∗ is δ-free and the intervals G0, . . . ,Gs∗ are
disjoint we have that

w1 ∈ D
C2

|Gs∗ |
|In−i0

| θ
(G1).

Because |Gs∗ |/|In| ≥ κ0, we have

w1 ∈ DC3
|In |

|In−i0
| θ

(G1). (9.1)

By Lemma 4.5 we have that

w1 ∈ D
C4

|In |
|In−i0

|
|I fn−i0

|
|G1| θ

(I f
n−i0

).
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Since I f
n−i0

is δ′′-free, Lemma 4.2 gives us that

w ∈ D
C5

|In |
|In−i0

|
|I fn−i0

|
|G1| θ

(In−i0).

Note that G0 ⊂ In , and therefore |In|�/|G1| ≥ C6. Finally, since In−i0 is δ-free we have

that |I f
n−i0

| ≥ C7|In−i0 |�. Hence
w ∈ D

C8
|In−i0

|�−1

|In |�−1 θ
(In−i0).

Assume In = R(In−1) and it is periodic. Then using the same argument as above,
substituting G j by Ĝ j and In by In−1 we have the following:

w ∈ D
C8

|In−i0
|�−1

|In−1|�−1 θ
(In−i0).

Now, since |In| > ν|In−1| there exists C9 ∈ (0, 1) so that

w ∈ D
C9

|In−i0
|�−1

|In |�−1 θ
(In−i0).

Taking C as the minimum between C8 and C9 the proposition follows. ��

9.2. The construction of a qr quasi-box mapping.

Theorem 9.3 (The existence of a quasi-box mapping). For each ν ≥ 1 there exists
M > 0, and for each θ ∈ (0, π/2] there exists ε > 0 so that, if |In−M | < ε the following
holds. If for all j ∈ {n − M, . . . n + 1} we have that

|I j−1|/|I j | ≤ ν,

then the first returnmapping to In extends to a quasi-boxmappingwith range Dθ (In−M ).

Furthermore, there exists a universal constant ν0 ≥ 1 so that, if |I j−1|/|I j | > ν0, for
j sufficiently large, then we obtain a quasi-box mapping extending the return map to a
puzzle piece Î , with I j+2 ⊂ Î ⊂ I j−1.

Remark. See the corollary following the proof of the theorem for a more precise state-
ment in the non-renormalizable case.

Let us recall that the domains of the qr quasi-box mapping may intersect each other
and that they do not have to be compactly contained in the range.

Proof. We will divide the proof of the theorem in steps. In this proposition when we
talk about first return maps to an interval I containing c0, we will be referring to the first
return map to I restricted to the components of RI that intersect ω(c0). In what follows,
assume that all intervals I j from the generalized enhanced nest have j large enough so
that |I j | < ε, for all ε in this section and in Sect. 8.

Step 1. Let ν ≥ 1 and let C be the constant associated to ν by Lemma 9.2. Choose an
integer M , with 4 < M so that for all n sufficiently large

Dμ3θ (In−4) ⊂ Dθ (In−M+1),
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where μ ∈ (0, 1) is the constant from Proposition 9.1, and so that for each i = n −
M, . . . , n − 1 either

C(|Ii |/|In|)�−1 ≥ 1 or D
C

( |Ii ||In |
)�−1

θ
(Ii ) ⊂ Dθ (In−M+1), (9.2)

where � is the order of c0. To see that such M exists notice that because of real bounds
there exists ρ > 0 so that (1 + 2ρ)I j ⊂ I j−1, for every j ∈ N. So we can take M large
enough, so that (M + 1)ρ > 1/C .

Assume that for all j ∈ {n − M, . . . n + 1},
|I j−1|/|I j | ≤ ν.

Let x ∈ ω(c0) ∩ In and let s > 0 be minimal so that f s(x) ∈ In . Let {G j }sj=0 be the
chain with Gs = In and G0 = Lx (In). Let sn−4 < · · · < sn−M−1 < sn−M := s be the
sequence defined in Proposition 9.1. Let

w ∈ CompG0
f −sn−M (Vn−M ) ∩ CG0 where Vn−M := Dθ (In−M ) ∩ CGsn−i−1

and define wsn−i = f sn−i (w) for i ∈ {4, . . . , M − 1}. By Lemma 9.2 we know that one
of the following holds:

(1) If In−M and In−M+1 are non-terminating, either

wsn−M+1 ∈ Dθ (In−M+1) or w ∈ Dθ ′(In−M+1),

where θ ′ = Cθ
( |In−M+1|

|In |
)�−1

.

(2) If In−M is non-terminating and In−M+1 is terminating, then either

wsn−M+2 ∈ Dθ (In−M+2) or w ∈ Dθ ′(In−M+2),

where θ ′ = Cθ
( |In−M+2|

|In |
)�−1

;

(3) If In−M is terminating either

wsn−M+1 ∈ Dθ (In−M+1) or w ∈ Dθ ′(In−M+1),

where θ ′ = Cθ
( |In−M+1|

|In |
)�−1

;

By the choice of M , if the second assertion holds, on the corresponding case, we get
that w ⊂ Dθ (In−M ) ∩ CIn , and the theorem holds. If the first assertion holds, we repeat
the argument. If after at most M − 3 repetitions we have not proved the theorem we get

wsn−4 ∈ Dθ (In−4), where θ ′ = Cθ
( |In−4|

|In|
)�−1

.

We know |Ii−2|/|Ii+1| < ν0 for i ∈ {n − 4, . . . , n − 1}. So we can follow the
corresponding proofs in Sect. 8 to control the loss of angle and obtain

w ∈ Dμ3θ (In−4). (9.3)

For example, see the proof of Theorem 10.18.
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Step 2. Now we show that there exists a constant ν0 ≥ 1, such that if |I j−1|/|I j | > ν0,

for some j ∈ {n − M, . . . n + 1} then we obtain a complex extension for a return map to
a puzzle piece Î , with

I j+2 ⊂ Î ⊂ I j−1.

Let ν0 be the maximum of the constants ν1 from Sect. 8.3. Assume that |I j−1|/|I j | > ν0
for j ∈ {n − M, . . . , n + 1}.
Case (a): If I j−1 and I j are non-terminating.By Proposition 8.7 we know that the return
mapping to I j+1 extends to a qr box mapping with range Dπ/2(I j+1).

Case (b): If I j−1 is non-terminating and I j is terminating. By Corollary 8.10 the first
return map to I∞

j extends to a qr box mapping with range Dπ/2(I 2j ).

Case (c): If I j−1 is terminating. By Proposition 8.11 one of the following holds: the
first return map to I∞

j−1 extends to a qr box mapping with range Dπ/2(I 2j−1); I j is
terminating and the first return map to I∞

j extends to a qr box mapping with range

Dπ/2(I 2j ); I j and I j+1 are non-terminating and the first return map to I j+2 extends
to a qr complex box mapping with range Dπ/2(I j+2); I j is non-terminating and I j+1
is terminating the first return map to I∞

j+1 extends to a qr box mapping with range

Dπ/2(I 2j+1). that |I j−1|/|I j | > ν0, we can construct a qr quasi-box mapping as in the
statement of the theorem. ��
Corollary 9.4 (Quasi-box mapping in the non-renormalizable case). Suppose that f is
non-renormalizable. Given ν ≥ 1, there exists M > 0 with the following properties. For
θ ∈ (0, π/2], if n ∈ N is sufficiently large:

(1) If ν ≥ ν0, where ν0 is the constant from Proposition 8.7, and |Ik |/|Ik+1| > ν0 for
some k ∈ {n, n − 1, . . . , n − M} then: the first return mapping to Ik+2 extends to a
qr box mapping F : U → V with range V = Dπ/2(Ik+2) and U ⊂ Dθ (Ik+2).

(2) If for all k ∈ {n, n − 1, . . . , n − M} we have that |Ik |/|Ik+1| ≤ ν, then the first
return mapping to In extends to a qr quasi-box mapping F : U → V with range
V = Dθ (In−M ) ∩ CIn and U ⊂ Dθ (In−M+1).

This concludes the construction of the qr quasi-box mapping.

10. Box Mappings and Complex Bounds

In this section, wemake use of the qr quasi-boxmappings fromTheorem 9.3 to construct
qr box mappings (this notion was introduced in Sect. 5.3). In particular, when f is real
analytic the box mappings we obtain are holomorphic.

As usual, for a map f ∈ A3
b we abuse notation and denote by f its asymptotically

holomorphic extension of order 3, given in Sect. 5.2.

10.1. Finitely renormalizable maps. We follow similar arguments to those of Levin-van
Strien in [LvS2], which were also used in [S3]. However, we augment them to show that
we can obtain complex bounds (i.e. bounds for the moduli of relevant annuli) for the
qr box mappings. Throughout this subsection we assume that f : M → M is at most
finitely many times renormalizable.
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As an intermediate step in our construction of qr box mappings we will make use of
smooth box mappings, which are maps of the form FS : US → VS, which have all the
properties of a complex box mapping (see p. 2) except that we only require F to be C3.

Let N > 0 be maximal so that none of the intervals IN−i with i = 0, 1, 2, 3 is
terminating. For ease of exposition, assume N = 0, and that all of the intervals I0 ⊃
I1 ⊃ I2 ⊃ · · · of the enhanced nest about c0 are non-terminating.

If I is a nice interval containing c0, we let

Î =
⋃

c∈Crit( f )∩ω(c0)

L̂c(I )

and let D( Î ) denote the union of all first return domains to Î that intersect ω(c0). We
denote the first return map to Î by

RÎ : D( Î ) → Î .

Our aim is to prove the following:

Theorem 10.1 (Complex bounds in the non-renormalizable case). There exists δ > 0
such that the following holds. Suppose that

RÎ0
: D( Î0) → Î0

is non-renormalizable (at c0). Then for all m sufficiently large, there exists a qr box
mapping F : U → V extending RÎm

with the property that V is δ-nice, δ-free and U has
δ-bounded geometry.

The proof of the theorem above will occupy the following proposition and the next
two subsections.

Proposition 10.2 (cf. [LvS2], pp. 425–427). Given ν ≥ 1, there exists ε > 0, m ∈ N,
η ≥ 1 and θ ∈ (0, π) such that the following holds. Suppose that

RÎ0
: D( Î0) → Î0

is non-renormalizable at c0. Then given n ∈ Nwith |In−m | < ε and so that |I j−1|/|I j | ≤
ν, for all j ∈ {n − m + 1, . . . n + 1} the real return mapping RÎn

extends to a qr box
mapping F : U → V with the following properties: the map F |U is at most unicritical
for all U ∈ U; if V is a component of V , then diam(V ) ≤ η|V ∩R| and Dθ (V ∩R) ⊂ V .

Proof. Let M be the constant associated to ν by Corollary 9.4. We will choose the
constant m > M in the course of the proof; M will be independent of n. How small
|In−m | needs to be will be determined by the proof. As usual, let pn ∈ N be so that
In+1 = Compc0 f

−pn (In). By Theorem 3.1, the intervals In are δ > 0 externally and
internally free, for some δ = δ(ν), and each component of the internal free space is of
size comparable to |In|.
Claim. Given δ1 > 0, there exists ε1 > 0 and θ1 ∈ (π/2, π) such that the following
holds. Suppose I is a δ1-externally free nice interval, with I\(1 + 2δ1)−1 I disjoint form
ω(c0) and |I | < ε1. Let V = Dθ1(I ) and consider G1

0 = Lx (I ) and G2
0 = Ly(I )

disjoint, with x, y ∈ ω(c0). Let U 1
0 and U 2

0 be the components of the landing map to V
that contain G1

0 and G2
0, respectively. Then U

1
0 and U 2

0 , are disjoint.
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Proof of claim. Let F be the interval that defines the external free space of I . Con-
sider the chains {Gi

j }sij=0 associated to G1
0 and G2

0, so Gi
si = I, and let {Hi

j }sij=0
be the corresponding chains associated to the pullbacks of F , for i = 1, 2. Let
Ui

j = CompGi
j
f si− j (V ) for j = 0, . . . si . If the order the chains {Gi

j }sij=0 is zero,

then provided that θ1 ∈ (0, π) is chosen sufficiently close to π, and ε1 is small enough,
Corollary 5.7 implies that U 1

0 and U 2
0 are contained in the geometric circles based on

their real traces, so the claim follows. Otherwise, let s < min{s1, s2} be maximal so that
either G1

s or G
2
s contains a critical point. By Lemma 4.6, we can choose θ1 ∈ (π/2, π)

so that U 1
s ∩ U 2

s = ∅. Observe that this can be done provided ε1 is sufficiently small.
From this it follows that U 1

0 ∩U 2
0 = ∅. ✓

Let θ1 = θ1(δ) and ε1(δ) be the constants given by the claim, and assume |In−m | < ε1.

Step 1: Construction of a smooth box mapping at level In−m.
There exists θ2 ∈ (θ1, π), depending only on δ and a smooth box mapping FS : US →

VS with the following properties:

• The map Fs extends RÎn−m
: D( În−m) → În−m in a neighbourhood of D( În−m), it

is asymptotically holomorphic and has the same critical points as RÎn−m
;

• for each U ∈ US, F |U is at most unicritical;
• for each U ∈ US, Dθ2(U ∩ R) ⊂ U and FS = f r on Dθ2(U ∩ R), where r is the

return time of U to V under f .

Step 1a: Obtaining a complex extension such that the components of its domain are
disjoint. We begin by constructing an intermediate smooth mapping F̃S : ŨS → ṼS

where ṼS is a neighbourhood of Crit( f )∩ω(c0) and the components of ŨS are disjoint,
but not necessarily contained in ṼS .

Let Vc0 = Dθ1(In−m). For each c ∈ Crit( f ) ∩ ω(c0), let Vc = L̂c(Vc0), and let

ṼS =
⋃

c∈Crit( f )∩ω(c0)

Vc.

Observe that ṼS ∩ R = În−m . For each x ∈ ω(c0) ∩ În−m , let Ũ (x) = Lx (Ṽs) and let

ŨS =
⋃

x∈ω(c0)∩ În−m

Ũx .

Notice that if x ∈ ω(c0) ∩ L̂c(In−m) for c �= c0, then Ũ (x) = Ṽc. The claim implies
that the components of ṼS are pairwise disjoint, and that the components of ŨS together
with the components of ṼS\Vc0 are pairwise disjoint. Bymaking ε1 smaller, if necessary,
Lemma 4.2, Corollary 5.6, Lemma 4.3 and Corollary 5.7, imply that there exist θ2 ∈
(θ1, π) and θ ′

2 ∈ (0, π), depending only on δ and b, with the following property. For
each component U of ŨS or of ṼS ,

Dθ2(U ∩ R) ⊂ U ⊂ Dθ ′
2
(U ∩ R).

Define a mapping F̃S : ŨS → ṼS as follows, for each component U of ŨS , let s > 0
denote its first entry time to ṼS under f , so that f s(U ) is a component V of ṼS . Set
F̃S|U = f s |U .
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Step 1b. Obtaining a smooth box mapping. For each critical point c ∈ ω(c0), let Ac be
topological disk that properly contains Ṽc. We can choose these disks so that {Ac : c ∈
ω(c0) ∩ Crit( f )} is a collection of domains with pairwise disjoint closures such that
given x ∈ ω(c0) ∩ În−m , if Ũ (x) intersects Ac and Ũ (x) �= Ṽc, then Ũ (x) is compactly
contained in Ac. For each such Ũ (x) let B(x) be a topological disk such that Ũ (x) �
B(x) � Ac. Moreover, choose the domains B(x) so that they have pairwise disjoint
closures. For each Ũ (x), let c be such that Ṽc = F̃S(Ũ (x)) and extend F̃S : Ũ (x) → Ṽc
to a smooth map FS|B(x) → Ac. Let

VS =
⋃

c∈ω(c0)∩Crit( f )
Ac and US =

( ⋃
x∈ω(c0)

B(x)
)

∪
( ⋃
c∈ω(c0)∩Crit( f )\{c0}

Ac

)
.

Then

FS : US → VS

is a smooth box mapping with the required properties. This concludes Step 1.
From now on, θ2 is the constant given by Step 1.

Step 2: Choosing m. We will choose m so that, roughly, the domain of the quasi-box
mapping given by Corollary 9.4 that extends the return map to In is contained in the part
of the plane, close to the real line, where FS agrees with the corresponding iterate of f .

From Corollary 9.4 we know there exists M ∈ N, depending on ν, so that the first
return map to In extends to a quasi-box mapping with range VQ = Dπ/2(In−M ) ∩ CIn .
For each critical point c ∈ Crit( f ) ∩ ω(c0), c �= c0, let rc > 0 be minimal so that
f rc (c) ∈ In . Set V̂c0 = VQ and V̂c = Compc f

−rc (V̂c0). Since |I j−1|/|I j | < ν, for all
n − 1 ≤ j ≤ n − M + 1, there exists θ3 ∈ (0, π) so that

V̂c ⊂ Dθ3(L̂c(In−M )) ∩ CL̂c(In)
.

To see this, choose any V̂c with c �= c0. There exists x ∈ ω(c0) ∩ In such that if s > 0
is minimal so that f s(x) ∈ In , then there exists 0 < rx < s so that f rx (x) ∈ Lc(In).
Observe that the landing times of f rx (x) and c to In under f are the same; they are both
rc = s − rx . Let {G j }sj=0 be the chain with Gs = In and G0 = Lx (In), and let

sn−4 < · · · < sn−M := s

be the sequence given by Proposition 9.1. Let w ∈ Compx f
−s Dπ/2(In−M ) and wi =

f i (w) for i ∈ N. Either there exists sn− j so that sn− j+1 < rx < sn− j or 0 < rx < sn−4.
Let us assume sn− j+1 < rx < sn− j . By Proposition 9.1, there existsμ ∈ (0, 1) such that
wsn− j ∈ Dμπ/2(LGsn− j

(In− j )) ⊂ In− j . By Lemma 8.1, we know k(In− j , {G j }sn− j
j=rx

)

is bounded. This and the fact that In− j is δ-nice, allow us to apply Proposition 7.1
and Corollary 4.8 to find θ3 ∈ (0, π) so that wrx ∈ Dθ3(L̂c(In− j )). The proof when
0 < rx < sn−4 is analogous to this one.

Now choose m so that for each critical point c ∈ Crit( f ) ∩ ω(c0)

Dθ3(L̂c(In−M+1)) ⊂ Dθ2(L̂c(In−m)).

Step 3. Intersecting the smooth box mapping and the quasi-box mapping. Let

VQ =
⋃

c∈Crit( f )∩ω(c0)

V̂c,
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VS ∩ VQ

FQ

UQ

VQ

US

FS

VS

F

US ∩ UQ

Fig. 17. Intersecting a smooth box mapping with a quasi-box mapping

where the V̂c are as constructed at the beginning of Step 2. We construct a quasi-box
mapping F : UQ → VQ extending the real return map to In as follows. Since the
hypotheses from the second part of Corollary 9.4 hold, we obtain a qr quasi-boxmapping
F̂Q : ÛQ → V̂c0 extending the return map to In .

Now let UQ = ÛQ . For each U ∈ UQ choose x ∈ U ∩ ω(c0) and let s > 0 be
minimal so that f s(x) ∈ VQ . Set FQ |U = f s |U .

We get a smooth box mapping FS,n : US,n → VS,n extending RÎn
as fol-

lows. There exists kn such that Fkn
S |In = f pn−1+pn−2+···+pn−m |In . Let VS,n(c0) =

Compc0F
−kn
S (A(c0)). For each critical point c ∈ Crit( f )∩ω(c0), let ic > 0 be minimal

so that Fic
S (c) ∈ In . Let VS,n(c) = Compc(F

−ic
S (VS,n(c0))) and

VS,n =
⋃

c∈Crit( f )∩ω(c0)

VS,n(c).

If x ∈ ω(c0)∩VS,n , let k ≥ 1 beminimal so that Fk
S (x) ∈ VS,n .LetV = CompFk

S (x)VS,n ,

and set US,n(x) = Compx (F
−k
S (V )).

Finally, for each critical point c ∈ ω(c0), let Vc = VS,n(c) ∩ V̂c and let V be the
union of the domains Vc. For each x ∈ ω(c0) ∩ V, let Û (x) be the component of ÛQ

that contains x and set U (x) = US,n(x) ∩ Û (x). Let U be the union of all domains
U (x). Define F |U (x) = F̂ |U (x). See Fig. 17. Then F : U → V is a qr box mapping
that extends the real return map to In .

Since for all j , with 1 ≤ j ≤ m+1, the interval In− j is δ-free, there exists θ ∈ (0, π),

depending on θ2 and δ, so that for any component V of V , V ⊃ Dθ (V ∩R).Hence there
exists η > 0 such that diam(V ) < η|V ∩ R|. ��
Corollary 10.3. Suppose that RÎ0

: D( Î0) → Î0 is non-renormalizable at c0. Then for
all n sufficiently large, there exists a qr box mapping Fn : Un → Vn extending RÎn

.

Proof. Let ν1 ≥ 1 be the constant coming from Corollary 8.8. Let M be the constant
associated to ν1 by Proposition 10.2. There are two cases: either there exists N ∈ N

so that |I j |/|I j+1| ≤ ν1 for all j > N , or there exist infinitely many integers j such
that |I j |/|I j+1| > ν1. Using either Proposition 10.2, or Corollary 8.8, we construct
F : U → V a qr box mapping extending RÎn ,

for an integer n sufficiently large.

Let k1 ∈ N be such that Fk1 |In+1 = f pn |In+1 . Let V (c0) be the component of V that
contains c0, and define

V1(c0) = CompIn+1F
−k1(V (c0)).
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We can obtain a qr box mapping F1 : U1 → V1 that extends RÎn+1
: D( În+1) → În+1

using, for example, the argument used in theproof ofStep3 inProposition10.2. Similarly,
we can define a sequence of qr box mappings Fi : Ui → Vi each extending RÎn+i

. ��
We will bound the quasiconformal distortion of the maps Fi in the next subsection.
To prove complex bounds, as stated in Theorem 10.1, it suffices to prove certain

geometric bounds known as upper and lower bounds in [KSvS], see p. 16. This is done
in Sects. 10.2 and 10.3.

10.2. Upper bounds for finitely renormalizable maps. To prove Proposition 1.9, we
follow the approach used in the proof of [KSvS, Proposition 8.3].

It will be convenient to point out the following modification to the proof in [KSvS]
now. In [KSvS], an interval I is said to be in Tξ if I is ξ -nice and (1 + 2ξ)I\(1 + 2ξ)−1 I
is disjoint from the post-critical set of f . We modify this definition to take into account
odd critical points: if c0 is even, then we will say that an interval I is in Tξ if I is ξ -nice
and ξ -free; if c0 is odd, then we say that I is in Tξ if I is ξ -nice and ξ -externally free. It
is worth remarking that this implies that I is ξ ′-strongly nice, with ξ ′ → ∞ as ξ → ∞.

Let F : U → V be a qr box mapping given by Proposition 10.2 or by Corollary 8.8
and let Vc0 be the component of V that contains c0. For ease of exposition, assume F
extends the return map to Î0 = ∪c∈Crit( f )∩ω(c0)L̂c(Vc0 ∩R), and let I0 = Vc0 . Assuming
that In is defined, let In+1 = Compc0 f

−pn (In), where pn is defined as on p. 22. Notice
that for all n ∈ N ∪ {0}, In = In ∩ R. We define the complex puzzle pieces B(I),A(I)
and �(I), associated to a domain I , exactly as we did for real puzzle pieces.

We will need the following version of Proposition 7.1, which gives us information
about the loss of angle even when the combinatorial depth k(I, G) is large, see definition
on p. 64.

Proposition 10.4 [KSvS, Proposition 11.2]. For each δ > 0, there exists μ ∈ (0, 1) and
δ′ > 0, and for each θ ∈ (0, π), there exists ε > 0, such that the following holds. Let I be
a δ-nice interval with |I | < ε, and let G = {Gi }si=0 be a disjoint chain with G0,Gs nice

intervals and G0 ∩ ω(c0) �= ∅. Let Ĝs be an interval with Gs ⊂ Ĝs ⊂ (1 + 2δ)Ĝs ⊂ I.
Let V = Dθ (Ĝs), and write Ui = CompGi

f −(s−i)(V ), i = 0, 1, . . . , s. Then there

exists an inteval Î ⊃ G0 with (1 + 2δ′) Î ⊂ I and such that

U0 ⊂ Dμk(I,G)θ ( Î ).

Proof. The proof of this result proceeds by induction as in [KSvS]. To obtain the proof
when N = 0, we use the proof of the N = 0 case of Proposition 7.1. If c is even, which
we can andwill assumewhenever c0 is even, [KSvS, Lemma 11.2] holds byLemma 3.12.
When all critical points are odd, we do not need [KSvS, Lemma 11.2] to obtain that
certain intervals are ρ̂-nice, since we can use Proposition 6.2 instead of Corollary 4.8.
The remainder of the proof of Proposition 11.2 in [KSvS] can be repeated verbatim,
where we use Lemma 3.16 instead of [KSvS, Lemma 9.7], Theorem 3.2 (1) instead
of [KSvS, Lemma 9.2], Lemma 3.6 instead of [KSvS, Lemma 9.4], Proposition 6.3
instead of [KSvS, Lemma 11.1], and Lemma 4.6 and its Corollaries, Corollary 4.7 and
Corollary 4.8, instead of Lemmas 13.5 and 13.6 of [KSvS]. ��

The following proposition is the main tool that is needed to combine the bounded
and big geometry cases. Without control on the geometry, there is no way to control the
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combinatorial depth between consecutive levels of the enhanced nest, butwe are still able
to control the geometry at deeper levels, see the last part of the following proposition.

Proposition 10.5 [KSvS, Proposition 11.3]. For each δ > 0 and N ≥ 0 there exist
μ(N , δ) ∈ (0, 1) and C ∈ (0, 1), and for each θ ∈ (0, π) there exists ε > 0 so that
the following holds. Let I � c0 be an interval in Tδ with |I | < ε. Let J � c0 be an (at
most) N-modal pullback of I , and let t be so that J = Compc0( f

−t (I )) ∩ R. Assume
x ∈ J ∩ ω(c0) is so that f s(x) ∈ J for some s ≥ t. Let

ν = #{0 ≤ j ≤ s − t : f j (x) ∈ J }.
Let s0 = 0 < s1 < · · · < sν be the times for which s j ≤ s − t and f si (x) ∈ J. Consider
the chain G := {Gi }si=0 defined by Gs = J , and Gi � f i (x). Let Us = Dθ (I ) ∩ CGs

and Ui = CompGi
f −(s−i)(Us). Then,

U0 ⊂ Dθ ′(J ),

where

θ ′ = min
[
μk̂(I,J )

(
�ν−1

j=0Cρ j

)
· θ, θ0

]
,

and k̂(I, J ) is defined on p. 64 and ρ j > 0 is so that

(1 + 2ρ j )L f si (x)(J ) ⊂ J

and θ0 is defined in Lemma 4.5.
Moreover, there exists a universal (large) constant ξ > 0 and ν̂ ∈ N, which depends

on δ and N, such that if J is ξ -nice and ξ -externally free, ν ≥ ν̂ and for each c ∈
Crit( f ) ∩ ω(c0), different form c0

#{0 ≤ j ≤ s : f j (x) ∈ Lc(J )} ≥ ν0,

then

θ ′ = min[θ, θ0].
Proof. The proof of this is the same as the proof of [KSvS, Proposition 11.3] using
Proposition 10.4 instead of [KSvS, Proposition 11.2], Lemma 3.15 instead of [KSvS,
Lemma 9.6], Lemma 4.5 instead of [KSvS, Lemma 13.4], and Lemmas 4.6 and 6.2
instead of Lemma 13.5. ��

The following result is the key initial estimate needed to prove the Upper Bounds:

Proposition 10.6 [KSvS, Theorem 11.1]. There exist θ ∈ (0, π) and n0 ∈ N so that for
all n sufficiently large, In ⊂ Dθ (In−n0).

Proof. We can repeat the proof Theorem 11.1 of [KSvS] after making the following
substitutions: we use Lemma 4.5 instead of [KSvS, Lemma 13.4], Proposition 10.5
instead of [KSvS, Proposition 11.3], Theorem 3.1 instead of [KSvS, Proposition 8.1]
Theorem 9.3 instead of [KSvS, Proposition 11.4], and Lemma 2.3 instead of [KSvS,
Lemma 8.3]. ��
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Proposition 10.7 [KSvS, Proposition 11.5]. There exists θ ∈ (0, π) such that for all n
sufficiently large and for each x ∈ ω(c0) ∩ In,

Lx (In) ⊂ Dθ (In).

This proposition follows immediately from the following two lemmas whose proofs
can be copied from [KSvS] making the same substitutions that we have already pointed
out:

Lemma 10.8 [KSvS, Lemma 11.4]. There exist N and θ1 ∈ (0, π) such that for each n
sufficiently large there exists m ∈ {n, n + 3} such that for each x ∈ ω(c0) ∩ Im one has

CompxDom(RN
Im ) ⊂ Dθ1(Im).

Lemma 10.9 [KSvS, Lemma 11.5]. There exists a constant μ ∈ (0, 1) such that for
each N ≥ 2, each θ ∈ (0, π), and each n sufficiently large, if

∪x∈ω(c0)∩InCompxDom(RN
In ) ⊂ Dθ (In),

then

∪x∈ω(c0)∩In+1CompxDom(RN−1
In+1

) ⊂ Dμθ (In+1).

Using this, we can bound the quasiconformal distortion as we pullback through the
enhanced nest.

Lemma 10.10. There exists a constant η1 > 0 such that the following holds. Let Î0 be a
nice neighbourhood ofCrit( f ) such that RÎ0

extends to a qr boxmapping F : U → V . Let
I0 = Compc0(V). Assuming that In has been constructed let In+1 = Compc0F

−pn (In),
where pn is as in the construction of the enhanced nest (see p. 22). Let s = pn + pn−1 +
· · · + p0. Then Fs : In+1 → I0 is 1 + η1μ(I0)1/2-quasiregular.

Proof. By Lemma 5.10 and Propositions 10.7 and there exists a constant η > 0 such
that each F pn : In+1 → In is (1+ημ(In)1/2)-quasiregular. Since, by Theorem 3.1, there
exists a universal constant ρ > 0 such that each In is ρ-nice, the lengths of the intervals
In decays exponentially. Thus there exists a constant η1 ≥ 0 such that Fs : In+1 → I0
is 1 + Cη1μ(I0)1/2-quasiregular. ��

Finally with Proposition 10.7 in hand we can repeat the proof of the Upper Bounds,
Proposition 8.3 from [KSvS].

Proposition 10.11 (Upper bounds for the enhanced nest). There exists a constant η > 0
such that for all n sufficiently large the following hold.

• diam(In) ≤ η|In|, and;
• there exists a topological disk � ⊃ In such that (�\In) ∩ ω(c0) = ∅ and

mod(�\In) > 1/η.
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Proof. By construction there exists a positive integer ν and by Proposition 10.7, there
exists θ ′ ∈ (0, π) such that f ν : B(In) → In is a proper map with bounded degree,
f ν(A(In)) = L f ν (c)(In), and L f ν (c)(In) ⊂ Dθ ′(In).

Then, since by Theorem 3.1, there exists ρ > 0 so that In is ρ-nice, ρ-externally
free, the pullback of In to B(In) is of bounded degree, and we have that either c0 is of
even order and In is ρ-free or c0 is of odd order, there exists λ ∈ (0, 1) such that

A(In) ⊂ Dλθ (B(In)),

and

diam(A(In))
|A(In)| ≤ η(θ)max

{
1,

(diam(In)
|In|

)1/2}
.

To prove this estimate, we let r > 0 be the return time of L f ν (c0)(In) to In , and decom-
pose f ν+r : A(In) → In into f ν+r−1 : f (A(In)) → In and f : A(In) → f (A(In)),
apply Lemma 5.10, and use the fact that there is a critical point c0 ∈ A(In) ⊂
In of degree d ≥ 2. Since B(In) is ρ′-nice and A(In) is ρ′-externally free for
some ρ′ > 0 given by Corollaries 3.4 and 3.5, it follows that there exist ξ > 0,
θ ′ ∈ (0, π/2) and a topological disk A(In)′, A(In) � A(In)′ ⊂ Dθ ′(B(In)), so
that mod(A(In)′\A(In)) > ξ and (A(In)′\A(In)) ∩ ω(c0) = ∅. Let ν̃ ∈ N be
so that f ν̃ : BA(In) → A(In). Let Fn = Compc0 f

−ν̃ (B(In)). Then f ν̃ |Fn is a
proper map of bounded degree, and either Fn is δ′-free for some δ′ > 0 or c0 is
an odd critical point. Likewise, for each i, i = 1, 2, . . . , T , let ti ∈ N, be so that
f ti : �iBA(In) → �i−1BA(In). Inductively construct a sequence of domains Fi

n ,
i = 0, . . . , T , setting F0

n = Fn and Fi
n = Compc0 f

−ti (Fi−1
n ). Each Fi

n is a pullback of
Fi−1
n of bounded degree and either Fi

n is δ′′-free for some δ′′ > 0 or c0 is an odd critical
point. Set I ′

n+1 = Compc0( f
−(ν̃+t1+···tT (A′(In))).Observe that (I′n+1\In+1)∩ω(c0) = ∅.

ByLemma 5.10, we have that f ν̃+t1+···+tT |I ′
n+1 is a 1+cμ(In−1)

1/2-quasiregularmap-
ping with bounded degree. It follows that there exists c′ ≥ 1 so that mod(I′n+1\In+1) >

ξ/c′. As before,

diam(In+1)
|In+1| ≤ η(θ)max

{
1,

(diam(In)
|In|

)1/2}
.

Since diam(I0) < η|I0|, it follows that diam(In)/|In| is bounded from above. ��
It isworth noticing that fromPropositions 1.9, 10.7 and the definitions of the operators

A and B we have:

Corollary 10.12. There exists ε > 0 and a universal constant δ > 0 such that, for all
n > 0 for which |In| < ε the following holds. The puzzle piece In is δ-nice and δ-free.
Hence the return mapping to In is δ-extendible. Even more, there exists an interval
Ĩn ⊃ (1 + 2δ)In Ĩn ⊃ (1 + 2δ)In with ( Ĩn\In) ∩ ω(c0) so that Dθ ′( Ĩn) ⊃ In.

10.3. Lower bounds for finitely renormalizable maps. Lower Bounds for the geometry
of puzzle pieces in the enhanced nest follows from the next two lemmas. The first lemma
is Lemma 10.1 of [KSvS]; however, we cannot repeat the proof given there, since f does
not have to be analytic.
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Let

ηn = inf
x∈ω(c0)∩In

d(x, ∂ In)
|In| .

Lemma 10.13 [KSvS, Lemma 10.1]. There exists ε > 0 so that for all n > 0 for which
|In| < ε the following holds:

1. There exists a constant δ > 0 such that ηn+1 > δηn .

2. There exist κ > 0, ν > 1 such that if |In|/|In+1| > ν, then

ηn+2 ≥ min(κ, 2ηn+1).

Proof. Note that we can decompose the map f pn : In+1 → In into a bounded number
of maps, each of the form zd followed by a diffeomorphism with bounded distortion.

To prove the first estimate, observe that ηn+1 ≥ δηn is equivalent to

infx∈ω(c0)∩In d(x, ∂ In)
infx∈ω(c0)∩In+1 d(x, ∂ In+1)

≤ 1

δ

|In|
|In+1| .

For any x ∈ ω(c0) ∩ In , since f pn has bounded degree and, by Theorem 3.1, In has
external free space, it follows from Theorem 3.2 that there exists a constant c′ > 1 such
that

|( f pn )′(x)| ≤ c′ |In|
|In+1| .

By Lemma 5.10, there exists η > 0, such that f pn |In+1 is (1 + η|μ(In)|1/2)-
quasiregular. So by the StoilowFactorization Theoremwe can express f pn |In+1 = h◦g,
where g : In+1 → In+1 is (1 + η|μ(In)|1/2)-quasiconformal and h : In+1 → In is holo-
morphic. Let λn be an affine mapping that scales In to unit size. Then the mapping
H(z) = λn f pn (

z
λn+1

) is a (1 + η|μ(In)|1/2)-quasiregular mapping between domains of
unit size. As n → ∞ this mapping converges to a holomorphic mapping. Arguing by
contradiction, it follows that there exist constants c > 1 and κ1 > 0 such that

|( f pn )′(z)| ≤ c
|In|

|In+1|
for z ∈ C with dist(z, ω(c0) ∩ In+1) ≤ κ1|In+1|, and the first estimate follows immedi-
ately.

Similarly, from the Koebe Distortion Theorem and the fact that f pn |In+1 is
(1 + η|μ(In)|1/2)-quasiregular, we have that there exists κ2 > 0 such that for any
z ∈ B(c0, 2κ2|In+1|),

|( f pn )′(z)| ≤ 1

2

|In|
|In+1| .

Let ν > 1 be large. Notice that when |In|/|In+1| > ν, then by Lemma 3.23 there
exists ν1 > 0, so that for any x ∈ ω(c0) ∩ In we have |In+1|/|Lx (In+1)| > ν1. From the
definitions of the operatorsA,B andTheorem3.2 (2), there exists a constantη = η(ε) →
0 as ε → 0, so that ω(c0) ∩ BA(In+1) ⊂ AA(In+1) is contained in a η|BA(In+1)|-
neighbourhood of the critical point, and the second estimate in the lemma follows. ��
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The following is Lemma 10.2 of [KSvS]. The proof differs from that given in [KSvS]
because f is not analytic and we have to treat the big geometry case separately from the
bounded geometry case.

Lemma 10.14 [KSvS, Lemma 10.2]. There exists k0 ∈ N and a constants γ > 0 and
ε > 0 such that for all n > 0 with |In| < ε and for all x ∈ ω(c0) ∩ In,

B(x, γ |CompxDom(Rk0
In

)|) ⊂ In .

Proof. Let N = pn−1 + pn−2 + · · · + p0. Observe that f N (In) = I0. By Lemma 8.3
of [KSvS], we have that 2pn−1 ≥ N and r(In) ≥ N/6. Let x ∈ ω(c0) ∩ In and let
W = L̂ f N (x)(In). Let U = Compx ( f

−N (W )) ∩ R. Then U = Compx (Dom(Rk0
In

)) for

some k0, and since r(In) ≥ N/6 we have that k0 ≤ 6 and that the order of f N : U → W
is bounded by 6b.

If either c0 is even or |In−3|/|In−2| is bounded from above, then by Theorem 3.1
In is ρ-free for some ρ > 0, and we can repeat the proof of Lemma 10.2 of [KSvS].
So, suppose that |In−3|/|In−2| is big and c0 is of odd order. In this case, In is C-nice
and C-externally free with C big. Let 0 < C ′ < C be so that Ĩ := (1 + 2C ′)In
is δ-externally free. Let W̃ = L̂ f N (x)( Ĩ ), and Ũ = Compx ( f

−N ((1 + 2δ)W )) ∩ R.

Since C is big, we can choose C ′ so that δ > 0 does not depend on f and so that
W̃ ⊃ (1 + 2δ)W . Then W̃ is ρ′′-free for some ρ′′ > 0. By Proposition 10.2, there exists
σ ∈ (0, π/2) so that Dπ−σ (W̃ ) ⊂ Dπ−σ (I0) ⊂ I0. So Lemmas 5.10, 4.2 and 4.3, imply
that In ⊃ Compx f

−N (Dπ−σ (W̃ )) ⊃ Dθ ′′(Ũ ), where θ ′′ ∈ (0, π/2). ��
Proposition 10.15. There exist beau constants η > 0 and ε > 0 such that for all n > 0
with |In| < ε

B(c0, η|In|) ⊂ In .

Proof. The proof follows the proof of Proposition 10.1 of [KSvS] with some minor
adjustments to deal with the case when c0 is odd. Indeed, there exists a constant ε′ > 0
such that if 0 < ηn < ε′, then |In+1|/|In| < ε, where ε is the constant from the
second estimate in Lemma 10.13. To see this, observe that if ηn is very small, then
by Lemma 10.14 there exists x ∈ ω(c0) ∩ In such that |U |/|In| is very small where
U � x is a component of the domain of Rk0

In
. Since k0 is bounded (≤ 6, see the proof of

Lemma 10.14), this implies that there exists a return domain J to In , J ∩ ω(c0) �= ∅,

and such that |J |/|In| is very small. It follows from Theorem 3.1 (e) that |In+1| is very
small compared to |In|. Thus it follows from the second statement of Lemma 10.13 that
when ηn < ε′, ηn+2 ≥ min{κ, 2ηn+1}. By the first statement of Lemma 10.13, we have
ηn+2 ≥ min(κ ′, 2ηn+1) for all n, where κ ′ = min(δ2ε′, κ). Since η0, η1 are bounded
away from 0 the result follows. ��

Thus we have concluded the proof of complex bounds in the non-renormalizable
case, i.e. Theorem 1.1 (in the non-renormalizable case) and Theorem 10.1. Let us now
turn to the infinitely renormalizable case.

10.4. Infinitely renormalizable maps. To construct a qr polynomial-like extension from
a qr quasi-box mapping for infinitely renormalizable maps, we use a more geometric
approach. Let L : R+ → R+. A map h : X → Y between two metric spaces is called
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an L-quasi-isometry if for any ε > 0, dist(h(x), h(y)) ≤ max{L(ε) dist(x, y), ε}, for
all x, y ∈ X . Quasiconformal maps are quasi-isometries with respect to the hyperbolic
metric:

Lemma 10.16 (Lemma 2.2, [ALdM]). For every κ ≥ 1 there exists Lκ : R+ → R+ such
that if h : S → S̃ is a κ-qc map between two hyperbolic Riemann surfaces, then h is a Lκ

quasi-isometry in the hyperbolic metric. Furthermore, for every ε > 0, limκ→1 Lκ(ε) =
1.

Lemma 10.17 (cf. [LY], Lemma 2.4, [M2] Proposition 4.10). For every ε, η > 0, there
exists κ0 > 1 such that if 1 ≤ κ ≤ κ0, there exists δ > 0 such that the following
holds. Let U ⊂ V be two real-symmetric topological disks and f : U → V be a real-
symmetric qr branched covering with non-escaping critical points and compact Julia
set. Suppose that U contains an η-neighbourhood, N of the J ( f ) in the hyperbolic
metric on U, and that f |N is κ-quasiregular. Then there are real-symmetric topological
disks U ⊃ V ′ ⊃ U ′ ⊃ K ( f ) such that the restriction f : U ′ → V ′ is polynomial-like.
Moreover, if mod(U\K ( f )) ≥ ε > 0, then mod(V ′\U ′) ≥ δ(ε, �, η) > 0, where � is
the degree of f .

Proof. The proof of this lemma goes as the proof of Proposition 4.10 of [M2], we will
provide a sketch of the argument. Notice that since f is a real-symmetric mapping
between real-symmetric domainsU and V , K ( f ) and the η-neighbourhood of K ( f ) in
the hyperbolic metric on U are both real-symmetric. Observe that we can assume that
mod(V \K ( f )) is bounded from above. This implies that N \K ( f ) is an annulus with
modulus bounded from below, so that its core curve γ is a κ ′-quasicircle. LetNγ denote
the region bounded by γ . Then, by the Schwarz Reflection Principle, f |Nγ extends to a
κ ′′-quasiregular mapping f̃ : U → V that agrees with f onNγ . Consider the hyperbolic
Riemann surfaces N0 ⊂ U0 ⊂ V0 obtained by doubling Nγ \K ( f ),U\K ( f ) and
V \K ( f ), respectively, across their ends corresponding to K ( f ). Then N0 ⊂ U0 ⊂ V0
are annuli with the same core geodesic γ , and f̃ |U\K ( f ) extends to a symmetric
mapping F : U0 → V0 that sends γ to itself.

Let us show that ‖DF(z)‖ > 1 (in the hyperbolic metric) for z sufficiently close
to γ . Take τ > 0 and z ∈ γ , consider the balls BU0(z, τ ), BV0(z, τ ) in terms of the
hyperbolic metrics on U0 and V0, respectively. Provided we take τ > 0 sufficiently
small, we get that the distance of the ball BU0(z, τ ) to V0\U0 is strictly positive. Then
F(BU0(z, τ )) ⊃ BU0(F(z), τ ) provided κ and τ are sufficiently small. Indeed, F |N0 is
a composition of a κ-qc map and a conformal isometry from the hyperbolic metric onU0
to the hyperbolic metric on V0. Therefore F(BU0(z, τ )) ⊃ BV0(F(z), rτ) where r < 1
can be chosen arbitrarily close to one provided κ is sufficiently close to one. Moreover,
the contraction of the inclusion U0 → V0 on BU0(z, τ ) is bounded from above by a
constant t < 1 since the distance of the ball BU0(z, τ ) to V0\U0 is strictly positive. It
follows that F(BU0(z, τ )) ⊃ BU0(F(z), κτ) for some κ > 1.

Let V ′
0 ⊂ V0 be the τ -collar neighbourhood of γ , and let U ′

0 = F−1(V ′
0). Set

U ′ = (U ′
0 ∩U ) ∪ K ( f ) and V ′ = f (U ′). Then f : U ′ → V ′ is a polynomial-like map

and mod(V ′\U ′) is bounded away from zero. ��
Theorem 10.18 (Complex bounds in the infinitely renormalizable case). There exist
δ > 0 and C > 0 such that the following holds. Suppose that f : M → M is infinitely
renormalizable at c0, with periodic intervals M ⊃ J1 ⊃ J2 ⊃ · · · with periods 1 < j1 <

j2 < · · · . Suppose that i is sufficiently large. Then there exists a κ(Vi )-qr polynomial-like
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mapping Fi : Ui → Vi which extends f ji : Ji → Ji such that Ui , Vi are real-symmetric,
mod(Vi\Ui ) > δ, Ui has δ-bounded geometry and diam(Ui ) < C |Ji |.
Proof. Let In be the smallest puzzle piece in the generalized enhanced nest such that
In ⊃ Ji . Then In is a terminating interval. Note that Ji = In if and only if In−1 is
terminating and Ji = R(In−1).
Step 1: Moduli bounds. We will show that if i is sufficiently big, the return mapping
to Ji extends to a quasi-box mapping FQ : UQ → VQ, and that mod(VQ\K (FQ)) is
universally bounded from below.

Wewill show that mod(VQ\K (FQ)) is bounded from below by proving that the filled
Julia set of the quasi-box mapping, K (FQ), is contained in a Poincaré disk, Dθ (K ),

where K is an interval well-inside UQ ∩ R, with |K | comparable to |I∞
n |.

We will divide the proof in two cases, depending on the geometry of the generalized
enhanced nest. To do so, we define a constant ν > 0 that will separate the bounded
geometry case from the big geometry one.

Claim. There exists ν > 0 so that the following holds:

(a) If |In|/|I∞
n | > ν, then the first return mapping to I∞

n extends to a polynomial-

like map F : U → V with V = Dπ/2(I
j
n ) with |I jn | � |I∞

n |, for some j ∈ N.

Furthermore, there exists an interval K well-inside I j+1n , with |K | � |I∞
n |, so that

K (F) ⊂ Dπ/2(K ).

(b) If In−1 is non-terminating and |In−1|/|In| > ν then the first return mapping to In
extends to a qr box mapping F : U → V with V = Dπ/2(I

j
n ) for some j ∈ N.

Furthermore, there exists an interval K well-inside I j+1n , with |K | � |I∞
n | so that

K (F) ⊂ Dπ/2(K ).

(c) If In−1 is terminating and |R(In−1)|/|In| > ν, then the first return mapping to I∞
n

extends to a qr boxmappingwith range Dπ/2(I
j
n ) for some j ∈ N.Furthermore, there

exists an interval K well-inside I j+1n , with |K | � |I∞
n | so that K (F) ⊂ Dπ/2(K ).

(d) Assume In−1 non-terminating and |In−1|/|In| > ν. Then the return map to I∞
n−1

extends to a polynomial like map F : U → V with V ∩ R = I jn−1, for some j ∈ N,

with the property that |I jn−1| � |I∞
n−1|.

Proof of Claim. We will prove (a), the other cases follow using similar arguments. By
the proof of Lemma 8.9, we know that I 2n is C-nice and C-free for some C > 0, with
C → ∞ as ν → ∞. The Koebe Principle, Theorem 3.2 and Lemma 3.10 imply that
there exists j ∈ N so that |I jn |/|I j+1n | > ν1, where ν1 > 0 is defined in Lemma 8.9, with
|I jn | is comparable to |I∞

n |. The claim follows using a similar argument as the one used
in Lemma 8.9, except for the fact that we pull back two times under the return map to
I∞
n , instead of one.

Cases (a), (b) and (c) reduce the proof to the following: either,

• In−1 is terminating and |I∞
n | is comparable to |R(In−1)|, or

• In−1 is non-terminating and |In−1| is comparable to |I∞
n |.

Let M ∈ N be the constant associated to ν given by Theorem 9.3.

Case A: assume Ji � In.
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Case A.1: Bounded geometry. Suppose that for all 0 ≤ j ≤ M, |In− j |/|In− j+1| ≤ ν.

Then |In+1| � |In−M |. Let FQ : UQ → VQ be the qr quasi-box mapping associated to
the return mapping to In given by Theorem 9.3, where VQ = Dπ/2(In−M ) ∩ CIn and
UQ ⊂ Dπ/2(In−M+1).

Now, we will show the moduli bounds between VQ and K (FQ) hold. We will choose

a constant k0 ∈ N in the course of the proof. Let G = {Gl}k0 jil=0 with Gk0 ji = Ji and
G0 = Ji . To begin, we take k0 at least 4(4)+1. Let us recall that in Proposition 9.1, given
a point x ∈ In∩ω(c0)with return time to In equal to s we constructed a sequence of times
0 ≤ sn−4 < sn−5 < · · · < sn−M = s for which the pullbacks of certain Poincaré disks
are well controlled. In cases (a), (b) and (c) of the proof of Proposition 9.1, assuming
that sn−i−1 has been defined for 0 ≤ i ≤ M − 1, we can define sn−i provided that there
are at least four intervalsGl ⊂ In−i with 0 ≤ l < sn−i−1. In case (d), to be able to define
sn−i we need at least three of the intervals Gl with 0 ≤ l < sn−i−1 to be contained in
In−i+1. Now, we apply the argument form Proposition 9.1 to the chain G. Observe that,
since k0 − 1 ≥ 16, we can repeat Step 2 of Proposition 9.1, to carry on the construction
of the sequence si , to obtain sn−1 < sn−2 < sn−3 < sn−4 < · · · < sn−M = k0 ji . Then,
using Lemma 9.2, as in the proof of Theorem 9.3, we find θ1 ∈ (0, π), so that

Compc0 f
−(k0 ji−sn−1)(VQ) ⊂ Dθ1(In−1).

Suppose that In−1 is non-terminating. Using Proposition 8.2 and the choice of k0 we
define 0 ≤ sn < sn−1, and obtain an interval K2 and an angle θ2 ∈ (0, π) so that

Compc0 f
−(k0 ji−sn)(VQ) ⊂ Dθ2(K2),

where K2 is well-inside the largest terminating interval I i0n−1 in the principal nest I
0
n−1 ⊃

I 1n−1 ⊃ I 2n−1 ⊃ · · · . Under these circumstances, Lemma 2.2 and the definition of
successor imply that In+1 is a pullback of In of bounded order; BA(In) is a pullback
of In with order bounded from above by 2b2, and each successor �i+1(BA(In)) is a
pullback of order at most 2b − 1 of �i (BA(In)). Thus In+1 is a pullback of In with
order at most 2b2 + 5b(2b − 1). For each i ≥ i0, the pullback I i+1n−1 of I

i
n−1 has order b,

since I i0n−1 is terminating. Therefore, increasing k0 by 2b + 5(2b − 1) we can pull back
Compc0 f

−(k0 ji−sn−1)(VQ) by at most 15b − 5 iterates of f ji and obtain an interval K
that is well-inside In and θ ∈ (0, π) such that K (FQ) ⊂ Dθ (K ). Furthermore, since
Ji ⊂ K and |In| � |In+1| we get that |K | � |I∞

n |.
Now suppose that In−1 is terminating. Then In = Lc0(R(In−1)). Since Ji � In , we

have that Lc0(R(In)) �= R(In). Recall that Compc0 f
−(k0 ji−sn−1)(VQ) ⊂ Dθ1(In−1).

By Proposition 8.3, using three returns to In, see Combinatorial Remark 6, there exist
rn−1 < sn−1 and θ2 ∈ (0, π) such that Compc0 f

−(k0 ji−rn−1)(VQ) ⊂ Dθ2(R(In−1)).
Now, by Proposition 8.5, Combinatorial Remark 7, and Lemma 4.6, increasing

k0, if necessary, and pulling back by at most two more iterates of f ji , we have
that there exist sn < rn−1, an interval K well-inside In and θ ∈ (0, π) such that
Compc0 f

−(k0 ji−sn)(VQ) ⊂ Dθ (K ). Thus K (FQ) ⊂ Dθ (K ) ∩ UQ . Furthermore, since
Ji ⊂ K and |In| � |In+1| we get that |K | � |I∞

n |.
Case A.2: Unbounded geometry. Suppose that there exists j, 0 ≤ j ≤ M such that
|In− j |/|In− j+1| > ν. Let j0, 0 ≤ j0 ≤ M, be minimal so that |In− j0 |/|In− j0+1| > ν.

Case A.2.1: Assume j0 ≥ 2.
If In− j0 is non-terminating, then it is easy to modify the argument in the bounded

geometry case: If In− j0 and In− j0+1 are both non-terminating, then by Case (a) in Theo-
rem 9.3, the first return mapping to In− j0+2 extends to a quasiregular box mapping with
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range Dπ/2(In− j0+2). Since for all 0 ≤ i ≤ j0 −1, we have that |In−i |/|In−i+1| < ν, we
argue as in Theorem 9.3 to see that there exists a qr quasi-box mapping F : UQ → VQ
that extends the return mapping to In , and we can repeat the argument from the
bounded geometry case to find θ ∈ (0, π) and an interval K , well-inside In, so that
K (FQ) ⊂ Dθ (K ). Furthermore, since Ji ⊂ K and |In| � |In+1|we get that |K | � |I∞

n |.
Similarly, if In− j0 is non-terminating, and In− j0+1 is terminating, then by Case (b) in
Theorem 9.3, the returnmapping from I 1n− j0+1

to In− j0+1 extends to a qr polynomial-like

mapping with range Dπ/2(I 2n− j0+1
), and we can repeat the proof of the bounded geom-

etry case to conclude the proof in this case. So if Again, since for all 0 ≤ i ≤ j0 − 1,
we have that |In−i |/|In−i+1| < ν, we can repeat the arguments in the bounded geometry
case.

Now, assume that In− j0 is terminating. We need to consider in which case of Propo-
sition 8.11 we are in. Let us first treat the cases that immediately reduce to the previous
one:

• If we are in Case (2) of Proposition 8.11, then the first return mapping to I∞
n− j0+1

extends to a qr box mapping with range Dπ/2(I 2n− j0+1
).

• If we are in Case (3) of Proposition 8.11, then the first return mapping to In− j0+2
extends to a qr box mapping with range Dπ/2(In− j0+2).• If we are in Case (4) of Proposition 8.11, then the first return mapping to I∞

n− j0+2

extends to a qr box mapping with range Dπ/2(I 2n− j0+2
).

So suppose that we are in Case (1) of Proposition 8.11, which means that |I∞
n− j0

|
is small compared to |In− j0 |, so the first return mapping to I∞

n− j0
extends to a qr box

mapping with range Dπ/2(I 2n− j0
). Notice that we must have that |In− j0+1| � |R(In− j0)|

for otherwise, we would have that In− j0+1 is C-nice for some C > 0, large, which
contradicts the choice of j0.

So we have that |In− j0+1| � |R(In− j0)|, and |I∞
n− j0

| is much smaller than |I 2n− j0
|.

Observe that if if |In− j0+1| � |R(In− j0)| and |In− j0 | � |I 2n− j0
|, then by Lemma 3.10,

|I∞
n− j0

| � |In− j0 |.
Now we can repeat the argument of the bounded geometry case. This concludes the

argument when j0 ≥ 2.

Case A.2.2: Assume j0 = 1. Then |In| is small compared to |In−1|. Observe that by the
assumptions made after the proof of the claim we must have that In−1 is terminating
and |R(In−1)| is comparable to |I∞

n |. These imply that |R(In−1)| is much smaller than
|In−1|. This fact, along with Lemma 3.10, implies that |In−1| is much bigger than |I 2n−1|.
Then, we have that there exists a qr polynomial-like mapping F : U → V that extends
the return mapping to I∞

n−1 with diam(V ) comparable to |In+1|. Now we can repeat the
argument in the bounded geometry case to pullback one step to complete the proof.

Case A.2.3: Assume j0 = 0.
There are two cases to consider depending on whether In−1 is terminating, either:

• In−1 is non-terminating and |In−1| � |In| and |In|/|In+1| > ν or
• In−1 is terminating, |I∞

n | � |R(In−1)|, and |In|/|In+1| > ν.

Assume In−1 is non-terminating. Since |In| is comparable to |In−1|, we can use the
j0 ≥ 1 cases to obtain a qr quasi-boxmapping F ′

Q : U ′
Q → V ′

Q withV ′
Q = Dπ/2(In− j ′0)∩

CIn−1 for some j ′0 ≥ 1, that extends the return map to In−1. We obtain a quasi-box
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mapping FQ : UQ → VQ extending the return map to In,with VQ = Dπ/2(In− j ′0)∩CIn

and UQ = Compc0 f
− ji (VQ) since FQ is an iterate of F ′

Q . Using the argument in the
cases for j0 ≥ 1, we have that there exist an interval K1 well-inside In−1 and θ1 ∈ (0, π)

such that

K (FQ) ⊂ Dθ1(K1).

As in the bounded geometry case, we are going to use the argument for Proposi-
tion 8.2, to find s′

n > 0, θ2 ∈ (0, π) and K2 ⊂ I i0n−1 such that Compc0 f
−(k0 ji−s′n)(VQ) ⊂

Dθ2(K2), where i0 ∈ N is minimal with I i0n−1 terminating. However, we cannot apply
Proposition 8.2 directly since we do not have that In−2 is comparable to In+1. First,
notice that since c0 is even and In−1 is non-terminating, Theorem 3.1 implies that there
exists ρ > 0 such that In−1 is ρ-free. Second, observe that the chain G is bound to enter
a terminating component of the landing domain to In−1 containing critical point of f , so
k(In−1, G) = ∞.Touse the same argument as inCase (ii) of Proposition 8.2,which deals
with the situation when a chain has infinite combinatorial depth. Recall we are assuming
|In−1| is comparable to |I∞

n |. This means there exists m ∈ N, depending only on the
ratio |In−1|/|I∞

n |, so that Cm(L̂c(In−1)) is a periodic interval. So the proof of Proposi-
tion 8.2 Case (ii) goes through and we obtain Compc0 f

−(k0 ji−s′n)(VQ) ⊂ Dθ2(K2),with
s′
n, θ2 and K2 as above. Finally, we pullback a bounded number of times by f ji , to find

θ ∈ (0, π) and K well-inside In so that

K (FQ) ⊂ Dθ (K ).

Recall, we are working under the assumption that |In−1| is comparable to |I∞
n |. Since

I∞
n ⊂ K , we get that |K | � |I∞

n |.
Assume now that In−1 is terminating and |I∞

n | � |R(In−1)|. Hence, |In| is compa-
rable to |I∞

n−1|. If |In−1| is comparable to |I∞
n−1|, then from the cases when j0 ≥ 1, we

have that the return mapping to In−1 extends to a quasi-box mapping F ′
Q : U ′

Q → V ′
Q ,

with |V ′
Q ∩ R| comparable to |I∞

n−1|. Moreover we have that there exists an interval
K well-inside of In−1 and θ ∈ (0, π/2) so that K (F ′

Q) ⊂ Dθ (K ). On the other
hand, if |In−1|/|I∞

n−1| > ν, then by part (a) of the claim, applied to In−1, there is a
qr polynomial-like mapping F : U → V that extends the return mapping to I∞

n−1 with|V ∩ R| � |I∞
n−1|. As in the case when In−1 is non-terminating, we can obtain a quasi-

box mapping FQ : UQ → VQ that extends the return map f ji : I 1n → In as an iterate

of F ′
Q : U ′

Q → V ′
Q or of F : U → V . Moreover, there exists ρ1 > 0 so that I jn is

ρ1-free. The proof in the bounded geometry case is analogous, one just needs to con-
sider V ∩ R = I 2n−1. We will explain how to use the arguments for Proposition 8.3 and
Proposition 8.5 to pullback through one more step in the enhanced nest. Recall we are
assuming In is terminating and |In+1| is much smaller than |In|.

Since V ∩ R is ρ1-free, we can use the argument from Step 1 of Proposition 8.3
(compare Corollary 8.4) to find a k1, ji ≤ k1 ≤ 4 ji (see Combinatorial Remark 3), an
interval K1 well-inside I∞

n−1 and θ1 ∈ (0, π) so that

Compc0 f
−(k0 ji−k1)(VQ) ⊂ Dθ1(K1).

Nowwe argue as in Steps 2 and 3 of Proposition 8.3. It is important to notice that since
C(R(In−1)) ⊂ Lc0R(In−1) = In is terminating, k(X, G) = ∞, where X is defined as
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in Step 2 of Proposition 8.3. Because of this, we do not need to rely on having bounded
geometry at a deeper level in order to control the loss of angle, since we do have control
of the combinatorial depth in the parts of the chain between critical points, see Case (ii)
of the proof of Proposition 8.2. Thus we obtain k2, ji ≤ k2 ≤ 7 ji , see Combinatorial
Remark 6, an interval K2, well-inside R(In−1) and θ2 ∈ (0, π) such that

Compc0 f
−(k0 ji−k2)(VQ) ⊂ Dθ2(K2).

We are assuming R(In−1) is not a periodic interval and that |I∞
n | is comparable to

|R(In−1)|. We use the same argument as the one used in Proposition 3.20 to prove that
R(In−1) is ρ′-free for some ρ′ > 0. If R(In−1) is not periodic and terminating, then
Proposition 3.20 (1) implies that there exists ρ′ > 0 so that R(In−1) is ρ′-free. Now,
assume R(In−1) is non-terminating. Observe that

I∞
n ⊂ �2(R(In−1)) ⊂ I∞

n−1,

and compare this with Equation (3.2). The proof of Proposition 3.20 (3) applies to this
situation. Since |I∞

n | is comparable to |I∞
n−1|, there exists ρ′ > 0 so that R(In−1) is

ρ′-free. Finally, we repeat the argument used to prove Proposition 8.5 to obtain k3,
0 ≤ k3 ≤ 9 ji and θ3 ∈ (0, π) so that

Compc0 f
−(k0 ji−k3)(VQ) ⊂ Dθ3(In).

Observe that, since R(In−1) is ρ′-free there exists ρ′′ > 0 so that In is ρ′′-free. So we
can apply Lemma 4.6, to obtain θ ∈ (0, π) and an interval K well-inside In so that

Compc0 f
−(k3+1) ji (VQ) ⊂ Dθ (K ),

with I∞
n ⊂ K . Hence, |K | � |I∞

n |. Since, K (FQ) ⊂ Dθ (K ) ∩UQ the result follows.

Case B: Assume Ji = In.
In this case, In = R(In−1) = Ji is a periodic interval. Let Ti ⊃ Ji be the largest

interval so that f ji has no critical points in Ti\Ji , and let Si = Compc0 f
− ji (Ti ). By

Lemma 3.10, since, ∂ Ji = {α, τ(α)}, and ji = 2 ji−1 whereα is the orientation reversing
fixed point closest to c0 of f ji−1 , there exists η > 0 such that (1 + 2η)Ji ⊂ Si ⊂
(1+η)Si ⊂ Ti , compare [S3, Lemma 8.7]. In the case when In = Ji , the interval K will
always be Si .

Case B.1: Bounded geometry.
First suppose that for no j, 0 ≤ j ≤ M + 1 that |In− j |/|In− j+1| > ν. Fol-

lowing the proof of the Proposition 9.3, one sees that it applies just as well to the
return mapping f ji : Si → Ti as it does to f ji : Ji → Ji . This means we can con-
struct FQ : UQ → VQ a qr quasi-box mapping that extends the return mapping to Ti ,

where VQ = Dπ/2(In−M−1) ∩ CTi . Notice that the chain {Gi } jii=0 with G ji = Ti and
G0 = Compc0 f

− ji (Ti ) = Si has intersection multiplicity two.
Let us show that there exists θ1 ∈ (0, π/2) so that K (FQ) ⊂ Dθ1(Si ). To see this,

we consider two cases separately. First, suppose that for every j, 0 ≤ j ≤ M , In− j−1
is terminating, and In− j is of period two under RIn− j−1 . In this case, we have that each
interval In− j = Ji− j , a periodic interval. We have that f ji−M |Si−M : Si−M → Ti−M ,

and the chain, {G̃ j } ji−M
j=0 with G̃ ji−M = Ii−M−1 and G̃0 = Ii−M−1 has order 2b. Thus

by the argument in Step 1 of the proof of Proposition 8.3, we have that there exists
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θ ∈ (0, π) such that Compc0 f
− ji−M (VQ) ⊂ Dθ (Si−M ). Repeating this argument for

the return map to each Ji− j , 0 ≤ j ≤ M, we have that there exists k0, 0 < k0 ≤ M , and
θ1 ∈ (0, π/2), such that

Compc0 f
− ji k0(VQ) ⊂ Dθ1(Si ).

Thus K (FQ) ⊂ Dθ1(Si ). Alternatively, there exists i0, 0 < i0 ≤ M minimal so that
In−i0 is terminating, In−i0 does not have period two under RIn−i0−1 and for all j < i0,
In− j does have period two under RIn− j−1 . Let F

′
Q : U ′

Q → V ′
Q denote the quasi-box

mapping that extends the return mapping to In−i0 . By Case A of this proof, we have that
there exists θ ′ ∈ (0, π/2), and an interval K ′ with |K ′| � |In−i0 | such that such that
K (F ′

Q) ⊂ Dθ ′(K ′). Now we can argue as in the case when all of the returns to In− j

were of period two under RIn− j−1 to see that there exists an angle θ1 ∈ (0, π/2) such
that K (FQ) ⊂ Dθ1(Si ). Thus K (FQ) ⊂ Dθ1(Si ) ∩ Dπ/2(In−M ).

Case B.2: Unbounded geometry.
Assume there exists j, 0 ≤ j ≤ M + 1 such that |In− j |/|In− j+1| > ν. Let j0 ≥ 0 be

minimal so that |In− j0 |/|In− j0+1| > ν.

Case B.2.1: Suppose j0 ≥ 2. There exists i0, 0 < i0 ≤ j0 − 1 minimal so that In−i0 is
terminating, In−i0 does not have period two under RIn−i0−1 and for all j < i0, In− j does
have period two under RIn− j−1 . Let F

′
Q : U ′

Q → V ′
Q denote the quasi-box mapping that

extends the return mapping to In−i0 , given by Case A, and repeat the proof of Case B.1
to obtain that there exists a θ ∈ (0, π) so that

K (FQ) ⊂ Dθ (Si ).

Case B.2.2: Suppose j0 = 1, or j0 = 0 and |In−1| is much bigger than |In|. Assume
j0 = 1. By Lemma 3.10, we know that |R(In−1)| is comparable to |I∞

n−1|. Furthermore,
since we are assuming |I∞

n | is comparable to |R(In−1)|, then by Lemma 3.10, we have
that |I 2n−1| is much smaller than |In−1|. By the claim,we can find a polynomial-like

mapping F : U → V that extends the return mapping to I∞
n−1 so that V ∩ R = I jn−1 and

|I jn−1| � |I∞
n−1|.Weobtain a quasi boxmapping that extends themapping f ji : Ji → Ji ,

by setting VQ = V ∩ CTi , UQ = Compc0 f
− ji (VQ) and defining FQ |UQ = F2. Since

the boundary points of Ti are critical values of f ji and |Ti | is comparable to I i0n−1, by the
argument from Step 1 of the proof of Proposition 8.3 there exists θ ∈ (0, π) such that

Compc0 f
− ji (VQ) ⊂ Dθ (Si ).

Notice that this argument does not depend on |In| and |In+1| being comparable, so we
also use it to cover the case when j0 = 0 and |In−1| is much bigger than |In|.
Case B.2.3: Suppose j0 = 0 and |In−1| is comparable to |In|. This implies that |Si−1| is
comparable to |Si |. We use the argument from either the bounded geometry case or the
case when j0 ≥ 2 with n−1 in place of n to obtain a qr quasi-box mapping F ′

Q : U ′
Q →

V ′
Q that extends the return mapping to In−1, and an angle θ1 ∈ (0, π) such that

K (F ′
Q) ⊂ Dθ1(Si−1).

We obtain FQ : UQ → VQ extending the first return mapping to Ji as the second iterate
of F ′

Q, just as in Case B.2.2. Now, since |Si−1| is comparable to |Si |, by the argument
from Step 1 of Proposition 8.3 there exists θ2 ∈ (0, π) so that
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K (FQ) ⊂ Compc0 f
− ji (VQ) ⊂ Dθ2(Si ).

Step 2: Controlling the dilatation. Since there exist constants C1 and ρ′′ > 0 such that

diam Ji ≤ diam Dθ (K ) < C1|Ji |,
and (K\(1+2ρ′′′)−1K ) is disjoint from thepost-critical set, there exists a constantC2 > 0
such that the dilatation of f ji |Dθ (K ) is bounded from above byC2

∑ ji
k=0 |L f k (c0)(Ji )|2.

Now, by Lemma 10.17, we have that there exists a qr polynomial-like mapping
Fi : Ui → Vi that extends the return mapping to Ji such that mod(Vi\Ui ) is bounded
from below.

Step 3: Ui has bounded geometry at c0. Since mod(Vi\K (Fi )) is bounded from below
and Vi ⊃ K (Fi ) ⊃ Ji , it follows, for example from [M2, Proposition 4.8], that there
exists ρ > 0 so that the ball with radius ρ centered at Fi (c0) is contained in Vi . If the
biggest ρ for which is true is small, then Vi comes very near Ji but still contains Ji , which
means that the modulus of Vi\K (Fi ) is necessarily small. Then since mod(Vi\Ui ) is
bounded from below, it follows that there also exists a ρ′(ρ) > 0 so that the ball with
radius ρ′ centered at c0 is contained in Ui . ��

11. Table of Notation and Terminology

RI p. 3
Lx (I ) p. 3
L̂x (V ) p. 3
renormalizable p. 4
central return p. 4
terminating interval p. 4

J∞ p. 4
ρ-nice domain p. 3
ρ-free domain p. 3
ρ-bounded geometry p. 3
γ · I p. 17
Compx (K ) p. 17
b, b p. 17
child p. 19
persistently recurrent p. 20
successor p. 19
�(I ) p. 20
central return domain p. 19
non-central return domain p. 19
principal nest p. 19

m̂ p. 20
τ p. 21

R(I ) p. 21
Yi , Ỹγ p. 21

A(I ), B(I ) p. 21
E(I ) p. 22
(generalized) enhanced nest p. 22
pn p. 22

r(I ), r̂(I ) p. 23
ρ-nice interval p. 24
ρ-externally free interval p. 24
ρ-internally free interval p. 24
ρ-free interval p. 24
ρ-strongly nice interval p. 24
well-inside, deep-inside p. 24
Cc(I ) p. 29
m p. 29

Crit(I ; J ),Crit(I ; {G j }sj=0) p. 64

k(I, {G j }sj=0), k(I, J ), k̂(I, J ) p. 64
Tξ p. 98
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