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Abstract: In the present paper and the companion paper (Berman, Kähler–Einstein
metrics, canonical random point processes and birational geometry. arXiv:1307.3634,
2015) a probabilistic (statistical-mechanical) approach to the construction of canonical
metrics on complex algebraic varieties X is introduced by sampling “temperature de-
formed” determinantal point processes. The main new ingredient is a large deviation
principle for Gibbs measures with singular Hamiltonians, which is proved in the present
paper. As an application we show that the unique Kähler–Einstein metric with negative
Ricci curvature on a canonically polarized algebraic manifold X emerges in the many
particle limit of the canonical point processes on X. In the companion paper (Berman
in 2015) the extension to algebraic varieties X with positive Kodaira dimension is given
and a conjectural picture relating negative temperature states to the existence problem
for Kähler–Einstein metrics with positive Ricci curvature is developed.
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1. Introduction

In the present paper and the companion paper [9] a probabilistic approach to the con-
struction of canonical metrics on a complex algebraic varieties X is introduced by sam-
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pling random point processes defined in terms of algebro-geometric data, canonically
attached to X. The processes are “positive temperature deformations” of determinantal
(fermionic) point processes and the main new ingredient is a large deviation principle
for Gibbs measures with singular Hamiltonians, which is proved in the present paper.
As an application we show that the unique Kähler–Einstein metric with negative Ricci
curvature on a canonically polarized algebraic manifold X emerges in the many particle
limit of the canonical point processes on X. More generally, in the presence of a stress-
energy tensor on X it is shown that the unique Kähler metric solving Einstein’s equation
on X with negative cosmological constant (in Euclidean signature) emerges in the many
particle limit.

The generalization to the construction of canonical metrics andmeasures on a general
algebraic variety X of positive Kodaira dimension are given in the companion paper [9],
by exploiting the global pluripotential theory and variational calculus in [7,12,14,20].
This leads to a new probabilistic link between algebraic geometry on one hand (in par-
ticular the Minimal Model Program) and Kähler–Einstein geometry on the other. A
conjectural picture is also developed describing the relation between the existence of
negative temperature states and the existence problem for Kähler–Einstein metrics with
positive Ricci curvature. In particular, relations to algebro-geometric stability proper-
ties, as in the Yau-Tian-Donaldson conjecture are described in [9]. See also [8,40] for
connections to optimal transport in the real setting (corresponding to the case when X
is a toric and abelian variety, respectively) and [6] for connections to physics.

1.1. A large deviation principle for Gibbs measures. Let X be a compact Rieman-
nian manifold and denote by dV the corresponding volume form. Given a sequence of
symmetric lower semi-continuous functions H (N ) on the N -fold products XN the corre-
sponding Gibbs measures at inverse temperature β ∈]0,∞[ is defined as the following
sequence of symmetric probability measures on XN :

μ
(N )
β := e−βH (N )

dV⊗N/ZN ,β ,

where the normalizing constant

ZN ,β :=
∫
XN

e−βH (N )

dV⊗N

is called the (N-particle) partition function. The ensemble (XN , μ
(N )
β ) defines a ran-

dom point process with N particles on X which, from the point of view of statistical
mechanics, models N identical particles on X interacting by the Hamiltonian (interac-
tion energy) H (N ) in thermal equilibrium at inverse temperature β. The corresponding
empirical measure is the random measure

δN : XN → M1(X), (x1, . . . , xN ) �→ δN (x1, . . . , xN ) := 1

N

N∑
i=1

δxi (1.1)

taking values in the space M1(X) of all normalized positive measures on X, i.e., the
space of all probability measures on X .

A classical problem is to establish conditions for the existence of a macroscopic
limit of the empirical measures δN in the many particle limit N → ∞. More precisely,
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the problem is to show that the random measures δN admit a deterministic limit μβ ∈
M1(X) in the sense that the law

�N := (δN )∗μ(N )
β (1.2)

of δN , defining a probability measure on M1(X), converges, as N → ∞, weakly to a
Dirac mass concentrated on some μβ in M1(X). Equivalently, the marginals (μ

(N )
β ) j

of μ
(N )
β on X j satisfy

(μ
(N )
β ) j :=

∫
XN− j

μ
(N )
β → μ

⊗ j
β ,

weakly as probability measures on X j as N → ∞, which in the terminology of Kac
and Snitzmann [50] means that the sequence μ

(N )
β is chaotic. A stronger exponential

notion of convergence of δN , with an explicit speed and rate functional, is offered by
the theory of large deviations, by demanding that the laws �N satisfy a Large Deviation
Principle (LDP) with speed rN and a rate functional F, symbolically expressed as

�N (μ) ∼ e−rN F(μ), N → ∞
and assuming that F admits a unique minimizer μβ in M1(X). Loosely speaking this
means that the probability of finding a cloud of N points x1, . . . , xN on X such that the
corresponding measure 1

N

∑
i δxi approximates a volume form μ is exponentially small

unless μ is the minimizer μβ of Fβ.

Our main general result establishes such a LDP for a class of singular Hamiltonians:

Theorem 1.1. Let H (N ) be a sequence of functions (Hamiltonians) on XN as above.
Assume that

• there exists a sequence βN → ∞ of positive numbers βN such that for any continuous
function u on X

FβN (u) := − 1

NβN
log

∫
XN

e−βN
(
H (N )(x1,...,xN )+u(x1)+···+u(xN )

)
dV⊗N

converges, as N → ∞, to a Gateaux differentiable functional F(u) on C0(X)

• H (N ) is uniformly quasi-superharmonic, i.e. �x1H
(N )(x1, x2, . . . xN ) ≤ C on XN

Then, for any fixed β > 0, the measures (δN )∗(e−βH (N )
dV⊗N ) on M1(X) satisfy, as

N → ∞, a large deviation principle (LDP) with speed βN and good rate functional

Fβ(μ) = E(μ) +
1

β
DdV (μ), (1.3)

where the functional E(μ) is the Legendre-Fenchel transform of −F(−·) and DdV (μ)

is the entropy of μ relative to dV . In particular, the empirical measures δN of the
corresponding randompoint processes on X converge in law to the deterministicmeasure
given by the unique minimizer μβ of Fβ. Moreover, if the equation

dF|u = eβudV∫
X eβudV

(1.4)

on C0(X) admits a solution uβ, then the corresponding differential μβ := dF|uβ is the
minimizer of Fβ.
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It follows from the previous theorem that theLDP indeed also holds for the corresponding
Gibbs measures with the rate functional Fβ − Cβ, where Cβ is the following constant:

Cβ := inf
M1(X)

Fβ = − lim
N→∞

1

NβN
log ZN ,βN , (1.5)

It should be stressed that even the convergence of the first marginals of μ
(N )
β , implied

by the previous theorem, appears to be a new result.
As explained in Sect. 4.1 the asymptotics in the first assumption of the theorem may

be replaced by the weaker assumption that there exists a functional E(μ) on M1(X)

such that

H (N )(x1, . . . , xN )/N → E(μ)

in the sense of Gamma convergence. Moreover, Theorem 1.1 can be viewed as a gener-
alization of the Gärtner–Ellis theorem in the setting of Gibbs measures (see Sect. 4.2).
Let us also point out that the restriction that X be compact can be removed if suitable
growth-assumptions of H (N ) “at infinity” are made. But since our main application con-
cerns the case of compact complex manifolds, we have, for simplicity, taken X to be
compact.

It may be illuminating to point out that in thermodynamical terms the content of
Theorem 1.1 can be heuristically expressed as follows. Imagine that we know themacro-
scopic ground state (i.e., the state of zero energy E) of a system of a large number N
of particles in thermal equilibrium at zero temperature (i.e. at β = ∞). If we can rule
out any first order phase transitions at zero-temperature (which essentially means that
the macroscopic equilibrium states is unique), then increasing the temperature leads to a
newmacroscopic equilibrium state,minimizing the corresponding free energy functional
E − S/β, where S is the physical entropy (i.e., S = −D with our sign conventions). In
fact, in the complex geometric setting to which we next turn the zero-temperature limit
β → ∞ is reminiscent of a (second order) gas-liquid phase transition [10].

1.2. Application to Kähler–Einstein geometry. Let now X be an n-dimensional com-
plex algebraic projective variety of positive Kodaira dimension. This means that the
plurigenera Nk of X are increasing:

Nk := dimC H0(X, kKX ) → ∞,

where H0(X, kKX ) denotes, as usual, the complex vector space of all pluricanonical
(holomorphic) n-forms of X at level k, i.e. H0(X, kKX ) is the space of all global
holomorphic sections of the k tensor power of the canonical line bundle

KX := �n(T ∗X)

of X (using additive notation of tensor powers). In terms of local holomorphic coordi-
nates z1, . . . , zn on X this simply means that the elements s(k) of H0(X, kKX ) may be
represented by local holomorphic functions s(k) on X, such that |s(k)|2/k transforms as
a density on X and thus defines a measure on X. To any such algebraic variety X we
can associate the following canonical sequence of probability measures μ(Nk ) on XNk :

μ(Nk ) := 1

ZNk

∣∣∣(det S(k))(z1, . . . , zNk )

∣∣∣2/k , (1.6)
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where det S(k) is a generator of the top exterior power �Nk (H0(XNk , kKXNk ), i.e.,
totally antisymmetric (and thus defined up to a multiplicative complex number) and ZNk

is the normalizing constant. The probability measure μ(Nk ) thus defined is symmetric,
i.e., invariant under the natural action of the permutation group SNk , independent of the
choice of generator det S(k) and hence defines a canonical random point process on X
with Nk points.

As shown in the companion paper [9], it follows from Theorem 1.1, combined with
the asymptotics in [12] that the corresponding empirical measures δNk converge in law,
as k → ∞, towards a deterministic measure μcan on X, which is thus canonically
attached to X. In fact, using the pluripotential theory and variational calculus in [7,14]
the limiting measure μcan is shown to coincide with the canonical measure of Song-
Tian [51] and Tsuji [52] previously defined in terms of Kähler–Einstein geometry or
equivalently as solutions to certain complex Monge–Ampère equations. In the present
paper we will show how to apply Theorem 1.1 in the special case when KX is positive
(i.e. ample) to deduce the following

Theorem 1.2. Let X be a compact complex manifold with positive canonical line bundle
KX . Then the empirical measures δNk of the corresponding canonical random point
processes on X converge in law, as Nk → ∞, towards the normalized volume form
dVK E of the unique Kähler–Einstein metric ωK E on X. More precisely, the law of δNk

satisfies a large deviation principlewith speed Nk whose rate functionalmay be identified
with Mabuchi’s K-energy functional on the space of Kähler metrics in c1(KX ).

By the celebrated Aubin–Yau theorem [3,53] the canonical line bundle KX of a compact
complex manifold X is positive precisely when X admits a Kähler–Einstein metric ωK E
with negativeRicci curvature, i.e., aKählermetricwith constant negativeRicci curvature:

RicωK E = −ωK E (1.7)

However, there are very few examples where the Kähler–Einstein metric can be obtained
explicitly. The previous theorem provides a canonical sequence of quasi-explicit Kähler
forms ωk approximating ωK E :
Corollary 1.3. Let X be a complex compact manifold such that KX is positive. Then the
sequence

ωk := ddc log
∫
XNk−1

∣∣∣(det S(k))(·, x1, . . . , xNk−1)

∣∣∣2/k (1.8)

(consisting of Kähler forms, for k sufficiently large) converges, as k → ∞, to the
Kähler–Einstein metric ωK E in the weak topology of currents on X.

Theorem 1.2 fits into a more general setting of “temperature deformed” determinan-
tal point processes attached to a polarized manifold (X, L), i.e., a compact complex
manifolds X endowed with a positive line bundle L (Theorem 5.7). More precisely, in
the general setting the point processes are attached to the data (‖·‖ , dV, βk) consisting
of a Hermitian metric ‖·‖ on a L , a volume form dV on X and a sequence of positive
numbers βk → β ∈]0,∞]. Then the corresponding probability measures on XNk are
defined by

μ(Nk ,β) :=
∥∥(det S(k))(x1, x2, . . . xNk )

∥∥2βk/k dV⊗Nk

ZNk ,β

, (1.9)
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where det S(k) is a generator of the top exterior power �Nk H0(X, kL). Concretely, the
corresponding LDP is equivalent to the following asymptotics for the L2βk/k-norm of
the generator det S(k) of the determinant line of H0(X, kL) which is orthonormal with
respect to the L2-product determined by (‖·‖ , dV ) :

1

Nk
log

∥∥∥det S(k)
∥∥∥
L2βk /k (XNk ,μ

⊗Nk
0 )

→ − inf
μ∈M1(X)

Fβ(μ)

(byLemma4.7). In this general setting the limiting deterministicmeasureμβ minimizing
Fβ is the volume form of the uniqueKählermetricωβ in the first Chern class of L solving
the twisted Kähler–Einstein equation

Ricω = −βω + η, (1.10)

where the twisting form η is explicitly determined by (‖·‖ , dV, β). The point is that
when L = KX any given volume form dV naturally defines a metric ‖·‖dV on L and
the probability measures on XNk attached to (‖·‖dV , dV, 1) are precisely the canonical
ones defined by formula 1.6. Moreover, in this special case η vanishes and the Eq. 1.10
thus reduces to the usual Kähler–Einstein equation 1.7. Themore general twisted version
of the equation has previously appeared in various situations in Kähler geometry [37,
51,52]. From the physics point of view the twisting form η corresponds to the (trace-
reversed) stress-energy tensor in Einstein’s equations on X (with Euclidean signature).

The Hamiltonians

H (Nk )(x1, . . . , xNk ) := −k−1 log
∥∥∥(det S(k))(x1, x2, . . . xNk )

∥∥∥2 (1.11)

corresponding to the probability measures 1.9 are strongly non-linear unless X is a
Riemann surface, i.e. unless n = 1. In fact, in the simplest latter case, i.e., when X is the
Riemann sphere, H (Nk )(x1, . . . , xNk ) is a sum of identical pair interactions W (xi , x j ),
where W is the Green function of the corresponding Laplace operator and then the
corresponding functional E(μ) is the Dirichlet energy (Remark 5.11). In general, the
connection to the Kähler–Einstein geometry of (X, L) will be shown to arise from the
fact that the Eq. 1.4 is intimately related to the complex Monge–nAmpère equation

(ω0 + i∂∂̄u)n = eβudV, (1.12)

where ω0 is the normalized curvature two form of the given metric ‖·‖ on L . More
precisely, the two equations coincide for smooth functions u such that ω0 + i∂∂̄u is a
Kähler form (i.e., smooth and positive). In this complex geometric setting the strong
non-linearity of the Hamiltonians H (N ) when n ≥ 2 is reflected in the non-linearity
of the complex Monge–Ampère operator appearing in the left hand side of Eq. 1.12
(coinciding with the Laplacian when n = 1). Furthermore, the singularity of H (N )

(which is present for any dimension n) is a reflection of the fact that solutions to the
(generalized) Calabi–Yau equation

(ω0 + i∂∂̄u)n = μ (1.13)

are, in general, singular when μ is a probability measure on X (as is clear already for
the Laplace equation appearing when n = 1).

Finally, let us point out that the extension to general complex algebraic manifolds X
with positive Kodaira dimension, established in the companion paper [9], relies on an
extension of Theorem 5.7 to line bundles L which are big (but not necessarily positive);
see Sect. 5.4.
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1.3. Comparison with previous results. First a comment on relations to the physics
literature: in the case n = 1 (i.e., in two real dimensions) the quasi-linear Laplace
type Eq. 1.12 arises as the macroscopic equilibrium equation in a range of statistical
mechanical models of mean field type: it is called the Joyce–Montgomery equation
in Onsager’s vortex model for 2D turbulence, the Poisson–Boltzmann equation in the
Debye–Hückel theory of plasmas and electrolytes and the Lane–Emden equation in
stellar physics (see [35]). But the Monge–Ampère equation (n > 1) does not seem to
have appeared in any statistical mechanical model before. On the other hand, in the
case when βk := k the density of the corresponding probability measure has a natural
quantummechanical interpretation: it is the squared amplitude of the Slater determinant
representing a maximally filled many particle state of N free fermions on X, subject to
an exterior magnetic field (the corresponding single particle wave functions are elements
of H0(X, kL) and represent the corresponding lowest Landau levels). The case when
βk = νk, for a given positive integer ν, also appears in the fractional Quantum Hall
Effect, where the corresponding probability density is the squared amplitude of the
Laughlin state (see the review [43] and references therein).

1.3.1. Large deviations. The LDP in Theorem 1.1 in the case when H (N ) is uniformly
equicontinuous is essentially well-known in the setting of mean field models [8,34] (it
then also applies to the case of negative β, by replacing H (N ) with -H (N )). But the key
feature of Theorem 1.1 is that it applies to a large class of singular Hamiltonians and
in particular H (N ) is allowed to be strongly repulsive in the sense that it blows up, as
two points merge (and hence the Gibbs measure may be ill-defined when β is negative).
It seems that the only previous class where a convergence result as in Theorem 4.6 has
been established for singular Hamiltonians is in the “linear” case when H (N ) is a sum
of pair interactions with a mean field scaling:

H (N )(x1, . . . , xN ) = 1

(N − 1)

∑
1≤i< j≤N

W (xi , x j ), (1.14)

where the pair interaction W is allowed to be singular along the diagonal, as long it is
lower semi-continuous and in L1

loc (this is indeed a mean field interaction in the sense
that each particle xi is exposed to the average of the pair interactions W (xi , x j ) for
the N − 1 remaining particles). Then the asymptotics of the partitions functions 1.5
can be obtained using the method of Messer–Spohn [45], which is based on the Gibbs
variational principle andwhich crucially relies on the existence of themean energy Ē(μ)

corresponding to H (N ) (see [26,41] for the case of a logarithmic singularity which is
motivated by Onsager’s vortex model for 2D turbulence [35,46]). A similar argument
applies in the case of “finite order”, i.e., when H (N ) is a sum of j-point interactions for a
uniformly bounded j (then E(μ) depends polynomially onμ). However, the main point
of the previous theorem is to avoid the latter assumption, which is not satisfied in the
application to Kähler–Einstein geometry (apart from the classical lowest dimensional
setting of Riemann surfaces). In particular, the present proof bypasses the problem of
the existence of the limiting mean energies. Instead, the main idea of the proof is to
exploit the Riemannian orbifold geometry of the space of configurations of N points on
X, viewed as the singular quotients XN/SN ,where SN is the symmetric group acting on
XN by permuting the factors. The key result is a submean inequality for positive quasi-
subharmonic functions on XN/SN with a distortion coefficient that is sub-exponential
in the dimension (Theorem 2.1), which is closely related to an inequality of Li-Schoen
[44].
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There is also another approach to large deviation principles for mean field Hamiltoni-
ans of the form 1.14 originating in the literature on randommatrices and Coulomb gases
[17,18,28,48], which as explained in [48], is closely related to the notion of Gamma
convergence (see also [55,56] for applications to univariat random polynomials). This
approach seems to be limited to the case when βN � log N and in particular β = ∞
so that the entropy contributions can be neglected.1 See also [33] for a general LDP for
Hamiltonians of the form 1.14 using weak convergence methods.

Let us also point out that the role of (det S(k))(x1, x2, . . . xNk ) appearing in formula
1.9 is played by the classical Vandermonde determinant in the random matrix literature
(see Example 5.6). In fact, there is a non-compact analogue of Theorem 5.7 in Euclidean
C
n which specializes to the setting of random matrix theory and the 2D log gas when

n = 1 and β = ∞ and to the 2D vortex model (for n = 1 and β < ∞) and which can be
proved by supplementing the proof of Theorem 5.7 with a tightness estimate, as in the
non-compact setting considered for β = ∞ in [5] (see also [19] for the case β = ∞).
Details will appear elsewhere.

1.3.2. Kähler geometry. Astatisticalmechanics approach has previously been applied to
conformal geometry [42], as opposed to the present complex-geometric setting. The role
of the “determinantal”Hamiltonian 1.11 is in the conformal setting playedby ameanfield
Hamiltonian of the form 1.14 with a logarithmic pair interaction and the role of the fully
non-linear complexMonge–Ampère operator is played by a linear conformally invariant
operator, which is zero-order perturbation of a power of the Laplacian (the Paneitz
operator). Accordingly, previous results in [26,41] concerning such Hamiltonians can
be applied in the conformal setting (compare the discussion above), while the present
setting seems to require new methods.

The present probabilistic should be viewed in the light of the pervasive philosophy
in Kähler geometry, going back to Yau [54], of approximating metrics on a complex
algebraic manifold with algebraically defined Bergmanmetrics, whichmay be identified
with elements of the symmetric spaceGL(N ,C)/U (N ). For example, the quasi-explicit
Kähler metrics ωk in formula 1.8, approximating the Kähler–Einstein metric ωK E on
a canonically polarized manifold X, are analogs of Donaldson’s balanced metrics in
GL(N ,C)/U (N ) [32]. One advantage of the present approach is that, as shown in the
companion paper [9], the approximation also applies when X is of general type, where
the role of ωK E is played by the canonical Kähler–Einstein current on X (which is
singular along a subvariety of X) [14,20]. In another direction it would be interesting to
see if the present approach can be implemented to construct numerical simulations of
Kähler–Einstein metrics, usingMonte Carlo type methods, complementing the different
numerical approaches in [31,32] (see [4] for relations between Monte Carlo simulations
and similar polynomial determinantal point processes).

Even if the connection between canonical random point processes on a complex alge-
braic manifold X does not seem to have been studied before, there are some connections
to previous work on random polynomials/holomorphic sections in a given back-ground
geometry [49]; in particular in the one-dimensional setting where an LDP was obtained
in [55,56]. Another probabilistic approach to the space of Kähler metrics has been intro-
duced in a series of papers by Ferrari, Klevtsov and Zelditch [36], motivated byQuantum
Field Theory. The approach aims at approximating random Kähler metrics with random
Bergmanmetrics. Accordingly, the role of the N -particle space XN/SN is in [36] played

1 The Hamiltonians in the random matrix and Coulomb gas literature are usually scaled in a different way
so that our zero-temperature (β = ∞) corresponds to a fixed inverse temperature.
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by the symmetric space GL(N .C)/U (N ). In conclusion, it would be very interesting to
understand the precise connections between [36] and the present setting, as well as the
connection to Donaldson’s balanced metrics [32].

Organization. In Sect. 2, we prove the submean inequality in large dimensions, which
plays a key role in the subsequent Sect. 3, where the general LDP in Theorem 1.1 is
proved. In Sect. 4, we make a digression on relations to previous methods and notions
used in the literature on large deviations. The applications to Kähler–Einstein geometry
are given in Sect. 5. For the convenience of readers lacking background in Kähler ge-
ometry we start the section by giving a reasonably self-contained account of the Kähler
geometry setup (including some rudiments of pluripotential theory). The article is con-
cluded with an outlook in Sect. 6 on some open problems and an appendix where the
dimension dependence on the constant in the Cheng–Yau gradient estimate is obtained
by tracing through the usual proof.

2. Submean Inequalities in Large Dimension

2.1. Setup. Let (X, g) be a n-dimensional Riemannian manifold and assume that

Ric g ≥ −κ2(n − 1)g

for some positive constant κ (sometimes referred to as the normalized lower bound on
the Ricci curvature). Let G a finite group acting by isometries on X and denote by
M := X/G the corresponding quotient equipped with the distance function induced by
the metric g, i.e.

dM (x, y) := inf
γ∈G dX (x, γ y),

where dX is the Riemannian distance function on (X, g). Even though the quotient M is
not a manifold in general (since G will in general have fixed points) it still comes with
a smooth structure in the following sense. Denote by p the natural projection map from
X to M. Using the projection p we can identify a function f on M with G-invariant
function p∗ f on X and accordingly we say that f is smooth if p∗ f is. Similarly, there
is a natural notion of Laplacian � on the quotient M : the Laplacian �u of a locally
integrable function u on M is the signed Radon measure defined by

∫
M

(�u) f := 1

|G|
∫
X
p∗u�(p∗ f )

for any smooth function f on M. More generally, by localization, this setup naturally
extends to the setting of Riemannian orbifolds (see [21]), but the present setting of global
quotients will be adequate for our purposes.

2.2. Statement of the submean inequality.

Theorem 2.1. Let (X, g) be a Riemannian manifold of dimension n such that
Ric g ≥ −κ2(n − 1)g and G a finite group acting by isometries on X. Denote by
M := X/G the corresponding quotient equipped with the distance function induced
by the metric g and let v be a non-negative function on M such that �gv ≥ −λ2v for
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some non-negative constant λ. Then, for any δ ∈]0, 1[ and ε ∈]0, 1] there exist constants
A and C such that

sup
Bεδ(x0)

v2 ≤ Ae2λδeCn(δ+ε)

∫
Bδ(x0)

v2dV∫
Bεδ(x0)

dV
,

where C only depends on an upper bound on κ and A only depends on δ and ε (assuming
that the balls above are contained in a compact subset of M).

Note that by the G-invariance we may as well replace the functional v and the balls on
M with their pull-back to X.

2.3. Proof of the submean inequality in Theorem 2.1. Wewill follow closely the elegant
proof of Li-Schoen [44] of a similar submean inequality. But there are two new features
here that we have to deal with:

• We have to make explicit the dependence on the dimension n of all constants and
make sure that the final contribution is sub-exponential in n

• We have to adapt the results to the singular setting of a Riemannian quotient

Before turning to the proof we point out that it is well-known that submean inequalities
with a multiplicative constant C(n) do hold in the more general singular setting of
Alexandrov spaces (with a strict lower bound −κ on the sectional curvature). But it
seems that the current proofs (see for example [38]), which combine local Poincaré and
Sobolev inequalities with the Moser iteration technique, do not give the subexponential
dependence on C(n) that we need.

We recall that the twomain ingredients in the proof of the result of Li-Schoen referred
to above is the gradient estimate of Cheng–Yau [29] and a Poincaré-Dirichlet inequality
on balls. Let us start with the gradient estimate that we will need:

Proposition 2.2. Let u be a harmonic function on the ball Ba(x0) of radius a centered
at x0 ∈ M and assume that a ≤ 1 Set ρx0(x) := d(x, x0) (the distance between x and
x0). Then

sup
Ba(x0)

(|∇ log u| (a − ρx0)
) ≤ Cn,

where the constant C only depends on an upper bound on κ.

Proof. In the smooth case this is the celebrated Cheng–Yau gradient estimate [29]. The
result is usually stated without an explicit estimate of the multiplicative constant Cn in
terms of n, but tracing through the proof in [29] gives Cn ≤ Cn (see the appendix in
the present paper and also [2] for a probabilistic proof providing an explicit constant).
We claim that the same estimate holds in the present setting using a lifting argument.
To see this recall that the usual proof of the gradient estimate proceeds as follows (see
the appendix). Set φ(x) := |∇ log u| (= |∇u| /u) and F(x) := φ(x)(ρx0 − a)2. Then
F attains its maximum in a point x1 in the interior of Ba(x0) (otherwise |∇u| vanishes
identically and thenwe are trivially done). Hence, F(x) ≤ F(x1) on some neighborhood
U of x1.Now, in case F (or equivalentlyρx0) is smooth onU weget�F ≤ 0 and∇F = 0
at x1. Calculating �F and using Bochner formula and Laplacian comparison then gives

φ(x1)(a − ρx0(x1)) ≤ Cn (2.1)
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which is the desired estimate. In the casewhenρx0 is not smooth onU, i.e. x1 is contained
in the cut locus of x0 one first replaces ρx0 with a smooth approximation ρ

(ε)
x0 of ρx0

(which is a local barrier for ρx0) and then lets ε → 0 to get the same conclusion as
before. In the singular case M = X/G we proceed as follows. First we identify F
with a G-invariant function on the inverse image of BR(x0) in X (and x0 and x1 with
a choice of lifts in the corresponding G-orbits) and set F̃ := φ(x)(a − ρ̃x0)

2, where
ρ̃x0(x) := dX (x0, x). By definition ρ̃x0 ≥ ρx0 on X and, after possibly changing the
lift of the point x1 we may assume that ρ̃x0 = ρx0 at x = x1 and hence ρ̃x0 < a (after
perhaps shrinkingU ). In particular, F̃ ≤ F onU and F̃ = F at x1 and hence F̃ also has
a local maximum at x1. But then the previous argument in the smooth case gives that 2.1
holds with ρx0 replaced by ρ̃x0 . But since the two functions agree at x1 this concludes
the proof in the general case. ��
Corollary 2.3. Let h be a positive harmonic function on Bδ(x0). Then there exists a
constant C only depending on an upper bound on κ such that

sup
Bεδ(x0)

h2 ≤ eCεn

∫
Bεδ(x0)

h2dV∫
Bεδ(x0)dV

for 0 < ε < 1.

Proof. Set v := log h and fix x ∈ Bεδ(x0). Integrating along a minimizing geodesic
connecting x0 and x and using the gradient estimate in the previous proposition gives

|v(x)−v(x0)| ≤ Cn
∫ εδ

0

1

δ − t
dt =Cn (log(δ − 0)− log(δ − εδ))= − Cn log(1 − ε).

In particular, for any two points x, y ∈ Bεδ(x0)we get |v(x) − v(y)| ≤ |v(x) − v(x0)|+
|v(y) − v(x0)| ≤ −2Cn log(1 − ε), i.e. h(x) ≤ (1 − ε)−2Cnh(y). In particular,
supBεδ(x0) h

2 ≤ (1− ε)−4Cn infBεδ(x0) h
2, which implies the proposition after renaming

the constant C. ��
The secondkey ingredient in the proof ofTheorem2.1 is the followingPoincaré-Dirichlet
inequality:

Proposition. Let f be a smooth function on Bδ(x0) vanishing on the boundary. Then

∫
Bδ(x0)

| f |2dVg ≤ 4eCnδ

∫
Bδ(x0)

|∇ f |2dVg

where the constant C only depends on an upper bound on κ.

Proof. We follow the proof in [44] with one crucial modification (compare the remark
below). To fix ideas we first consider the case of a Riemannian manifold. Fix a point p
in the boundary of the ball B1(x0) and denote by r1(x) the distance between x ∈ M and
p. From the standard comparison estimate for the Laplacian we get

�r1 ≤ (n − 1)(
1

r1
+ κ) (2.2)
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(in theweak sense and point-wise away from the cut locus of p). In particular, for any pos-
itive number a we deduce the following inequality on Bδ(x0) (using that g(∇r1,∇r1) =
1) a.e.)

�g(e
−ar1) = ae−ar1(a − �r1) ≥ ae−a(1+δ)

(
a − (n − 1)(

1

(1 − δ)
+ κ)

)

Hence, setting a := n( 1
(1−δ)

+ κ) gives

�g(e
−ar1) ≥ ae−a(1+δ)(

1

(1 − δ)
+ κ) > 0

Multiplying by | f | and integrating once by parts (and using that ‖∇r1‖ ≤ 1 ) we deduce
that

a
∫
Bδ(x0)

|∇ f |e−ar1dV ≥ a(
1

(1 − δ)
+ κ)

∫
Bδ(x0)

| f |e−a(1+δ)dV .

Estimating e−ar1 ≤ e−a(1−δ) in the left hand side above and rearranging gives∫
Bδ(x0)

|∇ f |dV e2aδ(
1

(1 − δ)
+ κ)−1 ≥

∫
Bδ(x0)

| f |dV,

(using that g(∇r1,∇r1) ≤ 1 in the sense of upper gradients). This shows that the
L1-version of the Poincaré inequality in question holds with the constant ( 1

(1−δ)
+

κ)−1eδ2n( 1
(1−δ)

+κ)
, which for δ sufficiently small is bounded from above by en(4+2κ)δ.

The general Riemannian L2-Poincare inequality now follows from replacing | f | with
| f |2 and using Hölder’s inequality. Finally, in the case of the a Riemannian quotient M
we can proceed exactly as above using that the Laplacian comparison estimate in for-
mula 2.2 is still valid. Indeed, the pull-back p∗r1 of r1 to X is an infimum of functions
for which the corresponding estimate holds (by the usual Laplacian comparison estimate
and the assumption that G acts by isometries). But then the estimate also holds for the
function p∗r1, by basic properties of Laplacians. More generally, the required Laplacian
comparison estimate was shown in [21] for general Riemannian orbifolds. ��
Remark 2.4. The only difference from the argument used in [44] is that we have taken
the point p to be of distance 1 from x0 rather than distance 2δ, as used in [44]. For δ

small this change has the effect of improving the exponential factor from en(1+δκ) to
en(δ+δκ), which is crucial as we need a constant in the Poincare inequality which has
subexponential growth in n as δ → 0.

2.3.1. End of proof of Theorem 2.1. Let us first consider the case when λ = 0. De-
note by h the harmonic function on Bδ coinciding with v on ∂Bδ. By Cor 2.3 and the
subharmonicity of v

sup
Bεδ(x0)

v2 ≤ eCnε

∫
Bεδ(x0)

|h|2dVg∫
Bεδ(x0)

dVg
.

Next, by the triangle inequality∫
Bεδ(x0)

|h|2dVg/2 ≤
∫
Bεδ(x0)

|h − v|2dV +
∫
Bεδ(x0)

|v|2dV
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Since h−v vanishes on the boundary of Bδ(x0) applying the Poincare inequality in Prop
2.3 then gives

∫
Bεδ(x0)

|h − v|2dV ≤
≤

∫
Bδ(x0)

|h − v|2dV ≤ AeBnδ
∫
Bδ(x0)

|∇h − ∇v|2dV ≤ 2AeBnδ
∫
Bδ(x0)

|∇h|2 + |∇v|2dV

But h is the solution to a Dirichlet problem and as such minimizes the Dirichlet norm∫
Bδ(x0)

|∇h|2 over all subharmonic functions with the same boundary values as h. Ac-

cordingly, ∫
Bεδ(x0)

|h − v|2dV ≤ 4AeBnδ

∫
Bδ(x0)

|∇v|2dV

Finally, using that v is subharmonic we get∫
Bδ(x0)

|∇v|2dV ≤ Cδ

∫
B2δ(x0)

|v|2dV

(as is seen by multiplying with a suitable smooth function χ supported on B2δ such that
χ = 1 on Bδ). All in all this concludes the proof of Theorem 2.1 in the case λ = 0.

Finally, to handle the general case (i.e. λ �= 0) we set N := M×] − 1, 1[ equipped
with the standard product metric and apply the previous case to the function veλt to get

sup
Bεδ(x0,0)⊂N

v2e2λt ≤ Aδe
Bn(δ+ε)

∫
B2δ(x0,0)⊂N v2e2λt dV∫

Bεδ(x0,0)⊂N dV
,

But restricting the sup in the left hand side to Bεδ(x0)×{0} and using that Bεδ/2(x0, 0)×
[−εδ/2, εδ/2] ⊂ Bεδ(x0, 0) and B2δ(x0, 0) ⊂ B2δ(x0, 0) × [2δ, 2δ] gives

sup
Bεδ(x0)⊂M

v2 ≤ Aδ,εe
2λδeBn(δ+ε)

∫
B2δ(x0)⊂M v2dVg∫
Bεδ/2(x0,0)⊂M dVg

,

which concludes the proof of the general case (after a suitable rescaling).

3. Proof of the Large Deviation Principle for Gibbs Measures

Given a compact topological space X wewill denote byC0(X) the space of all continuous
functions u on X, equipped with the sup-norm and by M(X) the space of all signed
(Borel) measures on X. The subset ofM(X) consisting of all probability measures will
be denoted by M1(X). We endow M(X) with the weak topology, i.e. μ j is said to
converge to μ weakly inM(X) if〈

μ j , u j
〉 → 〈μ, u〉

for any continuous function u on X, i.e. for any u ∈ C0(X), where 〈u, μ〉 denotes the
standard integration pairing betweenC0(X) andM(X) (equivalently, theweak topology
is precisely the weak*-topology when M(X) is identified with the topological dual of
C0(X)). A functional F on C0(X) will be said to be Gateaux differentiable if it is
differentiable along affine lines and for any u in C0(X) there exists an element dF|u in
M(X), called the differential of F at u, such that for any v in C0(X)

dF(u + tv)

dt |t=0
= 〈

dF|u, v
〉
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3.1. Setup: the Gibbs measure μ
(N )
β associated to the Hamiltonian H (N ). A random

point process with N particles is by definition a probability measure μ(N ) on the N -
particle space XN which is symmetric, i.e. invariant under permutations of the factors
of XN . The empirical measure of a given random point process is the following random
measure

δN : XN → M1(X), �→ (x1, . . . , xN ) �→ δN (x1, . . . , xN ) := 1

N

N∑
i=1

δxi (3.1)

on the ensemble (XN , μ(N )). By definition the law of δN is the push-forward of μ(N ) to
M1(X) under the map δN , which thus defines a probability measure onM1(X).

Nowfix a back-groundmeasureμ0 on X and let H (N ) be a given N-particle Hamilto-
nian, i.e. a symmetric function on XN , which we will assume is lower semi-continuous
(and in particular bounded from below, since X is assumed compact). Also fixing a
positive number β the corresponding Gibbs measure (at inverse temperature β) is the
symmetric probability measure on XN defined as

μN
β := e−βH (N )

μ⊗N
0 /ZN ,

where the normalizing constant

ZN ,β :=
∫
XN

e−βH (N )

μ⊗N
0

is called the (N-particle) partition function. In our setting we will take μ0 to be the
volume form dV of a fixed Riemannian metric. Given a continuous function u on X we
will also write

ZN ,β [u] :=
∫
XN

e−β(H (N )+u)μ⊗N
0 ,

where u has been identified with the following function on the product XN :

u(x1, .., xN ) :=
N∑
i=1

u(xi )

3.2. Preliminaries on large deviation principles and Legendre transforms. Let us start
by recalling the general definition of a Large Deviation Principle (LDP) for a sequence
of measures.

Definition 3.1. Let P be a Polish space, i.e. a complete separable metric space.
(i) A function I : P →] − ∞,∞] is a rate function if it is lower semi-continuous.

It is a good rate function if it is also proper.
(i i) A sequence �k of measures on P satisfies a large deviation principle with speed

rk and rate function I if

lim sup
k→∞

1

rk
log�k(F) ≤ − inf

μ∈F
I
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for any closed subset F of P and

lim inf
k→∞

1

rk
log�k(G) ≥ − inf

μ∈G I (μ)

for any open subset G of P.

Remark 3.2. The LDP is said to be weak if the upper bound is only assumed to hold
whenF is compact. Anyway, wewill bemainly interested in the case whenP is compact
and hence the notion of a weak LDP and an LDP then coincide (and moreover any rate
functional is automatically good).

We will be mainly interested in the case when �k is a probability measure (which
implies that I ≥ 0 with infimum equal to 0). Then it will be convenient to use the
following alternative formulation of a LDP (see Theorems 4.1.11 and 4.1.18 in [30]):

Proposition 3.3. P be a metric space and denote by Bε(μ) the ball of radius ε centered
at μ ∈ P. Then a sequence �N of probability measures on P satisfies a weak LDP with
speed rN and a rate functional I iff

lim
ε→0

lim inf
N→∞

1

rN
log�N (Bε(μ)) = −I (μ) = lim

ε→0
lim sup
N→∞

1

rN
log�N (Bε(μ)) (3.2)

We note the following simple lemmawhich allows one to extend the previous proposition
to the non-normalized measures (δN )∗e−βH (N )

μ⊗N
0 :

Lemma 3.4. Assume that the following bound for the partition functions holds:∣∣log ZN ,β

∣∣ ≤ CN . Then the measures

�N := (δN )∗e−βH (N )

μ⊗N
0 (3.3)

satisfy the asymptotics 3.2 for any μ ∈ M1(X) with rate functional Ĩ (μ) and rN = N
iff the probability measures (δN )∗μ(N )

β onM1(X) satisfy an LDP at speed N with rate

functional I := Ĩ − Cβ, where Cβ := infμ∈M(X) Ĩ (μ).

Proof. Set �̃N := (δN )∗e−βH (N )
μ⊗N
0 and CN ,β := − 1

N log ZN ,β . By assumption CN ,β

is uniformly bounded andwedenote byCβ a given limit point of the sequence obtained by
replacing N with a subsequence N j .Since 1

N log�N (Bε(ν)) = 1
N log �̃N (Bε(ν))+CN ,β

we obtain that after replacing N with the subsequence N j the probability measures �N

satisfy (by Prop 3.3) an LDP with rate functional Ĩ − Cβ. As a consequence 0 =
inf( Ĩ − Cβ), showing that Cβ is independent of the subsequence. Hence, the whole
sequence converges towardsCβ,which proves one direction in the Lemma. The converse
is proved in a similar way. ��

Wewill also use the following classical result of Sanov, which is the standard example
of a LDP for point processes [30] (the result follow, for example, from the Gärtner–Ellis
theorem; see Sect. 4.2).

Proposition 3.5. Let X be a topological space and μ0 a finite measure on X. Then
the law �N of the empirical measures of the corresponding Gibbs measure μ⊗N

0 (i.e.
H (N ) = 0) satisfies an LDP with speed N and rate functional the relative entropy Dμ0 .
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We recall that the relative entropy Dμ0 (also called the Kullback–Leibler divergence
or the information divergence in probability and information theory) is the functional
onM1(X) defined by

Dμ0(μ) :=
∫
X
log

μ

μ0
μ, (3.4)

when μ has a density μ
μ0

with respect to μ0 and otherwise Dμ0(μ) := ∞. When μ0 is a
probability measure,Dμ0(μ) ≥ 0 and Dμ0(μ) = 0 iff μ = μ0 (by Jensen’s inequality).

3.2.1. Legendre–Fenchel transforms. Let f be a function on a topological vector space
V . Then its The Legendre-Fenchel transform is defined as following convex lower semi-
continuous function f ∗ on the topological dual V ∗

f ∗(w) := sup
v∈V

〈v,w〉 − f (v)

in terms of the canonical pairing between V and V ∗. In the present setting we will take
V = C0(X) and V ∗ = M(X), the space of all signed Borel measures on a compact
topological space X. We will use the following variant of the Brøndsted-Rockafellar
property A∗[25]:

Lemma 3.6. Let f be function on C0(X) which is Gateaux differentiable. Then, for any
μ ∈ M(X) such that f ∗(μ) < ∞ there exists a sequence of u j ∈ C0(X) such that

μ j := d f|u j → μ, f ∗(μ j ) → f ∗(μ) (3.5)

Proof. First recall that a convex function g on a topological vector space E is said to
be subdifferentiable at x ∈ E if g(x) < ∞ and g admits a subgradient x∗ at x, i.e. an
element x∗in the topological dual E∗ such that for any y ∈ E

g(y) ≥ g(x) +
〈
(y − x), x∗〉

The set of all such subgradients is denoted by (∂g)(x). Now assume that g = f ∗ for a
convex function f on a Banach space V . Then g is a lower semi-continuous function
convex function on the topological vector space E := V ∗ equipped with its weak
topology. According to [25, Thm 2] any element μ ∈ V ∗ such that f ∗(μ) < ∞ has the
property that there exists a sequence μ j → μ in V ∗ such that f ∗(μ j ) → f ∗(μ) and
f ∗ is subdifferentiable at μ j with a subgradient in V . The latter property equivalently
means that there exists u j ∈ V such that μ j ∈ (∂ f )(u j ) (as follows from the definition
of the Legendre-Fenchel transform). The proof is now concluded by setting V := C0(X)

and observing that if f is Gateaux differentiable at u ∈ V, then (∂ f )(u) = {d f|u} (as is
seen by restricting f to any affine line). ��
Remark 3.7. By convexity, if μ = d f|u for some u ∈ V := C0(X), then f ∗(μ) =〈
u, d f|u

〉 − f (u), which is essentially the classical definition of the Legendre transform
of f at μ. Accordingly, the previous lemma may be reformulated as the statement that
the Legendre-Fenchel transform is the greatest lower semi-continuous extension to all
of V ∗ of the Legendre transform, originally defined on (d f )(V ) ⊂ V ∗.
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3.3. The proof of Theorem 5.7. We start with the following simple

Lemma 3.8. Assume that H (N ) satisfies the quasi-superharmonicity assumption in the
second point of Theorem 1.1 . Then, for any sequence of positive numbers βN → ∞

−FβN (u) := 1

NβN
log

∫
XN

e−βN (H (N )+u)dV⊗N = − inf
XN

H (N ) + u

N
+ o(1)

Proof. The inequality≤ is trivial and to prove the reversed inequalitywefix a sequence of
x (N ) ∈ XN realizing the infimumappearing the right hand side above. Then replacing the
integral of XN with an integral over the L∞-ball Bε := {(x1, . . . , xN ) : dg(x, x

(N )
i ) ≤

ε}N , for a fixed number ε and a fixed metric g with distance function dg, and using
the classical submean inequality in each variable with a fixed multiplicative constant C
gives

∫
XN

e−βN (H (N )+u)dV⊗N ≥ CNe−βN (H (N )+u)(x (N ))

∫
Bε

dV⊗Ne−NβN δε

δε is the modulus of continuity of u, tending to 0 as ε → 0. Finally, since
∫
Bε

dV⊗N ≥
(C ′ε)N letting N → ∞ concludes the proof. ��

To handle the case when βN = β + o(1) for a finite β we will need to use the
subexponential dependence on the dimensions of the multiplicative constant appearing
in Theorem 2.1. To this end we first recall that, since X is assumed compact, the weak
topology on M1(X) is metrized by the Wasserstein 2-metric d induced by a given
Riemannian metric g on X, where

d(μ, ν)2 := inf
�∈�(μ,ν)

∫
dg(x, y)

2d�,

where�(μ, ν) is the space of all couplings betweenμ and ν, i.e. all probability measures
� on X × X such that the push forward of � to the first and second factor is equal to μ

and ν, respectively.

Proposition 3.9. For any given ε > 0 there exists a positive constant C > 0 such that
the following submean inequality holds on XN , for any N :

e−βH (N ))(x (N )) ≤ CeCεN

∫
Bε (x (N ))

e−βH (N )
dV⊗N

∫
B

ε2 (x (N ))
dV⊗N

, (3.6)

where Br (x (N )) denotes the inverse image in XN , under the map δN , of the Wasserstein
ball of radius r centered at δN (x (N ))

Proof. First observe that the pull-back of d on M1(X) to the quotient space X (N ) :=
XN/SN under the map δN defined by the empirical measure (formula 3.1) coincides
with 1/N 1/2 times the quotient distance function on X (N ), induced by the product
Riemannian metric on XN :

δ∗
Nd = 1

N 1/2 dX (N ) := d(N ) (3.7)
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Indeed, this is well-known and follows from the Birkhoff-Von Neumann theorem which
gives that for any symmetric function c(x, y) on X × X we have that ifμ = 1

N

∑N
i=1 δxi

and ν = 1
N

∑N
i=1 δyi for given (x1, . . . , xN ), (y1, . . . , yN ) ∈ XN , then

inf
�(μ,ν)

∫
c(x, y)d� = inf

�N (μ,ν)

∫
c(x, y)d�

where �N (μ, ν) ⊂ �(μ, ν) consists of couplings of the form �σ := 1
N

∑
δxi ⊗ δyσ(i) ,

for σ ∈ SN , where SN is the symmetric group on N letters.
Now consider the metric space (X (N ), d(N )) which is the quotient space defined

with respect to the finite group SN acting isometrically on the Riemannian manifold
(XN , gN ),where gN denotes 1/N times the product Riemannian metric. By assumption
H (N ) is SN -invariant and �gN H

(N ) ≤ C on XN (using the obvious scaling of the
Laplacian). Moreover, since X is compact there exists a non-negative number k such that
Ric g ≥ −kg on X and hence rescaling gives Ric gN ≥ −kNgN on (XN , gN ). But the
dimension of XN is equal to nN and hence the assumptions in Theorem 2.1 are satisfied
for u := e−βH (N )

and (X, g) replaced by (XN , gN ) with a constant κ independent of N .

Applying the latter theorem with δ = ε and using the pull-back property in formula 3.7
then shows that the submean property 3.6 indeed holds. ��
We will also rely on the following simple but very useful lemma (which was used in the
similar context of Fekete points in [13]).

Lemma 3.10. Fix u∗ ∈ C0(X) and assume that x (N )∗ ∈ XN is a minimizer of the
function (H (N ) + u∗)/N on XN . If the corresponding large N-limit F(u) exists for all
u ∈ C0(X) and F is Gateaux differentiable at u∗, then δN (x (N )∗ ) converges weakly
towards μ∗ := dF|u∗ .

Proof. Fix v ∈ C0(X) and a real number t. Let fN (t) := 1
N (H (N ) + u + tv)(x (N )∗ ) and

f (t) := F(u + tv). By assumption limN→∞ fN (0) = f (0) and lim infN→ fN (t) ≥
f (t).Note that f is a concave function in t (since it is defined as an inf of affine functions)
and fN (t) is affine in t. But then it follows from the differentiability of f at t = 0 that
limN→∞ d fN (t)/dt|t=0 = d f (t)/dt|t=0, i.e. that

lim
N→∞

〈
δN (x (N )∗ ), v

〉
= 〈

dF|u, v
〉
,

which thus concludes the proof of the lemma (see [13, Lemma 3.1]). ��

The upper bound in the LDP. By Lemma 3.4 it will be enough to establish the LDP
for the non-normalized measures �N in formula 3.3. To prove the upper bound of the
integrals appearing in the equivalent formulation of the LDP in Prop 3.3 we fix a function
u ∈ C0(X) and rewrite

e−βH (N ) = e−β(H (N )+u)eβu,

Then, trivially, for any fixed ε > 0,
∫
Bε (μ)

e−βH (N )

dV⊗N ≤ sup
Bε (μ)

(
e−β(H (N )+u)

) ∫
Bε (μ)

μ⊗N
u , μu := eβudV (3.8)
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Replacing the sup over Bε(μ) in the first factor above with the sup over all of XN and
applying Sanov’s theorem relative to the tilted volume formμu to the second factor gives

lim
ε→0

lim sup
k→∞

1

βN
log

∫
Bε (μ)

e−βH (N )

dV⊗N

≤ − lim inf
N→∞ N−1 inf

XN
(H (N ) + u) +

∫
uμ − 1

β
DdV (μ),

using that DeβudV (μ) = −β
∫
uμ+DdV (μ).According to Lemma 3.8 and the definition

of the functional F(u) this means that

lim
ε→0

lim sup
k→∞

1

βN
log

∫
Bε (μ)

e−βH (N )

dV⊗N ≤ −F(u) +
∫

uμ − 1

β
DdV (μ),

Finally, taking the infimum over all u ∈ C0(X) shows that the lim sup in the previous
formula is bounded from above by −F(μ),

F(μ) := f ∗(μ) +
1

β
DdV (μ), f (u) := −F(−u)

Remark 3.11. In the argument above dV can be replaced by any finite measure μ0 on
X.

The lower bound in the LDP. As usual, the proof of the lower bound in the LDP is the
hardest. We first assume that

μ = dF|u

for some u ∈ C0(X). Denote by x (N ) ∈ XN a sequence of minimizers of H (N ) + u. By
Lemma 3.10 we have that

δN (x (N )) → μ

By the submean inequality 3.6

1

N
log�N (B2ε(μ)) ≥ 1

N
log

∫
B

ε2 (x (N ))

dV⊗N − βH (N )(x (N ))/N − ε − Cε

N

Since δ(x (N ) → μ it follows that 1
N log�N (B2ε(μ)) ≥

≥ 1

N
log

∫
B

ε2 (x (N ))

dV⊗N − β(H (N ) + u)(x (N ))/N + β 〈u, μ〉 − δ(ε) − ε − Cε

N
,

where δ(ε) → 0 as ε → 0. Moreover, fixing ε > 0 we may for N sufficiently large
assume that Bε2/2(μ) ⊂ Bε2(δN (x (N ))) and hence letting N → ∞ and using Sanov’s
theorem (i.e. Prop 3.5) for ε fixed and the convergence of (H (N ) + u)(x (N ))/N gives

lim inf
N→∞

1

N
log�N (B2ε(μ)) ≥ β 〈u, μ〉 − δ(ε) − inf

B
ε2/2(μ)

DdV − βF(u) − ε
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(after perhaps replacing the original family δ(ε) with a smaller one). Since μ is a can-
didate for the inf in the right hand side above the inf in question may be estimated from
above by DdV (μ) and hence letting ε → 0 concludes the proof under the assumption
thatμ := dF|u for some u ∈ C0(X). To prove the general case we invoke Lemma 3.6 to
write μ as a weak limit of μ j := dF|u j for u j ∈ C0(X). We may then replace u in the
previous argument with u j for a fixed j and replace μ with μ j in the previous argument
to get, for j ≥ jδ, lim infN→∞ 1

N log�N (B3ε(μ)) ≥

≥ lim inf
N→∞

1

N
log�N (B2ε(μ j )) ≥ β

〈
u j , μ j

〉 − δ j (ε) − inf
B

ε2/2(μ j )
DdV + βF(u j ) − ε

But for j sufficiently large μ j is in the ball Bε2/2(ν) and hence the inf above is bounded
from above by DdV (μ) giving

lim inf
N→∞

1

N
log�N (B3ε(μ)) ≥ β

〈
u j , μ j

〉 − δ j (ε) − DdV (μ) + βF(u j ) − ε

Letting first ε → 0 and then j → ∞ gives

lim inf
N→∞

1

N
log�N (B3ε(μ)) ≥ −β( lim

j→∞(E(μ j ) +
1

β
DdV (μ))

Finally, by Lemma 3.6 we may assume that E(μ j ) → E(μ) and that concludes the
proof.

The equation for the minimizer μβ . Finally, the Eq. 1.4 follows immediately from the
following general convex analytical result:

Lemma 3.12. Let X be a compact topological space and f and g be Gateaux differen-
tiable convex functionals on C0(X) such that the differentials dg and d f takes values in
M1(X). Then

• The following identity holds:

inf
M1(X)

(
f ∗ + g∗) = sup

u∈C0(X)

(− f (−u) − g(u)) (3.9)

• if the sup in the right hand side above is attained at some u0 inC0(X) (i.e. if− f (−u)−
g(u) admits a critical point u0), then, setting F(u) := − f (−u), the measure μ0 :=
dF|u0 minimizes the functional f ∗ + g∗ onM1(X).

Proof. First observe that f and g are Lipschitz continuous on the Banach space C0(X).

Indeed, setting ut := u0(1 − t) + tu1, for t ∈ [0, 1], gives

| f (u1) − f (u0)| =
∣∣∣∣
∫ 1

0
dt

∫
X
d fut (u1 − u0)

∣∣∣∣ ≤ sup
X

|u1 − u0|

and similarly for g. The first point in the lemma is then obtained as a special case of
the Fenchel-Rockafeller duality theorem which only requires that f and g be convex
on a Banach space V and that f and g be finite at some point u where f is moreover
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assumed continuous [24, Thm 1.12]. To prove the second point we let u0 be a critical
point of F(u) − g(u) on C0(X), i.e.

dF|u0 = dg|u0 , (3.10)

which, by convexity, means that u0 realizes the sup in the right hand side of formula 3.9.
We rewrite,

f ∗(μ) := sup
u∈C0(X)

〈u, μ〉 − f (u) = sup
u∈C0(X)

F(u) − 〈u, μ〉 (3.11)

(by replacing u with −u in the sup). Hence, if μ := dF|u then, by concavity, f ∗(μ) :=
F(u)−〈u, μ〉 . Similarly, ifμ = dg|v then, by convexity, g∗(μ) := 〈u, μ〉−g(u).All in
all this means that if u0 satisfies the critical point Eq. 3.10, then we can take u = v = u0
to get

f ∗(μ0) + g∗(μ0) = F(u0) + 0 − g(u0),

which concludes the proof, using the first point. ��

4. Relations to �-Convergence, the Gärtner–Ellis Theorem and Mean Energy

Before turning to the applications of Theorem 1.1 in the complex geometric setting we
explore some relations to previous results and methods in the literature.

4.1. Relations to Gamma-convergence. We recall that a sequence of functions EN on a
topological space P is said to �-converge to a function E on P if

μN → μ inP �⇒ lim infN→∞ EN (μN ) ≥ E(μ)

∀μ ∃μN → μ inP : limN→∞ EN (μN ) = E(μ)
(4.1)

(such a sequence μN is called a recovery sequence); see [23]. It then follows that E is
lower semi-continuous on P. In the present setting we take, as before, P = M(X) and
define EN by setting EN = ∞ on the complement of the image of the mapδN and

EN (δN (x1, . . . , xN ) := H (N )(x1, . . . , xN )/N (4.2)

We can now formulate the following variant of Theorem 1.1:

Theorem 4.1. Let H (N ) be a sequence of lower semi-continuous symmetric functions
on XN , where X is a compact Riemannian manifold. Assume that

• The functions EN on M1(X) determined by H (N ) converge to a function E, in the
sense of �-convergence on M1(X).

• H (N ) is uniformly quasi-superharmonic, i.e. �x1H
(N )(x1, x2, . . . xN ) ≤ C on XN

Then, for any sequence of positive numbers βN → β ∈]0,∞] the measures �N :=
(δN )∗e−βN H (N )

on M1(X) satisfy, as N → ∞, a LDP with speed βN N and good rate
functional

Fβ(μ) = E(μ) +
1

β
DdV (μ) (4.3)
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Proof. Using the characterization of a LDP in Proposition 3.3, the upper bound in the
LDP follows almost immediately from the liminf property of the Gamma-convergence
together with Sanov’s theorem. To prove the lower bound fix μ ∈ M1(X) and take a
recovery sequence μN corresponding to a sequence x (N ) ∈ XN . Then, using the same
notation for the balls as in the proof of Theorem 1.1 we have, for ε > 0 fixed and N
large,
∫
B2ε (μ)

e−βH (N )

dV⊗N ≥
∫
Bε (x (N ))

e−βH (N )

dV⊗N≥eNCεe−NβEN (μN )

∫
B

ε2 (x (N ))

dV⊗N ,

using the submean inequality in Theorem 2.1 in the last inequality. Letting first N → ∞
and then ε → 0 then concludes the proof, using Sanov’s theorem again. ��

It should be stressed that, in general, the functional E(μ) in the previous theorem
will not be convex and hence the subset Cβ ⊂ M1(X) consisting of the minima of Fβ

will, in general, consist of more than one element. By general principles the LDP then
implies that any limit point �∞ ∈ M1 (M1(X)) of the laws �N is concentrated on
Cβ (in the terminology of statistical mechanics �∞ is thus a mixed state defined as a
superposition of the pure states δμ where μ ∈ Cβ).

Remark 4.2. The proof of the previous theorem in the case β = ∞ is much simpler
as it is does not require the sub-exponential dependence on the dimension in the sub-
mean inequality in Theorem 2.1. Indeed, the rough exponential bound used in the proof
of Lemma 3.8 is enough. Moreover, all that is used in the proof for β < ∞ is that
�x1(e

−βN H (N )
) ≥ −λβe−βN H (N )

for a constant λβ independent on N (but the assump-
tion that �x1H

(N ) ≤ C is a convenient way of ensuring that the previous inequality
holds for any β).

Example 4.3. In the casewhen X = R
n equippedwith the Euclidean distance it is known

that the mean field Hamiltonian with pair interaction of the formW (x, y) = w(|x − y|)
(formula 1.14) �-convergences towards E(μ) := ∫

X2 Wμ ⊗ μ, if w is lower semi-
continuous and increasing close to 0 (see [48, Prop 2.8, Remark 2.19] and [15,17,28]
for similar results). The proof exploits the explicit nature of E(μ) and a similar argument
applies on a compact manifold when W is continuous away from the diagonal with a
singularity of the local form w(|x − y|) close to the diagonal (compare [55,56]).

In contrast to the previous example, for the “determinantal” Hamiltonian 5.16 appearing
in the complex geometric setting there is no explicit candidate for a limit E(μ). Instead
the Gamma convergence is a consequence of the following dual criterion.

4.1.1. A criterion for Gamma convergence using duality. Next we separate out the
convex analysis used in the proof of Theorem1.1 to get the following criterion for �-
convergence:

Proposition 4.4. Let EN a sequence of functions on M1(X) and assume that

lim
N→∞ E∗

N (u) = f (u)

where f is a Gateaux differentiable convex function on C0(X). Then EN converges to
E := f ∗ in the sense of �-convergence on the space M1(X), equipped with the weak
topology.
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Proof. First suppose thatμN → μweakly inM1(X).Fixu inC0(X).Then−EN (μN ) =
〈u, μN 〉− EN (μN )−〈u, μ〉+ o(1) and hence taking the sup over all μ ∈ M1(X) gives

−EN (μN ) ≤ fN (u) − 〈u, μ〉 + o(1) = f (u) − 〈u, μ〉 + o(1).

Finally, letting first N → ∞ and then taking the sup over all u ∈ C0(X) concludes the
proof of the lower bound for EN (μN ).

To prove the existence of a recovery sequence we first assume that μ = d f|uμ for
some uμ ∈ C0(X). Then,

f ∗(μ) = 〈
uμ,μ

〉 − f (uμ) = 〈
uμ,μ

〉 − fN (uμ) + o(1),

Now, by the weak compactness of M1(X) the sup defining fN is attained at some
μN ∈ M1(X) and hence

f ∗(μ) + o(1) = 〈
uμ,μ

〉 − (〈
uμ,μN

〉 − EN (μN )
)

Next, by aminor generalization of Lemma 3.10μN → μ(:= d f|uμ) and hence f ∗(μ) =
0 + EN (μN ) + o(1), as desired. Finally, the proof of the existence of recovery sequence
for any μ such that E(μ) < ∞ is concluded by a simple diagonal argument based on
Lemma 3.6 applied to E := f ∗. ��
Now, if EN is of the form 4.2, then

fN (u) := sup
XN

1

N
u(x1) + . . . +

1

N
u(xN ) − 1

N
H (N )(x1, . . . , xN ) (4.4)

Thanks to the previous proposition the first assumption in Theorem 1.1 thus implies (also
using Lemma 3.8) that EN → E in the sense of �-convergence onM(X). Accordingly
we recover Theorem 1.1 from Theorem 4.1.

Remark 4.5. In general, if EN gamma converges to a function E on M1(X), then it
follows (almost directly) that E∗

N → E∗ point-wise on C0(X). Hence, the point of
the previous proposition is that it gives a converse statement under the assumption that
E∗ is Gateaux differentiable. By basic convex duality it thus follows from the previous
proposition that EN converges to a strictly convex functional E onM1(X) iff E∗

N → E∗
point-wise on C0(X), with E∗ Gateaux differentiable.

4.2. Relations to the Gärtner–Ellis theorem. First observe that∫
XN

e−βN (H (N )+u)dV⊗N = �̂N (−rNu),

where �N is the measure

�N := (δN )∗(e−βH (N )

dV⊗N )

onM1(X) and �̂N denotes its Laplace transform onC0(X). In this context the Gärtner–
Ellis theorem may be formulated as follows (see [30, Cor 4.6.14, p. 148] and references
therein):
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Theorem 4.6 (Gärtner–Ellis). Let H (N ) be a sequence of Hamiltonians on XN and βN
a sequence of positive numbers such that βN → β ∈]0,∞]. Assume that, for any
u ∈ C0(X), as N → ∞,

FβN (u) := − 1

NβN
log

∫
XN

e−βN (H (N )+u)dV⊗N → Fβ(u), (4.5)

where F is a Gateaux differentiable function. Then the measures �N onM1(X) satisfy,
as N → ∞, a LDP with speed βN N and good rate functional f ∗(μ), where f (u) :=
−F(−u).

Compared with the Gärtner–Ellis theorem the main point of Theorem 1.1 is thus
that the assumption that the convergence of the partition functions in formula 4.5 holds
for β = ∞ is enough to ensure that one gets an LDP for any β ∈]0,∞[ (under the
quasi-subharmonicity assumption). As a consequence, the convergence of the partition
functions then also hold for any β ∈]0,∞[ with the limiting functional −Fβ(·) defined
as the Legendre-Fenchel transform of the rate functional Fβ appearing in Theorem 1.1.
In fact, the latter convergence is equivalent to the LDP in question, as made precise by
the following

Lemma 4.7. Let H (N ) be a sequence of Hamiltonians on XN and βN a sequence of
positive numbers such that βN → β ∈]0,∞[. Assume that, for any given volume form
dV, the corresponding partition functions ZN .βN satisfy

lim
N→∞ − 1

NβN
log ZN .βN := inf

μ
Fβ, Fβ := E + DdV /β,

with E(μ) convex. Then the measures (δN )∗(e−βH (N )
dV⊗N ) on M1(X) satisfy, as

N → ∞, an LDP with speed βN N and good rate functional Fβ. Moreover, if the
asymptotics above also holds for β = ∞ with E(μ) strictly convex, then the LDP holds
for β = ∞, as well.

Proof. Fixing a volume form dV and applying the asymptotics in the lemma to the
volume forms e−βudV for any u ∈ C0(X) reveals that the asymptotics 4.5 hold with
fβ given by the Legendre-Fenchel transform of E + DdV /β. Now, if E is convex, then
E + DdV /β is strictly convex (since DdV is) and hence it follows from basic convex
duality that fβ is Gateaux differentiable. In fact, the differential μu := d fβ|u is the
unique minimizer attaining the sup defining fβ(u), viewed as the Legendre-Fenchel
transform of E +DdV /β. Equivalently,μu is the unique minimizer of the strictly convex
functional μ �→ E(μ) + 〈u, μ〉 + DdV (μ)/β. ��

Remark 4.8. Let βN be sequence tending to ∞. By convex duality the Gärtner–Ellis
theorem may in the present setting, be formulated as follows (also using Varadhan’s
lemma [30] in the converse): let EN be a sequence of functions on M1(X). Then
e−βN N EN (δN )∗(dV⊗N ) ∼ e−βN N E(μ) in the sense of a LDP, with E(μ) strictly convex
iff βN N times the log of the Laplace transform of e−βN N EN (δN )∗(dV⊗N ) converges to
the Gateaux differentiable function E∗on C0(X).
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4.3. Relations to the existence of the mean energy. Given a sequence of Hamiltonians
H (N ) on XN we set

ĒN (μ) := 1

N

∫
XN

H (N )μ⊗N ,

If the limit as N → ∞ exists then we will call it the mean energy of μ, denoted by
Ē(μ).

Example 4.9. If H (N ) is the mean field Hamiltonian associated to the pair interaction
potential W (formula emph1.14) then, trivially, E(μ) = ĒN (μ) for any μ such that
W ∈ L1(μ).

It follows immediately from the definition that if the limit of E∗
N (:= fN ) appearing

in formula 4.4 exists then

Ē(μ) ≥ f ∗(μ).

(but, in general this is a strict inequality, for example if Ē(μ) is not convex). In particular,
under the assumptions in Theorem 1.1 we have Ē(μ) ≥ E(μ), where E(μ) appears
as the rate functional in Theorem 1.1 for β = ∞ (using Lemma 3.8). Motivated by
the complex geometric applications discussed in Sect. 6 this leads one to consider the
following

Problem 4.10. Show that the assumptions on H (N ) in Theorem 1.1 imply that the cor-
responding mean energy Ē(μ) exists when μ is a volume for (perhaps under additional
appropriate assumptions on H (N )).

As illustrated by the following lemma this problem turns out to be related to the
asymptotics of the Gibbs measures with β negative:

Lemma 4.11. Assume that there exists some negative β0 such that for any β ≥ β0 the
corresponding Gibbs measures are well-defined, i.e. ZN .βN < ∞ for N sufficiently
large. Moreover, assume that there exists a functional E(μ) such that

− lim
N→∞

1

N
log ZN .βN = inf

μ∈M1(X)
βE(μ) + DdV (μ) > −∞, (4.6)

for any volume form dV . Then the mean energy Ē(μ) exists for any volume form μ and
Ē(μ) = E(μ).

Proof. First observe that, by Jensen’s inequality, the number fN (β) := − 1
N log ZN .β

appearing in the right hand side above for N is concave in β (and, by assumption,
finite). Moreover, ∂ fN (β)/∂β = ĒN (dV ) at β = 0. Further more, the finite function
f (β) defined by the right hand side in formula 4.6 is also concave, as it is an infimum
of a family of linear functions and for β = 0 the infimum is attained precisely at
μ = dV . Hence, by basic convex analysis, the derivative of f at β = 0 exists and is
given by E(dV ). Finally, the proof is concluded by using that if fN is a sequence of
convex functions converging point-wise to convex function f such that fN and f are
differentiable at 0 then the corresponding derivatives at 0 also converge. ��
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It should, however, be stressed that, if H (N ) is too singular then the partition function
ZN .β is equal to ∞, for any β < 0 (even if H (N ) is quasi-superharmonic as in the
assumptions of Theorem 1.1). Indeed, for the mean field Hamiltonian corresponding to
a pair interaction W this happens as soon as W has a repulsive power-law singularity,
i.e.W (x, y) ∼ |x − y|α with α < 0 close to the diagonal. On the other hand, in the case
of a logarithmic singularity ZN .βN is indeed finite for β0 < 0 and sufficiently close to 0
(see [22] for the corresponding LDP in the setting of the 2D vortex model).

Using the Gibbs variational principle some converses to Lemma 4.11 can be estab-
lished [11], where the existence of the mean energy is assumed (and some additional
assumptions), by extending the approach of Messer–Spohn [45]. However is should be
stressed that the main point of our proof of Theorem 1.1 is that it does note rely on the
existence of the mean energy Ē(μ), which, as pointed above, is an open problem in the
present setting.

5. Applications to Kähler–Einstein Geometry

In this section we will apply Theorem 1.1 to complex manifolds X equipped with a line
bundle L , assuming that L is positive. The extension to big line bundles (and varieties
of positive dimension) is given in the companion paper [9], using the full power of the
pluripotential theory developed in [7,14,20] (see the discussion in Sect. 5.4).

5.1. Kähler geometry setup. Let X be an n-dimensional compact complexmanifold and
denote by J the corresponding complex structure viewed as an endomorphism of the
real tangent bundle satisfying J 2 = −I.

5.1.1. Kähler forms/metrics. On a complex manifold (X, J ) anti-symmetric two forms
ω and symmetric two tensors g on T X ⊗ T X, which are J -invariant, may be identified
by setting

g := ω(·, J ·)
Such a real two form ω is said to be Kähler if dω = 0 and the corresponding symmetric
tensor g is positive definite (i.e. defines aRiemannianmetric).2 Conversely, aRiemannian
metric g is said to be Kähler if it arises in this way (in Riemannian terms this means that
parallel transport with respect to g preserves J ).By the local ∂∂̄-lemma a J -invariant two
form ω is closed, i.e. dω = 0 if and only if ω may be locally expressed as ω = i

2π ∂∂̄φ,

in terms of a local smooth function φ (called a local potential for ω). In real notation
this means that

ω = ddcφ, dc := − 1

4π
J ∗d

(and hence ω is Kähler iff φ is strictly plurisubharmonic). The normalization above en-
sures that ddc log |z|2 is a probability measure onC.Wewill denote by [ω] ∈ H2(X,R)

the de Rham cohomology represented by ω. If ω0 is a fixed Kähler form then, according
to the global ∂∂̄-lemma, any other Kähler metric in [ω0] may be globally expressed as

ωϕ := ω0 + ddcϕ, ϕ ∈ C∞(X),

2 In the complex analysis literature a J -invariant two form ω is usually said to be of type (1, 1) since
ω = ∑

i, j ωi j dzi ∧ dz̄ j in local holomorphic coordinates.
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where ϕ is determined by ω0 up to an additive constant. We set

H(X, ω) := {
ϕ ∈ C∞(X) : ωϕ > 0

}
The association ϕ �→ ωϕ thus allows one to identify H(X, ω)/R with the space of all
Kähler forms in [ω0].
5.1.2. Metrics on line bundles and curvature. Let L be a holomorphic line bundle on
X and ‖·‖ a Hermitian metric on L . The normalized curvature two form of ‖·‖ may be
(locally) written as

ω := −ddc log ‖s‖2 ,

in terms of a given local trivialization holomorphic section s of L . The corresponding
cohomology class [ω] is independent of the metric ‖·‖ on L and coincides with the first
Chern class c1(L) in H2(X,R) ∩ H2(X,Z) (conversely, any such cohomology class
is the first Chern class of line bundle L). A line bundle L is said to be positive if it
admits a metric with positive curvature, i.e. such that the curvature form ω is Kähler.
Fixing a reference metric ‖·‖on L with curvature form ω0 any other metric on L may be
expressed as ‖·‖ e−u/2, for u ∈ C∞(X) and its curvature is positive iff u ∈ H(X, ω).

When L is the canonical line bundle KX , i.e. the top exterior power of the holomorphic
cotangent bundle of X :

KX := det(T ∗X)

any volume form dV on X induces a smooth metric ‖·‖dV on KX , by locally setting
‖dz‖2dV := cndz ∧ dz̄/dV, where dz := dz1 ∧ · · · ∧ dzn in terms of local holomorphic
coordinates and cndz ∧ dz̄ is a short hand for the local Euclidean volume form i

2dz1 ∧
dz̄1 ∧ · · · ∧ i

2dzn ∧ dz̄n . When dV is the volume form of a given Kähler metric ω on
X, i.e. dV = ωn/n!, then its curvature form may be identified with minus the Ricci
curvature of ω, i.e.

Ricω = − ddc log
dV

cndz ∧ dz̄
. (5.1)

By a slight abuse of notation we will also write Ric (dV ) for the right hand side in
formula 5.1.

5.1.3. Twisted Kähler–Einstein metrics. A Kähler metric ωβ is said to be a twisted
Kähler–Einstein metric if it satisfies the twisted Kähler–Einstein equation

Ricω = −βω + η, (5.2)

where the form η is called the twisting form. Since ωβ is Kähler the form η is necessarily
closed and J -invariant. The corresponding equation at the level of cohomology classes
is

[η] = −c1(KX ) + β[ω]
Fixing, once and for all, a volume form dV on X gives the following one-to-one cor-
responds between twisting forms η and Kähler forms ω0 solving the cohomological
equation above:

η := βω0 + RicdV . (5.3)

The following lemma then followsdirectly from the expression 5.1 for theRicci curvature
of a Kähler metric:
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Lemma 5.1. Let X be a compact complex manifold endowed with a J -invariant and
closed form η. Then a Kähler formωβ solves the corresponding twisted Kähler–Einstein
equation 5.2 iff ωβ := ω0 + ddcϕβ for a unique ϕβ ∈ H(X, ω) solving the PDE

ωn
ϕ = eβϕdV (5.4)

The celebrated Aubin–Yau theorem may now be formulated as follows:

Theorem 5.2 (Aubin–Yau). [3,53]Given a compact complex manifold X, endowedwith
a Kähler form ω0 and a volume form dV, the PDE 5.4 admits, for any positive number
β, a unique solution ϕβ ∈ H(X, ω). Equivalently, given a J -invariant and closed form
η such that the class [η] + c1(KX ) is positive (i.e. contains a Kähler form) there exists
a unique Kähler metric ωβ solving the twisted Kähler–Einstein equation 5.2.

Example 5.3. A complex manifold X admits a Kähler–Einstein metric with negative
Ricci curvature iff KX is positive (and the metric is unique). Indeed, if KX is positive
then, by the very definition of positivity, we can take ω0 := −RicdV for some volume
form on X, ensuring that η = 0 above, with β = 1 (and the converse is trivial).

Remark 5.4. When n ≥ 2 the equation is 5.2 precisely the trace-reversed formulation of
Einstein’s equations on X (with Euclidean signature): −β is the cosmological constant
and η is the trace-reversed stress-energy tensor. Here we are only concerned with the
solutions which are Kähler metrics.

5.1.4. The projection operator Pω0 to the space PSH(X, ω0). Next, we recall the
definition of the operator P introduced in [12] (which turns out to be related to the limit
as β → ∞ of the equations 5.4). Given u ∈ C0(X) we set

(Pu)(x) := sup
ϕ∈H(X,ω0)

{ϕ(x) : ϕ ≤ u} (5.5)

which defines an operator

P : C0(X) → PSH(X, ω0)

from C0(X) to the space PSH(X, ω0) of all ω0−psh functions on X, i.e. all upper
semi-continuous functions ϕ in L1(X) such that ωϕ ≥ 0 in the sense of currents. In fact,
the operator P defines a projection operator from C0(X) onto PSH(X, ω0) ∩ C0(X).

More generally, if u ∈ C∞(X), the current ddc(Pu) has coefficients in L∞
loc, i.e.

ωPu ∈ L∞
loc (5.6)

In fact, as shown in [10], taking dV in Eq. 5.4 to be of the form dV = e−βudV one has

lim
β→∞ ϕβ = Pu

uniformly on X and with a uniform upper bound on the corresponding Kähler forms
ωϕβ .
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5.1.5. The Monge–Ampère operator and the functionals E and F . The second order
operator

ϕ �→ MA(ϕ) := ωn
ϕ, (5.7)

appearing in the Eq. 5.4, is the complex Monge–Ampère operator (with respect to the
reference form ω0).

3 By Stokes theorem

∫
X

ωn
ϕ =

∫
X

ωn
0 := V

which is hence a positive number independent of ϕ ∈ C∞(X). Up to a trivial scaling we
may and will assume that V = 1. When n = 1 the operator MA may be identified with
the Laplacian, but when n ≥ 2 it is fully non-linear. The one-form on C∞(X) defined
by MA is closed and hence admits a primitive E, i.e. a functional on C∞(X) whose
differential is given by

dE|ϕ = MA(ϕ). (5.8)

The functional E is only determined up to an additive constant which may be fixed by
the normalization condition E(0) = 0.

Using pluripotential theory [14,20] the operator MA can be extended from Hω0 to
all of PSH(X, ω0) giving a positive measures satisfying

∫
X
MA(ϕ) ≤ V (:= 1)

Similarly the functional E also extends from H(X, ω0) to an increasing lower-semi
continuous functional on PSH(X, ω0). We then set

F(u) := (E ◦ P)(u), (5.9)

which by [12] defines a Gateaux differentiable functional on C0(X). More precisely,

(dF)|u = MA(Pu). (5.10)

This setup leads to a direct variational approach for solving complex Monge–Ampère
equations, including the Aubin–Yau equation 5.4, in the more general setting of big
cohomology classes and singular volume forms dV [14] (compare Sect. 5.4). However,
in the present setting where L is positive the pluripotential theory can be dispensed with
by observing that MA(ϕ) is a well-defined probability measure as long as ωϕ is in L∞

loc
(using that MA(ϕ) is point-wise defined almost everywhere on X ). Then F(u) may be
defined by first taking u to be in C∞and using the regularity result 5.6 for Pu. One then
defines F on C0(X) as the unique continuous extension of F from C∞(X), using that
F(u) is Lipschitz continuous on C∞(X) with respect to the C0-norm (as follows form
general principles; see the beginning of the proof of Lemma 3.12).

3 The terminology stems from the fact that when ω0 = 0 (which can always be locally arranged by shifting
ϕ) the density of MA(ϕ) is proportional to the determinant of the complex Hessian ∂∂̄ϕ.
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5.2. The “temperature deformed” determinantal point processes on X. Let (X, L) be a
polarized manifold, i.e. an n-dimensional complex compact manifold X endowed with
a positive holomorphic line bundle L . We will denote by H0(X, kL) the space of all
global holomorphic sections with values in the k th tensor power of L (using additive
notation for tensor powers). By the Hilbert-Samuel theorem

Nk := dim H0(X, kL) = Vkn + o(kn),

where V = ∫
X c1(L)n > 0.

To the data (‖·‖ , dV, βk) consisting of a Hermitian metric ‖·‖ on L , a volume form
dV on X and a sequence of positive number βk we can associate the following sequence
of symmetric probability measures on XNk :

μ(Nk ,β) :=
∥∥(det S(k))(x1, x2, . . . xNk )

∥∥2βk/k dV⊗Nk

ZNk ,β

(5.11)

where det S(k) is a generator of the top exterior power �Nk H0(X, kL), viewed as a
one-dimensional subspace of H0(XNk , (kL)�Nk ) under the usual isomorphism between
H0(XNk , (kL)�Nk ) and the Nk-fold tensor product of H0(X, kL). The number ZNk ,β

is the normalizing constant

ZNk ,β :=
∫
XNk

∥∥∥det S(k)
∥∥∥2β/k

dV⊗Nk (5.12)

By homogeneity the probability measure μ(Nk ,β) is independent of the choice of gen-
erator det S(k) and thus only depends on the data (‖·‖ , dV, βk). We will refer to to the
corresponding random point processes on X, as the temperature deformed determinan-
tal point processes on X attached to (‖·‖ , dV, βk) (the special case βk = k defines a
bona fide determinantal point process, as recalled below).

Remark 5.5. Since the transformation (‖·‖ , dV, βk) �→ (‖·‖ e−u/2, euβk dV, βk), for
u ∈ C0(X), leaves the probability measure 5.11 invariant, the processes above only
depend on the data (‖·‖ , dV, βk) through the corresponding two form η, defined by
formula 5.3. Moreover, any twisting form η such that the cohomology class ([η] +
c1(KX ))/βk defines a positive class in H2(X,R) ∩ H2(X,Z) arises from a suitable
choice of data (‖·‖ , dV, βk) (compare Sect. 5.1.3).

It will be convenient to take det S(k) to be the generator determined by a basis s1, . . . , sNk

in H0(X, kL) which is orthonormal with respect to the L2-product determined by
(‖·‖ , dV ) for any fixed volume form dV on X :

〈s, s〉L2 :=
∫
X

‖s‖2 dV

We then take (det S(k))(x1, x2, . . . , xNk ) :=

= det(si (x j )) :=
∑

σ∈SNk
(−1)sign(σ )s1(xσ(1)) · · · sNk (xσ(Nk )) (5.13)
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Example 5.6. The model case of a polarized manifold is (X, L) = (Pm,O(1)), where
P
m(:= C

m+1 − {0})/C∗ is m-dimensional complex projective space and O(1) is the
hyperplane line bundle over Pm (the model positively curved metric on O(1) is the
Fubini-Studymetric induced from theEuclideanmetric onCm+1).More generally, taking
X to be a non-singular algebraic variety of Pm and L as the restriction to X ofO(1) gives
a polarized where the elements in H0(X, kL) are, for k sufficiently large, the restrictions
to X of homogeneous polynomials of degree k on Pm (in fact, by the Kodaira embedding
theorem any polarized manifold (X, L) may, after replacing L with a sufficiently high
tensor power, be concretely realized as (X,O(1)|X )). In the case of X = P

1 (=the
Riemann sphere) with ‖·‖ denoting the Fubini-Study metric on O(1) whose curvature
formω0 is the invariant measure on P1 one can take the base {si } to consist of monomials
and factorize

∥∥∥det S(k)
∥∥∥ (x1, x2, . . . , xN ) = ZN

∏
1≤i< j≤N

|xi − x j |,

where N = k + 1 and X has been identified with the unit-sphere in Euclidean R
3

and where ZN = NN
(N−1

0

)
. . .

(N−1
N−1

)
/N !. In the physics literature the corresponding

ensemble appears as a Coulomb gas of N unit-charge particles (i.e a one component
plasma) confined to the sphere in a neutralizing uniform background ω (see for example
[27]). More generally, on any Riemann surface of genus g the bosonization formula [1]
gives

∥∥∥det S(k)
∥∥∥ (x1, . . . xN ) = ZN exp

⎛
⎝−

∑
i �= j

G(xi , x j ) + r(x1, . . . , xN )

⎞
⎠ (5.14)

where G is the Green function of the Laplacian induced by the metric ω0 and where the
second term r appearing above vanishes for genus g = 0, while for g > 0 it may be
expressed in terms of the Riemann theta function on the Jacobian torus of the Riemann
surface X (giving a contribution which is lower order than the first term; see [56] and
references therein). However, when n > 1 it should be stressed that there is no tractable
formula for

∥∥det S(k)
∥∥ (x1, . . . xN ), even to the leading order.

When βk = k the probability measure μ(Nk ,βk ) in formula 5.11defines a determinantal
point process i.e. its density can be written as

∥∥∥∥ det
i, j≤N

(K (k)(xi , x j ))

∥∥∥∥ /Nk !,

where K (k)(x, y) denotes the kernel of the orthogonal projection onto the space
H0(X, kL) viewed as a subspace of the space C∞(X, kL) of all smooth sections
equipped with the L2-norm determined by (‖·‖ , dV ) [5,39].

The following result generalizes the LDP in [5] for determinantal point processes (or
more generally for the case β = ∞) to the general case where βk → β ∈]0,∞] :
Theorem 5.7. Let (X, L) be a polarized manifold and assume given the data
(‖·‖ , dV, βk) consisting of a Hermitian metric ‖·‖ on L , a volume form dV on X
and a sequence of positive number βk → β ∈]0,∞]. Then the law of the empirical
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measures δNk of the corresponding deformed determinantal point processes with Nk
particles satisfies a LDP with speed βk Nk and rate functional

Fβ(μ) = Eω0(μ) +
1

β
DdV (μ) − Cβ,

where Eω0(μ) is the pluricomplex energy of μ with respect to the curvature form ω0 of
‖·‖ and

Cβ = inf
M1(X)

Fβ = − lim
N→∞

1

Nkβk
log ZN .βk ,

In particular, δNk converges in law to the deterministic measure given by the unique
minimizer μβ of Fβ. Moreover, when β < ∞ the measure μβ is the normalized volume
form ωβ of the twisted Kähler–Einstein metric corresponding to the twisting form η :=
βω0 + RicdV .

In fact, the Kähler formωβ may be recovered directly from the limiting volume formμβ

by differentiation twice (as follow from the very definition of the twistedKähler–Einstein
equation 5.2):

ωβ := i

2π

1

β
∂∂̄ log

μβ

dV
+ ω0,

Using basic compactness properties of the space PSH(X, ω0) one then arrives at the
following corollary (see [9] for the proof):

Corollary 5.8. Given data as in the previous theorem with β ∈]0,∞[, the following
sequence of Kähler forms on X

ω(k) := ddc
1

β
log

∫
XNk−1

∥∥det S(k)(·, x2, . . . xNk )
∥∥2β/k

dV⊗(Nk−1)

dV
+ ω0,

converges to the unique solutionωβ of the twisted Kähler–Einstein metric corresponding
to the twisting form η := βω0 + RicdV .

Remark 5.9. The previous corollary yields a quasi-explicit way of approximating the
solution ωβ to the twisted KE equation in question (or equivalently the solution ϕβ of
the corresponding complex Monge–Ampère equation 5.4), by performing integrals over
the spaces XNk−1 of increasing dimension. The procedure becomes explicit as soon as
one has constructed bases in the spaces H0(X, kL), for k sufficiently large.

5.2.1. The canonical random point processes on X. We start by recalling the basic
fact that, by the very definition of the canonical line bundle KX , any holomorphic
section sk of the k th tensor power of KX (i.e. sk ∈ H0(X, kKX ) induces a measure on
X, symbolically denoted by (sk ∧ s̄k)1/k . Concretely, given an open set U ⊂ X with
holomorphic coordinates (z1, . . . , zn) and writing sk|U = fkdz⊗k for a holomorphic
function fk on U, where dz := dz1 ∧ · · · ∧ dzn trivializes KX over U,

(sk ∧ s̄k)
1/k
|U = | fk |2/kin2dz ∧ dz̄,

which is independent of U and thus defines a global measure on X (using any holo-
morphic atlas on X). We also recall that any volume form dV on X induces a metric
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‖·‖dV on the canonical line bundle KX with the property that, if sk ∈ H0(X, kKX ) then
(sk ∧ s̄k)

1/k
|U may be expressed as

(sk ∧ s̄k)
1/k
|U = ‖sk‖2/kdV dV, (5.15)

as follows immediately from the definitions.
Now, fixing a volume form dV on X we can apply the relation 5.15 to XN equipped

with the induced volume form dV⊗N and the corresponding metric on L and deduce
that the canonical probability measure μ(Nk ) on XNkdefined by formula 1.6 coincides
with the probability measured in formula 5.11 corresponding to the data (‖·‖dV , dV, 1)
Hence, Theorem 1.2 is indeed a special case of Theorem 5.7 (also using that η = 0 for
this particular data).

5.3. Proof of Theorem 5.7. To apply Theorem 1.1 in the present setting first note that
the Hamiltonian is given by

E (Nk )(x1, x2, . . . xNk ) := −1

k
log

∥∥∥(det S(k))(x1, x2, . . . xNk )

∥∥∥2 , (5.16)

where det S(k) is defined by formula 5.13. The validity of the first assumption in Theorem
1.1 is then a consequence of the following result from [12], where βNk = k :
Theorem 5.10. [12]. Let L → X be a positive line bundle equipped with a smooth
Hermitian metric ‖·‖ on L with curvature form ω0 and dV a volume form on X. Then

lim
k→∞ − 1

kNk

(
log

∫
XNk

∥∥∥det S(k)
∥∥∥2 (x1, . . . , xN )e−ku(x1)−···−ku(xN )

)
= F(u),

where F is the Gateaux differentiable functional defined by formula 5.9

To verify the second assumption in Theorem 1.1, concerning quasi-superharmonicity,
we first observe that wemay aswell assume that dV is the volume form dVg of themetric
g defined by the Kähler form ω0. Indeed, dV = e−uβdVg for some smooth function u
and hence changing dV corresponds to changing the metric ‖·‖ to ‖·‖ e−u/2. Next, we
recall that, in general, log ‖s‖2 is kω−psh for any holomorphic section s of kL → X
(where ω is the curvature form of ‖·‖). Hence, we get,

�g log ‖s‖2/k ≥ −λ

for some positive constant λ. Applying the latter inequality to
∥∥det(s(k)(·, x2, . . . , xN )

∥∥
for x2, . . . , xN thus shows that Theorem 1.1 can be applied to get the LDP in Theorem
5.7.

Next, we will show that the unique minimizer μβ of the rate functional Fβ appearing
in Theorem 1.1 coincides with the normalized volume form ωβ of the corresponding
twisted Kähler–Einstein metric, by applying the general Lemma 3.12. It should however
be stressed that while the infimum in the left hand side of formula 3.9 is always attained
at some μ0 ∈ M1(X) (by weak compactness and lower-semi continuity) this is not so
for the right hand side, in general. But in the present setting the sup is attained, when L
is assumed to be positive, thanks to the Aubin–Yau theorem. Indeed, first setting

g(u) = β−1 log
∫

eβudV,
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for a given β ∈]0,∞[ gives g∗(μ) = β−1DdV (μ) if μ ∈ M1(X) and g∗(μ) = ∞
otherwise, as is well-known [30] (and follows from Jensen’s inequality applied to the
log). Moreover, by the dominated convergence theorem

dg|u = eβudV∫
X eβudV

∈ M1(X)

Letting F be the functional on C0(X) defined by formula 5.9 the critical point Eq. 3.10
thus becomes

MA(Pu) = eβudV∫
X eβudV

,

when u is smooth, say. Up to replacing u by u + C we may as well assume that the
denominator above is equal to 1. In particular, when u ∈ H(X, ω) the equation above
is precisely the Aubin–Yau equation 5.4, which, by the Aubin–Yau theorem admits a
(unique) solution uβ ∈ H(X, ω). Hence, by the previous lemma μβ := MA(uβ) is the
unique minimizer of the rate functional Fβ appearing in Theorem 1.1, in the present
setting. Finally, as explained in Sect. 5.1.3 μβ is the volume form of the Kähler form
ωβ solving the twisted Kähler–Einstein equation 5.2.

Remark 5.11. To see the relation to the pluricomplex energy introduced in [14] we write,
as in formula 3.11,

f ∗(μ) = sup
u∈C0(X)

E(Pu) − 〈u, μ〉 ,

when μ ∈ M1(X), which coincides with the pluricomplex energy of μ, with respect to
ω0 in [14] (using the notation in [7]). More concretely, a direct calculation reveals that
when μ is a volume form

E(μ) = 1

V

n−1∑
j=0

1

j + 2

∫
X
dϕμ ∧ dcϕμ ∧ (ddcϕμ + ω0)

j

j ! ∧ ω
n−1− j
0

(n − 1 − j)! , (5.17)

where ϕμ ∈ H(X, ω0) is the solution to the Calabi–Yau equation 1.13, which in Aubin’s
notation [3] means that E(μ) = cn(I − J )(ϕμ) (using [20] the formula above holds
for any μ such that E(μ) < ∞, by letting ∧ denote the non-pluripolar products [20]).
Thus E(μ) is a generalization of the classical Dirichlet energy on a Riemann surface.
The relation Fβ(ωn) = κ(ω), where κ denotes the twisted version of Mabuchi’s K-
energy then follows from the Chen-Tian formula for the K-energy (see [7] and [9] for
a direct proof using convex analysis). Moreover, the restriction toH(X, ω0) of the dual
functional f (−u)+g(u) appearing in Lemma 3.12 coincides with theDing functional in
Kähler geometry [7]. An alternative proof of the fact that ωn

β minimizes Fβ onM1(X)

can then be given by using that ωβ is a critical point of κ and hence, by convexity,
minimizes κ on H(X, ω0). Accordingly, the Calabi–Yau isomorphism ω �→ ωn shows
that ωn

β minimizes the restriction of Fβ to the subspace of all volume forms inM1(X).

However, showing that the infimum of Fβ over all ofM1(X) coincides with the infimum
over the subspace of volume forms requires the following non-trivial fact: anyμ such that
E(μ) < ∞ can be written as a weak limit of volume formsμ j such that E(μ j ) → E(μ)

and DdV (μ j ) → DdV (μ) (see [16] where more general results are obtained).
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5.4. The generalization to big line bundles and varieties of positive Kodaira dimension.
Let us briefly give some indications about the extension of Theorem 5.7 to line bundles
L which are merely assumed big, established in the companion paper [9]. In analytic
terms L is big iff c1(L) contains a positive current on X which is strictly positive in the
sense that it is bounded from below by a Kähler form. However, in general, there is a
proper open subset � ⊂ X such that all positive currents in c1(L) are equal to −∞ on
the complement X − � (which can be taken to be a complex subvariety of X). Fixing a
reference smooth Hermitian metric ‖·‖ on L with curvature form ω0 in c1(L) the space
of positive currents in c1(L) gets identified, as before, with the space PSH(X, ω0) of all
ω0−psh functions, modulo constants (however, in general all elements in PSH(X, ω0)

will be singular along the subvariety X − �). Moreover, the non-pluripolar Monge–
Ampère operator can be defined on PSH(X, ω0), by restricting to � [20]. Then the
functional F can be defined essentially as before and Theorem5.7 still holds (again
using [12] to verify the first assumption in Theorem 1.1) Invoking, the general Theorem
1.1 thus establishes an LDP with a rate functional Fβ, admitting a unique minimizer μβ

as before. However, one new difficulty is to show that μβ can be written as MA(ϕβ) for
the solution to the Eq. 5.4 with minimal singularities, whose existence is provided by
the general results in [14,20]. The problem is that Lemma 3.12 cannot be applied as it
is not clear that ϕβ is of the form Pu for some u in C0(X) (even if u can be taken to be
in L∞(X)). But using the variational calculus in [7,14] shows that μβ is of the desired
form.

In particular, when KX is big, i.e. X is a variety of general type, the corresponding
positive current ωβ is the canonical Kähler–Einstein current in X [14,20]. In the general
case of a variety of positive Kodaira dimension κ ≤ n (where κ = n iff KX is big) one
can use the Ithaka fibration X → Y to represent KX as the pull-back of a big line bundle
L on the κ-dimensional manifold Y. Using the Fujino–Mori canonical bundle formula
this reduces the proof of the convergence on X to the application of a generalization of
Theorem 5.7 concerning big line bundles on Y endowed with a singular volume form
dV . As shown in [9] this realizes the corresponding canonical limiting current ωβ as
the pull-back to X of a (singular) Kähler form on Y solving a twisted Kähler–Einstein
equation of the form 5.2, where η is a current on Y determined by the geometry of X
(the canonical current ωβ first appeared in a different geometric context in [51,52]).

6. Outlook

6.1. β = 0. Let (X, L) be a polarized manifold and fix a Kähler metric ω0 in c1(L).

By Corollary 5.8 (and well-known stability properties of the complex Monge–Ampère
operator) one can recover the unique (normalized) smooth solution to the Calabi–Yau
equation

(ω0 + i∂∂̄ϕ)n = dV, (6.1)

[53] as the double limit ϕ := limβ→∞ limk→∞ ϕ
(k)
β , where

ϕ
(k)
β := 1

β
log

∫
XNk−1

∥∥det S(k)(·, x2, . . . xNk )
∥∥2β/k

dV⊗(Nk−1)

dV
− log ZN

Formally interchanging the two limits thus suggests the following
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Conjecture 6.1. Let (X, L) be a polarized manifold and ω0 a Kähler metric in c1(L).

Then the unique smooth solution ϕ to the Calabi–Yau equation 6.1, normalized so that∫
X ϕdV = 0, may be represented as the following limit in L1(X) :

ϕ := lim
k→∞ ϕ(k), ϕ(k) := 1

k

∫
XNk−1 log

∥∥det S(k)(·, x2, . . . xNk )
∥∥2 dV⊗(Nk−1)

dV
− Ck,

where the constant Ck ensures that
∫
X ϕ(k)dV = 0.

The conjectural formula above can be seen as a generalization to the non-linear
complexMonge–Ampère operator of the classical Green’s formula for the solution of the
Poisson equation for the Laplacian on a Riemann surface. Indeed, when X is a Riemann
surface the limit ϕ above is precisely given by the Green formula in question (as follows
from the bosonization formula 5.14). It turns out that the validity of the conjecture
above would follow from the existence of the corresponding mean energy Ē(μ), for
any volume form μ (see Problem 4.10). This is shown precisely as in the setting of the
real Monge–Ampère operator considered in [8,40] where the analog of the previous
conjecture was established using permanents as a replacements of the determinants
appearing in the present setting. In particular, when X is a Calabi–Yau manifold, i.e.,
KX is trivial, the conjecture would imply a quasi-explicit formula for the unique Ricci
flat Kähler metric ω ∈ c1(L), i.e., solving the Kähler–Einstein equation with vanishing
cosmological constant, � = 0.

6.2. β < 0. By Lemma 4.11 the existence of the mean energy (and thus the resolution
of the conjecture above) would follow if one could establish the asymptotics in formula
4.6 of the corresponding partition functions ZNk ,β/k (assumed finite) for all β > β0, for
some negative number β0. It can be shown that ZN ,βN is indeed finite for some negative
β0, sufficiently close to zero. In fact, both sides of formula 4.6 are finite when β > β0
(where the critical negative β0 depends on (X, L)). This motivates the following

Conjecture 6.2. Let (X, L)beapolarizedmanifold andassumegiven thedata (‖·‖ , dV )

consisting of a Hermitian metric ‖·‖ on L , a volume form dV on X. For a given negative
number β0 the following is equivalent:

• For any β > β0 the partition functions ZNk ,β are finite for k sufficiently large
• For any β > β0 the functional βFβ admits a minimizer on M1(X)

• For any β > β0 the measures (δN )∗
(
e−βH (Nk )

dV⊗Nk

)
onM1(X) satisfy a LDP with

speedN and rate functional

βFβ(μ) = βEω0(μ) + DdV (μ),

where Eω0(μ) is the pluricomplex energy of μ with respect to the curvature form ω0
of ‖·‖ .

In particular, if the conjectural LDP above holds then the functional βFβ is lower
semi-continuous and the large N -limit of the laws of δNk for the corresponding random
point processes is concentrated on the (non-empty) set of minimizers of βFβ.By [7] any
such minimizer is the volume form of a Kähler metric ωβ solving the twisted Kähler–
Einstein equation 5.2 corresponding to the data (ω0, dV, β) and βFβ may be identified
with the corresponding twisted K-energy functional. Moreover, if the LDP holds then
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it follows that ZNk ,β ≤ CN
β , when β > β0. The conjecture should be contrasted with

the fact that, in general, βFβ is unbounded from below if β is sufficiently negative and
even when βFβ is bounded from below there exist, in general, twisted Kähler–Einstein
metrics whose volume forms do not minimize βFβ.

In the case when L is the dual −KX of the canonical line bundle, i.e., X is a Fano
manifold (which equivalently means that η can be taken to be zero) the equivalence
between the first two points in the conjecture above can be seen as a probabilistic analog
of the Yau-Tian-Donaldson conjecture saying that a Fano manifold X admits a Kähler–
Einstein metric with positive Ricci curvature ((i.e. � > 0) iff X is K-stable in the
algebro-geometric sense; see the companion paper [9] for more detailed explanations of
these relations.

Interestingly, the notion of negative temperature has already appeared in Onsager’s
work on the 2D vortex model [46]. Using the bosonization formula 5.14 on a Riemann
surface and large N -results for vortex models (as in [22,26,41]) it can be shown that the
conjecture above holds when X is a Riemann surface. Moreover, then the critical β0 is
equal to 2,when the volume (degree) of L is normalized to be one. In our normalizations
this corresponds to the critical negative temperature 8π in the vortex model [26,41] (a
detailed proof of this will appear elsewhere).
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7. Appendix: The Constant in the Cheng–Yau Gradient Estimate

Set φ := |∇u/u| and F := φ(a2−ρ2),where ρ ≤ a ≤ 1.Wewill follow the exposition
in [47]. First, Bochner’s identity gives after some calculations that, for any x,

�φ

φ
≥ φ2

(n − 1)
− (n − 1)k2 − (2 − 2

(n − 1)
)
∇φ

φ
· ∇u

u
(7.1)

(see the bottom of [47, page 141]). Let now x1 be a point in the interior of Ba(x0)
where F attains it maximum and assume that ρ(:= d(x, x0)) is smooth close to x1.Next
∇F = 0 at x1 gives

∇φ

φ
= ∇ρ2

a2 − ρ2 = 2ρ∇ρ

a2 − ρ2 (7.2)

(in the following all (in-)equalities are evaluated at x = x1) and �F ≤ 0 at x1 gives

�φ

φ
− �ρ2

a2 − ρ2 − 2|∇ρ2|2
(a2 − ρ2)2

≤ 0

http://creativecommons.org/licenses/by/4.0/
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Now, by the Laplacian comparison

�ρ2 ≤ 2 + 2(n − 1)(1 + kρ)

Substituting this into the previous inequality we get (using |∇ρ| ≤ 1)

�φ

φ
− 2 + 2(n − 1)(1 + kρ)

a2 − ρ2 − 8ρ2

(a2 − ρ2)2
≤ 0 (7.3)

By 7.2

−∇φ

φ
· ∇u

u
≥ − 2ρφ

a2 − ρ2

Hence, Eq. 7.1 combined with Eqs. 7.3 and the previous inequality gives

0 ≥ φ2

(n − 1)
−(n − 1)k2 − 4(n − 2)

(n − 1)

2ρφ

a2−ρ2 − (2 + 2(n − 1))(1 + kρ)

a2 − ρ2 − 8ρ2

(a2 − ρ2)2
,

Equivalently, multiplying by (a2 − ρ2)2 gives

0 ≥ F2

(n − 1)
− (n − 1)k2(a2 − ρ2)2 − 4(n − 2)

(n − 1)
2ρF − (2 + 2(n − 1))(1 + kρ)(a2 − ρ2) − 8ρ2,

Since we are only interested in the large n behaviour (and 0 ≤ ρ ≤ a) we deduce from
the previous inequality that

0 ≥ F2

(n − 1)
− 8ρF − nk2(a2)2 − 2n(1 + k)a2 − 8ρ2

giving, after multiplication by n,

0 ≥ F2 − 8anF − n2k2(a2)2 − 2n2(1 + k)a2 − 8a2n,

which we write as

(4an)2 + n2k2(a2)2 + 2n2(1 + k)a2 + 8a2n ≥ (F − 4an)2,

giving

a2n2
(
26 + k2a2 + 2k

)
≥ (F − 4an)2

Hence

an

((
26 + k2a2 + 2k

)1/2
+ 4

)
≥ F := φ(a − ρ)(a + ρ) ≥ φ(a − φ)a,

so that

n

((
26 + k2a2 + 2k

)1/2
+ 4

)
≥ φ(a − φ),

This shows that, if a ≤ 1, there exists a constant C, only depending on an upper bound
on k, such that

Cn ≥ φ(a − φ),

as desired.
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