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Abstract: The paper contains a gap in the justification of the uniform non degeneracy
of the measures μ�, � ∈ J , asserted in Proposition 2.8.1; we used a 0-1 law argument
which cannot hold in general due to a conditioning problem; we provide an alternative
argument. In the terminology of branching processes, this argument yields new sufficient
conditions for an additive martingale on a Galton-Watson tree in varying environment
to be almost surely positive conditionally on non extinction of the tree.

Uniform non degeneracy of the measures μ�, � ∈ J . We use the notations of Sects.
2.1 and 2.4. The property to be established is equivalent to P({∂˜T �= ∅}∩{Y (·) > 0}) =
P({∂˜T �= ∅}).

For n ≥ 1we denote by fn the generating function associatedwith the random integer
NA jn

.
If k ≥ 0, we denote by pk the probability of extinction of an inhomogeneous Galton-

Watson tree in which the offspring distribution from generation n − 1 (n ≥ 1) is given
by fk+n . It follows that

pk = fk ◦ · · · ◦ f�(p�+1) ∀ � ≥ k ≥ 0.

Moreover, by construction, p0 = P(∂˜T = ∅). Also, ( fk)k≥0 converges uniformly to f ,
the generating function of N , as k → ∞. Another fact is that for any� ∈ J , for any k ≥ 0
andu ∈ N

k
+, the lawofY (�, u) is independent ofu, and ifwe setqk(�) = P(Y (�, u) = 0),

we have qk(�) ≥ pk and

qk(�) = fk ◦ · · · ◦ f�(q�+1(�)) ∀ � ≥ k ≥ 0.

The online version of the original article can be found under doi:10.1007/s00220-014-2087-9.
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Lemma. For all � ∈ J , we have q0(�) = p0 = limk→∞ f0 ◦ · · · ◦ fk(0) (more
generally, qk(�) = pk = lim�→∞ fk ◦ · · · ◦ f�(0), for all k ≥ 0).

Consequently, since {∂˜T = ∅} ⊂ {Y (�) = 0}, we getP({∂˜T = ∅}�{Y (�) = 0}) = 0
(recall that Y (�,∅) is simply denoted by Y (�)).

Suppose the lemma is proven. Recall that for each n ≥ 1 we set Jn = {�|n : � ∈ J },
and for γ = (γ1, . . . , γn) ∈ Jn , Eγ = {ω ∈ {∂˜T �= ∅} : ∃ � ∈ J , Y (�) = 0, �|n = γ }.
By definition of Y (·), conditionally on {∂˜T �= ∅}, the fact that Y (·) vanishes does not
depend on the n first generations of the construction, for all n ≥ 1. Then, due to the
product structure J , the previous events are all equal. Fix � ∈ J . We have that the
events E�|n , n ≥ 1, are equal, and by almost sure continuity of Y (·) their intersection is
equal to the event {∂˜T �= ∅} ∩ {Y (�) = 0} up to a set of probability 0. However, due to
the lemma, this event has a probability equal to 0. It follows that P(Eγ ) = 0 for all γ ,
hence the desired conclusion P({∂˜T �= ∅} ∩ {Y (·) > 0}) = P({∂˜T �= ∅}).
Proof of the lemma. For k ≥ 0, set gk = f0 ◦ · · · ◦ fk . The functions gk are convex and
non decreasing, and uniformly bounded by 0 and 1 since the same holds true for the fk .
We need the following claims:

Claim 1: (gk)k≥0 converges uniformly to a constant function g over the compact
subintervals of [0, 1).

Claim 2: If � ∈ J , qk(�) does not converge exponentially fast to 1, i.e. there is no
γ ∈ (0, 1) such that 1 − qk(�) ≤ γ k for k large enough.

Assuming these claims, we first notice that if xk stands for the unique fixed point of
fk in [0, 1), we have xk ≥ pk . Moreover, by Proposition 2.1, we have limk→∞ xk = 0.
Consequently, the sequence (pk)k≥1 converges towards 0, hence by Claim 1 we have
p0 = limk→∞ f0 ◦ · · · ◦ fk(0) = g(0).

Next we fix ε ∈ (0, 1/2) and k0 ≥ 1 such that for all k ≥ k0, f ′
k(x) ≥ 1 + ε over

[1 − ε, 1] (this is possible since fk converges uniformly to f and E(N ) = f ′(1) > 1
by our assumptions). Using Claim 2, let (k j ) j≥1 be an increasing sequence of integers
such that 1− qk j+1(�) ≥ (1 + ε)−(k j+1)/4. We claim that for j large enough, there exists
�k j/2� ≤ k′

j ≤ k j such that zk′
j
:= fk′

j+1
◦ · · · ◦ fk j (qk j+1(�)) ≤ 1−ε. Otherwise, since

1 − f�k j /2� ◦ · · · ◦ fk j (qk j+1(�)) = (1 − qk j+1(�))

k j
∏

k=�k j /2�
f ′
k( fk+1 ◦ · · · fk j+1(c))

for some c ∈ [qk j+1(�), 1], so that fk+1◦· · · fk j+1(c) ≥ fk+1◦· · · fk j+1(qk j+1(�)) > 1−ε

for all �k j/2� ≤ k ≤ k j , we should have

1 − f�k j /2� ◦ · · · ◦ fk j (qk j+1(�)) ≥ (1 + ε)−(k j+1)/4(1 + ε)(k j+1−�k j /2�,

hence 1 − f�k j /2� ◦ · · · ◦ fk j (qk j+1(�)) would tend to ∞, which is a contradiction.
Finally, due to Claim 1, we get the convergence of gk j (qk j+1(�)) = gk′

j
(zk′

j
) to g(0),

hence the desired value of q0(�).

Proof of Claim 1. At first, it follows from Ascoli-Arzela’s theorem that there exists an
increasing sequence of integers (k j ) j≥1 such that (gk j ) j≥1 converges uniformly to a
limit g over all the compact subintervals of [0, 1).
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Set x̃k = max{xn : n ≥ k} and fix ε ∈ (0, 1/2). By our assumptions, f is convex,
f (0) = 0, f (1) = 1 and f ′(1) > 1, hence f (x) < x over (0, 1). Also fk converges to
f uniformly as k → ∞, so we can fix γ ∈ (0, 1) and k0 ∈ N such that fk(x) ≤ γ x for
k ≥ k0 and x ∈ [ε, 1− ε]. Then, for x ∈ [0, 1− ε], for any j ≥ 1 such that k j ≥ k0 and
any k ≥ k j we have (setting x̃k = max{xn : n ≥ k})

gk j (0) ≤ f1 ◦ · · · ◦ fk(x) ≤ gk j (max(̃xk j+1, ε, γ
k−k j x)).

Since xn converges to 0 as n → ∞ and we can take the difference k − k j arbitrarily
large as k → ∞, it follows that for any η > 0, for k large enough one has, uniformly in
x ∈ [0, 1 − ε], g(0) − η ≤ f1 ◦ · · · ◦ fk(x) ≤ g(ε) + η. Due to the continuity of g at 0,
this yields the pointwise convergence to g(0) of f1 ◦ · · · ◦ fk over [0, 1), which must be
equal to limk→∞ f1 ◦ · · · ◦ fk(0). Finally, since the gk = f1 ◦ · · · ◦ fk are convex, we
get the uniform convergence over the compact subintervals of [0, 1).
Proof of Claim 2. This is a consequence of the property

E
(

sup
�′∈J

Y (�′, u) exp(
√

log(Y (�′, u) + 3))
) = O(exp(ε|u|

√|u|)),

where limk→∞ εk = 0 and O depends on J only (see (2.22)). Suppose that there exists
γ ∈ (0, 1) such that q|u|(�) = P(Y (�, u) = 0) ≥ 1 − γ |u| for |u| large enough.
In this case, as |u| → ∞ we have E(Y (�, u)) = 1 ∼ E(1{Y (�,u)≥γ −|u|+√|u|}Y (�, u)).

Consequently,

E

(

Y (�, u) exp(
√

log(Y (�, u) + 3))
)

≥ exp
(

√

log γ −|u|+√|u| + 3)
)

E(1{Y (�,u)≥γ −|u|+√|u|}Y (�, u))≥ exp(
√|u|√log(1/γ )/2)

for all large enough |u|, which contradicts (2.22). ��
Remark 1. We notice that the literature contains studies of the coincidence of the non
extinction of a Galton-Watson process in varying environment and the positivity of the
limit of the naturally associatedmartingalemeasuring the growth of the process (see e.g.,
J.C. D’Souza, J.D. Biggins, The Supercritical Galton-Watson process in varying envi-
ronments, Stoc. Proc. Appl. (1992) 42, 39–47). However, our approach, which concerns
a more general type of inhomogeneous Mandelbrot martingales, is different.

Remark 2. We also mention that our estimates for the dimensions of the measures μ�,
as well as Hausdorff and packing dimensions and measures of sets assume implicitly
that we first work in (N

N+
+ , d) after extending the measures μ� to (N

N+
+ , d); then all the

results automatically transfer to (∂T, d). It results that in the Appendix we must replace
the σ -compactness assumption by separability property. Also, we should have added that
the connection between the lower and upper packing dimensions of a measure and its
upper local dimension holds as soon as the Besicovich covering property holds (for the
Hausdorff dimension, the basic “5-r covering theorem”, which always holds, is enough),
and on boundaries of countable trees the Besicovich covering property obviously holds.
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