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Abstract: In the present paper and the companion paper (Berman, Kihler—Einstein
metrics, canonical random point processes and birational geometry. arXiv:1307.3634,
2015) a probabilistic (statistical-mechanical) approach to the construction of canonical
metrics on complex algebraic varieties X is introduced by sampling “temperature de-
formed” determinantal point processes. The main new ingredient is a large deviation
principle for Gibbs measures with singular Hamiltonians, which is proved in the present
paper. As an application we show that the unique Kihler—Einstein metric with negative
Ricci curvature on a canonically polarized algebraic manifold X emerges in the many
particle limit of the canonical point processes on X. In the companion paper (Berman
in 2015) the extension to algebraic varieties X with positive Kodaira dimension is given
and a conjectural picture relating negative temperature states to the existence problem
for Kihler—Einstein metrics with positive Ricci curvature is developed.
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1. Introduction

In the present paper and the companion paper [9] a probabilistic approach to the con-
struction of canonical metrics on a complex algebraic varieties X is introduced by sam-
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pling random point processes defined in terms of algebro-geometric data, canonically
attached to X. The processes are “positive temperature deformations” of determinantal
(fermionic) point processes and the main new ingredient is a large deviation principle
for Gibbs measures with singular Hamiltonians, which is proved in the present paper.
As an application we show that the unique Kéhler—Einstein metric with negative Ricci
curvature on a canonically polarized algebraic manifold X emerges in the many particle
limit of the canonical point processes on X. More generally, in the presence of a stress-
energy tensor on X it is shown that the unique Kihler metric solving Einstein’s equation
on X with negative cosmological constant (in Euclidean signature) emerges in the many
particle limit.

The generalization to the construction of canonical metrics and measures on a general
algebraic variety X of positive Kodaira dimension are given in the companion paper [9],
by exploiting the global pluripotential theory and variational calculus in [7,12,14,20].
This leads to a new probabilistic link between algebraic geometry on one hand (in par-
ticular the Minimal Model Program) and Kihler-Einstein geometry on the other. A
conjectural picture is also developed describing the relation between the existence of
negative temperature states and the existence problem for Kéhler—Einstein metrics with
positive Ricci curvature. In particular, relations to algebro-geometric stability proper-
ties, as in the Yau-Tian-Donaldson conjecture are described in [9]. See also [8,40] for
connections to optimal transport in the real setting (corresponding to the case when X
is a toric and abelian variety, respectively) and [6] for connections to physics.

1.1. A large deviation principle for Gibbs measures. Let X be a compact Rieman-
nian manifold and denote by dV the corresponding volume form. Given a sequence of
symmetric lower semi-continuous functions H ™) on the N-fold products XV the corre-
sponding Gibbs measures at inverse temperature 8 €]0, oo[ is defined as the following
sequence of symmetric probability measures on X :

N _BHW)
/L/(S)I=€ BH dV®N/ZN,,3,

where the normalizing constant
—BHWN
Znp :=/ e PHT qveN
XN

is called the (N-particle) partition function. The ensemble (X", ,ugv)) defines a ran-
dom point process with N particles on X which, from the point of view of statistical
mechanics, models N identical particles on X interacting by the Hamiltonian (interac-
tion energy) H™) in thermal equilibrium at inverse temperature . The corresponding
empirical measure is the random measure

N
1
. N .
Sy : XV > Mi(X), (x1,...,x§) > SN (X1, ..., XN) _ﬁg Oy, (1.1)

i=1

taking values in the space M (X) of all normalized positive measures on X, i.e., the
space of all probability measures on X.

A classical problem is to establish conditions for the existence of a macroscopic
limit of the empirical measures § in the many particle limit N — oco. More precisely,
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the problem is to show that the random measures §y admit a deterministic limit ug €
M (X) in the sense that the law

Ty = (On)wity (1.2)

of 8y, defining a probability measure on M (X), converges, as N — oo, weakly to a
Dirac mass concentrated on some pg in M (X). Equivalently, the marginals (M;}N)) j

of ,ugv) on X/ satisfy

( (N)),:/ ™, 8
He Ji= [y Hp Hg

weakly as probability measures on X/ as N — oo, which in the terminology of Kac
and Snitzmann [50] means that the sequence ,ugv) is chaotic. A stronger exponential
notion of convergence of §y, with an explicit speed and rate functional, is offered by
the theory of large deviations, by demanding that the laws I' y satisfy a Large Deviation

Principle (LDP) with speed ry and a rate functional F, symbolically expressed as
Cy(u) ~e ™VFW N & oo

and assuming that F' admits a unique minimizer wg in Mj(X). Loosely speaking this
means that the probability of finding a cloud of N points x1, ..., xy on X such that the
corresponding measure # >, 8y, approximates a volume form p is exponentially small
unless w is the minimizer ug of Fg.

Our main general result establishes such a LDP for a class of singular Hamiltonians:

Theorem 1.1. Let HN) be a sequence of functions (Hamiltonians) on XN as above.
Assume that

e there exists a sequence Sy — 00 of positive numbers Sy such that for any continuous
function «# on X

Fpy () == — ! log/ e N (H Y (xixy)ru(i e sulon) gy ®N
NBN XN

converges, as N — 00, to a Gateaux differentiable functional F(u) on C°(X)
e HM jg uniformly quasi-superharmonic, i.e. Ay, H(N)(Jq,xz, ...xy) < Con xVN

Then, for any fixed 8 > 0, the measures (5N)*(e_/3H(N)dV®N) on M (X) satisfy, as
N — o0, a large deviation principle (LDP) with speed BN and good rate functional

1
Fg(p) = E(u) + Ede(u), (1.3)
where the functional E (i) is the Legendre-Fenchel transform of —F (—-) and Dy (10)
is the entropy of w relative to dV. In particular, the empirical measures 8y of the
corresponding random point processes on X converge in law to the deterministic measure
given by the unique minimizer g of Fg. Moreover, if the equation

ePrav

=T gy

(1.4)

on C%(X) admits a solution u B then the corresponding differential ug := dFju, is the
minimizer of Fg.
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It follows from the previous theorem that the LDP indeed also holds for the corresponding
Gibbs measures with the rate functional Fjg — Cg, where Cg is the following constant:

Cg:= inf Fg=— lim
Mi(X) N—oo NBn

log Zy gy » (1.5)

It should be stressed that even the convergence of the first marginals of u/(gN), implied
by the previous theorem, appears to be a new result.

As explained in Sect. 4.1 the asymptotics in the first assumption of the theorem may
be replaced by the weaker assumption that there exists a functional E () on M (X)
such that

HM™M(x1,...,xy)/N = E(n)

in the sense of Gamma convergence. Moreover, Theorem 1.1 can be viewed as a gener-
alization of the Girtner—Ellis theorem in the setting of Gibbs measures (see Sect. 4.2).
Let us also point out that the restriction that X be compact can be removed if suitable
growth-assumptions of H ™) “at infinity” are made. But since our main application con-
cerns the case of compact complex manifolds, we have, for simplicity, taken X to be
compact.

It may be illuminating to point out that in thermodynamical terms the content of
Theorem 1.1 can be heuristically expressed as follows. Imagine that we know the macro-
scopic ground state (i.e., the state of zero energy E) of a system of a large number N
of particles in thermal equilibrium at zero temperature (i.e. at § = 00). If we can rule
out any first order phase transitions at zero-temperature (which essentially means that
the macroscopic equilibrium states is unique), then increasing the temperature leads to a
new macroscopic equilibrium state, minimizing the corresponding free energy functional
E — S/B, where S is the physical entropy (i.e., S = —D with our sign conventions). In
fact, in the complex geometric setting to which we next turn the zero-temperature limit
B — oo is reminiscent of a (second order) gas-liquid phase transition [10].

1.2. Application to Kihler—Einstein geometry. Let now X be an n-dimensional com-
plex algebraic projective variety of positive Kodaira dimension. This means that the
plurigenera Ny of X are increasing:

Ni = dime HO(X, kK x) — 00,

where H O(X ,kKx) denotes, as usual, the complex vector space of all pluricanonical
(holomorphic) n-forms of X at level k, i.e. HO(X, kKx) is the space of all global
holomorphic sections of the k tensor power of the canonical line bundle

Kyx := AN(T*X)

of X (using additive notation of tensor powers). In terms of local holomorphic coordi-

nates z1, ..., z; on X this simply means that the elements s® of HO(X, kK x) may be

represented by local holomorphic functions s on X, such that |s®|*/¥ transforms as

a density on X and thus defines a measure on X. To any such algebraic variety X we

can associate the following canonical sequence of probability measures V%) on XV :
2/k

uMo = ZL (det SO (zy, ..., zn,) / , (1.6)

Nk
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where det S is a generator of the top exterior power ANk (HO(X N, kKyn), ie.,
totally antisymmetric (and thus defined up to a multiplicative complex number) and Z y,
is the normalizing constant. The probability measure ;™) thus defined is symmetric,
i.e., invariant under the natural action of the permutation group Sy, , independent of the
choice of generator det S and hence defines a canonical random point process on X
with Ny points.

As shown in the companion paper [9], it follows from Theorem 1.1, combined with
the asymptotics in [12] that the corresponding empirical measures 8y, converge in law,
as k — oo, towards a deterministic measure (qq, on X, which is thus canonically
attached to X. In fact, using the pluripotential theory and variational calculus in [7,14]
the limiting measure (4, is shown to coincide with the canonical measure of Song-
Tian [51] and Tsuji [52] previously defined in terms of Kidhler—Einstein geometry or
equivalently as solutions to certain complex Monge—Ampere equations. In the present
paper we will show how to apply Theorem 1.1 in the special case when K is positive
(i.e. ample) to deduce the following

Theorem 1.2. Let X be a compact complex manifold with positive canonical line bundle
Kx. Then the empirical measures 8y, of the corresponding canonical random point
processes on X converge in law, as N — 00, towards the normalized volume form
dVkE of the unique Kdihler—Einstein metric wg g on X. More precisely, the law of Sy,
satisfies a large deviation principle with speed Ny whose rate functional may be identified
with Mabuchi’s K-energy functional on the space of Kdhler metrics in c1(Kx).

By the celebrated Aubin—Yau theorem [3,53] the canonical line bundle K x of a compact
complex manifold X is positive precisely when X admits a Kédhler—Einstein metric wg g
with negative Ricci curvature, i.e., a Kéhler metric with constant negative Ricci curvature:

Rica)KE = —WKE (1.7)

However, there are very few examples where the Kédhler—Einstein metric can be obtained
explicitly. The previous theorem provides a canonical sequence of quasi-explicit Kéhler
forms wy approximating wgpg :

Corollary 1.3. Let X be a complex compact manifold such that K x is positive. Then the
sequence

. w 2/k
oy = dd log/ ’(detS )\ Xl ey XN 1) (1.8)
XN

(consisting of Kdhler forms, for k sufficiently large) converges, as k — 00, to the
Kdihler—Einstein metric wg g in the weak topology of currents on X.

Theorem 1.2 fits into a more general setting of “temperature deformed” determinan-
tal point processes attached to a polarized manifold (X, L), i.e., a compact complex
manifolds X endowed with a positive line bundle L (Theorem 5.7). More precisely, in
the general setting the point processes are attached to the data (|||, dV, Br) consisting
of a Hermitian metric ||-|| on a L, a volume form dV on X and a sequence of positive
numbers B — B €]0, 0o]. Then the corresponding probability measures on X are
defined by

_ | (det S©)(x1, x2, .. .xNk)”Zﬁk/k 4V O

(Ne.B) .
nw :
ZN.p

; (1.9)
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where det S® is a generator of the top exterior power AN HO(X, kL). Concretely, the
corresponding LDP is equivalent to the following asymptotics for the L2#/*-norm of
the generator det S (&) of the determinant line of H°(X, kL) which is orthonormal with
respect to the L2-product determined by (|||, dV) :

N T inf  Fg(u)

1 *)
— log ”det S ‘
Ni ) neM;(X)

LZﬂk/k(XNk ’M;)@
(by Lemma4.7). In this general setting the limiting deterministic measure (g minimizing
Fg is the volume form of the unique Kéhler metric wg in the first Chern class of L solving
the twisted Kihler—FEinstein equation

Ricw = —Bw + 1, (1.10)

where the twisting form 7 is explicitly determined by (||-||, dV, B8). The point is that
when L = Kx any given volume form dV naturally defines a metric ||-||; on L and
the probability measures on X Ne attached to (||-|| 4v »dV, 1) are precisely the canonical
ones defined by formula 1.6. Moreover, in this special case n vanishes and the Eq. 1.10
thus reduces to the usual Kédhler—Einstein equation 1.7. The more general twisted version
of the equation has previously appeared in various situations in Kéhler geometry [37,
51,52]. From the physics point of view the twisting form 7 corresponds to the (trace-
reversed) stress-energy tensor in Einstein’s equations on X (with Euclidean signature).
The Hamiltonians

2
H (xy, ... xn) = —k~log H(det S®)(x1, x2, . xw,) ‘ (1.11)

corresponding to the probability measures 1.9 are strongly non-linear unless X is a
Riemann surface, i.e. unless n = 1. In fact, in the simplest latter case, i.e., when X is the
Riemann sphere, H V¥ (xy, ..., xy,) is a sum of identical pair interactions W (x;, x;),
where W is the Green function of the corresponding Laplace operator and then the
corresponding functional E(u) is the Dirichlet energy (Remark 5.11). In general, the
connection to the Kdhler—FEinstein geometry of (X, L) will be shown to arise from the
fact that the Eq. 1.4 is intimately related to the complex Monge-nAmpere equation

(wo +i00u)" = P*dV, (1.12)

where w is the normalized curvature two form of the given metric ||-|| on L. More
precisely, the two equations coincide for smooth functions u such that wg + i9du is a
Kihler form (i.e., smooth and positive). In this complex geometric setting the strong
non-linearity of the Hamiltonians H™) when n > 2 is reflected in the non-linearity
of the complex Monge—Ampere operator appearing in the left hand side of Eq. 1.12
(coinciding with the Laplacian when n = 1). Furthermore, the singularity of H®)
(which is present for any dimension n) is a reflection of the fact that solutions to the
(generalized) Calabi—Yau equation

(wo +i00u)" = (1.13)

are, in general, singular when  is a probability measure on X (as is clear already for
the Laplace equation appearing when n = 1).

Finally, let us point out that the extension to general complex algebraic manifolds X
with positive Kodaira dimension, established in the companion paper [9], relies on an
extension of Theorem 5.7 to line bundles L which are big (but not necessarily positive);
see Sect. 5.4.
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1.3. Comparison with previous results. First a comment on relations to the physics
literature: in the case n = 1 (i.e., in two real dimensions) the quasi-linear Laplace
type Eq. 1.12 arises as the macroscopic equilibrium equation in a range of statistical
mechanical models of mean field type: it is called the Joyce-Montgomery equation
in Onsager’s vortex model for 2D turbulence, the Poisson—Boltzmann equation in the
Debye—Hiickel theory of plasmas and electrolytes and the Lane—-Emden equation in
stellar physics (see [35]). But the Monge—Ampere equation (n > 1) does not seem to
have appeared in any statistical mechanical model before. On the other hand, in the
case when S := k the density of the corresponding probability measure has a natural
quantum mechanical interpretation: it is the squared amplitude of the Slater determinant
representing a maximally filled many particle state of N free fermions on X, subject to
an exterior magnetic field (the corresponding single particle wave functions are elements
of HO(X, kL) and represent the corresponding lowest Landau levels). The case when
Br = vk, for a given positive integer v, also appears in the fractional Quantum Hall
Effect, where the corresponding probability density is the squared amplitude of the
Laughlin state (see the review [43] and references therein).

1.3.1. Large deviations. The LDP in Theorem 1.1 in the case when H") is uniformly
equicontinuous is essentially well-known in the setting of mean field models [8,34] (it
then also applies to the case of negative 8, by replacing H ™) with - H™)). But the key
feature of Theorem 1.1 is that it applies to a large class of singular Hamiltonians and
in particular H™) is allowed to be strongly repulsive in the sense that it blows up, as
two points merge (and hence the Gibbs measure may be ill-defined when g is negative).
It seems that the only previous class where a convergence result as in Theorem 4.6 has
been established for singular Hamiltonians is in the “linear” case when H™) is a sum
of pair interactions with a mean field scaling:

1
N 2 :
H( )(Xl,...,XN) = m 2 W(Xi,xj'), (114)
1<i<j<N

where the pair interaction W is allowed to be singular along the diagonal, as long it is
lower semi-continuous and in LlloC (this is indeed a mean field interaction in the sense
that each particle x; is exposed to the average of the pair interactions W (x;, x;) for
the N — 1 remaining particles). Then the asymptotics of the partitions functions 1.5
can be obtained using the method of Messer—Spohn [45], which is based on the Gibbs
variational principle and which crucially relies on the existence of the mean energy E (1)
corresponding to H™) (see [26,41] for the case of a logarithmic singularity which is
motivated by Onsager’s vortex model for 2D turbulence [35,46]). A similar argument
applies in the case of “finite order”, i.e., when H™) is a sum of j-point interactions for a
uniformly bounded j (then E (1) depends polynomially on ©). However, the main point
of the previous theorem is to avoid the latter assumption, which is not satisfied in the
application to Kidhler—Einstein geometry (apart from the classical lowest dimensional
setting of Riemann surfaces). In particular, the present proof bypasses the problem of
the existence of the limiting mean energies. Instead, the main idea of the proof is to
exploit the Riemannian orbifold geometry of the space of configurations of N points on
X, viewed as the singular quotients X /Sy, where Sy is the symmetric group acting on
XN by permuting the factors. The key result is a submean inequality for positive quasi-
subharmonic functions on X% /Sy with a distortion coefficient that is sub-exponential
in the dimension (Theorem 2.1), which is closely related to an inequality of Li-Schoen
[44].
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There is also another approach to large deviation principles for mean field Hamiltoni-
ans of the form 1.14 originating in the literature on random matrices and Coulomb gases
[17,18,28,48], which as explained in [48], is closely related to the notion of Gamma
convergence (see also [55,56] for applications to univariat random polynomials). This
approach seems to be limited to the case when By > log N and in particular 8 = oo
so that the entropy contributions can be neglected.! See also [33] for a general LDP for
Hamiltonians of the form 1.14 using weak convergence methods.

Let us also point out that the role of (det S (k))(x1, X2, ...Xxy,) appearing in formula
1.9 is played by the classical Vandermonde determinant in the random matrix literature
(see Example 5.6). In fact, there is a non-compact analogue of Theorem 5.7 in Euclidean
C" which specializes to the setting of random matrix theory and the 2D log gas when
n = 1 and B = oo and to the 2D vortex model (forn = 1 and § < 00) and which can be
proved by supplementing the proof of Theorem 5.7 with a tightness estimate, as in the
non-compact setting considered for 8 = oo in [5] (see also [19] for the case B = 00).
Details will appear elsewhere.

1.3.2. Kdhler geometry. A statistical mechanics approach has previously been applied to
conformal geometry [42], as opposed to the present complex-geometric setting. The role
of the “determinantal” Hamiltonian 1.11 is in the conformal setting played by a mean field
Hamiltonian of the form 1.14 with a logarithmic pair interaction and the role of the fully
non-linear complex Monge—Ampere operator is played by a linear conformally invariant
operator, which is zero-order perturbation of a power of the Laplacian (the Paneitz
operator). Accordingly, previous results in [26,41] concerning such Hamiltonians can
be applied in the conformal setting (compare the discussion above), while the present
setting seems to require new methods.

The present probabilistic should be viewed in the light of the pervasive philosophy
in Kidhler geometry, going back to Yau [54], of approximating metrics on a complex
algebraic manifold with algebraically defined Bergman metrics, which may be identified
with elements of the symmetric space GL(N, C)/ U (N). For example, the quasi-explicit
Kihler metrics wy in formula 1.8, approximating the Kihler—Einstein metric wg g on
a canonically polarized manifold X, are analogs of Donaldson’s balanced metrics in
GL(N,C)/U(N) [32]. One advantage of the present approach is that, as shown in the
companion paper [9], the approximation also applies when X is of general type, where
the role of wg g is played by the canonical Kihler—Einstein current on X (which is
singular along a subvariety of X) [14,20]. In another direction it would be interesting to
see if the present approach can be implemented to construct numerical simulations of
Kéhler—Einstein metrics, using Monte Carlo type methods, complementing the different
numerical approaches in [31,32] (see [4] for relations between Monte Carlo simulations
and similar polynomial determinantal point processes).

Even if the connection between canonical random point processes on a complex alge-
braic manifold X does not seem to have been studied before, there are some connections
to previous work on random polynomials/holomorphic sections in a given back-ground
geometry [49]; in particular in the one-dimensional setting where an LDP was obtained
in [55,56]. Another probabilistic approach to the space of Kéhler metrics has been intro-
duced in a series of papers by Ferrari, Klevtsov and Zelditch [36], motivated by Quantum
Field Theory. The approach aims at approximating random Kéhler metrics with random
Bergman metrics. Accordingly, the role of the N-particle space XV /Sy is in [36] played

! The Hamiltonians in the random matrix and Coulomb gas literature are usually scaled in a different way
so that our zero-temperature (8 = 0o) corresponds to a fixed inverse temperature.
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by the symmetric space GL(N.C)/U (N). In conclusion, it would be very interesting to
understand the precise connections between [36] and the present setting, as well as the
connection to Donaldson’s balanced metrics [32].

Organization. In Sect. 2, we prove the submean inequality in large dimensions, which
plays a key role in the subsequent Sect. 3, where the general LDP in Theorem 1.1 is
proved. In Sect. 4, we make a digression on relations to previous methods and notions
used in the literature on large deviations. The applications to Kéhler—Einstein geometry
are given in Sect. 5. For the convenience of readers lacking background in Kéhler ge-
ometry we start the section by giving a reasonably self-contained account of the Kéhler
geometry setup (including some rudiments of pluripotential theory). The article is con-
cluded with an outlook in Sect. 6 on some open problems and an appendix where the
dimension dependence on the constant in the Cheng—Yau gradient estimate is obtained
by tracing through the usual proof.

2. Submean Inequalities in Large Dimension
2.1. Setup. Let (X, g) be a n-dimensional Riemannian manifold and assume that
Ricg > —k%(n — 1)g

for some positive constant « (sometimes referred to as the normalized lower bound on
the Ricci curvature). Let G a finite group acting by isometries on X and denote by
M = X /G the corresponding quotient equipped with the distance function induced by
the metric g, i.e.

dy(x,y) = inf dx(x, yy),
yeG

where dy is the Riemannian distance function on (X, g). Even though the quotient M is
not a manifold in general (since G will in general have fixed points) it still comes with
a smooth structure in the following sense. Denote by p the natural projection map from
X to M. Using the projection p we can identify a function f on M with G-invariant
function p* f on X and accordingly we say that f is smooth if p* f is. Similarly, there
is a natural notion of Laplacian A on the quotient M : the Laplacian Au of a locally
integrable function u on M is the signed Radon measure defined by

1
A = — *ulA(p*
fM( uf |G|/X’”‘ " f)

for any smooth function f on M. More generally, by localization, this setup naturally
extends to the setting of Riemannian orbifolds (see [21]), but the present setting of global
quotients will be adequate for our purposes.

2.2. Statement of the submean inequality.

Theorem 2.1. Let (X, g) be a Riemannian manifold of dimension n such that
Ric g > —k*(n — 1)g and G a finite group acting by isometries on X. Denote by
M := X/G the corresponding quotient equipped with the distance function induced
by the metric g and let v be a non-negative function on M such that Agv > —2%v for
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some non-negative constant . Then, for any § €]0, 1[ and € €]0, 1] there exist constants
A and C such that

2
vedV
sup V2 < A8 Cridre) st(xo)

Bes (x0) fBe5 (x0) dv

’

where C only depends on an upper bound on k and A only depends on § and € (assuming
that the balls above are contained in a compact subset of M).

Note that by the G-invariance we may as well replace the functional v and the balls on
M with their pull-back to X.

2.3. Proof of the submean inequality in Theorem 2.1. We will follow closely the elegant
proof of Li-Schoen [44] of a similar submean inequality. But there are two new features
here that we have to deal with:

e We have to make explicit the dependence on the dimension n of all constants and
make sure that the final contribution is sub-exponential in n
e We have to adapt the results to the singular setting of a Riemannian quotient

Before turning to the proof we point out that it is well-known that submean inequalities
with a multiplicative constant C(n) do hold in the more general singular setting of
Alexandrov spaces (with a strict lower bound —k on the sectional curvature). But it
seems that the current proofs (see for example [38]), which combine local Poincaré and
Sobolev inequalities with the Moser iteration technique, do not give the subexponential
dependence on C(n) that we need.

We recall that the two main ingredients in the proof of the result of Li-Schoen referred
to above is the gradient estimate of Cheng—Yau [29] and a Poincaré-Dirichlet inequality
on balls. Let us start with the gradient estimate that we will need:

Proposition 2.2. Let u be a harmonic function on the ball B,(xo) of radius a centered
at xo € M and assume that a < 1 Set py,(x) := d(x, xo) (the distance between x and
x0). Then

sup (IVlogul (@ — px)) < Cn,
Ba(x0)

where the constant C only depends on an upper bound on k.

Proof. In the smooth case this is the celebrated Cheng—Yau gradient estimate [29]. The
result is usually stated without an explicit estimate of the multiplicative constant C,, in
terms of n, but tracing through the proof in [29] gives C,, < Cn (see the appendix in
the present paper and also [2] for a probabilistic proof providing an explicit constant).
We claim that the same estimate holds in the present setting using a lifting argument.
To see this recall that the usual proof of the gradient estimate proceeds as follows (see
the appendix). Set ¢ (x) := |Vlogu| (= |Vu| /u) and F(x) := ¢ (x)(px, — a)?. Then
F attains its maximum in a point x; in the interior of B, (x() (otherwise |Vu| vanishes
identically and then we are trivially done). Hence, F'(x) < F(x1) on some neighborhood
U of x1.Now, in case F (or equivalently py,) issmoothon U we get AF < 0andVF =0
at x1. Calculating A F' and using Bochner formula and Laplacian comparison then gives

d(x1)(a — pxy(x1)) = Cn 2.1
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which s the desired estimate. In the case when p,, is not smooth on U, i.e. x1 is contained

in the cut locus of x( one first replaces py, with a smooth approximation ,o)(cf)) of py,
(which is a local barrier for py,) and then lets ¢ — 0 to get the same conclusion as
before. In the singular case M = X/G we proceed as follows. First we identify F
with a G-invariant function on the inverse image of Br(xg) in X (and xo and x; with
a choice of lifts in the corresponding G-orbits) and set F = ¢ (x)(a — ﬁxO)z, where
Pxo (x) := dx(x0, x). By definition oy, > px, on X and, after possibly changing the
lift of the point x| we may assume that p,, = px, at x = xj and hence py, < a (after
perhaps shrinking U). In particular, ¥ < F on U and F = F at x; and hence F also has
alocal maximum at x;. But then the previous argument in the smooth case gives that 2.1
holds with py, replaced by p,. But since the two functions agree at x this concludes
the proof in the general case. 0O

Corollary 2.3. Let h be a positive harmonic function on Bs(xo). Then there exists a
constant C only depending on an upper bound on k such that

h2dV
sup K2 < oCen fBe(S(XO)
Bes (x0) fBes(Xo)dV
for0<e < 1.
Proof. Set v := logh and fix x € Bes(xo). Integrating along a minimizing geodesic

connecting xo and x and using the gradient estimate in the previous proposition gives
€6 1
[lv(x)—v(xg)| < Cn/ ﬁdt =Cn (log(§ — 0)—log(s§ — €8)) = — Cnlog(l — €).
0 _

In particular, for any two points x, y € Bes(xp) we get [v(x) — v(y)| < |[v(x) — v(xp)|+
lv(y) —v(xp)| < —2Cnlog(l — €), ie. h(x) < (1 — )72 "h(y). In particular,
SUP B, (xo) h? < (1—€) 4" inf Bes(x0) h2, which implies the proposition after renaming
the constant C. 0O

The second key ingredient in the proof of Theorem 2.1 is the following Poincaré-Dirichlet
inequality:

Proposition. Let f be a smooth function on Bs(xq) vanishing on the boundary. Then

/ |f1?dV, g4eC"5/ IV £12dV,
Bs(xg) Bs(xp)

where the constant C only depends on an upper bound on k.

Proof. We follow the proof in [44] with one crucial modification (compare the remark
below). To fix ideas we first consider the case of a Riemannian manifold. Fix a point p
in the boundary of the ball B (x() and denote by 1 (x) the distance between x € M and
p. From the standard comparison estimate for the Laplacian we get

Arp < (n— l)(% + k) (2.2)
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(in the weak sense and point-wise away from the cut locus of p). In particular, for any pos-
itive number a we deduce the following inequality on Bs(xg) (using that g(Vry, Vry) =
1) ae.)

Ag(e™ ™) =ae " (a — Ary) > ae~ 41+ (a —(n— 1)((l 18) +K)>

Hence, setting a := n(ﬁ + k) gives

1
Ag(e™my > ae_“(lJ"S)(m +Kk)>0

Multiplying by | | and integrating once by parts (and using that ||Vr(|| < 1) we deduce
that

+K) | fle @ gy

a [V fle *dV > a(
‘/Bé(xo) (1 - 5) Bﬁ(xo)

Estimating e~%"1 < ¢~*(1=9) in the left hand side above and rearranging gives

2aé 1 —1
IVAdVe™ (——+Kx)" = [fldV,
Bs(xg) (1-19) Bs(xy)

(using that g(Vry, Vr;) < 1 in the sense of upper gradients). This shows that the
L'-version of the Poincaré inequality in question holds with the constant (ﬁ +

;c)—le””(ﬁ*’“) n(d+26)5

, which for § sufficiently small is bounded from above by e
The general Riemannian L>-Poincare inequality now follows from replacing | f| with
| £1 and using Holder’s inequality. Finally, in the case of the a Riemannian quotient M
we can proceed exactly as above using that the Laplacian comparison estimate in for-
mula 2.2 is still valid. Indeed, the pull-back p*r of r| to X is an infimum of functions
for which the corresponding estimate holds (by the usual Laplacian comparison estimate
and the assumption that G acts by isometries). But then the estimate also holds for the
function p*ry, by basic properties of Laplacians. More generally, the required Laplacian
comparison estimate was shown in [21] for general Riemannian orbifolds. O

Remark 2.4. The only difference from the argument used in [44] is that we have taken
the point p to be of distance 1 from xg rather than distance 2§, as used in [44]. For §
small this change has the effect of improving the exponential factor from "1+ to
"0+ which is crucial as we need a constant in the Poincare inequality which has
subexponential growth in n as § — 0.

2.3.1. End of proof of Theorem 2.1. Let us first consider the case when A = 0. De-
note by & the harmonic function on Bs coinciding with v on d Bs. By Cor 2.3 and the
subharmonicity of v
2
sup 02 < oCne /Beé(x()) i dvé"
Bes(x0) Jb.sen) 4Ve

Next, by the triangle inequality

/ |h|?dV,/2 < / |h — v|?dV +/ [v|?dV
Bes(x0) Bes(x0) Bes(xo)
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Since h — v vanishes on the boundary of Bs(x() applying the Poincare inequality in Prop
2.3 then gives fBeé(x()) |h —v|2dV <

< / |h—v|2dV < Ae3"5/ |Vh — Vv|2dV < 2Ae3"5/ IV +|Vo2dV
Bs(xg) Bs(xg) Bs(xg)

But £ is the solution to a Dirichlet problem and as such minimizes the Dirichlet norm
f By |Vh|? over all subharmonic functions with the same boundary values as /. Ac-
0

cordingly,

/ lh —v|?dV < 4Ae3"3/ |Vv|2dV
Bes(x0) Bs(xg)

Finally, using that v is subharmonic we get

f |Vu|2dV < Cgf [v]2dV
Bs(xo) Bas(xg)

(as is seen by multiplying with a suitable smooth function y supported on B> such that

x = 1 on Bg). All in all this concludes the proof of Theorem 2.1 in the case A = 0.
Finally, to handle the general case (i.e. A % 0) we set N := M x] — 1, 1[ equipped

with the standard product metric and apply the previous case to the function ve* to get

262)»th
dv

3

v
+ j‘B x0,0)CN
sup U2 2t < A Bn(5+€) 25 (x0,0)

Bes (0.0)CN SBos .00

But restricting the sup in the left hand side to B¢s(xo) x {0} and using that Bes 2 (x0, 0) x
[—€8/2,€8/2] C Bes(xg, 0) and Bas(xp, 0) C Bas(xo, 0) x [28, 28] gives

2
238, Bn(8+) fBza(Xo)CM v7dVg
v,

sup v? < As.ce
Bes(xo)CM fBﬂg/z(xo,O)CM

)

which concludes the proof of the general case (after a suitable rescaling).

3. Proof of the Large Deviation Principle for Gibbs Measures

Given a compact topological space X we will denote by CY(X) the space of all continuous
functions u on X, equipped with the sup-norm and by M (X) the space of all signed
(Borel) measures on X. The subset of M (X) consisting of all probability measures will
be denoted by M (X). We endow M (X) with the weak topology, i.e. ] is said to
converge to u weakly in M (X) if

(rej,uj) = (o)

for any continuous function « on X, i.e. forany u € C 0(X), where (u, ) denotes the
standard integration pairing between C°(X) and M (X) (equivalently, the weak topology
is precisely the weak*-topology when M (X) is identified with the topological dual of
C%(X)). A functional F on C%(X) will be said to be Gateaux differentiable if it is
differentiable along affine lines and for any u in C?(X) there exists an element dFj, in

M(X), called the differential of F at u, such that for any v in C 0(X)
dF(u +tv)

dt |t=0 - <d}—|m U>
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)

3.1. Setup: the Gibbs measure ung associated to the Hamiltonian H™). A random

point process with N particles is by definition a probability measure £ on the N-
particle space XV which is symmetric, i.e. invariant under permutations of the factors
of XN . The empirical measure of a given random point process is the following random
measure

N
1
. N -
51\/. X —>M1(X), r—)(xl,...,xN)r—>8N(x1,...,xN) .—NZI‘&” (3.1)
1=

on the ensemble (X7, ™). By definition the law of 8 is the push-forward of ™) to
M (X) under the map §y, which thus defines a probability measure on M (X).

Now fix a back-ground measure 1o on X and let HY) be a given N-particle Hamilto-
nian, i.e. a symmetric function on X N which we will assume is lower semi-continuous
(and in particular bounded from below, since X is assumed compact). Also fixing a
positive number S the corresponding Gibbs measure (at inverse temperature f) is the
symmetric probability measure on XV defined as

—_BHW)
pp = PNz,

where the normalizing constant
. —BHN)  ®N
ZNpg = / e P %
XN

is called the (N-particle) partition function. In our setting we will take po to be the
volume form d'V of a fixed Riemannian metric. Given a continuous function u# on X we
will also write

_ (N)
Zn plul ::/ e PH +u)u(é)§N’
XN

where u has been identified with the following function on the product X% :

N

uxy, .., xy) = Zu(xi)

i=1

3.2. Preliminaries on large deviation principles and Legendre transforms. Let us start
by recalling the general definition of a Large Deviation Principle (LDP) for a sequence
of measures.

Definition 3.1. Let P be a Polish space, i.e. a complete separable metric space.

(i) A function I : P —] — 00, o] is a rate function if it is lower semi-continuous.
It is a good rate function if it is also proper.

(i1) A sequence I'y of measures on P satisfies a large deviation principle with speed
rr and rate function I if

1
limsup — log 'y (F) < — ing_l
HE

k—oo Tk
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for any closed subset F of P and
1
liminf — log ' (G) > — inf I(w)
k—oo Tg neG
for any open subset G of P.

Remark 3.2. The LDP is said to be weak if the upper bound is only assumed to hold
when F is compact. Anyway, we will be mainly interested in the case when P is compact
and hence the notion of a weak LDP and an LDP then coincide (and moreover any rate
functional is automatically good).

We will be mainly interested in the case when I is a probability measure (which
implies that / > 0 with infimum equal to 0). Then it will be convenient to use the
following alternative formulation of a LDP (see Theorems 4.1.11 and 4.1.18 in [30]):

Proposition 3.3. P be a metric space and denote by B (1) the ball of radius € centered
at i € P. Then a sequence T n of probability measures on P satisfies a weak LDP with
speed ry and a rate functional I iff

lim hm 1nf — log F'ny(Be(w) = —1(w) = hm lim sup — log n(Bcs(w) (3.2)
N

e—>0 N N—o00

We note the following simple lemma which allows one to extend the previous proposition

—BHMN)  ®N .

to the non-normalized measures (§y)4e Mo

Lemma 3.4. Assume that the following bound for the partition functions holds:
|log ZN,,3| < CN. Then the measures

_ (N)
Ty = @n)we P10 uN (3.3)

satisfy the asymptotics 3.2 for any u € M1 (X) with rate functional I(j) and ry = N
iff the probability measures (SN)*/,L/(SN) on M (X) satisfy an LDP at speed N with rate

Sfunctional 1 = I— Cg, where Cg :=1inf ,c pm(x) i(p.).

Proof. Set I:N = (SN)*e’ﬂH(N);LSQN andCy g = —% log Zy . By assumption Cy g
isuniformly bounded and we denote by Cg a given limit point of the sequence obtained by
replacing N with a subsequence N;. Since + v 10g TN (Be(v)) = log Y, (Be(W)+Cy g
we obtain that after replacing N Wlth the subsequence N the probability measures 'y
satisfy (by Prop 3.3) an LDP with rate functional I — C 5. As a consequence 0 =
inf(l — C ), showing that Cg is independent of the subsequence. Hence, the whole
sequence converges towards Cg, which proves one direction in the Lemma. The converse
is proved in a similar way. O

We will also use the following classical result of Sanov, which is the standard example
of a LDP for point processes [30] (the result follow, for example, from the Girtner—Ellis
theorem; see Sect. 4.2).

Proposition 3.5. Let X be a topological space and g a finite measure on X. Then
the law Ty of the empirical measures of the corresponding Gibbs measure ,ugg N (ie.
HWN) = 0) satisfies an LDP with speed N and rate functional the relative entropy D,
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We recall that the relative entropy D, (also called the Kullback—Leibler divergence
or the information divergence in probability and information theory) is the functional
on M (X) defined by

Dyuy (1) :=/ log 1. (3.4
X o

when u has a density % with respect to o and otherwise D, (1) := oo. When 1 is a
probability measure,D,,, (1) > 0 and D, () = 0 iff u = o (by Jensen’s inequality).

3.2.1. Legendre—Fenchel transforms. Let f be a function on a topological vector space
V. Then its The Legendre-Fenchel transform is defined as following convex lower semi-
continuous function f* on the topological dual V*

f*(w) := sup (v, w) — f(v)

veV

in terms of the canonical pairing between V and V*. In the present setting we will take
V = C%X) and V* = M(X), the space of all signed Borel measures on a compact
topological space X. We will use the following variant of the Brgndsted-Rockafellar
property A*[25]:

Lemma 3.6. Let f be function on C°(X) which is Gateaux differentiable. Then, for any
w € M(X) such that f*(u) < o0 there exists a sequence of u; € C%(X) such that

wj=dfu; =, fFrj) = fH(w (3.5)

Proof. First recall that a convex function g on a topological vector space E is said to
be subdifferentiable at x € E if g(x) < oo and g admits a subgradient x* at x, i.e. an
element x*in the topological dual E* such that for any y € E

g(y) = gx) +((y —x), x%)

The set of all such subgradients is denoted by (dg)(x). Now assume that g = f* for a
convex function f on a Banach space V. Then g is a lower semi-continuous function
convex function on the topological vector space E := V™* equipped with its weak
topology. According to [25, Thm 2] any element ; € V* such that f*(u) < oo has the
property that there exists a sequence p1; — w in V* such that f*(u;) — f*(u) and
f* is subdifferentiable at 1; with a subgradient in V. The latter property equivalently
means that there exists u; € V such that u; € (3f)(u;) (as follows from the definition
of the Legendre-Fenchel transform). The proof is now concluded by setting V := C%(X)
and observing that if f is Gateaux differentiable at u € V, then (9f)(u) = {df|.} (asis
seen by restricting f to any affine line). O

Remark 3.7. By convexity, if u = df}, forsome u € V = C%(X), then f*(u) =
(u,dfiu) — f(u), which is essentially the classical definition of the Legendre transform
of f at . Accordingly, the previous lemma may be reformulated as the statement that
the Legendre-Fenchel transform is the greatest lower semi-continuous extension to all
of V* of the Legendre transform, originally defined on (df)(V) C V*.
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3.3. The proof of Theorem 5.7. We start with the following simple

Lemma 3.8. Assume that HN) satisfies the quasi-superharmonicity assumption in the
second point of Theorem 1.1 . Then, for any sequence of positive numbers Sy — 00

H™ 4
log/ e PVHN w0 gyeN e T TH +o(1)
XN XN N

1
_‘F,BN (u) = Npn

Proof. Theinequality <is trivial and to prove the reversed inequality we fix a sequence of
x™ e XV realizing the infimum appearing the right hand side above. Then replacing the
integral of XV with an integral over the L*°-ball B¢ := {(x1, ..., xy) : dg(x, xi(N)) <
€}V, for a fixed number ¢ and a fixed metric g with distance function dg, and using
the classical submean inequality in each variable with a fixed multiplicative constant C
gives

f o BN HN 1) &N o N =By (H O ) (V) / JVON o~ NBN.
XN - B.

8e is the modulus of continuity of u, tending to 0 as € — 0. Finally, since | B. avevn >
(C’e)N letting N — oo concludes the proof. 0O

To handle the case when By = B + o(1) for a finite 8 we will need to use the
subexponential dependence on the dimensions of the multiplicative constant appearing
in Theorem 2.1. To this end we first recall that, since X is assumed compact, the weak
topology on M (X) is metrized by the Wasserstein 2-metric d induced by a given
Riemannian metric g on X, where

d(u,v)? := inf d,(x, y)2dT,
(e, v) relr?ﬂ,v)/ (X, y)

where I" (i, v) is the space of all couplings between u and v, i.e. all probability measures
I" on X x X such that the push forward of I" to the first and second factor is equal to p
and v, respectively.

Proposition 3.9. For any given € > 0 there exists a positive constant C > 0 such that
the following submean inequality holds on XV, for any N :

e*ﬂH(N)dV(@N

N (N)
L ))(x(N)) SCeCeNfBe(X )

, 3.6
fBez(x(N)) dV®N (3.6)

where B, (xN)) denotes the inverse image in XV , under the map 8y, of the Wasserstein
ball of radius r centered at S (x(N))

Proof. First observe that the pull-back of d on M (X) to the quotient space XN :=
XV /Sy under the map 8y defined by the empirical measure (formula 3.1) coincides
with 1/N'/? times the quotient distance function on XV induced by the product
Riemannian metric on X% :

1
— = 4N
S;d = WdX(N) =d (37)
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Indeed, this is well-known and follows from the Birkhoff-Von Neumann theorem which
gives that for any symmetric function c(x, y) on X x X we have thatif u = % ZlN:l Sy,

and v = %ZlN:l 8y, for given (x1,...,xn), V1, ...,yn) € XV, then

inf /c(x,y)dF = inf /c(x,y)dF
(p,v) Cy(w,v)

where I'y (, v) C I'(u, v) consists of couplings of the form ', := 1 D8y ® 8yoir»

for o € Sy, where Sy is the symmetric group on N letters. N

Now consider the metric space (X, d™) which is the quotient space defined
with respect to the finite group Sy acting isometrically on the Riemannian manifold
(XN, gn), where gy denotes 1/N times the product Riemannian metric. By assumption
H™) is Sy-invariant and A, H™ < C on XV (using the obvious scaling of the
Laplacian). Moreover, since X is compact there exists a non-negative number k such that
Ric g > —kg on X and hence rescaling gives Ric gy > —kNgy on (X", gn). But the
dimension of X* is equal to nN and hence the assumptions in Theorem 2.1 are satisfied

foru := e=PH™ and (X, g) replaced by (X, gy) with a constant « independent of N.
Applying the latter theorem with § = € and using the pull-back property in formula 3.7
then shows that the submean property 3.6 indeed holds. O

We will also rely on the following simple but very useful lemma (which was used in the
similar context of Fekete points in [13]).

Lemma 3.10. Fix u, € C%X) and assume that x,EN) e XV is a minimizer of the
function (HN) +u,)/N on XN . If the corresponding large N-limit F(u) exists for all
u € CY%X) and F is Gateaux differentiable at u., then Sy (xiN)) converges weakly
towards s = dFy,,.

Proof. Fixv € C%(X) and a real number 7. Let In@) = %(H(N) +u+ tv)(xiN)) and
f(@) = F(u + tv). By assumption limy_,oc fn(0) = f(0) and liminfy_, fn(t) >
f(t). Note that f is a concave function in # (since it is defined as an inf of affine functions)
and fy () is affine in 7. But then it follows from the differentiability of f at ¢ = O that
limy_ o0 dfn(t)/dti—0 = df (t)/dt;;=o, i.e. that

Jim <5N(x§f\’)), v> = (dFu. v),

which thus concludes the proof of the lemma (see [13, Lemma 3.1]). O

The upper bound in the LDP. By Lemma 3.4 it will be enough to establish the LDP
for the non-normalized measures "y in formula 3.3. To prove the upper bound of the
integrals appearing in the equivalent formulation of the LDP in Prop 3.3 we fix a function
u € CO%X) and rewrite

_BHW) _ (N)
e BH —e B(H +u)e/5u’

Then, trivially, for any fixed € > 0,

/ PN aVEN < sup (PHM0) / ugN, = ePavo (38)
Be (1) Be (1) Be (1)
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Replacing the sup over B, (i) in the first factor above with the sup over all of X" and
applying Sanov’s theorem relative to the tilted volume form p,, to the second factor gives

1
lim lim sup — logf e BHY gy @N
Be (1)

=0 ;00

1
< —liminf N~ 'inf(H™) +u) + / up — —Dgy (1),
N—o00 XN ,3

using that D pu gy () = —f f up+Dgy (u). According to Lemma 3.8 and the definition
of the functional F («) this means that

1 1
lim lim sup—log/ e PHY gy N < —]-"(u)+/uu — —Dgv (1),
=0 j 00 BN Be (1) p

Finally, taking the infimum over all u € C%(X) shows that the lim sup in the previous
formula is bounded from above by — F (i),

1
F(p) = f*(u) + Ede(M), Jf) = —=F(—u)

Remark 3.11. In the argument above dV can be replaced by any finite measure jp on
X.

The lower bound in the LDP. As usual, the proof of the lower bound in the LDP is the
hardest. We first assume that

for some u € C%(X). Denote by x™ e X" a sequence of minimizers of H™) + u. By
Lemma 3.10 we have that

N =

By the submean inequality 3.6

1 1 C
—logI'n(B >—1lo dveN — BHM xMy/N —e — =<
102 T (Bac () = g/t;g(xw» pH™ )/ ~
Since §(xM) — u it follows that % log 'y (Ba2e (1)) >
1 &N ) ™) Ce
> —log aver —BHY +u)(x) /N + B (u, pn) —8(e) —e — —,
N "By N

where §(¢) — 0 as € — 0. Moreover, fixing ¢ > 0 we may for N sufficiently large
assume that B2 () C B2(Sn (x™)) and hence letting N — oo and using Sanov’s

theorem (i.e. Prop 3.5) for € fixed and the convergence of (H™) + u)(xN))/N gives

1
liminf —log "'y (B2e () > B {u, u) —8(e) — inf Dyy — BF(u) —€
N—oo N BEZ/Z(H)
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(after perhaps replacing the original family §(e) with a smaller one). Since u is a can-
didate for the inf in the right hand side above the inf in question may be estimated from
above by Dy (1) and hence letting € — 0 concludes the proof under the assumption
that u := dF), forsome u € C%(X). To prove the general case we invoke Lemma 3.6 to
write p as a weak limit of pu; := dFjy, foru; € CO(X). We may then replace  in the
previous argument with u ; for a fixed j and replace p with 1 in the previous argument

to get, for j > js, liminfy_, o0 + log 'y (B3e (1)) =
| .
> liminf — log 'y (Bae(1j) = Bluj, puj) —8j(€) — inf Dgy +BF(uj) — €
N—o0 N BEZ/z(Mj

But for j sufficiently large 1 is in the ball B,2 , (v) and hence the inf above is bounded
from above by Dyy (1) giving

1
liminf = log ' (Bse () = B (uj 1j) = 8(€) = Dav () + BF (u)) — €

Letting first ¢ — 0 and then j — oo gives

1 1
11ivﬁi>iglof N log 'y (B3e (1)) > —ﬂ(jli)II;O(E(Mj) + BDdV(M))

Finally, by Lemma 3.6 we may assume that £(x;) — E(u) and that concludes the
proof.

The equation for the minimizer pg. Finally, the Eq. 1.4 follows immediately from the
following general convex analytical result:

Lemma 3.12. Let X be a compact topological space and f and g be Gateaux differen-
tiable convex functionals on C°(X) such that the differentials dg and df takes values in
Mi(X). Then

e The following identity holds:

inf (f*+g%) = —f(=u) — .
AL (f*+g%) ues;}z;){)( f(—u) — g()) (3.9)

o if the sup in the right hand side above is attained at some 1 in CY(X) (i.e.if —f(—u)—
g(u) admits a critical point ug), then, setting F(u) := — f(—u), the measure po :=
d Fju, minimizes the functional f* + g* on M;(X).

Proof. First observe that f and g are Lipschitz continuous on the Banach space C°(X).
Indeed, setting u; := uo(1 —¢t) + tuy, for ¢t € [0, 1], gives

1
) — fuo)| = ’/ dr/ df, 1 — o)
0 X

< sup|uy — ug|
X

and similarly for g. The first point in the lemma is then obtained as a special case of
the Fenchel-Rockafeller duality theorem which only requires that f and g be convex
on a Banach space V and that f and g be finite at some point # where f is moreover
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assumed continuous [24, Thm 1.12]. To prove the second point we let uq be a critical
point of F(u) — g(u) on C°(X), i.e.

dFjuy = d8lug, (3.10)

which, by convexity, means that u( realizes the sup in the right hand side of formula 3.9.
‘We rewrite,

[y = sup (u,u)— fw)= sup Fu)—(u,pn (3.11)
ueCO(X) ueCO(X)
(by replacing u with —u in the sup). Hence, if u := d Fj, then, by concavity, f*(u) :=
F(u)— (u, p) . Similarly, if u = dg|, then, by convexity, g*(u) = (u, u) —g(u). Allin
all this means that if u satisfies the critical point Eq. 3.10, then we can take u = v = ug
to get

(o) + g% (o) = Fuo) +0 — g(uo),

which concludes the proof, using the first point. O

4. Relations to I'-Convergence, the Girtner—Ellis Theorem and Mean Energy

Before turning to the applications of Theorem 1.1 in the complex geometric setting we
explore some relations to previous results and methods in the literature.

4.1. Relations to Gamma-convergence. We recall that a sequence of functions Ey on a
topological space P is said to I'-converge to a function E on P if

un — pinP = liminfy 00 En(in) > E(1)

. . 4.1
Voo 3uy — pinP o limyoeo Ex(uy) = E() “.1)

(such a sequence uy is called a recovery sequence); see [23]. It then follows that E is
lower semi-continuous on P. In the present setting we take, as before, P = M(X) and
define Ey by setting Ex = 0o on the complement of the image of the mapsy and

ExGy(@i,....xy) = HM @, oxw)/N 4.2)
We can now formulate the following variant of Theorem 1.1:

Theorem 4.1. Let H'N) be a sequence of lower semi-continuous symmetric functions
on XN, where X is a compact Riemannian manifold. Assume that

e The functions Ey on M (X) determined by H ) converge to a function E, in the
sense of I"-convergence on M (X).
o HWM) g uniformly quasi-superharmonic, i.e. Ay, HWN (x1,x2,...xy) < Con xN

Then, for any sequence of positive numbers By — B €]0, oo] the measures I'y =

(BN)*e_/SNH(N) on M1 (X) satisfy, as N — 00, a LDP with speed By N and good rate
functional

1
Fg(u) = E(u) + EDdV(M) (4.3)
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Proof. Using the characterization of a LDP in Proposition 3.3, the upper bound in the
LDP follows almost immediately from the liminf property of the Gamma-convergence
together with Sanov’s theorem. To prove the lower bound fix © € M{(X) and take a
recovery sequence iy corresponding to a sequence xV) € XV Then, using the same
notation for the balls as in the proof of Theorem 1.1 we have, for ¢ > 0 fixed and N
large,

/ o BHM Jy 8N / e_;;Hw)dV@[\/zeNCee—NﬁEN(uN)/ dven.
Boe (1) B (x(N) B

- 2 (x(V)

using the submean inequality in Theorem 2.1 in the last inequality. Letting first N — oo
and then ¢ — 0 then concludes the proof, using Sanov’s theorem again. O

It should be stressed that, in general, the functional E(u) in the previous theorem
will not be convex and hence the subset Cg C M (X) consisting of the minima of Fg
will, in general, consist of more than one element. By general principles the LDP then
implies that any limit point 'og € M (M (X)) of the laws 'y is concentrated on
Cg (in the terminology of statistical mechanics I's is thus a mixed state defined as a
superposition of the pure states 8, where u € Cg).

Remark 4.2. The proof of the previous theorem in the case B = oo is much simpler
as it is does not require the sub-exponential dependence on the dimension in the sub-
mean inequality in Theorem 2.1. Indeed, the rough exponential bound used in the proof
of Lemma 3.8 is enough. Moreover, all that is used in the proof for 8 < oo is that

Ay, (e PnvH W )) > —) ﬂe*ﬂNH ™ for a constant Mg independent on N (but the assump-

tion that Ay, H (M) < ( is a convenient way of ensuring that the previous inequality
holds for any B).

Example 4.3. Inthe case when X = R” equipped with the Euclidean distance it is known
that the mean field Hamiltonian with pair interaction of the form W (x, y) = w(jx — y|)
(formula 1.14) I'-convergences towards E(u) := f x2 Wi ® p, if w is lower semi-
continuous and increasing close to 0 (see [48, Prop 2.8, Remark 2.19] and [15,17,28]
for similar results). The proof exploits the explicit nature of £ (u) and a similar argument
applies on a compact manifold when W is continuous away from the diagonal with a
singularity of the local form w(]x — y|) close to the diagonal (compare [55,56]).

In contrast to the previous example, for the “determinantal” Hamiltonian 5.16 appearing
in the complex geometric setting there is no explicit candidate for a limit £ (u). Instead
the Gamma convergence is a consequence of the following dual criterion.

4.1.1. A criterion for Gamma convergence using duality. Next we separate out the
convex analysis used in the proof of Theoreml.1 to get the following criterion for I'-
convergence:

Proposition 4.4. Let Ey a sequence of functions on My (X) and assume that
lim Eyu) = f(u)
N—o00

where f is a Gateaux differentiable convex function on CO(X). Then Ey converges to
E := f* in the sense of I'-convergence on the space M(X), equipped with the weak

topology.
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Proof. Firstsupposethat uy — uweaklyin M (X).Fixuin CO(X).Then—EN(MN) =
(u, un) — En(un) — (u, u) +o(1) and hence taking the sup over all u € M (X) gives

—En(un) < fn@) — (u, u) +o(1) = f(u) — (u, n) +o(l).

Finally, letting first N — oo and then taking the sup over all u € C°(X) concludes the
proof of the lower bound for En (uy).
To prove the existence of a recovery sequence we first assume that u = dfj,, for

some u,, € CY%(X). Then,

P = (g, i) = fQup) = (up, ) — fv @) +o(1),

Now, by the weak compactness of M (X) the sup defining fy is attained at some
un € Mi(X) and hence

fH ) +o(l) = <u/u M) - (<u/u N—N) - EN(HN))

Next, by a minor generalization of Lemma 3.10 uy — p(:= dfj,,) and hence f*(n) =
0+ En(un) +o(1), as desired. Finally, the proof of the existence of recovery sequence
for any pu such that E(i) < oo is concluded by a simple diagonal argument based on
Lemma 3.6 applied to E := f*. O

Now, if Ey is of the form 4.2, then

1 1 1
v @) = s;Np SUOD Nu(xN) — NH(N)(xl, C XN (4.4)

Thanks to the previous proposition the first assumption in Theorem 1.1 thus implies (also
using Lemma 3.8) that Ey — E in the sense of I"-convergence on M (X). Accordingly
we recover Theorem 1.1 from Theorem 4.1.

Remark 4.5. In general, if Ey gamma converges to a function E on M(X), then it
follows (almost directly) that E}, — E* point-wise on C%(X). Hence, the point of
the previous proposition is that it gives a converse statement under the assumption that
E* is Gateaux differentiable. By basic convex duality it thus follows from the previous
proposition that £y converges to a strictly convex functional E on M (X) iff E}, — E*

point-wise on C 0(X), with E* Gateaux differentiable.
4.2. Relations to the Gdrtner—Ellis theorem. First observe that

X

where I'y is the measure
Iy = ) e PHY aveN)
on M (X) and f/‘; denotes its Laplace transform on C 0 (X). In this context the Gértner—

Ellis theorem may be formulated as follows (see [30, Cor 4.6.14, p. 148] and references
therein):
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Theorem 4.6 (Girtner—Ellis). Let H'N) be a sequence of Hamiltonians on X" and By
a sequence of positive numbers such that By — B €]0, oo]. Assume that, for any
ueC%X), as N - oo,

Fpyu) == —

1 _ (V)
log / PV HY 50 gy N g 4.5)
NBN XN F
where F is a Gateaux differentiable function. Then the measures Ty on M (X) satisfy,

as N — 00, a LDP with speed By N and good rate functional f*(u), where f(u) :=
—F(—u).

Compared with the Gértner—Ellis theorem the main point of Theorem 1.1 is thus
that the assumption that the convergence of the partition functions in formula 4.5 holds
for B = oo is enough to ensure that one gets an LDP for any S €]0, oo[ (under the
quasi-subharmonicity assumption). As a consequence, the convergence of the partition
functions then also hold for any 8 €]0, oo[ with the limiting functional —Fg(-) defined
as the Legendre-Fenchel transform of the rate functional Fg appearing in Theorem 1.1.
In fact, the latter convergence is equivalent to the LDP in question, as made precise by
the following

Lemma 4.7. Let HY) be a sequence of Hamiltonians on XV and By a sequence of
positive numbers such that By — B €]0, co[. Assume that, for any given volume form
dV, the corresponding partition functions Zy g, satisfy

. 1
lim —

log Z =inf Fg, Fg:= E+ D, ,
N T NBy 0g ZN.py =1nf Fp, Fp av /B

with E(u) convex. Then the measures ((SN)*(e_ﬁH(N)dV@N) on My (X) satisfy, as
N — oo, an LDP with speed By N and good rate functional Fg. Moreover, if the
asymptotics above also holds for 8 = oo with E(u) strictly convex, then the LDP holds
for B = oo, as well.

Proof. Fixing a volume form dV and applying the asymptotics in the lemma to the
volume forms e ~#*dV for any u € C°(X) reveals that the asymptotics 4.5 hold with
fp given by the Legendre-Fenchel transform of E + Dgy /B. Now, if E is convex, then
E + D4y /B is strictly convex (since Dyy is) and hence it follows from basic convex
duality that fp is Gateaux differentiable. In fact, the differential w, := dfp), is the
unique minimizer attaining the sup defining fg(u), viewed as the Legendre-Fenchel
transform of E + D,y / B. Equivalently, i, is the unique minimizer of the strictly convex
functional u — E(u) + (u, u) + Dgy(n)/B. 0O

Remark 4.8. Let By be sequence tending to oo. By convex duality the Gértner—Ellis
theorem may in the present setting, be formulated as follows (also using Varadhan’s
lemma [30] in the converse): let Ey be a sequence of functions on M (X). Then
e PVNEN (53), (dVONY) ~ ¢ ANVNEW) i the sense of a LDP, with E (1) strictly convex
iff B N times the log of the Laplace transform of e AV NEN (85, (dV®N) converges to
the Gateaux differentiable function E*on C?(X).
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4.3. Relations to the existence of the mean energy. Given a sequence of Hamiltonians
H™ on XN we set

_ 1
En(u) = ﬁ/w H™M u®N,
X

_ If the limit as N — oo exists then we will call it the mean energy of u, denoted by
E(p).

Example 4.9. If H™) is the mean field Hamiltonian associated to the pair interaction
potential W (formula emphl.14) then, trivially, E(u) = Ey(u) for any p such that
W e L'(n).

It follows immediately from the definition that if the limit of E, (:= fi) appearing
in formula 4.4 exists then

E(u) = f*(u).

(but, in general this is a strict inequality, for example if E () is not convex). In particular,
under the assumptions in Theorem 1.1 we have E(u) > E(u), where E(u) appears
as the rate functional in Theorem 1.1 for 8 = oo (using Lemma 3.8). Motivated by
the complex geometric applications discussed in Sect. 6 this leads one to consider the
following

Problem 4.10. Show that the assumptions on H (M) in Theorem 1.1 imply that the cor-
responding mean energy E (1) exists when p is a volume for (perhaps under additional
appropriate assumptions on H ™).

As illustrated by the following lemma this problem turns out to be related to the
asymptotics of the Gibbs measures with 8 negative:

Lemma 4.11. Assume that there exists some negative Bo such that for any 8 > Bo the
corresponding Gibbs measures are well-defined, i.e. Zy gy, < oo for N sufficiently
large. Moreover, assume that there exists a functional E (i) such that

1
— lim —logZygy = inf BE(u)+D, —o0, 4.6
yim oy logZngy = in (X)ﬁ (1) + Day (1) > —o0 (4.6)

1

for any volume form dV . Then the mean energy E (1) exists for any volume form u and
E(n) = E(1).

Proof. First observe that, by Jensen’s inequality, the number fx(8) := —% logZy g
appearing in the right hand side above for N is concave in 8 (and, by assumption,
finite). Moreover, dfn(8)/98 = En(dV) at § = 0. Further more, the finite function
f(B) defined by the right hand side in formula 4.6 is also concave, as it is an infimum
of a family of linear functions and for B = 0 the infimum is attained precisely at
w = dV. Hence, by basic convex analysis, the derivative of f at § = 0 exists and is
given by E(dV). Finally, the proof is concluded by using that if fj is a sequence of
convex functions converging point-wise to convex function f such that fy and f are
differentiable at O then the corresponding derivatives at 0 also converge. O
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It should, however, be stressed that, if H®) is too singular then the partition function
Zy g is equal to oo, for any B < O (even if H (M) is quasi-superharmonic as in the
assumptions of Theorem 1.1). Indeed, for the mean field Hamiltonian corresponding to
a pair interaction W this happens as soon as W has a repulsive power-law singularity,
ie. W(x,y) ~ |x — y|* with ¢ < 0 close to the diagonal. On the other hand, in the case
of a logarithmic singularity Zy g, is indeed finite for By < 0 and sufficiently close to 0
(see [22] for the corresponding LDP in the setting of the 2D vortex model).

Using the Gibbs variational principle some converses to Lemma 4.11 can be estab-
lished [11], where the existence of the mean energy is assumed (and some additional
assumptions), by extending the approach of Messer—Spohn [45]. However is should be
stressed that the main point of our proof of Theorem 1.1 is that it does note rely on the
existence of the mean energy E (), which, as pointed above, is an open problem in the
present setting.

5. Applications to Kihler—Einstein Geometry

In this section we will apply Theorem 1.1 to complex manifolds X equipped with a line
bundle L, assuming that L is positive. The extension to big line bundles (and varieties
of positive dimension) is given in the companion paper [9], using the full power of the
pluripotential theory developed in [7,14,20] (see the discussion in Sect. 5.4).

5.1. Kdhler geometry setup. Let X be an n-dimensional compact complex manifold and
denote by J the corresponding complex structure viewed as an endomorphism of the
real tangent bundle satisfying J> = —1.

5.1.1. Kdhler forms/metrics. On a complex manifold (X, J) anti-symmetric two forms
w and symmetric two tensors g on 7 X ® T X, which are J-invariant, may be identified
by setting

8 = C()(', J)

Such a real two form w is said to be Kihler if dw = 0 and the corresponding symmetric
tensor g is positive definite (i.e. defines a Riemannian metric).” Conversely, a Riemannian
metric g is said to be Kdihler if it arises in this way (in Riemannian terms this means that
parallel transport with respect to g preserves J). By the local 99-lemma a J-invariant two
form w is closed, i.e. dw = 0 if and only if w may be locally expressed as w = %85(1&,
in terms of a local smooth function ¢ (called a local potential for w). In real notation
this means that

1
w=dd’¢, d°:=——J*d
4

(and hence w is Kéahler iff ¢ is strictly plurisubharmonic). The normalization above en-
sures that dd¢ log |z|? is a probability measure on C. We will denote by [w] € H2(X, R)
the de Rham cohomology represented by . If wy is a fixed Kéhler form then, according
to the global dd-lemma, any other Kéhler metric in [wo] may be globally expressed as

wy = wo+ddp, ¢ € C™(X),

2 In the complex analysis literature a J-invariant two form w is usually said to be of type (1, 1) since
= Zi.j w;jdz; A dz; inlocal holomorphic coordinates.
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where ¢ is determined by wg up to an additive constant. We set
HX, w) = {go €C™®(X): wy > 0}

The association ¢ +— w, thus allows one to identify H (X, w)/R with the space of all
Kihler forms in [wq].

5.1.2. Metrics on line bundles and curvature. Let L be a holomorphic line bundle on
X and ||-|| a Hermitian metric on L. The normalized curvature two form of ||-|| may be
(locally) written as

w = —ddlog ||s|*,

in terms of a given local trivialization holomorphic section s of L. The corresponding
cohomology class [w] is independent of the metric ||-|| on L and coincides with the first
Chern class ¢{(L) in H 2(X,R) N H*X(X,7) (conversely, any such cohomology class
is the first Chern class of line bundle L). A line bundle L is said to be positive if it
admits a metric with positive curvature, i.e. such that the curvature form w is Kihler.
Fixing a reference metric ||-|jon L with curvature form wq any other metric on L may be
expressed as ||-|| e */2, for u € C*°(X) and its curvature is positive iff u € H(X, w).
When L is the canonical line bundle Ky, i.e. the top exterior power of the holomorphic
cotangent bundle of X:

Kx :=det(T*X)
any volume form dV on X induces a smooth metric |-||;y on Kx, by locally setting
||dz||§v ‘= c,dzANdz/dV, wheredz := dz) A --- Adz, in terms of local holomorphic
coordinates and c,dz A dZ is a short hand for the local Euclidean volume form 5dz; A

dzi N -+ A %dzn A dZzZ,. When dV is the volume form of a given Kéhler metric @ on
X, i.e. dV = o"/n!, then its curvature form may be identified with minus the Ricci
curvature of w, i.e.

dv
cpdz ANdZ

By a slight abuse of notation we will also write Ric (d V) for the right hand side in
formula 5.1.

Ricw = — dd° log (5.1)

5.1.3. Twisted Kiihler—Einstein metrics. A Kihler metric wg is said to be a twisted
Kdhler—Einstein metric if it satisfies the twisted Kihler—Einstein equation

Ricw = —Bw + 1, 5.2)

where the form 7 is called the twisting form. Since wg is Kihler the form 7 is necessarily
closed and J-invariant. The corresponding equation at the level of cohomology classes
is

[n] = —c1(Kx) + Blw]

Fixing, once and for all, a volume form dV on X gives the following one-to-one cor-
responds between twisting forms 1 and Kéhler forms wq solving the cohomological
equation above:

n := Bwo + RicdV. (5.3)

The following lemma then follows directly from the expression 5.1 for the Ricci curvature
of a Kéhler metric:



1160 R. J. Berman

Lemma 5.1. Let X be a compact complex manifold endowed with a J-invariant and
closed form . Then a Kdhler form wg solves the corresponding twisted Kéhler-Einstein
equation 5.2 iff wg := wo + dd g for a unique ¢ € H(X, w) solving the PDE

w) = eP?dv (5.4)
The celebrated Aubin—Yau theorem may now be formulated as follows:

Theorem 5.2 (Aubin—Yau). [3,53] Given a compact complex manifold X, endowed with
a Kdhler form wy and a volume form dV, the PDE 5.4 admits, for any positive number
B, a unique solution g € H(X, w). Equivalently, given a J-invariant and closed form
n such that the class [n] + c1(K ) is positive (i.e. contains a Kdhler form) there exists
a unique Kihler metric wg solving the twisted Kiihler-Einstein equation 5.2.

Example 5.3. A complex manifold X admits a Kdhler—Einstein metric with negative
Ricci curvature iff Ky is positive (and the metric is unique). Indeed, if Ky is positive
then, by the very definition of positivity, we can take wg := —RicdV for some volume
form on X, ensuring that = 0 above, with § = 1 (and the converse is trivial).

Remark 5.4. When n > 2 the equation is 5.2 precisely the trace-reversed formulation of
Einstein’s equations on X (with Euclidean signature): — 8 is the cosmological constant

and 7 is the trace-reversed stress-energy tensor. Here we are only concerned with the
solutions which are Kihler metrics.

5.1.4. The projection operator P, to the space PSH (X, wp). Next, we recall the
definition of the operator P introduced in [12] (which turns out to be related to the limit
as B — oo of the equations 5.4). Given u € C%(X) we set

(Pu)(x):=  sup {o(x): ¢ <u} (5.5)
peH (X, wo)

which defines an operator
P:C%X)— PSH(X, wp)

from CO(X) to the space PSH (X, wp) of all wgp—psh functions on X, i.e. all upper
semi-continuous functions ¢ in L! (X) such that w, > 0 in the sense of currents. In fact,
the operator P defines a projection operator from C 0(X) onto PSH (X, wp) N CO(X).
More generally, if u € C°°(X), the current dd(Pu) has coefficients in L}, i.e.

wpy € L, (5.6)
In fact, as shown in [10], taking dV in Eq. 5.4 to be of the form dV = e~ #*dV one has

lim ¢g = Pu
B—o00

uniformly on X and with a uniform upper bound on the corresponding Kihler forms
Wy
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5.1.5. The Monge—Ampere operator and the functionals £ and F. The second order
operator

@ > MA(p) = w, (5.7)

appearing in the Eq. 5.4, is the complex Monge—Ampére operator (with respect to the
reference form wp).> By Stokes theorem

w":/w”::V
Joet = fo

which is hence a positive number independent of ¢ € C*°(X). Up to a trivial scaling we
may and will assume that V = 1. When n = 1 the operator M A may be identified with
the Laplacian, but when n > 2 it is fully non-linear. The one-form on C*°(X) defined
by M A is closed and hence admits a primitive &, i.e. a functional on C*°(X) whose
differential is given by

d€, = MA(p). (5.8)

The functional £ is only determined up to an additive constant which may be fixed by
the normalization condition £(0) = 0.

Using pluripotential theory [14,20] the operator M A can be extended from H,,, to
all of PSH (X, wo) giving a positive measures satisfying

f MAGp) < V(= 1)
X

Similarly the functional £ also extends from H(X, wg) to an increasing lower-semi
continuous functional on PSH (X, wg). We then set

Fu) :=(£o P)u), (5.9
which by [12] defines a Gateaux differentiable functional on C%(X). More precisely,
AdF)u = MA(Pu). (5.10)

This setup leads to a direct variational approach for solving complex Monge—Ampere
equations, including the Aubin—Yau equation 5.4, in the more general setting of big
cohomology classes and singular volume forms d'V [14] (compare Sect. 5.4). However,
in the present setting where L is positive the pluripotential theory can be dispensed with
by observing that M A(p) is a well-defined probability measure as long as w,, is in L},
(using that M A(p) is point-wise defined almost everywhere on X ). Then F (1) may be
defined by first taking u to be in C*°and using the regularity result 5.6 for Pu. One then
defines F on CY(X) as the unique continuous extension of F from C°°(X), using that
F(u) is Lipschitz continuous on C*°(X) with respect to the CY-norm (as follows form
general principles; see the beginning of the proof of Lemma 3.12).

3 The terminology stems from the fact that when wy = 0 (which can always be locally arranged by shifting
@) the density of M A(g) is proportional to the determinant of the complex Hessian dd¢.
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5.2. The “temperature deformed” determinantal point processes on X. Let (X, L) bea
polarized manifold, i.e. an n-dimensional complex compact manifold X endowed with
a positive holomorphic line bundle L. We will denote by HY(X, kL) the space of all
global holomorphic sections with values in the k th tensor power of L (using additive
notation for tensor powers). By the Hilbert-Samuel theorem

Ni :=dim HY(X, kL) = VK" + o(k"),

where V = [y c1(L)" > 0.

To the data (||-||, dV, Bx) consisting of a Hermitian metric ||-|| on L, a volume form
dV on X and a sequence of positive number f; we can associate the following sequence
of symmetric probability measures on X V¢ :

_ et s®y e xa, ) [ av et
ZNie.p

pNeh) (5.11)

where det S® is a generator of the top exterior power AN HO(X, kL), viewed as a
one-dimensional subspace of H O(x Nk, (kL)'XN k) under the usual isomorphism between
HO(XNe, (kL)®Ne) and the Ni-fold tensor product of H%(X, kL). The number Zy, g
is the normalizing constant

ZNkﬁ = /xNk

By homogeneity the probability measure 1V+-#) is independent of the choice of gen-
erator det S® and thus only depends on the data (||-||, dV, Br). We will refer to to the
corresponding random point processes on X, as the temperature deformed determinan-
tal point processes on X attached to (||-||, dV, Bx) (the special case f; = k defines a
bona fide determinantal point process, as recalled below).

28/k
det S® H dV®Ne (5.12)

Remark 5.5. Since the transformation (||-||,dV, Br) +— (||-]l e /2, e*PcdV, By), for
u € C°(X), leaves the probability measure 5.11 invariant, the processes above only
depend on the data (||-]|,dV, Bx) through the corresponding two form 7, defined by
formula 5.3. Moreover, any twisting form 7 such that the cohomology class ([n] +
c1(Kx))/Bx defines a positive class in H2*(X,R) N H%(X, Z) arises from a suitable
choice of data (||-||, dV, Bx) (compare Sect. 5.1.3).

It will be convenient to take det S to be the generator determined by abasis sy, ..., s Ni

in HO(X, kL) which is orthonormal with respect to the L2-product determined by
(Il , dV) for any fixed volume form dV on X :

(s,8)2 = / Is|I>dV
X
We then take (det S(k))(xl, X2y o, XN =

= det(s; () = Y (=D g (o 1)) - sy () (5.13)

GGSNk
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Example 5.6. The model case of a polarized manifold is (X, L) = (P™, O(1)), where
P (:= C™! — {0})/C* is m-dimensional complex projective space and O(1) is the
hyperplane line bundle over P (the model positively curved metric on O(1) is the
Fubini-Study metric induced from the Euclidean metric on C”*!). More generally, taking
X to be a non-singular algebraic variety of P and L as the restriction to X of O(1) gives
apolarized where the elements in H%(X, kL) are, for k sufficiently large, the restrictions
to X of homogeneous polynomials of degree k on P (in fact, by the Kodaira embedding
theorem any polarized manifold (X, L) may, after replacing L with a sufficiently high
tensor power, be concretely realized as (X, O(1)|x)). In the case of X = P! (=the
Riemann sphere) with ||-|| denoting the Fubini-Study metric on (O(1) whose curvature
form wy is the invariant measure on P! one can take the base {s;} to consist of monomials
and factorize

Hdets(k)” (x1,x2,...,xN) =ZN 1_[ lxi — xjl,

I<i<j<N

where N = k + 1 and X has been identified with the unit-sphere in Euclidean R3
and where Zy = NV (N 0 1) e (%:}) /N!. In the physics literature the corresponding
ensemble appears as a Coulomb gas of N unit-charge particles (i.e a one component
plasma) confined to the sphere in a neutralizing uniform background w (see for example
[27]). More generally, on any Riemann surface of genus g the bosonization formula [1]
gives

”detS(k)H(xl,...xN)=ZNexp G x) +rxn) | (514)
oy

where G is the Green function of the Laplacian induced by the metric wp and where the
second term r appearing above vanishes for genus g = 0, while for g > 0 it may be
expressed in terms of the Riemann theta function on the Jacobian torus of the Riemann
surface X (giving a contribution which is lower order than the first term; see [56] and
references therein). However, when n > 1 it should be stressed that there is no tractable
formula for Hdet S || (x1,...xn), even to the leading order.

When g = k the probability measure 1 V¢-#) in formula 5.11defines a determinantal
point process i.e. its density can be written as

1

det (K™ (x;, x,))H /Ni!,
J=N ’

where K® (x,y) denotes the kernel of the orthogonal projection onto the space
HO(X, kL) viewed as a subspace of the space C*°(X, kL) of all smooth sections
equipped with the L2-norm determined by (||-Il, dV) [5,39].

The following result generalizes the LDP in [5] for determinantal point processes (or
more generally for the case § = 00) to the general case where 8y — S €]0, oo] :

Theorem 5.7. Let (X, L) be a polarized manifold and assume given the data
(-, dV, Bx) conmsisting of a Hermitian metric ||-|| on L, a volume form dV on X
and a sequence of positive number By — B €]0, oo]. Then the law of the empirical
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measures 8y, of the corresponding deformed determinantal point processes with Ny
particles satisfies a LDP with speed By Ny and rate functional

1
Fg(p) = Ewy() + —Dav(n) — Cg,

B
where E, (1) is the pluricomplex energy of | with respect to the curvature form wq of
Il and
Cg= inf Fg=— lim log Z ,
A M (X) B N—oo NiBr & LN.Bi

In particular, 8y, converges in law to the deterministic measure given by the unique
minimizer |1g of Fg. Moreover, when p < oo the measure [ig is the normalized volume
form wg of the twisted Kihler—Einstein metric corresponding to the twisting form n =
Bwo + RicdV .

In fact, the Kéhler form wg may be recovered directly from the limiting volume form pg
by differentiation twice (as follow from the very definition of the twisted Kédhler—Einstein
equation 5.2):

il ug
= — —00log — + wo,
@B = g g0 gy T
Using basic compactness properties of the space PSH (X, wp) one then arrives at the
following corollary (see [9] for the proof):

Corollary 5.8. Given data as in the previous theorem with B €]0, oo, the following
sequence of Kahler forms on X

k
1 1 [ det SO xa, - xn) PP av e
w® = ddCEIOg fXNk ! ” (-, x2 - Nk)” + oo,

converges to the unique solution wg of the twisted Kéihler—Einstein metric corresponding
to the twisting form 1 := Bwgy + RicdV .

Remark 5.9. The previous corollary yields a quasi-explicit way of approximating the
solution wg to the twisted KE equation in question (or equivalently the solution ¢g of
the corresponding complex Monge—Ampere equation 5.4), by performing integrals over
the spaces XVk~! of increasing dimension. The procedure becomes explicit as soon as
one has constructed bases in the spaces H(X, kL), for k sufficiently large.

5.2.1. The canonical random point processes on X. We start by recalling the basic
fact that, by the very definition of the canonical line bundle Ky, any holomorphic
section si of the k th tensor power of Ky (i.e. s; € H%(X, kK x) induces a measure on
X, symbolically denoted by (s; A 5%)!/*. Concretely, given an open set U C X with
holomorphic coordinates (zi, ..., z,) and writing sgjy = fkdz@’k for a holomorphic
function f; on U, where dz := dz; A --- A dz, trivializes Kx over U,

_ .n2 -
(s A5 = R dz n dz,

which is independent of U and thus defines a global measure on X (using any holo-
morphic atlas on X). We also recall that any volume form dV on X induces a metric
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|I-|lzv on the canonical line bundle Ky with the property that, if s, € H 0(X, kKx) then
(sg A Ek)ll (/]k may be expressed as

sk ASOS = skl 3y dv, (5.15)
as follows immediately from the definitions.

Now, fixing a volume form dV on X we can apply the relation 5.15 to XV equipped
with the induced volume form dV®" and the corresponding metric on L and deduce
that the canonical probability measure 1™¥) on X"k defined by formula 1.6 coincides
with the probability measured in formula 5.11 corresponding to the data (|||l ; , dV, 1)
Hence, Theorem 1.2 is indeed a special case of Theorem 5.7 (also using that n = 0 for
this particular data).

5.3. Proof of Theorem 5.7. To apply Theorem 1.1 in the present setting first note that
the Hamiltonian is given by

2
, (5.16)

I
E®0(x1,xz, . x) 1= =7 log H(detS(k))(xl, X2 XN

where det S® is defined by formula 5.13. The validity of the first assumption in Theorem
1.1 is then a consequence of the following result from [12], where By, =k :

Theorem 5.10. [12]. Let L — X be a positive line bundle equipped with a smooth
Hermitian metric ||-|| on L with curvature form wq and dV a volume form on X. Then

1
lim ——— log/
k—oo  kNg XNk

where F is the Gateaux differentiable functional defined by formula 5.9

2
det S® H (x1. ...,xN)eku<x0~~ku<xN>> = T,

To verify the second assumption in Theorem 1.1, concerning quasi-superharmonicity,
we first observe that we may as well assume that d V' is the volume form d V, of the metric
g defined by the Kihler form wg. Indeed, dV = ¢ “Pd V, for some smooth function u
and hence changing dV corresponds to changing the metric ||-|| to ||-|| e /2 Next, we
recall that, in general, log ||s||* is kw—psh for any holomorphic section s of kL — X
(where w is the curvature form of ||-||). Hence, we get,

Aglog |Is|?/* > -

for some positive constant A. Applying the latter inequality to || det(s® (-, x2, ..., xn) ||
for x3, ..., xy thus shows that Theorem 1.1 can be applied to get the LDP in Theorem
5.7.

Next, we will show that the unique minimizer g of the rate functional Fg appearing
in Theorem 1.1 coincides with the normalized volume form wg of the corresponding
twisted Kédhler—Einstein metric, by applying the general Lemma 3.12. It should however
be stressed that while the infimum in the left hand side of formula 3.9 is always attained
at some g € M1(X) (by weak compactness and lower-semi continuity) this is not so
for the right hand side, in general. But in the present setting the sup is attained, when L
is assumed to be positive, thanks to the Aubin—Yau theorem. Indeed, first setting

gw) = B! log/eﬂ”dV,
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for a given B €]0, oo[ gives g*(n) = B~ 'Dgy(n) if © € M1(X) and g*(n) = oo
otherwise, as is well-known [30] (and follows from Jensen’s inequality applied to the
log). Moreover, by the dominated convergence theorem

ePu

—_— X
T Prav € Mi(X)

dglu =

Letting  be the functional on C°(X) defined by formula 5.9 the critical point Eq. 3.10
thus becomes

ePrav

MAEW =7 Feqy

when u is smooth, say. Up to replacing u by u + C we may as well assume that the
denominator above is equal to 1. In particular, when u € H (X, w) the equation above
is precisely the Aubin—Yau equation 5.4, which, by the Aubin—Yau theorem admits a
(unique) solution ug € H(X, w). Hence, by the previous lemma g := M A(ug) is the
unique minimizer of the rate functional Fg appearing in Theorem 1.1, in the present
setting. Finally, as explained in Sect. 5.1.3 g is the volume form of the Kéhler form
wg solving the twisted Kéhler-Einstein equation 5.2.

Remark 5.11. To see the relation to the pluricomplex energy introduced in [14] we write,
as in formula 3.11,

f*(w)y= sup E(Pu) — (u, p),
MECO(X)

when u € M (X), which coincides with the pluricomplex energy of ., with respect to
wo in [14] (using the notation in [7]). More concretely, a direct calculation reveals that
when u is a volume form

n—1 1 n—1—j

1 (ddp, + wpy)’ w
Ew =—Y —— | doy Adou A K A —2 . (517
) V;)j+2/;( Yu 2 & n ! n—1i—p O

where ¢, € H(X, wp) is the solution to the Calabi—Yau equation 1.13, which in Aubin’s
notation [3] means that E(u) = ¢, (I — J)(¢,) (using [20] the formula above holds
for any w such that E(u) < oo, by letting A denote the non-pluripolar products [20]).
Thus E () is a generalization of the classical Dirichlet energy on a Riemann surface.
The relation Fg(w") = k(w), where « denotes the twisted version of Mabuchi’s K-
energy then follows from the Chen-Tian formula for the K-energy (see [7] and [9] for
a direct proof using convex analysis). Moreover, the restriction to H (X, wg) of the dual
functional f(—u)+g(u) appearing in Lemma 3.12 coincides with the Ding functional in
Kihler geometry [7]. An alternative proof of the fact that a)’é minimizes Fg on M (X)
can then be given by using that wg is a critical point of x and hence, by convexity,
minimizes k on H(X, wp). Accordingly, the Calabi—Yau isomorphism w — " shows
that a)g minimizes the restriction of Fg to the subspace of all volume forms in M (X).
However, showing that the infimum of Fj over all of M (X) coincides with the infimum
over the subspace of volume forms requires the following non-trivial fact: any  such that
E (1) < oo can be written as a weak limit of volume forms w ; such that E (i ;) — E(u)
and Dgv (tj) — Dgy (u) (see [16] where more general results are obtained).
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5.4. The generalization to big line bundles and varieties of positive Kodaira dimension.
Let us briefly give some indications about the extension of Theorem 5.7 to line bundles
L which are merely assumed big, established in the companion paper [9]. In analytic
terms L is big iff ¢ (L) contains a positive current on X which is strictly positive in the
sense that it is bounded from below by a Kéhler form. However, in general, there is a
proper open subset 2 C X such that all positive currents in ¢ (L) are equal to —oo on
the complement X — € (which can be taken to be a complex subvariety of X). Fixing a
reference smooth Hermitian metric ||-|| on L with curvature form wy in c1 (L) the space
of positive currents in c1 (L) gets identified, as before, with the space PSH (X, wq) of all
wo—psh functions, modulo constants (however, in general all elements in PSH (X, wp)
will be singular along the subvariety X — €2). Moreover, the non-pluripolar Monge—
Ampere operator can be defined on PSH (X, wp), by restricting to € [20]. Then the
functional F can be defined essentially as before and Theorem5.7 still holds (again
using [12] to verify the first assumption in Theorem 1.1) Invoking, the general Theorem
1.1 thus establishes an LDP with a rate functional Fg, admitting a unique minimizer g
as before. However, one new difficulty is to show that j1g can be written as M A(¢g) for
the solution to the Eq. 5.4 with minimal singularities, whose existence is provided by
the general results in [14,20]. The problem is that Lemma 3.12 cannot be applied as it
is not clear that ¢g is of the form Pu for some u in C 0(X) (even if u can be taken to be
in L*°(X)). But using the variational calculus in [7,14] shows that ug is of the desired
form.

In particular, when Ky is big, i.e. X is a variety of general type, the corresponding
positive current wg is the canonical Kéhler—Einstein current in X [14,20]. In the general
case of a variety of positive Kodaira dimension k < n (where k = n iff Ky is big) one
can use the Ithaka fibration X — Y to represent K x as the pull-back of a big line bundle
L on the «-dimensional manifold Y. Using the Fujino—Mori canonical bundle formula
this reduces the proof of the convergence on X to the application of a generalization of
Theorem 5.7 concerning big line bundles on Y endowed with a singular volume form
dV. As shown in [9] this realizes the corresponding canonical limiting current wg as
the pull-back to X of a (singular) Kéhler form on Y solving a twisted Kdhler—Einstein
equation of the form 5.2, where 7 is a current on Y determined by the geometry of X
(the canonical current wg first appeared in a different geometric context in [51,52]).

6. Outlook
6.1. B = 0. Let (X, L) be a polarized manifold and fix a Kéhler metric wg in ¢y (L).
By Corollary 5.8 (and well-known stability properties of the complex Monge—Ampere
operator) one can recover the unique (normalized) smooth solution to the Calabi—Yau
equation

(wo +i03p)" =dV, 6.1)

[53] as the double limit ¢ := limp_. o limy o0 ¢y, Where

28/k dVON=1)

@, 1 o8 Symt [det SO, xa, x|

—logZ
Pp B v ogZy

Formally interchanging the two limits thus suggests the following
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Conjecture 6.1. Let (X, L) be a polarized manifold and wo a Kdihler metric in ci(L).
Then the unique smooth solution ¢ to the Calabi—Yau equation 6.1, normalized so that
fX @dV =0, may be represented as the following limit in L' (X) :

(w0 ._ 1 [y log | det SOz, ) [ A VO
K dv

)

g = lim ¢®, ¢ — Gy,
k—o00

where the constant Cy ensures that |. X e®dv = 0.

The conjectural formula above can be seen as a generalization to the non-linear
complex Monge—Ampere operator of the classical Green’s formula for the solution of the
Poisson equation for the Laplacian on a Riemann surface. Indeed, when X is a Riemann
surface the limit ¢ above is precisely given by the Green formula in question (as follows
from the bosonization formula 5.14). It turns out that the validity of the conjecture
above would follow from the existence of the corresponding mean energy E(u), for
any volume form p (see Problem 4.10). This is shown precisely as in the setting of the
real Monge—Ampere operator considered in [8,40] where the analog of the previous
conjecture was established using permanents as a replacements of the determinants
appearing in the present setting. In particular, when X is a Calabi—Yau manifold, i.e.,
K is trivial, the conjecture would imply a quasi-explicit formula for the unique Ricci
flat Kdhler metric w € ¢1(L), i.e., solving the Kihler—Einstein equation with vanishing
cosmological constant, A = 0.

6.2. B < 0. By Lemma 4.11 the existence of the mean energy (and thus the resolution
of the conjecture above) would follow if one could establish the asymptotics in formula
4.6 of the corresponding partition functions Zy, g/« (assumed finite) for all 8 > By, for
some negative number fy. It can be shown that Zy g, is indeed finite for some negative
Bo, sufficiently close to zero. In fact, both sides of formula 4.6 are finite when 8 > By
(where the critical negative By depends on (X, L)). This motivates the following

Conjecture 6.2. Let (X, L) be a polarized manifold and assume given the data (||-|| , dV')
consisting of a Hermitian metric ||-|| on L, a volume form dV on X. For a given negative
number By the following is equivalent:

e For any B > Py the partition functions Zy, p are finite for k sufficiently large
e For any B > Py the functional B Fg admits a minimizer on M (X)

e Forany B > Bo the measures (8 )« (e’ﬂH(Nk)dV‘@Nk) on M (X) satisfy a LDP with
speedN and rate functional

BFg() = BEw, (1) + Day (1),

where E, (1) is the pluricomplex energy of | with respect to the curvature form w

of I

In particular, if the conjectural LDP above holds then the functional B Fg is lower
semi-continuous and the large N-limit of the laws of §, for the corresponding random
point processes is concentrated on the (non-empty) set of minimizers of 8 Fg. By [7] any
such minimizer is the volume form of a Kéhler metric wg solving the twisted Kahler—
Einstein equation 5.2 corresponding to the data (wp, dV, B) and B Fg may be identified
with the corresponding twisted K-energy functional. Moreover, if the LDP holds then
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it follows that Zy, g < C év , when 8 > By. The conjecture should be contrasted with
the fact that, in general, B Fjg is unbounded from below if B is sufficiently negative and
even when B Fj is bounded from below there exist, in general, twisted Kihler-Einstein
metrics whose volume forms do not minimize 8 Fg.

In the case when L is the dual — K x of the canonical line bundle, i.e., X is a Fano
manifold (which equivalently means that 1 can be taken to be zero) the equivalence
between the first two points in the conjecture above can be seen as a probabilistic analog
of the Yau-Tian-Donaldson conjecture saying that a Fano manifold X admits a Kdhler—
Einstein metric with positive Ricci curvature ((i.e. A > 0) iff X is K-stable in the
algebro-geometric sense; see the companion paper [9] for more detailed explanations of
these relations.

Interestingly, the notion of negative temperature has already appeared in Onsager’s
work on the 2D vortex model [46]. Using the bosonization formula 5.14 on a Riemann
surface and large N -results for vortex models (as in [22,26,41]) it can be shown that the
conjecture above holds when X is a Riemann surface. Moreover, then the critical Sy is
equal to 2, when the volume (degree) of L is normalized to be one. In our normalizations
this corresponds to the critical negative temperature 8 in the vortex model [26,41] (a
detailed proof of this will appear elsewhere).
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7. Appendix: The Constant in the Cheng-Yau Gradient Estimate

Set¢ := |Vu/u|and F := ¢ (a®>— p?), where p < a < 1. We will follow the exposition
in [47]. First, Bochner’s identity gives after some calculations that, for any x,

A ¢ 2
I R T Uy o

(see the bottom of [47, page 141]). Let now x; be a point in the interior of B, (xq)
where F attains it maximum and assume that p (:= d(x, xg)) is smooth close to x|. Next
VF =0 at x; gives

Vo Vp? 2pVp
6 a—pr al_p? (72)

(in the following all (in-)equalities are evaluated at x = x1) and AF < 0 at x gives

2 212
Ap AP 2AVPP
¢ a2_p2 ((12—,02)2_
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Now, by the Laplacian comparison
Ap? <2+2(n— D +kp)

Substituting this into the previous inequality we get (using |Vp| < 1)

Ap  2+2(n—D(1+k 802
Ap 2420 =D +kp) 8 73
¢ a2 — ;02 (a2 _ ,02)2
By 7.2
Vo Vu _  2p¢
¢ u — a’—p?
Hence, Eq. 7.1 combined with Egs. 7.3 and the previous inequality gives
2 _ _ 2
05 P e Y= 208 Q20D +kp) 897
(n—1) (n—1) a>~p? a? — p? (@*—p?)?

Equivalently, multiplying by (a> — p*)? gives

F? 2,2 20 4n-2)
e

0>

20F — (2+2(n — D)1 +kp)(@® — p?) — 802,

Since we are only interested in the large n behaviour (and 0 < p < a) we deduce from
the previous inequality that
2
(n—=1)

giving, after multiplication by n,

0> — 8pF —nk*(@®)? = 2n(1 + k)a* — 8p>

0> F? —8anF — n*k*(d®)?* — 2n*(1 + k)a® — 8a’n,
which we write as

(4an)? + n’k*(@®)? + 2n*(1 + k)a> + 8a’n > (F — 4an)?,
giving
a’n? (26 + 122 + 2k> > (F — 4an)?
Hence
2 9 1/2
an (26+k a +2k) +4)>F:=¢(a—p)a+p)>dla—d)a,
so that
2 9 1/2
n (26+k a +2k) +4) > ¢a—9¢),

This shows that, if a < 1, there exists a constant C, only depending on an upper bound
on k, such that

Cn=¢a—9),

as desired.
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