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Abstract: For any cosmological constant � = −3/�2 < 0 and any α < 9/4,
we find a Kerr-AdS spacetime (M, gKAdS), in which the Klein–Gordon equation
�gKAdSψ + α/�2ψ = 0 has an exponentially growing mode solution satisfying a
Dirichlet boundary condition at infinity. The spacetime violates the Hawking–Reall
bound r2+ > |a|�. We obtain an analogous result for Neumann boundary conditions if
5/4 < α < 9/4. Moreover, in the Dirichlet case, one can prove that, for any Kerr-AdS
spacetime violating the Hawking–Reall bound, there exists an open family of masses
α such that the corresponding Klein–Gordon equation permits exponentially growing
mode solutions.Our result adoptsmethods of Shlapentokh-Rothman developed in (Com-
mun. Math. Phys. 329:859–891, 2014) and provides the first rigorous construction of a
superradiant instability for negative cosmological constant.
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1. Introduction

1.1. The Klein–Gordon equation in asymptotically anti-deSitter spacetimes. The Ein-
stein vacuum equations

Rμν − 1

2
Rgμν + �gμν = 0 (1.1)

with cosmological constant � can be understood as a system of second-order partial
differential equations for the metric tensor g of a four-dimensional spacetime (M, g).
Solutions with negative cosmological constant have drawn considerable attention in
recent years, mainly due to the conjectured instability of these spacetimes. For more
details, see [And06,DH06,BR11,DHS11,DHMS12,HLSW15] and references therein
(Fig. 1).

In appropriate coordinates, (1.1) forms a system of non-linear wave equations. A first
step in understanding the global dynamics of solutions to (1.1)—and thus eventually
answering the question of stability—is the study of linear wave equations on a fixed
background. For � < 0, efforts have focused on understanding the dynamics of the
Klein–Gordon equation

�gψ +
α

�2
ψ = 0 (1.2)

Fig. 1. Penrose diagram of the exterior of the Kerr-AdS spacetime
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Fig. 2. For r+ < �, the two shaded regions represent the set of admissible parameters for |a|/� and r+/�.
Within the plain gray area (bottom right), the Hawking–Reall bound is satisfied, whereas it is violated in the
striped (intermediate) domain

for an asymptotically AdS metric g with cosmological constant � = −3/�2 and a mass
term α satisfying the Breitenlohner-Freedman bound α < 9/4 [BF], which is required
for well-posedness of the equation—see [War12,Hol11,Vas09]. The conformally cou-
pled case α = 2 encompasses scalar-type metric perturbations around an exact AdS
spacetime [IW04].

For g being the metric of an exact AdS spacetime, the massive wave equation (1.2)
allows for time-periodic solutions due to the timelike nature of null and spacelike infinity
I; in particular, general solutions to (1.2), while remaining bounded, do not decay. The
behaviour of solutions to (1.2) on black-hole spacetimes is very different. Given a Kerr-
AdS spacetimewith parameters �, M and a satisfying |a| < �, define theHawking–Reall
Killing vector field

K := T +
a�

r2+ + a2
	,

where, using Boyer-Lindquist coordinates, T = ∂t and 	 = ∂ϕ̃ ; see Sect. 1.4 for defin-
itions of � and r+. The vector field K is the (up to normalisation) unique Killing vector
field that is null on the horizonH and non-spacelike in a neigbourhood ofH. It is globally
timelike in the black hole exterior if the Hawking–Reall bound r2+ > |a|� is satisfied. If
the bound is violated, K becomes non-timelike far away from the horizon (Fig. 2).

In [HR99], Hawking and Reall use the existence of a globally causal K for r2+ > |a|�
to argue towards the stability of these spacetimes. Indeed, uniform boundedness of
solutions to (1.2) in the full regime α < 9/4 was proved for r2+ > |a|� in [Hol09,HW12].
Moreover, in [HS11], it was shown that solutions with the fastest radial decay (Dirichlet
conditions at infinity) in fact decay logarithmically in time1 and [HS13] proves that this
logarithmic bound is sharp.

1 Slightly stronger restrictions on α and the spacetime parameters were imposed in [HS11] for technical
reasons, but the result is believed to hold in full generality by virtue of [HW12].
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For spacetimes violating theHawking–Reall bound, the global behaviour of solutions
to (1.2) has not been investigated rigorously, but it was argued in the physics literature—
see [CD04,CDLY04,CDY06,DHS11]—that at least for small black holes, i. e. for |a| �
� and |a| � r+, instability of solutions to (1.2) is to be expected if r2+ < |a|�. As, in this
regime, there is no Killing vector field that is globally timelike in the black hole exterior,
this parallels the situation of asymptotically flat Kerr spacetimes, where superradiance is
present. For the present discussion, we will understand superradiance loosely as energy
extraction from a rotating black hole. We will make this more precise in Lemma 1.1.

1.2. Unstable modes and superradiance in spacetimes with � = 0. The study of energy
extraction from black holes in asymptotically flat spacetimes has a long history in the
physics literature and two different, but related mechanisms have been proposed. On the
one hand, Press and Teukolsky [PT72] suggested that the leakage of energy through the
horizon of a rotating black hole could be used to create a black hole bomb by placing a
mirror around it. Superradiance would increase the radiation pressure on the mirror over
time until it finally breaks, setting free all the energy at once.2 On the other hand, it was
argued that energy could be extracted by the aid of massive waves acting as a natural
mirror. This goes back to Zel’dovich [Zel71] and was explored further by Starobinsky in
[Sta73].Numerous heuristic and numerical studies on the superradiant behaviour of solu-
tions to theKlein–Gordon equation followed, e. g. [DDR76,ZE79,Det80,Dol07,Dol12].
These studies found exponentially growing solutions to the massive wave equation on
Kerr spacetimes.

Remarkably, this instability is not present at the level of the massless wave equation

�gψ = 0,

see [DRSR14b], where boundedness and decay for such solutions is proved in the full
subextremal range |a| < M . Even though energy can potentially leak out of the black
hole, superradiance can be overcome here as the superradiant frequencies in Fourier
spaces are not trapped. In particular, in the context of scattering [DRSR14a], a quanti-
tative bound on the maximal superradiant amplification was shown.

In accordance with the above heuristic of massive waves acting as a natural mirror for
a black hole bomb, this situation changes dramatically for the Klein–Gordon equation

�gψ − μ2ψ = 0 (1.3)

with scalar mass μ > 0. A first rigorous construction of exponentially growing finite-
energy solutions in Kerr spacetimes was given by Shlapentokh-Rothman [SR13]. The
constructed solutions were modes. Mode solutions are solutions of the form

ψ(t, r, ϑ, ϕ̃) = e−iωt eimϕ̃ Sml(cosϑ)R(r) (1.4)

in Boyer-Lindquist coordinates (t, r, ϑ, ϕ̃) for ω ∈ C, m ∈ Z and l ∈ Z≥|m|, where
the smooth functions Sml and R satisfy ordinary differential equations arising from the
separability property of the wave equation in Boyer-Lindquist coordinates [Car].We call
a mode unstable if it is exponentially growing in time, i. e. if Imω > 0. Shlapentokh-
Rothman showed that, for any given Kerr spacetime with 0 < |a| < M , there is an
open family of masses μ producing unstable modes with finite energy. The construction
starts from proving existence of real modes and hence produces in particular periodic
solutions. We will adopt this strategy.

2 In the asymptotically AdS case, infinity could serve as such a mirror due to the timelike character of
spacelike and null infinity.
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1.3. Unstable modes and superradiance in Kerr-AdS spacetimes. Let us return to the
Kerr-AdS case and connect the existence of unstable modes to superradiance. Recall
that the energy-momentum tensor for the Klein–Gordon equation (1.2) is given by

Tμν := Re
(∇μψ∇νψ

)− 1

2
gμν

(
|∇ψ |2 − α

�2
|ψ |2

)

and that, for each vector field X , we obtain a current

J X
μ := Tμν Xν .

While in Kerr spacetimes, T = ∂t (see Sect. 1.4) is the (up to normalisation) unique
timelike Killing field at infinity, the family of vector fields T + λ	 with 	 = ∂ϕ̃ is
timelike near infinity in Kerr-AdS spacetimes if and only if

−�−2 (� + a) < λ < �−2 (� − a) . (1.5)

Hence, in this range of values for λ, the conserved current J T+λ	
μ encapsulates the

energy density of the scalar field measured by different (rotating) observers at infinity.
The vector field T + λ	 becomes spacelike or null at the horizon.

Recall that the Hawking–Reall vector field K is tangent to the null generators of the
horizon H. Therefore the energy density radiated through the horizon is measured by

J T+λ	
μ K μ

∣
∣∣H = Re

(
(T ψ + λ	ψ) Kψ

) ∣∣∣H

= Re

(

(T ψ + λ	ψ)

(
T ψ +

a�

r2+ + a2
	ψ

)) ∣∣∣∣H

since g(T + λ	, K ) = 0 on the horizon. For mode solutions (1.4), this yields

J T+λ	
μ K μ

∣∣∣H =
(

|ω|2 − Re (ω)
ma�

r2+ + a2
+ mλ

(
ma�

r2+ + a2
− Re (ω)

))
|ψ |2

∣∣∣∣H
. (1.6)

A non-trivial mode solution radiates energy away from the horizon if and only if the
expression (1.6) is negative for all λ in the range (1.5). The thusly characterised frequen-
cies ω form the superradiant regime.

Lemma 1.1. Let r2+ < |a|�. Let ψ be a mode solution with ω(ε) = ωR(ε) + iε for
sufficiently small ε > 0, ωR(ε) ∈ R and ωR(0) = ma�/(r2+ + a2). If

ωR(0)
∂ωR

∂ε
(0) < 0, (1.7)

then J T+λ	
μ K μ

∣∣
∣H < 0 for sufficiently small ε > 0 and λ in (1.5).

Proof. Since J T+λ	
α K α = 0 at the horizon for ε = 0, it suffices to differentiate (1.6)

with respect to ε and evaluate at ε = 0.We see that the derivative is negative if and only if



644 D. Dold

ωR(0)
∂ωR

∂ε
(0) − mλ

∂ωR

∂ε
(0) < 0.

This, however, can be easily checked to hold using (1.5) and r2+ < |a|�. ��
Remark 1.2. If r2+ > |a|�, then K induces an energy density at infinity and J K

μ K μ ≥ 0,
in accordance with the intuition of not being in the superradiant regime if the Hawking–
Reall bound is satisfied.

We will show that our constructed growing mode solutions—as the modes of
[SR13]—satisfy the assumptions of Lemma 1.1. This corroborates our interpretation
that the unstable modes are a linear manifestation of the superradiant properties of Kerr-
AdS spacetimes.

1.4. The Kerr-AdS family. Before stating our results, we introduce the Kerr-AdS fam-
ily of spacetimes. For a more exhaustive presentation, we refer the reader to [HS11].
Kerr-AdS spacetimes depend on three parameters (�, M, a), where � is related to the
cosmological constant � via � = −3/�2. The parameter M > 0 represents the mass of
the black hole and a, the angular momentum per unit mass, is assumed to satisfy |a| < �.
This condition guarantees for the metric to be regular. Let

�−(r) := (r2 + a2)

(
1 +

r2

�2

)
− 2Mr.

The polynomial �− has two real roots, denoted by r− < r+. We can write

�−(r) = �−2(r − r+)(r
3 + r2r+ + r(r2+ + a2 + �2) − a2�2r−1

+ ), (1.8)

whence

∂r�−(r+) = 1

�2
(3r3+ + r+a2 + r+�

2 − a2�2r−1
+ ).

This expression imposes some restrictions on the range of |a| in terms of r+ as shown
in the following

Lemma 1.3. If r+ < �,

a2 < r2+
3 r2+

�2
+ 1

1 − r2+
�2

. (1.9)

If r+ ≥ �, |a| can take any value in [0, �).
Proof. These statements follow from ∂r�−(r+) > 0, which is a necessary condition for
r− < r+. Note also that r+ ≥ � implies r2+ ≥ |a|�. ��

Therefore, under the restriction of Lemma 1.3, there is a bijection between Kerr-
AdS spacetimes with parameters (�, M, a) and spacetimes with parameters (�, r+, a).
Henceforth we will use the shorthand notationsMKAdS(�, M, a) andMKAdS(�, r+, a)

to denote Kerr-AdS spacetimes with parameters (�, M, a) and (�, r+, a) respectively.
The restriction of Lemma 1.3 can be seen in the above figure.
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Given (�, M, a), a chart covering all of the domain of outer communication is given
by Boyer-Lindquist coordinates (t, r, ϑ, ϕ̃) ∈ R × (r+,∞) × S2. The metric in these
coordinates is

gAdS = −�− − �ϑa2 sin2 ϑ

�
dt2 − 2

�ϑ(r2 + a2) − �−
��

a sin2 ϑ dt dϕ̃ +
�

�−
dr2

+
�

�ϑ

dϑ2 +
�ϑ(r2 + a2)2 − �−a2 sin2 ϑ

�2�
sin2 ϑ dϕ̃2,

where

� = r2 + a2 cos2 ϑ, �ϑ = 1 − a2

�2
cos2 ϑ, � = 1 − a2

�2
.

Since Boyer-Lindquist coordinates break down at r = r+, we introduce Kerr-AdS-
star coordinates (t∗, r, ϑ, ϕ). These are related to Boyer–Lindquist coordinates by

t∗ := t + A(r) and ϕ := ϕ̃ + B(r),

where

dA

dr
= 2Mr

�−(1 + r2/�2)
and

dB

dr
= a�

�−
.

In these coordinates, the metric extends smoothly through r = r+. One sees that the
boundary r = r+ of the Boyer-Lindquist patch is null and we shall call it the event
horizon H.

Finally, we introduce the tortoise coordinate r∗ which is related to r by

dr∗

dr
= r2 + a2

�−(r)

with r∗(+∞) = π/2. We will denote the derivative with respect to r∗ by ′.

1.5. Statement of the results. The analysis in this paper yields two types of instability
results:

(A) Given a cosmological constant � and a mass α, there is a Kerr-AdS spacetime for
this � in which (1.2) has a growing solution.

(B) Given a Kerr-AdS spacetime violating the Hawking–Reall bound, there is a range
for the scalar mass such that, in this spacetime, (1.2) has a growing solution.

To make this more precise, recall that mode solutions are Fourier modes that take the
form

ψ(t, r, ϑ, ϕ̃) = e−iωt eimϕ̃ Sml(cosϑ)R(r)

in Boyer-Lindquist coordinates (t, r, ϑ, ϕ̃) for ω ∈ C, m ∈ Z and l ∈ Z≥|m|. Define
u(r) := (r2 + a2)1/2R(r). Use Smode(α, ω, m, l) to denote the set of all mode solutions
with parameters ω, m, l to the Klein–Gordon equation with scalar mass α. Set

κ2 := 9/4 − α.

We require that all mode solutions are smooth. For the Sml this is ensured auto-
matically by the definition—see Sect. 2.1. Hence we only need to impose a regularity
condition on the function u, given parameters �, r+, a, m and ω.
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Definition 1.4 (Horizon regularity condition). A smooth function f : (r+,∞) → C

satisfies the horizon regularity condition if f (r) = (r − r+)ξ� for a smooth function �

as well as a constant

ξ := i
�am − (r2+ + a2)ω

∂r�−(r+)
. (1.10)

Henceforth we will only call a mode ψ a mode solution to (1.2) if its radial part R
(and hence u) satisfies the horizon regularity condition. At infinity, we will study two
different boundary conditions for u.

Definition 1.5 (Dirichlet boundary condition). Given a mass α < 9/4 (i. e. a κ > 0), a
smooth function f : (r+,∞) → C satisfies the Dirichlet boundary condition if

r1/2−κ f → 0

as r → ∞.
We say that a ψ ∈ Smode(α, ω, m, l) satisfies Dirichlet boundary condition if its

radial part u satisfies the Dirichlet boundary condition.

Mode solutions satisfying these boundary conditions are analogous to the modes
considered in [SR13].

We are able to show the following result.

Theorem 1.6. Given a cosmological constant � = −3/�2, a black hole radius 0 <

r+ < � and a scalar mass parameter α0 ∈ (−∞, 9/4), there are a spacetime parameter
a satisfying the regularity condition |a| < �, mode parameters m and l and a δ > 0
such that there are a smooth curve

(−δ, δ) → R
2, ε �→ (α(ε), ωR(ε))

with

α(0) = α0 and ωR(0) = �am

r2+ + a2
(1.11)

and corresponding mode solutions inSmode(α(ε), ωR(ε)+iε, m, l) satisfying the horizon
regularity condition and Dirichlet boundary conditions.

For all ε ∈ (0, δ), these modes satisfy

dα

dε
(0) > 0 and ωR(0)

∂ωR

∂ε
(0) < 0.

Remark 1.7. The u in the theorem has finite energy and hence the spacetime parameters
of the theorem must violate the Hawking–Reall bound as explained in the previous
sections; this is explained further in Lemma 2.18 and Remark 3.9. By Lemma 1.3, we
know that the a can be located anywhere in the range

r2+
�

< |a| < r+

√√√√
√

3 r2+
�2

+ 1

1 − r2+
�2

.

We remark that our result does not restrict to small |a|. In fact, we can enforce |a| to be
as close to � as we wish by choosing r+/� < 1 large.
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Lemma 1.1 implies that the constructed modes are superradiant and indicates that
the instability is driven by energy leaking through the horizon.

Our next theorem builds on the first, but allows for the construction of an unstable
superradiant mode with Dirichlet boundary conditions for each given α < 9/4.

Theorem 1.8. Let � > 0 and α < 9/4. Then there is an MKAdS(�, r+, a) and a super-
radiant ψ ∈ Smode(α, ωR + iε, m, l) for an ωR ∈ R and ε > 0 satisfying Dirichlet
boundary conditions.

The methods used in our proof also show the following statement:

Corollary 1.9. Let � > 0, α < 9/4 and 0 < r+ < �. Then there is an ε > 0 such that for
all |a| ∈ (r2+/�, r2+/�+ ε), the Klein–Gordon equation with mass α has an exponentially
growing mode solution in MKAdS(�, r+, a).

Remark 1.10. These results also apply to the massless wave equation, which is an impor-
tant difference to the asymptotically flat case.

Furthermore, although this will not be pursued explicitly in this paper, one can also
show the analogue of Shlapentokh-Rothman’s result in our setting by only adapting the
proof slightly.

Theorem 1.11. Given a Kerr-AdS spacetime MKAdS(�, r+, a) satisfying, |a| < �, r+ >

0 and r2+ < |a|� (and the restrictions of Lemma 1.3), there are mode parameters m and
l as well as a δ > 0 such that, for each ε ∈ (−δ, δ), there is an open family of masses
α(ε) and a mode solution in Smode(α(ε), ωR(ε)+ iε, m, l) satisfying Dirichlet boundary
conditions with ωR(0) as in (1.11).

Remark 1.12. 1. Conversely, in the asymptotically flat Kerr case of [SR13], it is also
possible to prove an analogue of Theorem 1.8 instead of only the analogue of Theo-
rem 1.6, using our strategy explained in the next section.

2. To contrast our case to the asymptotically flat setting, we add three observations. First,
in [SR13], the curve ε �→ (μ(ε), ωR(ε) + iε) must satisfy μ(0)2 > ωR(0)2. There
is no equivalent condition for Kerr-AdS spacetimes as the instability is not driven
by the interplay of frequency and mass, but by the violation of the Hawking–Reall
bound. Second, in both cases, ∂ωR/∂ε < 0 for small ε, so ωR(0) can be seen as the
upper bound of the superradiant regime. Third, the result in Kerr holds for all m 
= 0,
l ≥ |m|. In contrast, our result is a statement about large m = l.

It is known—see [HW12] and references therein—that, for 0 < κ < 1, i. e. 5/4 <

α < 9/4, we also have well-posedness for different boundary conditions at infinity. This
underlies the following

Definition 1.13 (Neumann boundary condition). Given a mass 5/4 < α < 9/4 (i. e.
0 < κ < 1), a smooth function f : (r+,∞) → C satisfies the Neumann boundary
condition if

r1+2κ
d

dr

(
r

1
2−κ f

)
→ 0

as r → ∞.

Using the techniques of twisted derivatives, introduced in [War12], we can prove
versions of Theorems 1.6 and 1.8 for Neumann boundary conditions.
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Theorem 1.14. Given a cosmological constant � = −3/�2, a black hole radius 0 <

r+ < � and a scalar mass parameter α0 ∈ (5/4, 9/4), there are a spacetime parameter
a satisfying the regularity condition |a| < �, mode parameters m and l and a δ > 0
such that there is a smooth curve

(−δ, δ) → R
2, ε �→ (α(ε), ωR(ε))

with (1.11). Moreover, there are corresponding mode solutions in Smode(α(ε), ωR(ε) +
iε, m, l) satisfying Neumann boundary conditions. If ε ∈ (0, δ), then the modes satisfy

dα

dε
(0) > 0 and ωR(0)

∂ωR

∂ε
(0) < 0.

Theorem 1.15. Let � > 0 and 5/4 < α < 9/4. Then there is an MKAdS(�, r+, a) and a
superradiant ψ ∈ Smode(α, ωR + iε, m, l) for an ωR ∈ R and ε > 0 satisfying Neumann
boundary conditions.

Let us conclude this section with a general remark on boundedness. From [HW12],
we know that solutions to theKlein–Gordon equationwithDirichlet boundary conditions
remain bounded for all r2+ > |a|�. A similar statement holds for Neumann boundary
conditions under more restrictive assumptions on the parameters. For r2+ = |a|�, one can
easily repeat the proof of the second theorem of [HS11] to see that there are no periodic
solutions. One can potentially also extend the decay result of [HS11] to r2+ = |a|�. Our
results do not rule out boundedness in the entire parameter range in which r2+ < |a|�
since we did not show that for any given Kerr-AdS spacetime and any α, there are
unstablemode solutions; theydo, however, impose restrictions on the ranges of spacetime
parameters and masses α in which boundedness could potentially hold. It is believed
that, using more refined spectral estimates, our results can be shown to hold in the full
regime r2+ < |a|�, but we will not pursue this further.

1.6. Outline of the proof. The difficulty lies in the construction of the radial part u, for
which we use the strategy of [SR13], which, as our present work shows, can be applied
to more general settings than Kerr spacetimes. The technique contains two main steps.

I. Construct u corresponding to a real frequency ω0 ∈ R.
II. Obtain a mode solution corresponding to a complex ω with Imω > 0 by varying

spacetime and mode parameters.

We note that both steps are completely independent of each other, in particular step II
does not rely on the method by which the periodic mode solution was constructed, but
only requires existence of such a mode.

Let us first only deal with Dirichlet boundary conditions. To complete step I, u needs
to satisfy the radial ODE

u′′ − (V − ω2
0)u = 0 (1.12)

for the given boundary condition—see Sect. 2.1. Lemma 2.20 then already restricts ω0
to ω+ := ma�/(r2+ + a2). It is important to note that the boundary value problem does
not admit nontrivial solutions in general.

Lemma 1.16. If u satisfies the Dirichlet boundary condition for real ω0 and V −ω2
0 ≥ 0,

then u = 0.
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Proof. Define Q(r) := Re (u′u), note that Q(r+) = Q(∞) = 0 and integrate dQ/dr .
��

Hence, in a first step in Sect. 2.3, we will find spacetime and mode parameters such
that V −ω2

0 < 0 on some subinterval of (r+,∞) for given � and α0 by a careful analysis
of the shape of the potential V in Lemma 2.13. This requires proving an asymptotic
estimate for the eigenvalues of the modified oblate spheroidal harmonics (Lemma 2.12).
The spacetime parameters will necessarily violate the Hawking–Reall bound.

The radial ODE is the Euler–Lagrange equation of the functional

La( f ) :=
∫ ∞

r+

(
�−

r2 + a2

∣∣∣∣
d f

dr

∣∣∣∣

2

+ (V − ω2)
r2 + a2

�−
| f |2

)

dr. (1.13)

The functional is not bounded below, so we need to impose a norm constraint, which
we choose to be ‖ f/r‖L2(r+,∞) = 1. Then Lemma 3.3 gives a coercivity-type esti-
mate. To carry out the direct method of the calculus of variations, we use the weighted
Sobolev spaces that arise naturally from the functional—see Sect. 3.1. This setting of
the minimisation problem then guarantees that the minimiser satisfies the correct bound-
ary conditions. We remark that we will directly work with the functional (1.13) instead
of regularising first at the horizon and then taking the limit, as in [SR13]. Then, in
Lemma 3.7, we obtain an ODE

u′′ − (V − ω2
0)u + νa

u

r2
= 0

with a Lagrangemultiplier νa ≤ 0 that depends continuously on the spacetime parameter
a. By varying a, we find an â such that νâ = 0 (Proposition 3.8) and hence a solution to
the radial ODE.

To carry out step II, we need the asymptotic analysis of (1.12) that is worked out in
Sect. 2.2. There are two branches that asymptote r−1/2+κ and r−1/2−κ , respectively, at
infinity. Let h1 denote the branch with slow decay and h2 the one with fast decay. Then

u(r, α, ω) = A(α, ω)h1(r, α, ω) + B(α, ω)h2(r, α, ω).

For the parameters from step I, A(α0, ω0) = 0. By varying ω and α simultaneously in
Sect. 3.2, the implicit function theorem yields a curve

ε �→ (ωR(ε) + iε, α(ε))

with ωR(0) = ω0 and α(0) = α0 such that

A(α(ε), ω(ε)) = 0.

along the curve. As Imω(ε) > 0 for ε > 0, these modes grow exponentially whilst
satisfying Dirichlet boundary conditions. In Sect. 3.3, we show that

ωR(0)
∂ωR

∂ε
(0) < 0 and

∂α

∂ε
(0) > 0, (1.14)

which proves Theorem 1.6. A careful analysis of the domain of the implicit function
theorem in Sect. 3.4 yields Theorem 1.8. Here, the analysis heavily exploits several
continuity properties in the parameters. A difficulty is caused by â being defined as the
infimum of an open set.
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For Corollary 1.9, one observes that, by Lemma 2.13, once the Hawking–Reall bound
is violated, one can always make the potential V negative on some interval by choos-
ing |m| sufficiently large. This yields periodic modes for very small violation of the
Hawking–Reall bound and hence growing modes by repeating the above argument.

The situation is more complicated if u satisfies the Neumann boundary condition.
Since, in this case, u ∼ r−1/2+κ as r → ∞, La is not well-defined and hence cannot
be used to produce periodic modes. To carry out the construction of step I, we use
twisted derivatives as introduced in [War12] and used extensively in [HW12]. To find
the minimiser via the variational argument, we also need to modify our function spaces
and use twisted weighted Sobolev spaces. All details are given in Sect. 4.1.

The main technical problems, however, arise in the second part of the argument. The
underlying reason is that the proofs for step II rely severely on establishing monotonicity
properties for the functional when varying α. Since the twisting necessarily depends on
α, proving monotonicity in α is more involved and indeed the monotonicity properties
shown in theNeumann case areweaker; nevertheless, the ideas introduced in Sect. 4.2 are
sufficiently robust not only to construct the growing modes, but also to be applicable to
showing (1.14) and to transition from Theorems 1.14 and 1.15. It is also in the Neumann
case, where the independence of steps I and II—alluded to above—is exploited.

2. Preliminaries

2.1. The modified oblate spheroidal harmonics. Following [HS11], we define the
L2(sin ϑ dϑ dϕ̃)-self adjoint operator P acting on H1(S2)-complex valued functions
as

−P(ω, �, a) f = 1

sin ϑ
∂ϑ(�ϑ sin ϑ∂ϑ f ) +

�2

�ϑ

1

sin2 ϑ
∂2ϕ̃ f

+ �
a2ω2

�ϑ

cos2 ϑ f − 2iaω
�

�ϑ

a2

�2
cos2 ϑ∂ϕ̃ f.

We also define

Pα(ω, �, a, α) :=
{

P(ω, �, a) + α
�2

a2 sin2 ϑ if α > 0
P(ω, �, a) − α

�2
a2 cos2 ϑ if α ≤ 0.

For equivalent definitions in Kerr spacetime see [DR10] and also [FS04] for a more
detailed discussion. From elliptic theory [cf. HS11], we can make the following defi-
nitions: P(ω, �, a) has eigenvalues λ̃ml(ω, �, a) with eigenfunctions eimϕ̃ S̃ml(ω, �, a,

cosϑ); Pα(ω, �, a, α) has eigenvalues λ(ω, �, a, α) with eigenfunctions eimϕ̃ Sml(ω,

�, a, α, cosϑ). The eigenfunctions formanorthonormal basis of L2(sin ϑ dϑ dϕ̃). Below
we will suppress (ω, �, a, α) in the notation.

If α ≤ 0, Sml satisfies the angular ODE

1

sin ϑ
∂ϑ (�ϑ sin ϑ∂ϑ Sml(cosϑ)) −

(
�2

�ϑ

m2

sin2 ϑ
− �

�ϑ

a2ω2 cos2 ϑ

− 2maω
�

�ϑ

a2

�2
cos2 ϑ − α

�2
a2 cos2 ϑ

)
Sml(cosϑ) + λml Sml(cosϑ) = 0 (2.1)
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for λm�(ω, α, a) ∈ C. If α > 0, the angular ODE takes the form

1

sin ϑ
∂ϑ (�ϑ sin ϑ∂ϑ Sml(cosϑ)) −

(
�2

�ϑ

m2

sin2 ϑ
− �

�ϑ

a2ω2 cos2 ϑ

− 2maω
�

�ϑ

a2

�2
cos2 ϑ +

α

�2
a2 sin2 ϑ

)
Sml(cosϑ) + λml Sml(cosϑ) = 0. (2.2)

Using these modified oblate spheroidal harmonics, one obtains that, for fixed m and l,
u := √

r2 + a2R satisfies the radial ODE

u′′(r) + (ω2 − V (r))u(r) = 0, (2.3)

with

V (r) = V+(r) + V0(r) + Vα(r)

V+(r) = −�2−
3r2

(r2 + a2)4
+ �−

5 r4

�2
+ 3r2

(
1 + a2

�2

)
− 4Mr + a2

(r2 + a2)3

V0(r) = �−(λml + ω2a2) − �2a2m2 − 2mωa�(�− − (r2 + a2))

(r2 + a2)2

Vα(r) = − α

�2

�−
(r2 + a2)2

(r2 + �(α)a2).

Here �(x) = 1 if x > 0 and zero otherwise. We will use the shorthand Ṽ := V − ω2.
Recall that ′ denotes an r∗-derivative.

To indicate the dependence upon a, we will often write Va and Ṽa for V and Ṽ
respectively.

2.2. Local analysis of the radial ODE. Toseewhichboundary conditions are appropriate
for u, we perform a local analysis of the radial ODE near the horizon r = r+ and at
infinity, using the following theorem about regular singularities, which we cite from
[Tes12], but it can also be found in [SR13] or [Olv74].

Theorem 2.1. Consider the complex ODE

d2H

dz2
+ f (z, ν)

dH

dz
+ g(z, ν)H = 0. (2.4)

Suppose f and g are meromorphic and have poles of order (at most) one and two,
respectively, at z0 ∈ C. Let f0(ν) and g0(ν) be the coefficients of pole of order one and
two, respectively, in the Laurent expansions. Let s1(ν) and s2(ν) be the two solutions of
the indicial equation

s(s − 1) + f0(ν)s + g0(ν) = 0

with Re (s1) ≤ Re (s2).
If s2(ν) − s1(ν) /∈ N0, a fundamental system of solutions is given by

h j (z, ν) = (z − z0)
s j (ν)� j (z, ν),

where the functions � j are holomorphic and satisfy � j (z0, ν) = 1.
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If s2(ν) − s1(ν) = m ∈ N0, a fundamental system is given by

h1 = (z − z0)
s1�1 + c log(z)h2

h2 = (z − z0)
s2 .

The constant c may be zero unless m = 0.
In both cases, the radius of convergence of the power series of � j is at least equal to

the minimum of the radii of convergence of the Laurent series of f and g.

2.2.1. The horizon Adopting the notation of the previous section, and, after expressing
the radial ODE (2.3) with r -derivatives, we have

f = ∂r�−
�−

− 2r

r2 + a2 , g = (r2 + a2)

�2−
(ω2 − V ).

Thus we obtain

f0 = lim
r→r+

(r − r+) f = 1

g0 = lim
r→r+

(r − r+)
2 (r2 + a2)2

�2−
(ω2 − V )

= lim
r→r+

(r − r+)2

�2−

(
ω(r2 + a2) − �am

)2 = −ξ2

with

ξ := i
�am − ω(r2+ + a2)

∂r�−(r+)

as ∂r�−(r+) > 0. Thus, the indicial equation is solved by s = ±ξ .
Therefore if ξ 
= 0, a local basis of solutions u (or R) is given by

{(· − r+)
ξϕ1, (· − r+)

−ξ ϕ2}
for holomorphic functions ϕi satisfying ϕi (r+) = 1. For ξ = 0, a local basis is given by

{ϕ1, ϕ1 (1 + c log(· − r+))}
for ϕ1(r+) = 1 and some constant c.

Lemma 2.2. If u extends smoothly to the horizon, then there is a smooth function � :
[r+,∞) → C such that

u = (· − r+)
ξ�.

Proof. Boyer–Lindquist coordinates break down at the horizon, so we need to change
to Kerr-star coordinates. Then the solution ψ takes the form

ψ(t∗, r, ϕ∗, ϑ) = e−iω(t−A(r)) eim(ϕ∗−B(r)) Sml(aω, cosϑ)
u(r)

(r2 + a2)1/2
,
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where

dA

dr
= (r2 + a2)(1 + r2/�2) − �−

�−(1 + r2/�2)
,

dB

dr
= a(1 − a2/�2)

�−
.

Hence R extends smoothly to the horizon if there is a smooth function f such that

u(r) = e−i(ωA(r)−m B(r)) f (r).

Therefore the claim reduces to showing that

�(r) := (r − r+)
−ξ e−i(ωA(r)−m B(r))

is smooth. Since

d

dr
(−i(ωA(r) − m B(r))) = ξ

r − r+
+O(1),

we have

�(r) = e−ξ log(r−r+) eξ log(r−r+)+O(r−r+),

which proves the claim. ��
Corollary 2.3. Assume u satisfies the horizon regularity condition. Then a local basis
of solutions to the ODE at the horizon is given by

(· − r+)
ξ�

for a holomorphic function � defined around r = r+.

This asymptotic analysis at the horizon motivates the horizon regularity condition of
Definition 1.4.

2.2.2. Infinity The radial ODE has a regular singularity at r = ∞. To analyse it using
the Theorem 2.1, we rewrite equation (2.4) by introducing x := 1/z. This yields

d2H

dx2
+

(
2

x
− f

x2

)
dH

dx
+

g

x4
H = 0.

For the radial ODE, we have x = 1/r . We obtain

f (x = 0) = 0, lim
x→0

f

x
= 2, g(x = 0) = 0, lim

x→0

g

x
= 0, lim

x→0

g

x2
= α − 2.

The indicial equation becomes

s2 − s + α = 0,

which is solved by s± = 1
2 ±

√
9
4 − α. Set

E :=
{
9 − k2

4
: k ∈ N

}
.
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Then, for α /∈ E , a local basis of solutions near infinity is given by

{r−1/2+
√
9/4−α�1(r), r−1/2−√

9/4−α�2(r)}
with functions �1, �2, smooth at ∞ and satisfying �1(∞) = �2(∞) = 1. For α ∈ E , a
local basis is given by

{
C3r−1/2−κ log

1

r
+ r−1/2+κ�2, r−1/2−√

9/4−α�2(r)

}
.

If u extends smoothly to r = r+ and we specify a boundary value u(r+), then the
arguments of Sect. 2.2.3 show that C3 has to be zero.

Lemma 2.4. Let u satisfy (2.3) on (r+,∞) and extend smoothly to r = r+, then, for
large r , u is a linear combination of

h1(r, α, ω, a) = r−1/2+κ�1(r, α, ω, a)

h2(r, α, ω, a) = r−1/2−κ�2(r, α, ω, a)

for functions �1 and �2 holomorphic at r = ∞ and satisfying �1(∞) = �2(∞) = 1.

Corollary 2.5. If u satisfies the horizon regularity condition and the Neumann boundary
condition at infinity, then, for 5/4 < α < 9/4,

u = C1h1

for a constant C1 ∈ C.
If u satisfies the horizon regularity condition and the Dirichlet boundary condition

at infinity, then, for all α < 9/4,

u(r) = C2h2

for a constant C2 ∈ C.

Remark 2.6. The asymptotics near infinity do not change if we add ν(r2 + a2)/(r2�−)

to g as in Sect. 3.1.

2.2.3. Uniqueness of solutions and dependence on parameters As one would expect,
specifying one of the boundary conditions at infinity and choosing a value of u at r = r+
determines the solution to the radial ODE uniquely, which is being made more precise
in the following standard lemma.

Lemma 2.7. Let C0 ∈ C. Then there is a unique classical solution to (2.3) on (r+,∞)

satisfying u(r+) = C0 and extending smoothly to r = r+.

The continuous dependence of the solution u on parameters is also well-known:

Lemma 2.8. Let u0 be a unique solution to (2.3) for a certain set of parameters
(α0, ω0, a0) with fixed u(r+) satisfying either the Dirichlet or Neumann boundary condi-
tion. Let there be a neighbourhood of these parameters such that for all (α, ω, a) in said
neighbourhood, there is a unique solution uα,ω,a with the same boundary conditions.
Fix an r̂ ∈ (r+,∞). Then

(α, ω, a) �→ uα,ω,a(r̂)

is smooth.
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Let u be a solution to (2.3) that extends smoothly to the horizon. Fixing u(r+), we
can uniquely define reflection and transmission coefficients A(α, ω, a) and B(α, ω, a)

via

u(r, α, ω, a) = A(α, ω, a)h1(r, α, ω, a) + B(α, ω, a)h2(r, α, ω, a) (2.5)

for large r . Here h1 and h2 are the local basis near infinity from Sect. 2.2.2. Let W denote
the Wronskian. Then

A = W (u, h2)

W (h1, h2)

and similarly for B.

Lemma 2.9. A and B are smooth in α, ω and a.

Proof. Note that A and B are independent of r and apply Lemma 2.8. ��

2.3. Detailed analysis of the potential. From the analysis in [HS11] we know that the
angular ODE has countably many simple eigenvalues λml , labelled by l = |m|, |m| +
1, . . . for any given m ∈ Z, and corresponding real-valued eigenfunction Sml . For later
use, we need a bound from below which can be found in [HS11], where it is proved
under the assumption of the Hawking–Reall bound. We give the slight extension to our
regime.

Lemma 2.10. Let ω ∈ R. For |a| < �, the eigenvalues satisfy

λml + a2ω2 ≥ �2|m|(|m| + 1)

λml + a2ω2 ≥ �2|m|(|m| + 1) + a2ω2
+ − C�,a |m||ω − ω+|,

(2.6)

where C�,a > 0 depends on � and a only and

ω+(�, r+, a, m) := ma�

r2+ + a2

Proof. We focus on the second inequality since the first one can be obtained similarly.
Let

P̃ f := − 1

sin ϑ
∂ϑ (∂ϑ�ϑ sin ϑ∂ϑ f ) + �2 m2

sin2 ϑ
f.

Then

λml Sml + a2ω2Sml ≥ P̃ Sml − �2 m2

sin2 ϑ
Sml + �2 m2

sin2 ϑ

1

�ϑ

Sml − �
a2ω2

�ϑ

cos2 ϑSml

− 2maω
�

�ϑ

a2

�2
cos2 ϑSml + a2ω2

+Sml + a2(ω2 − ω2
+)Sml

=: P̃ Sml + Pc Sml + a2ω2
+Sml ,
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where we have already used that the mass term is always nonnegative. We want to show
that Pc ≥ 0. We have the decomposition

Pc = P+
c + a2(ω2 − ω2

+)

(
1 − �

�ϑ

cos2 ϑ

)
− 2ma

�

�ϑ

a2

�2
(ω − ω+) cos

2 ϑ,

where P+
c is the ω+-part (i. e. the part for ω = ω+) with

P+
c = �2

�ϑ

m2

sin2 ϑ

(
a2

�2
cos2 ϑ +

a4

(r2+ + a2)2
sin4 ϑ − 2

a2

r2+ + a2

a2

�2
sin2 ϑ cos2 ϑ

)
.

Interpreting the bracket as a function in ϑ , we see that it has critical points only at
ϑ = 0, π/2, π . Hence P+

c ≥ 0. Therefore, we know

Pc ≥ a2(ω2 − ω2
+)

(
1 − �

�ϑ

cos2 ϑ

)
− 2ma

�

�ϑ

a2

�2
(ω − ω+) cos

2 ϑ

≥ a2

�ϑ

2ω+(ω − ω+) sin
2 ϑ − 2ma

�

�ϑ

a2

�2
(ω − ω+) cos

2 ϑ

≥ −
(
2

a2

�ϑ

|ω+| sin2 ϑ + 2|m||a| �

�ϑ

a2

�2
cos2 ϑ

)
|ω − ω+|

To obtain the estimate, one only needs to integrate by parts on the sphere. The P̃ term
yields

∫ π

0
P̃ Sml · Sml =

∫ π

0

(
�ϑ |∂ϑ Sml |2 + �2 m2

sin ϑ
|Sml |2

)
dϑ

≥ �2
∫ π

0

(
|∂ϑ Sml |2 + m2

sin2 ϑ
|Sml |2

)
sin ϑ dϑ

≥ �2|m|(|m| + 1),

where we compared with spherical harmonics via the min-max principle. ��
We will also need an asymptotic upper bound on the ground state eigenvalue λmm .

By the min-max principle, we know that

λmm = min
u∈U,‖u‖=1

∫ π

0

([

�ϑ

∣
∣∣∣
du

dϑ

∣
∣∣∣

2

+
�2

�ϑ

m2

sin2 ϑ
|u|2
]

− �

�ϑ

a2ω2 cos2 ϑ |u|2

− 2maω
�

�ϑ

a2

�2
cos2 ϑ |u|2 − α

�2
a2 cos2 ϑ |u|2

)
sin ϑ dϑ

≤ min
u∈U, ‖u‖=1

∫ π

0

(

�ϑ

∣
∣∣∣
du

dϑ

∣
∣∣∣

2

+
�2

�ϑ

m2

sin2 ϑ
|u|2
)

sin ϑ dϑ

+ (|α| + 2|ma| · |ω − ω+|) a2

�2

for U = {(sin ϑ)|m|�(ϑ) : � analytic}, which is the subspace of L2 which contains all
Sml—see Appendix A.
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Lemma 2.11. Let n ∈ N. Then
∫ π

0
sinn ϑ dϑ = √

π
�
( n+1

2

)

�
( n+2

2

) and
∫ π

0
sinn ϑ cos2 ϑ dϑ =

√
π

2

�
( n+1

2

)

�
( n+4

2

) ,

in particular
∫ π

0
sinn ϑ dϑ ∼ √

2πn−1/2 and
∫ π

0
sinn ϑ cos2 ϑ dϑ ∼ √

2πn−3/2

as n → ∞.

Proof. The expressions follow by induction and the Stirling formula. ��
Define

um :=
(

π−1/2� ((|m| + 2)/2)

� ((|m| + 3)/2)

)1/2

sin|m| ϑ.

Then um ∈ U and ‖um‖L2((0,π);sin ϑ dϑ)=1. As 1 − cos2 ϑ ≤ �ϑ ≤ 1, we hence know
that

λmm ≤
∫ π

0

(∣∣∣∣
dum

dϑ

∣∣∣∣

2

+ �2 m2

sin4 ϑ
|um |2

)

sin ϑ dϑ + (|α| + 2|ma| · |ω − ω+|) a2

�2
.

Lemma 2.12.

lim
m→∞

λmm

m2 = �2

Proof. By Eq. (2.6), we already have limm→∞ λmm/m2 ≥ �2. To prove the result, we
compute

1

m2

∫ π

0

(∣∣∣∣
dum

dϑ

∣∣∣∣

2

+ �2 m2

sin4 ϑ
|um |2

)

sin ϑ dϑ

= π−1/2
�
( |m|+2

2

)

�
( |m|+3

2

) ×
∫ π

0

(
cos2 ϑ sin2 ϑ + �2

)
sin2|m|−3 dϑ

∼ m1/2m−3/2 + �2m1/2m−1/2

by the previous lemma. Hence limm→∞ λmm/m2 ≤ �2.

Lemma 2.13. Let N , L > 0. Then, given � > 0 and α < 9/4. Moreover assume the
spacetime parameters r+ and a satisfy

r4+ − a2�2

(r2+ + a2)2
< −N . (2.7)

Then there is an m0 > 0 such that for all mode parameters |m| ≥ m0 and l = m, we
have

V − ω2 ≤ −N
�−m2�2

(r2 + a2)2
(2.8)

on an interval (R1, R2) of length L at ω = ω+(�, r+, a, m).
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Proof. Let us first rewrite the potential:

V − ω2 = V+ + Vα − ω2

+
�−

(r2 + a2)2

(
�2m2 − 2

a2�2m2

r2+ + a2
+

m2a4�2

(r2+ + a2)2
− m2a2�2

�−
(r2 − r2+)2

(r2+ + a2)2

)

+
�−

(r2 + a2)2
(λ − �2m2)

= V+ + Vα +
�−

(r2 + a2)2
(λ − �2m2) +

�−m2�2

(r2 + a2)2(r2+ + a2)2
(r4+ − a2�2)

+
�−m2�2

(r2 + a2)2(r2+ + a2)2

a2

�−
(r − r+)[r(2r2+ + a2 + �2) − a2�2r−1

+ + r3+]

= �−m2�2

(r2 + a2)2
×
[ 2r2

�2m2�2
+

�−
(r2 + a2)2

a2

m2�2 +
r2 − a2

(r2 + a2)2

2Mr

m2�2

− α

�2

1

m2�2

(
r2 + �(α)a2

)
+

(
λ

�2m2 − 1

)
+

r4+ − a2�2

(r2+ + a2)2

+
a2(r − r+)

�−
[r(2r2+ + a2 + �2) − a2�2r−1

+ + r3+]
]

(2.9)

Note that

[r(2r2+ + a2 + �2) − a2�2r−1
+ + r3+]|r=r+ = �′−(r+) > 0.

Moreover λ − �2m2 > 0 by (2.6). Therefore, to obtain negativity, we will violate
the Hawking–Reall bound in the boxed term. First we can choose |m| large such that
λ/�2m2 − 1 is sufficiently small by Lemma 2.12. Since the term in the last line is
decaying, we can find an R1 such that the last term is bounded on [R1, R1 + L]. By
making |m| possibly larger, the terms of the first line are also bounded on the interval.

Let

r4+ − a2�2

(r2+ + a2)2
≤ −N − εm

Now we choose m sufficiently large such that

λmm

�2m2 − 1 <
εm

2
.

There is an R1 such that

a2(r − r+)

�−
[r(2r2+ + a2 + �2) − a2�2r−1

+ + r3+] <
εm

2

for all r ≥ R1. Set R2 := R1 + L and choose m such that

1

m2

(
2r2

�2�2
+

�−
(r2 + a2)2

a2

�2 +
r2 − a2

(r2 + a2)2

2Mr

�2 − α

�2

r2

�2

)
<

εm

2

on [R1, R2]. Putting everything together, the lemma follows. ��
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Remark 2.14. The same proof yields the analogous negativity results for V − ω2 + F ,
where F is any continuous function on (r+,∞) that is independent of m. This will be
used in Sect. 4.1.

Define the functional

Lα,r+,a( f ) :=
∫ ∞

r+

(
�−

r2 + a2

∣
∣∣∣
d f

dr

∣
∣∣∣

2

+
(V − ω2)(r2 + a2)

�−
| f |2

)

dr

on C∞
0 (r+,∞). We often suppress some of the indices and write La and Va in view of

Sect. 3.1.

Lemma 2.15. Choose (r+, a, �) and (m, l) as in Lemma 2.13. Then there is a function
f ∈ C∞

0 (r+,∞) such that

La( f ) < 0.

Proof. We have the following estimate for the functional if f is supported in (R1, R2):

La( f ) ≤
∫ R1

R2

(
�−(R2)

r2+ + a2

∣∣∣
∣
d f

dr

∣∣∣
∣

2

− N
m2�2

R2
2 + a2

| f |2
)

dr

Choose an f such that f is 1 on [R1 + L/4, R2 − L/4] and 0 outside of (R1, R2).
Furthermore we require that

∣∣∣∣
d f

dr

∣∣∣∣ ≤ 2
4

L
.

Hence

La( f ) ≤ 64�−(R2)

(r2+ + a2)L2
− N

m2�2L

2(R2
2 + a2)

.

If necessary, we can increase m further to make the expression negative. ��
Remark 2.16. Fix � > 0 and 0 < r+ < �. Choose α0 < 9/4 and a = a0 such that (2.7)
holds. Then there is a non-empty open interval I ⊆ (−∞, 9/4) with α0 ∈ I , a non-
empty open Interval I ′ around a0 and an m0 such that Lemma 2.15 holds on [R1, R2]
for all α ∈ I , a ∈ I ′ and |m| ≥ m0.

We want to conclude this section by showing that La is always non-negative if the
Hawking–Reall bound is satisfied. We borrow the following Hardy inequality from
[HS11].

Lemma 2.17. For any rcut ≥ r+, we have for a smooth function f with f r1/2 = o(1) at
infinity that

1

4�2

∫ ∞

rcut
| f |2 dr ≤

∫ ∞

rcut

�−
r2 + a2

∣∣∣∣
d f

dr

∣∣∣∣

2

dr.



660 D. Dold

Proof. We include a proof for the sake of completeness. Integrating by parts and applying
the Cauchy-Schwarz inequality yields

∫ ∞

rcut

d

dr
(r − rcut)| f |2 dr ≤ 4

∫ ∞

rcut
(r − rcut)

2
∣∣∣∣
d f

dr

∣∣∣∣

2

dr.

The lemma follows by estimating rcut ≥ r+. ��
Thus we can prove the

Lemma 2.18. Let r2+ ≥ |a|�. Then there is an m0 such that, for all |m| ≥ m0 and
f ∈ C∞

0 (r+,∞),

La( f ) ≥ 0.

Proof. Let us first assume r2+ > |a|�. Then, noting that

V+ = 2�−
(r2 + a2)2

r2

�2
+

�−
(r2 + a2)4

(
a4�− + (r2 − a2)2Mr

)
,

on sees from (2.9) that

Ṽa >
2 − α

�2

�−
(r2 + a2)2

r2 > − 1

4�2
�−

(r2 + a2)2
r2.

Using Lemma 2.17, we conclude La( f ) > 0. By continuity, we obtain La( f ) ≥ 0 for
r2+ ≥ |a|�2. ��

An analogue of Lemma 2.15 can be proved for the twisted functional used in Sect. 4.1.
For 0 < κ < 1, define

L̃a( f ) :=
∫ ∞

r+

(
�−

r2 + a2 r−1+2κ
∣
∣∣∣
d

dr

(
r

1
2−κ f

)∣∣∣∣

2

+ Ṽ h
a

r2 + a2

�−
| f |2

)

dr

with Ṽ h
a as in Sect. 4.1.

Lemma 2.19. Choose (r+, a, �) and (m, l) as in Lemma 2.13. Then there is a function
f ∈ C∞

0 (r+,∞) such that

L̃a( f ) < 0.

Proof. For f ∈ C∞
0 (r+,∞), La( f ) = L̃a( f ) by choice of Ṽ h

a .

2.4. Periodic mode solutions.

Lemma 2.20. Suppose we have a ψ ∈ Smod(α, ω, m, l) such that ω ∈ R. Then the
following statements are true:
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(i) We have ma� − (r2+ + a2)ω = 0, i. e. that ω = ω+(�, r+, a, m).
(ii) We have am 
= 0.

Proof. We wish to show (i). First let us only deal with the Dirichlet branch. Then u is
decaying at infinity. Define the microlocal energy current

QT := Im
(
u′u
)
.

We have QT (∞) = 0. Moreover

dQT

dr
= dr∗

dr
Im (u′′u + |u′|2) = 0

by the radial ODE. By Lemma 2.2, we obtain

u′ = dr

dr∗

(
ξ

r − r+
u(r) + (r − r+)

ξ�′(r)

)
= �−

r2 + a2

(
ξ

r − r+
u(r) + (r − r+)

ξ�′(r)

)

and so

u′(r+) = i
�am − (r2+ + a2)ω

r2+ + a2
u(r+).

We conclude

0 = QT (r+) = (r2+ + a2)Im

(
du

dr∗ (r+)u(r+)

)
= (am� − (r2+ + a2)ω)|u(r+)|2.

(2.10)

If u(r+) = 0, then u vanishes identically by Lemma 2.7. Hence we conclude that

ma� − (r2+ + a2)ω = 0.

For the Neumann branch of the solution we observe that

QT = Im

(
r− 1

2 +κ d

dr∗
(

r
1
2−κu

)
u

)
.

From the boundary condition, we immediately get QT (∞) = 0 as well and the rest
follows as above.

Part (ii) follows immediately from (r2+ + a2)ω = �am. ��

3. Growing Mode Solutions Satisfying Dirichlet Boundary Conditions

3.1. Existence of real mode solutions. We now fix � > 0, α < 9/4 and 0 < r+ < �.
Recall the variational functional

La( f ) :=
∫ ∞

r+

(
�−

r2 + a2

∣
∣∣∣
d f

dr

∣
∣∣∣

2

+ Ṽa
r2 + a2

�−
| f |2

)

dr.

for ω = ω+ = am�/(r2+ + a2). Define

A := {a > 0 : ∃ f ∈ C∞
0 : La( f ) < 0}.

By Lemma 2.15, there is an m0 such that A is non-empty for all |m| ≥ m0 and l = m.
Fix m and l henceforth.

If the bound r2+ ≥ |a|� is satisfied, then La( f ) ≥ 0 for all compactly supported f by
Lemma 2.18. Hence A is bounded below by a strictly positive infimum. Moreover A is
open as a �→ La( f ) is continuous for any fixed f .
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Remark 3.1. We restrict ourselves to a > 0, but we could have defined the setA to also
include negative values of a.

Our aim is to show thatLa has a minimiser for a ∈ A. We will apply the natural steps
of the direct method of the calculus of variations. First, we will specify an appropriate
function space, then we will show that the functional obeys a coercivity condition and
that the functional is weakly lower semicontinuous. The existence of aminimiser follows
by an application of compactness results.

For U ⊆ (r+,∞) define the weighted norm

‖ f ‖2
L2(U )

=
∫

U

1

r2
| f |2 dr

and the space

L2(U ) := { f measurable : ‖ f ‖L2(U ) < ∞}.
This is clearly a Hilbert space with the natural inner product (·, ·)L2(U ).

For U ⊆ (r+,∞), we define the weighted Sobolev space H1 via the norm

‖ f ‖2
H1(U )

:=
∫

U

(

| f |2 + r(r − r+)

∣∣∣∣
d f

dr

∣∣∣∣

2
)

dr

Note that for U ⊆ (r+,∞) compact, the H1 norm is equivalent to the standard Sobolev
norm. As usual, let H1

0(U ) be the completion of C∞
0 (U ) under ‖·‖H1(U ).

Lemma 3.2. Let u ∈ H1
0(r+,∞). Then is u is also in C(r+ + 1,∞) (after possibly

changing it on a set of measure zero) and

lim
r→∞ u(r) = lim

r→∞ r1/2−κu(r) = 0

for all κ > 0.

Proof. Establishing the embedding H1
0(r+ + 1,∞) ⊆ C(r+ + 1,∞) is standard. Now

take a sequence (um) in C∞
0 such that um → u in H1

0 and pointwise almost everywhere.
Choose an R such that (um) converges pointwise there. For any β < 1/2, we have

∣
∣∣ lim
r→∞ rβu(r)

∣
∣∣ ≤ Rβ |u − um | (R) +

∫ ∞

R

∣∣∂r
(
rβ(u − um)

)∣∣ dr

≤ Rβ |u − um | (R) + C ′′ ‖u − um‖H1 .

Therefore, the claim follows. ��
To establish a coercivity-type inequality, we use the Hardy inequality of Lemma 2.17:

Lemma 3.3. Let a ∈ A be fixed. There exist constants r+ < B0 < B1 < ∞ and
constants C0, C1, C2 > 0, such that, for sufficiently large m, we have for all smooth
functions f with f r1/2 = o(1) at infinity that

∫ ∞

r+

(
�−

r2 + a2

∣∣∣∣
d f

dr

∣∣∣∣

2

+ C01[B0,B1]c | f |2
)

dr ≤ C1

∫ B1

B0

| f |2 dr + C2La( f ).

Here we can choose C2 = 1 if α < 2.
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Remark 3.4. Note that the dependence of the expression on α is via Ṽ inLa . Recall from
Sect. 2.1 that

Ṽ = V − ω2 = V+ + V0 + Vα − ω2.

Proof. First, we have to study the potential again:

(r2+ + a2)
V+

�−
(r+) =

3 r4+
�2

+ r2+
(
1 + a2

�2

)
− a2

(r2+ + a2)2

(r2+ + a2)
Vα

�−
(r+) = − α

�2

1

r2+ + a2
(r2+ + �(α)a2)

(r2+ + a2)
V0 − ω2

+

�−
(r+) = λ + ω2

+a2 − 2mωa�

r2+ + a2

≥ �2m2

(r2+ + a2)3
r4+

Thus for sufficiently large |m|, the expression is greater than zero. Furthermore, note the
asymptotics

(r2 + a2)
Ṽ

�−
→ �−2(2 − α) (3.1)

as r → ∞.
We will deal with the cases α < 2 and α ≥ 2 separately. First, let α < 2. The

function r2+a2
�− Ṽ is only nonpositive on an interval [R1, R2]. Choose constants such

that r+ < B1 < R1 < R2 < B2 < ∞. Set C0 to be the minimum of r2+a2
�− Ṽ on

(r+,∞)\[B1, B2] and set −C1 to be its minimum on [B1, B2]. This immediately yields
the result.

Now let α ≥ 2. There exist R1, R2 such that r2+a2
�− Ṽ is positive on (r+, R1) and

r2 + a2

�−
Ṽ > − 1

4�2
(1 − ε)

on (R2,∞) for an ε > 0 because of (3.1). Hence
∫ ∞

R2

r2 + a2

�−
Ṽ | f |2 dr > −1 − ε/2

4�2

∫ ∞

R2

| f |2 dr +
ε

8�2

∫ ∞

R2

| f |2 dr

≥ −
(
1 − ε

2

) ∫ ∞

R2

�−
r2 + a2

∣
∣∣∣
d f

dr

∣
∣∣∣

2

dr +
ε

8�2

∫ ∞

R2

| f |2 dr

by Lemma 2.17. Choose B1, B2 as before. Let C be the minimum of r2+a2
�− Ṽ on (r+, B1).

Let εC0/2 be the minimum of C and ε/(8�2). Moreover, set−εC1/2 to be the minimum
of r2+a2

�− Ṽ on [B1, B2], we obtain
∫ ∞

r+

(

ε
�−

r2 + a2

∣∣∣∣
d f

dr

∣∣∣∣

2

+ εC01[B0,B1]c | f |2
)

dr ≤ εC1

∫ B1

B0

| f |2 dr + La( f )

and hence the inequality. ��
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Lemma 3.5. The functional La is weakly lower semicontinuous in H1(r+,∞) when
restricted to functions of unit L2 norm.

Proof. As the functional is convex in the derivative, the statement is standard and a proof
can be extracted from [Eva10, Sect. 8]. We note that the boundedness from below comes
from the norm constraint. The r weight deals with (r+,∞) having non-finite measure.

Lemma 3.6. Let a ∈ A. Then there exists an fa ∈ H1
0(r+,∞) with unit L2(r+,∞) norm

such that La achieves its infimum over

{ f ∈ H1
0(r+,∞) : ‖ f ‖L2 = 1}

on fa.

Proof. By Lemma 3.3,

∫ ∞

r+

(
�−

r2 + a2

∣
∣∣∣
d f

dr

∣
∣∣∣

2

+ C01[B0,B1]c | f |2
)

dr ≤ C1

∫ B1

B0

| f |2 dr + C2La( f ) (3.2)

holds for all f ∈ H1
0. From this, it is evident that

La( f ) > −∞
if ‖ f ‖L2 = 1, whence

νa = inf{La( f ) : f ∈ H1
0, ‖ f ‖L2 = 1} > −∞.

We can choose a minimising sequence of functions of compact support by density. Thus
let { fa,n} be a sequence of smooth functions, compactly supported in (r+,∞) with∥∥ fa,n

∥∥
L2 = 1, such that

La( fa,n) → νa .

The bound (3.2) implies that
∥∥ fa,n

∥∥
H1 is uniformly bounded. Thus by the Banach-

Alaoglu theorem, it has a weakly convergent subsequence in H1
0(r+,∞). Recall a simple

version of Rellich-Kondrachov: H1[a, b] embeds compactly into L2[a, b]. Hence by the
equivalence of norms, the subsequence has a strongly in L2 convergent subsequence on
compact subsets of (r+,∞). Relabelling, we have a sequence { fa,n} that converges to
fa weakly in H1

0 and strongly in L2 on compact subsets of (r+,∞). The space H1
0 is a

linear (hence convex) subspace of H1 that is norm-closed. Every convex subset that is
norm closed is weakly closed. Therefore, fa ∈ H1

0.
We claim that ‖ fa‖L2 = 1. We have

∣∣∣‖ fa‖L2 − 1
∣∣∣ ≤

∣∣∣‖ fa‖L2(r++1/N ,N ) − ∥∥ fa,n
∥∥

L2(r++1/N ,N )

∣∣∣

+
∣
∣∣‖ fa‖L2(r++1/N ,N )c − ∥∥ fa,n

∥∥
L2(r++1/N ,N )c

∣
∣∣

Due to the L2 convergence on compact subsets, the claim follows if

lim
N→∞ lim

n→∞ ‖ fn‖L2((r+,∞)\[r++1/N ,N ] = 0.
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Suppose not. Then there is a � such that, for any N , there are infinitely many of the fa,n
such that

∥∥ fa,n
∥∥

L2((r+,∞)\[r++1/N ,N ]) ≥ � > 0,

i. e. the norm must concentrate either near the horizon or near infinity. Suppose first that
∥∥ fa,n

∥∥
L2(r+,r++δ)

≥ �1 > 0

for infinitely many fa,n and any δ > 0. By (3.2), we have for r ∈ (r+, r+ + 1):

| fa,n(r)| ≤
∫ r++1

r

∣∣∣∣
d fa,n

dr ′

∣∣∣∣ dr ′ +
∫ ∞

r++1

∣∣∣∣
d fa,n

dr ′

∣∣∣∣ dr ′

≤
(∫ r++1

r

1

r ′ − r+
dr ′
)1/2

(∫ r++1

r
(r ′ − r+)

∣∣
∣∣
d fa,n

dr ′

∣∣
∣∣

2

dr ′
)1/2

+

(∫ ∞

r++1

1

(r ′)2
dr ′
)1/2

(∫ ∞

r++1
r2
∣∣∣
∣
d fa,n

dr ′

∣∣∣
∣

2

dr ′
)1/2

≤ C

(

1 +

√

log
1

r − r+

)

for a constant C > 0. Since r �→ √| log(r − r+)| is integrable on compact subsets of
[r+,∞), we obtain

∥∥ fa,n
∥∥

L2(r+,r++δ)
→ 0 as δ → 0, a contradiction. Hence we only

need to exclude the case that the norm is bounded away from zero for large r . Thus,
suppose that

∥∥ fa,n
∥∥

L2(R0,∞)
≥ �2 > 0

for infinitely many fa,n and any R0 > 0. However,

R0�2 ≤ ∥∥ fa,n
∥∥

L2(R0,∞)
≤ C ′

for a constant C ′ > 0 by (3.2) and any R0, a contradiction. This shows that

νa = inf{La( f ) : f ∈ H1
0, ‖ f ‖L2 = 1}.

By the infimum property, we have

νa ≤ La( fa).

By Lemma 3.5, we get

La( fa) ≤ lim inf
n→∞ La( fa,n).

As

La( fa,n) → νa,

the latter equals νa . Thus the minimum is attained by fa . ��
Wewould like to derive theEuler–Lagrange equation corresponding to thisminimiser.
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Lemma 3.7. The minimiser fa satisfies
∫ ∞

r+

(
�−

r2 + a2

d fa

dr

dψ

dr
+ Ṽa

r2 + a2

�−
faψ

)
dr = −νa

∫ ∞

r+

fa

r2
ψ dr (3.3)

for all ψ ∈ H1
0(r+,∞).

Proof. The proof can be extracted from [Eva10]. The analogous proof for twisted deriv-
atives is given for Lemma 4.6. ��
Proposition 3.8. There is an â and a corresponding non-zero function fâ ∈ C∞(r+,∞)

such that

�−
r2 + â2

d

dr

(
�−

r2 + â2

d fâ

dr

)
− Ṽâ fâ = 0

and fâ satisfies the horizon regularity condition and the Dirichlet boundary condition
at infinity.

Proof. First we would like to show that νa is continuous in a. We will use the notation
�a− to denote the �− corresponding to a. Given a1 and a2, we have

νa1 = La1( fa1)

=
∫ ∞

r+

(
�

a2−
r2 + a2

2

∣∣∣
∣
d fa1

dr

∣∣∣
∣

2

+ Ṽa2
r2 + a2

2

�
a2−

| fa1 |2
)

dr

+
∫ ∞

r+

[(
�

a1−
r2 + a2

1

− �
a2−

r2 + a2
2

) ∣∣∣∣
d fa1

dr

∣∣∣∣

2

+

(

Ṽa1
r2 + a2

1

�
a1−

− Ṽa2
r2 + a2

2

�
a2−

)

| fa1 |2
]

dr.

Due to the continuity of La( f ) in a, the first line is greater or equal than νa2 if a1
is sufficiently close to a2. Since the coefficients in the second line are continuously
differentiable in a, we can use the mean value theorem to obtain

νa1 ≥ νa2 − C |a1 − a2|
∫ ∞

r+

(

(r − r+)

∣∣∣
∣
d fa1

dr

∣∣∣
∣

2

+ | fa1 |2
)

dr

for some constant C > 0. We obtain an analogous inequality reversing the rôles of a1
and a2. Using (3.2) and ‖ fa‖L2 = 1 yields

|νa1 − νa2 | ≤ C |a1 − a2|
∫ ∞

r+

(

(r − r+)

∣∣∣∣
d fa1

dr

∣∣∣∣

2

+ | fa1 |2
)

dr ≤ C ′|a1 − a2|.

Since A 
= ∅, we set
â := inf A.

As stated in the introduction to this section, A is open, so â /∈ A. By continuity of νa ,
this implies that νâ = 0.

Now choose a sequence an → â and corresponding minimisers fan ∈ H1
0 satisfying∥∥ fan

∥∥
L2 = 1. Then, as in the proof of Lemma 3.6, by Lemma 3.3, fan is bounded in H1

and there is a subsequence (also denoted (an)) such that fan → fâ weakly in H1 and
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strongly in L2 on compact subsets for a fâ ∈ H1
0. Again by Lemma 3.3 and the strong

L2 convergence on compact subsets, we see that fâ is non-zero. Moreover, we have
sufficient decay towards infinity by Lemma 3.2. Hence we get the desired asymptotics.

From the weak convergence of ( fan ), Lemma 3.7 yields that fâ satisfies

∫ ∞

r+

(
�−

r2 + â2

d fâ

dr

dψ

dr
+ Ṽâ

r2 + â2

�−
fâψ

)
dr = 0

for all ψ ∈ H1
0(r+,∞). For ordinary differential equations, weak solutions are classical

solutions—see for example [Tao06, Ch. 1]; so

�−
r2 + â2

d

dr

(
�−

r2 + â2

d fâ

dr

)
− Ṽâ fâ = 0,

from which we obtain that fâ ∈ C∞.
It remains to check the boundary condition at the horizon. The lower semi-continuity

of convex functionals with respect to weak convergence implies that

∫ ∞

r+

(
�−

r2 + a2
n

∣∣∣∣
d fan

dr

∣∣∣∣

2

+ Ṽan

r2 + a2
n

�−
| fan |2

)

dr ≤ νan ,

whence
∫ ∞

r+

(
�−

r2 + â2

∣∣
∣∣
d fâ

dr

∣∣
∣∣

2

+ Ṽâ
r2 + â2

�−
| fâ |2

)

dr ≤ 0.

Hence
∫ ∞

r+

�−
r2 + â2

∣∣∣∣
d fâ

dr

∣∣∣∣

2

dr < ∞. (3.4)

Near r+, the local theory (Theorem 2.1) implies that there exist constants A, B and
non-zero analytic functions ϕi such that

fâ = Aϕ1 + B(log(r − r+)ϕ2 + ϕ3).

If B 
= 0, then

∫ ∞

r+

�−
r2 + â2

∣∣
∣∣
d fâ

dr

∣∣
∣∣

2

dr = ∞,

whence B = 0. Hence fâ satisfies the horizon regularity condition. ��
Remark 3.9. FromLemma 2.18, we already know that |â| ≥ r2+/�. In [HS11], it is shown
directly that, if the Hawking–Reall bound is satisfied, there are no periodic solutions.
One can easily see that the proof generalises to the case when the Hawking–Reall bound
is saturated. Thus we even obtain |â| > r2+/�.

Corollary 3.10. Assume our choice of parameters, a = â and ω = ω+. Let C0 ∈ C.
Then the radial ODE (2.3) has a unique solution satisfying u(r+) = C0 and the Dirichlet
boundary condition at infinity.
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3.2. Perturbing the Dirichlet modes into the complex plane. We have shown that, for
given � > 0 and α < 9/4, there exists a real mode solution in a Kerr-AdS spacetime
with parameters (�, r+, â) and ω = ωR(0) := �âm/(r2+ + â2). Henceforth, we shall
denote the chosen â simply by a. Now we wish to vary ω and α, keeping all the other
parameters constant. Keeping u(r+, ω, α) fixed, satisfying |u|(r+, ω, α) = 1, the local
theory yields a unique solution to the radial ODE of the form

u(r, α, ω) = A(α, ω)h1(r, α, ω) + B(α, ω)h2(r, α, ω)

for large r , cf. Lemmas 2.7 and (2.5). The functions A and B are smooth in ω and
α. Finding a mode solution is equivalent to finding a zero of A. We already have
A(α(0), ωR(0)) = 0. Write A = AR + iAI . Recall

QT (r) = Im (u′u)

and that

dQT

dr
(r) = r2 + a2

�−
Im
(

V − ω2
)

QT (r+) = �am − ωR(r2+ + a2),

where we have used |u(r+)| = 1. We have

QT (r) = |A|2 �−
r2 + a2 Im

(
dh1

dr
h1

)
+

�−
r2 + a2 Im

(
A
dh1

dr
Bh2

)

+
�−

r2 + a2 Im

(
B
dh2

dr
Ah1

)
+ |B|2 �−

r2 + a2 Im

(
dh2

dr
h2

)

and hence

QT (∞) = 1

�2

(

−1

2
+

√
9

4
− α

)

Im (AB) +
1

�2

(

−1

2
−
√
9

4
− α

)

Im (B A)

= 2

�2

(
9

4
− α

)1/2
Im (AB).

due to the asymptotics of the hi . We obtain

�am − (r2+ + a2)ωR +
∫ ∞

r+

r2 + a2

�−
Im
(

V − ω2
)
dr = 2

�2

(
9

4
− α

)1/2
Im (AB).

Now we differentiate at ωR = ωR(0) and α = α0 with respect to ωR and α:

−(r2+ + a2) = 2

�2

(
9

4
− α

)1/2
Im

(
∂ A

∂ωR
B

)
= 2

�2

(
9

4
− α

)1/2 (
∂ AI

∂ωR
BR − ∂ AR

∂ωR
BI

)

(3.5)

0 = 2

�2

(
9

4
− α

)1/2
Im

(
∂ A

∂α
B

)
= 2

�2

(
9

4
− α

)1/2 (
∂ AI

∂α
BR − ∂ AR

∂α
BI

)

(3.6)
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To extend the coefficient A(α, ωR) = 0 to complex ω, we want to appeal to the implicit
function theorem establishing

det

(
∂ AR
∂ωR

∂ AR
∂α

∂ AI
∂ωR

∂ AI
∂α

)


= 0.

From Eqs. (3.5) and (3.6) we see that this holds if

∂ A

∂α
(α(0), ωR(0)) 
= 0.

This is true indeed:

Lemma 3.11.

∂ A

∂α
(α(0), ωR(0)) 
= 0.

Proof. Suppose ∂ A/∂α = 0. Then we have

∂u

∂α
(r, ωR(0), α(0)) = ∂ B

∂α
(ωR(0), α(0))h2(r, ωR(0), α(0))

+ B(α(0), ωR(0))
∂h2

∂α
(r, ωR(0), α(0)).

Thus ∂u/∂α is polynomially decreasing at infinity as r−1/2−√
9/4−α(0) and extends

smoothly to r = r+. Defining the derivative uα := ∂u/∂α, we get from the radial
ODE

�−
r2 + a2

d

dr

(
�−

r2 + a2

duα

dr

)
− Ṽ uα

=
[

�−
(r2 + a2)2

∂λ

∂α
− 1

�2

�−
(r2 + a2)2

(r2 + �(α)a2)

]
u.

Multiplying by u and integrating by parts, we obtain at ωR(0) and α(0)
∫ ∞

r+

�−
(r2 + a2)2

(
∂λ

∂α
− 1

�2
(r2 + �(α)a2)

)
|u|2 dr = 0. (3.7)

Now the two cases α ≤ 0 and 0 < α < 9/4 have to be treated separately. If α ≤ 0, then
Proposition A.3 readily gives ∂λ/∂α < 0, so that u would vanish identically.

For α > 0, we need to use the formula for ∂λ/∂α from Proposition A.3. Together
with (3.7), this yields

∫ ∞

r+

�−
(r2 + a2)2

∫ π

0

1

�2

(
−r2 − a2 cos2 ϑ

)
|S|2 sin ϑ |u|2 dϑ dr = 0,

whence we get the same contradiction. ��

3.3. Behaviour for small ε > 0 for Dirichlet boundary conditions. From the analysis
of the previous section, we have a family of mode solutions u(r, ε) to the radial ODE
parameters (ω(ε), m, l, α(ε)), where
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ω(ε) = ωR(ε) + iε.

The mode u satisfies the horizon regularity condition and the Dirichlet boundary condi-
tion at infinity. This proves the first part of Theorem 1.6. To prove the second part, we
would like to study the behaviour of ω(ε) and α(ε) for small ε > 0.

To obtain the following statements, we potentially need to make |m| even larger than
in the previous sections.

Proposition 3.12. If |m| is sufficiently large, we have

ωR(0)
∂ωR

∂ε
(0) < 0.

Proof. Define

Q̃T := Im
(
u′ωu

)
.

Let ε > 0. We have Q̃T (∞) = 0. Moreover

Q̃T (r+) = Im

(
ξ

r2+ + a2
ω

)
|u|2(r+) = 0

since ξ has a positive real part (see (1.10)), u ∼ (r − r+)ξ and hence |u|(r+) = 0.
Furthermore, using the radial ODE, one computes

dQ̃T

dr
= −ε

�−
r2 + a2

∣∣∣
∣
du

dr

∣∣∣
∣

2

+
r2 + a2

�−
Im
(
(Va − ω2)ω

)
|u|2.

Hence
∫ ∞

r+

(

ε
�−

r2 + a2

∣∣∣∣
du

dr

∣∣∣∣

2

− r2 + a2

�−
Im
(
(Va − ω2)ω

)
|u|2
)

dr = 0 (3.8)

with

−Im ((Va − ω2)ω) = ε

(r2 + a2)2

(
V+(r

2 + a2)2 + |ω|2(r2 + a2)2 − �2a2m2

− α

�2
�−(r2 + a2�(α))

)
− �−

(r2 + a2)2
Im ((λ + a2ω2)ω).

From Proposition A.2, we know that −Im (λω) > 0. Hence

−Im ((Va − ω2)ω) >
ε

(r2 + a2)2

(
V+(r

2 + a2)2 + |ω|2(r2 + a2)2 − �2a2m2

− α

�2
�−(r2 + a2�(α))

)
− �−

(r2 + a2)2
a2ε|ω|2. (3.9)

We set

K (r) := |ω|2(r2 + a2)2 − �2a2m2 − �−a2|ω|2.
We have

d

dr
K (r) = |ω|2

(
4

(
1 − a2

�2

)
r3 + 2a2M + 2a2

(
1 − a2

�2

)
r

)
> 0. (3.10)
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As already used in Sect. 3.1, there is an R > r+ such that, for r ≥ R,

V+ + Vα > − 1

4�2
�−

r2 + a2 .

By an application of Lemma 2.17, we conclude

∫ ∞

R

(

ε
�−

r2 + a2

∣∣∣∣
du

dr

∣∣∣∣

2

− r2 + a2

�−
Im
(
(Va − ω2)ω

)
|u|2
)

dr

>

∫ ∞

R

ε

(r2 + a2)2
K (r)|u|2 dr. (3.11)

For the sake of contradition, suppose K (r+) ≥ 0. Then, by (3.10), K > 0 on (r+,∞),
whence we obtain strict positivity for (3.11). As

|ω(0)|2 = m2a2�2

(r2+ + a2)2

and as, for fixed r+, â is bounded away from zero for all m,

|ω(0)|2 ≥ Cm2.

Since ε �→ ω(ε) is continuous, |ω|2 scales as m2 for small ε, so dK/dr can be chosen
as large as possible at r = r+, in particular, it can be used to overcome the potentially
non-positive derivative of the remaining terms of the right hand side of (3.9) on (r+, R).
Then, (3.8) implies u = 0, a contradiction.

Hence K (r+) < 0 which is equivalent to

ωR(ε)2 + ε2 <

(
am

r2+ + a2

)2

.

This in turn is equivalent to the claim. ��
In the following, we will fix an |m| ≥ m0 such that Proposition 3.12 holds.

Remark 3.13. The choice of m could have been made right at the beginning as the choice
of m0 in Lemma 2.13 is independent of the largeness required for Proposition 3.12.

The next proposition shows that the mass α is at first increasing along the curve
obtained by the implicit function theorem. The proof requires a technical lemma which
is given at the end of this section.

Proposition 3.14. Let α(0) < 9/4. Then

∂α

∂ε
(0) > 0.



672 D. Dold

Proof. Define

uε = ∂u

∂ε
.

Then

∂

∂r

(
�−

r2 + a2

∂uε

∂r

)
− (V − ω2)(r2 + a2)

�−
uε = ∂

∂ε

(
r2 + a2

�−
Ṽ

)
u.

We would like to multiply this equation by u and then integrate by parts, but, at r = r+,
uε does not satisfy the boundary conditions of a mode solution. However, using u ∼
(r − r+)−1/2−κ(ε) for all ε by Sect. 3.2, uε ∼ log r(r − r+)−1/2−κ and hence satisfies the
Dirichlet boundary condition at infinity.

We know that

f (r, ε) := exp

(
−i

�am − (r2+ + a2)ω(ε)

∂r�−
log(r − r+)

)
u(r, ε)

is smooth, whence

∂ f

∂ε
= i(r2+ + a2)

log(r − r+)

∂r�−(r+)

(
∂ωR

∂ε
+ i

)
f (r, ε)

+ exp

(
−i

�am − (r2+ + a2)ω(ε)

∂r�−(r+)
log(r − r+)

)
uε

and

uε(r, 0) = r2+ + a2

∂r�−(r+)

(
1 − i

∂ωR

∂ε

)
log(r − r+)u +

∂ f

∂ε
(r, 0).

We have

d

dr

(
�−

r2 + a2

duε

dr

)
u = d

dr

(
�−

r2 + a2

duε

dr
u

)
− d

dr

(
�−

r2 + a2 uε

du

dr

)

+ uε

d

dr

(
�−

r2 + a2

du

dr

)

and

duε

dr
u − uε

du

dr
= r2+ + a2

∂r�−(r+)

(
1 − i

∂ωR

∂ε

)
1

r − r+
|u|2

+
r2+ + a2

∂r�−(r+)

(
1 − i

∂ωR

∂ε

)
log(r − r+)Im

(
du

dr
u

)
.

We conclude that

�−
r2 + a2 log(r − r+)Im

(
du

dr
u

)
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is zero at r = r+. Thus evaluating the radial ODE at ε = 0, multiplying it by u, taking
real parts and integrating by parts yields

−|u(r+)|2 =
∫ ∞

r+

r2 + a2

�−
Re

(
∂ Ṽ

∂ε

) ∣∣∣∣
ε=0

|u|2 dr (3.12)

For α 
= 0, the derivative is given by

Re

(
∂ Ṽ

∂ε

) ∣
∣∣
∣
ε=0

= �−
(r2 + a2)2

[
Re

(
∂λ

∂ε

)
+ 2a2ωR(0)

∂ωR

∂ε
(0)

]

− �−
(r2 + a2)2

2ma�
∂ωR

∂ε
(0) − 2ωR(0)

∂ωR

∂ε
(0)

r2 − r2+
r2 + a2

− 1

�2

∂α

∂ε

�−
(r2 + a2)2

(r2 + �(α)a2)

= �−
(r2 + a2)2

[
Re

(
∂λ

∂ε
− 2r2+ωR(0)

∂ωR

∂ε
(0)

)
− 1

�2

∂α

∂ε
(r2 + �(α)a2)

]

− 2ωR(0)
∂ωR

∂ε
(0)

r2 − r2+
r2 + a2 . (3.13)

Noting that
∫ π

0 |S|2 sin ϑ dϑ = 1 and using Lemma 3.15 to eliminate the dependence
on λ and then Proposition 3.12, we conclude that ∂α/∂ε(0) needs to be positive to make
the integrand of (3.12) negative. The restriction to α 
= 0 can by removed by continuity
of the reflection and transmission coefficients A and B. ��
Lemma 3.15. At ε = 0, for α ≤ 0,

∫ π

0

(
2

[
�a2 + (r2+ + a2)

a2

�2

]
cos2 ϑ

�ϑ

ωR
∂ωR

∂ε
+

a2

�2
cos2 ϑ

∂α

∂ε

+ Re

(
∂λ

∂ε

))
|S|2 sin ϑ dϑ = 0

and, for α > 0,

∫ π

0

(
2

[
�a2 + (r2+ + a2)

a2

�2

]
cos2 ϑ

�ϑ

ωR
∂ωR

∂ε
− a2

�2
sin2 ϑ

∂α

∂ε

+ Re

(
∂λ

∂ε

))
|S|2 sin ϑ dϑ = 0.

Proof. Let α ≥ 0. Set Sε := ∂S/∂ε. Then, differentiating the angular ODE with respect
to ε, evaluating at ε = 0, multiplying by S, taking the real part and integrating by part
yields the claimed identity. An analogous computation yields the result for α > 0. ��

3.4. A continuity argument. We now deduce Theorem 1.8 from Theorem 1.6. In this
section, we fix � > 0 and α0 < 9/4. In the previous sections, we have produced a
curve ε �→ α0(ε) of masses with ∂α0(0)/∂ε > 0. This means that the constructed mode
solutions will solve a radial ODEwith a different scalar mass. This section formalises the
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intuitive idea of “following up” the curves ε �→ α(ε) starting at an α close to α0 until one
“hits” the desired mass, which is made possible by ∂α(0)/∂ε > 0. The proof consists
simply in establishing necessary continuity and carefully choosing neighbourhoods. This
can be divided into two independent steps.

1. We show that the function mapping α to the corresponding â is left-continuous.
2. We show that, for α and corresponding â sufficiently close to α0 and the corre-

sponding â0, the implicit function theorem guarantees a curve, starting at α and the
corresponding â and real frequency ω+, which exists “long enough” to “hit” α0.

Note that, for any f ∈ C∞
0 ,(α, r+, a) �→ Lα,r+,a( f ) defines a continuous function.

For a given f ∈ C∞
0 , define the family of sets

Aα,r+( f ) := {a > 0 : Lα,r+,a( f ) < 0}
and

Aα,r+ :=
⋃

f ∈C∞
0

Aα,r+( f )

= {a > 0 : ∃ f ∈ C∞
0 : Lα,r+,a( f ) < 0}.

Remark 3.16. Aα,r+ corresponds to the set A from Sect. 3.1.

Define the function

	 : (−∞, 9/4) × (0,∞) → (0,∞), 	(α, r+) := inf Aα,r+

if Aα,r+ 
= ∅.
Lemma 3.17. Let 0 < r+ < �. Then there is an interval I ⊆ (−∞, 9/4) with α0 ∈ I
and an m0 such that 	(·, r+) is well-defined for all α ∈ I and |m| ≥ m0 .

Proof. The set Aα,r+ non-empty, open and bounded away from zero for all α ∈ I ⊆
(−∞, 9/4) by Remark 2.16, whence 	(·, r+) is well-defined.

We shall fix r+ now. Moreover, we shall fix an m ≥ m0 > 0.

Lemma 3.18. The function 	(·, r+) is non-increasing in α ∈ I .

Proof. Suppose 	(·, r+) was not non-increasing. Then

inf Aα,r+ < inf Aα′,r+

for some α < α′. Hence there is an a > 0 with

inf Aα,r+ < a < inf Aα′,r+

and an f ∈ C∞
0 such that

Lα,r+,a( f ) < 0 ≤ Lα′,r+,a( f ).

This contradicts that Lα,r+,a( f ) > Lα′,r+,a( f ) for all f and a if α < α′. ��
Lemma 3.19. The function 	(·, r+) is left-continuous at α0, i. e.

lim
α↑α0

	(α, r+) = 	(α0, r+).
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Proof. Suppose 	(·, r+) was not left-continuous at α0. Then there is an ε > 0 such that,
for all δ > 0, there is an α < α0 with

α0 − α < δ

and

	(α, r+) − 	(α0, r+) ≥ ε.

Then there is an a between 	(α0, r+) and 	(α, r+) such that there is an f with a ∈
Aα0,r+( f ), but, for each δ, there is an α with a /∈ Aα,r+( f ). Since Lα0,r+,a( f ) < 0 and
due to the continuity of L·( f ), there is a δ > 0 such that for all α0 − α < δ, we have
Lα,r+,a( f ) < 0, i. e. a ∈ Aα,r+( f ), a contradiction. ��

For α ∈ I , we define

�R(α) :=
m	(α, r+)

(
1 − 	(α,r+)2

�2

)

r2+ + 	(α, r+)2
. (3.14)

As shown, this is left-continuous at α0.
Nowwe turn to the second step. Recall that, for all α ∈ I , there is a periodic Dirichlet

mode with frequency ω = �R(α) ∈ R in a Kerr-AdS spacetime with parameters
(�, r+,	(α, r+)) by Proposition 3.8. Using Sect. 3.2, we can find unstable Dirichlet
mode solutions with frequency ω = ωR + iωI = ωR(ε) + iε (where ωR(0) = �R(α))
to the Klein–Gordon equation with mass α(ε) (where α(0) = α0). As by Lemma 3.17
the results of Sect. 3.3 hold, we know that

∂α

∂ε
(0) > 0,

∂ωR

∂ε
(0) < 0. (3.15)

In this section, B�(x)will denote an open �∞ ball of radius � centered around x ∈ R
4,

i. e.

B�(x) :=
{

y ∈ R
4 : max

j=1,...,4
|x j − y j | < �

}
.

We view the column vectors (α, ωR, ωI , a)t as points in R4.
Consider

D := det

( ∂ AR
∂ωR

∂ AR
∂α

∂ AI
∂ωR

∂ AI
∂α

)

.

It was shown in Sect. 3.2 that D(α,�R(α), 0,	(α, r+)) 
= 0 for all α ∈ I .
From Lemma 2.9, we know that A is smooth in α, ω and a. Hence there is an

L > 0 such that D 
= 0 in BL(α,�R(α0), 0,	(α0, r+)) and such that, for all values
(α,�R(α), 0,	(α, r+)) ∈ BL(α,�R(α0), 0,	(α0, r+)), we have α ∈ I .

Hence in this neighbourhood, the vector field

W := −

⎛

⎜⎜⎜⎜⎜
⎝

∂ AR
∂α

∂ AR
∂ωR

0 0

∂ AI
∂α

∂ AI
∂ωR

0 0

0 0 −1 0

0 0 0 −1

⎞

⎟⎟⎟⎟⎟
⎠

−1⎛

⎜⎜⎜⎜⎜
⎝

∂ AR
∂ωI

∂ AI
∂ωI

1

0

⎞

⎟⎟⎟⎟⎟
⎠
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is well-defined. It is this vector field whose integral curves describe the solutions given
by the implicit function theorem as applied in Sect. 3.2. In particular, solving the ODE

d

dε
(α(ε), ωR(ε), ωI (ε), a(ε))t = W (α(ε), ωR(ε), ωI (ε), a(ε))

with initial conditions (α,�R(α), 0,	(α, r+)) (α ∈ I ) gives the previously introduced
α(ε) and ωR(ε).

Set W := (W α, W ωR , W ωI , W a)t . By (3.15),

W α(α0,�R(α0), 0,	(α0, r+)) > 0

and

W ωR (α0,�R(α0), 0,	(α0, r+)) < 0.

Let δ > 0. Again by smoothness of A, there are � > 0 and L ′ ≤ L such that

‖W − W (α0,�R(α0), 0,	(α0, r+))‖∞ < δ and W α ≥ �, W ωR ≤ −�

in BL ′(α0,�R(α0), 0,	(α0, r+)).
We now study integral curves of W in BL ′(α0, ωR(α0), 0,	(α0, r+)). Let

τ �→ γ (τ, p)

be the integral curve of W with γ (0, p) = p ∈ BL ′(α0,�R(α0), 0,	(α0, r+)). Define
the map

T : B2L ′/3(α0,�R(α0), 0,	(α0, r+)) → R,

T (p) = inf
{
τ > 0 : γ (τ, p) ∈ B2L ′/3(α0,�R(α0), 0,	(α0, r+))

c
}

.

The set
{
τ > 0 : γ (τ, p) ∈ B2L ′/3(α0,�R(α0), 0,	(α0, r+))

c
}
is non-empty since

d

dτ
ωI (τ ) = 1. (3.16)

Therefore T is well-defined.

Lemma 3.20. T is continuous.

Proof. For this proof use the abbreviation B := B2L ′/3(α0,�R(α0), 0,	(α0, r+)). Let
p0 ∈ B, τ0 := T (p0) > 0. Let 0 < ε < τ0 such that γ (τ, p0) ∈ B

c
for τ0 + ε ≤ τ ≤

τ0 + 2ε, which exists by (3.16). Define

d1 := min{dist(γ (τ, p0), ∂ B) : 0 ≤ τ ≤ τ0 − ε}
We claim that d1 > 0. Suppose not. Then there is a τ ′ ∈ (0, τ0 − ε] such that

dist(γ (τ ′, p0), ∂ B) = 0. Since

W α ≥ �, W ωR ≤ −�, W ωI = 1, W a = 0, (3.17)

whence W is not parallel to any side of the boundary ∂ B of the �∞ ball, this would imply
that γ (τ, p0) ∈ B

c
for a range of τ ’s in a small neighbourhood of τ ′. This, however,

contradicts τ0 = T (p0). Hence d1 > 0.
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Furthermore define

d2 := min{dist(γ (τ, p0), ∂ B) : τ0 + ε ≤ τ ≤ τ0 + 2ε}.
Using (3.17), we can see again that d2 > 0. Set d := min(d1, d2).

Set

G := {γ (τ, p0) : τ ∈ [0, τ0 + 2ε]\[τ0 − ε, τ0 + ε]}
Since the solutions of linear ODEs depend continuously on the initial data, there is
a δ > 0 such that, for all p ∈ Bδ(p0), γ (τ, p) is in a d/2-neighbourhood of G for
all τ ∈ [0, τ0 + 2ε]\(τ0 − ε, τ0 + ε). Thus for all p ∈ Bδ(p0), T (p) > τ0 − ε and
T (p) < τ0 + ε, i. e. |T (p) − T (p0)| < ε. ��

Hence there exists a T0 ≥ 0 such that

T (p) ≥ T0

for all p ∈ BL ′/3(α0,�R(α0), 0,	(α0, r+)). As continuous functions attain their mini-
mum on compact sets, T0 can be chosen to be positive. This shows that all integral curves
of W starting in BL ′/3(α0,�R(α0), 0,	(α0, r+)) exist for 0 ≤ τ ≤ T0 and remain in
BL ′(α0,�R(α0), 0,	(α0, r+)).

We can prove the following

Lemma 3.21. Given (α(0), ωR(0), ωI (0), a(0))t ∈ BL ′/3(α0,�R(α0), 0,	(α0, r+))
with

α0 − T0� ≤ α(0) < α0,

let

s �→ (α(s), ωR(s), ωI (s), a(s))t

be the integral curve starting at (α(0), ωR(0), ωI (0), a(0))t . Then there is a τ ∈ (0, T0]
such that α(τ) = α0.

Proof. The ODE yields

α(T0) = α(0) +
∫ T0

0
W α(α(s), ωR(s), ωI (s), a(s)) ds

≥ α(0) + T0�.

If α0 − T0� ≤ α(0) < α0, then α(T0) ≥ α0 and, by the intermediate value theorem,
there is a τ ∈ (0, T0] such that α(τ) = α0. ��

The function 	(·, r+) induces the curve

� : α �→ (α,�R(α), 0,	(α, r+))
t

for α ∈ I ; it is continuous on the left at α0. The result of the previous section says
that along this curve, the implicit function theorem produces parameter curves that
correspond to superradiant modes; these parameter curves are exactly the integral curves
of W starting on a point of �. Since � is left-continuous,

� ∩ BL ′/3(α0,�R(α0), 0,	(α0, r+)) ∩ {α0 − T0� ≤ α(0) < α0} 
= ∅.

This shows Theorem 1.8.
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4. Growing Mode Solutions Satisfying Neumann Boundary Conditions

4.1. Existence of real mode solutions. In this section, we will construct growing mode
solutions satisfying Neumann boundary conditions. Every result has a counterpart in
Sect. 3. In the following, whenever proofs will be short in detail, the reader can extract
those from Sect. 3. The two novel techniques in this section are the use of twisted
derivatives with appropriately modified Sobolev spaces and a new Hardy inequality
(Lemma 4.2).

Fix � > 0 and r+. In this section, we look at the range 5/4 < α < 9/4, i. e. 0 < κ < 1,
for Neumann boundary conditions.

To treat the Neumann case variationally, we need to modify the functional, so it
becomes finite for Neumann modes. We achieve this by conjugating the derivatives
by a power of r; more precisely, we consider the twisted derivative h d

dr

(
h−1·), where

h = r−1/2+κ . This “kills off” the highest order term of the Neumann branch. Moreover,
squaring the twisted derivative term does not introduce any “mixed terms” in f and its
derivative; it only produces a zeroth order term that also makes the potential finite.

Thus introduce the twisted variational functional

L̃a( f ) :=
∫ ∞

r+

(
�−

r2 + a2 h2
∣∣∣
∣
d

dr

(
h−1 f

)∣∣∣
∣

2

+ Ṽ h
a

r2 + a2

�−
| f |2

)

dr,

where Ṽ h
a as in Appendix B, i. e.

Ṽ h
a = Ṽa +

(
1

2
− κ

)
�−

r2 + a2 r
1
2−κ d

dr

(
�−

r2 + a2 r− 3
2 +κ

)
.

By Lemma B.2, Ṽ h
a = O(1) and Ṽ h

a is positive near infinity for sufficiently large
|m|, which shall be assumed henceforth. Moreover, Ṽ h

a is chosen such that the twisted
variational problem leads to the same Euler–Lagrange equation as the untwisted one.

For U ⊆ (r+,∞), we define the twisted Sobolev norm

‖ f ‖2
H1

κ (U )
:=
∫

U

(
1

r2
| f |2 + r(r − r+)h

2
∣∣
∣∣
d

dr

(
h−1 f

)∣∣
∣∣

2
)

dr.

Note that for U ⊆ (r+,∞) compact, the H1
κ norm is equivalent to the standard Sobolev

norm. For U = (r+,∞), let H1
κ(U ) be the completion of functions of the form

f (r) = r− 1
2 +κ g(r) (4.1)

under ‖·‖H1
κ (U ), where (x �→ g(1/x)) ∈ C∞

0 [0, 1/r+). Henceforth, we will sometimes
refer to such a function g as being “compactly supported around infinity”.

Lemma 4.1. Let f ∈ H1
κ(r+,∞), then f is also in C(r+ + 1,∞) and r1/2−κ f (r) is

bounded.

Proof. The existence of a continuous version follows from Sobolev embedding as in
Lemma 3.2. Then, there exists a sequence ( fn) ∈ C∞ as in the definition such that
fn → f in H1

κ . Let R̃ > R > r+ and let fn(R) converge to f (R):
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∣∣∣R̃1/2−κ( fn(R̃) − f (R̃))

∣∣∣ ≤
∣∣∣r1/2−κ( fn(R) − f (R))

∣∣∣

+
∫ R̃

R

∣∣∣∣
d

dr

(
r1/2−κ ( fn − f )

)∣∣∣∣ dr

≤
∣∣
∣r1/2−κ( fn(R) − f (R))

∣∣
∣

+

(∫ ∞

R
r(r − r+)r

−1+2κ
∣∣∣∣
d

dr
( fn − f )

∣∣∣∣

2

dr

)1/2

×
(∫ ∞

R

1

r(r − r+)r−1+2κ dr

)1/2

Hence r1/2−κ ( fn(r) − f (r)) converges uniformly for all r ≥ R. Hence we even have
convergence at r = ∞. Since limr→∞ r1/2−κ fn(r) 
= ∞ for all n, we obtain the result.

��
As in Sect. 3.1, choose mode parameters such that the conditions for Lemma 2.19

are satisfied. Let

A := {a > 0 : ∃ (x �→ g(1/x)) ∈ C∞
0 [0, 1/r+) : L̃a(r−1/2+κ g) < 0}. (4.2)

Note that A is non-empty, open and bounded below.

Lemma 4.2. For rcut > r++1, 0 < κ < 1 and a smooth function f with f r1/2−κ = O(1)
at infinity, we have that

∫ ∞

rcut

| f |2
r2

dr = 1

2(1 − κ)
r−1
cut

(
c

2

∫ rcut

rcut−1
| f |2 dr +

1

2c

∫ rcut

rcut−1

∣∣∣
∣
d f

dr

∣∣∣
∣

2

dr

)

+
1

(1 − κ)2

∫ ∞

rcut
r−1+2κ

∣∣∣∣
d

dr

(
r1/2−κ f

)∣∣∣∣

2

dr

for any c > 0 sufficiently large.

Proof. We compute:
∫ ∞

rcut

| f |2
r2

dr = 1

2(1 − κ)
r−1
cut | f |2(rcut)

+
1

1 − κ

∫ ∞

rcut
r2κ−2Re

(
r1/2−κ f

d

dr

(
r1/2−κ f

))
dr.

Using the Cauchy-Schwarz inequality, one easily sees that
∫ ∞

rcut

| f |2
r2

dr ≤ 1

1 − κ
r−1
cut | f |2(rcut)

+
1

(1 − κ)2

∫ ∞

rcut
r−1+2κ

∣
∣∣∣
d

dr

(
r1/2−κ f

)∣∣∣∣

2

dr.

Let χ ≥ 0 be a smooth function of compact support with χ(rcut) = 1 and χ = 0 for
r ≤ rcut−1. Then
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| f |2(rcut) ≤ | f |2(rcut)χ(rcut)

≤ c

2

∫ rcut

rcut−1
| f |2 dr +

1

2c

∫ rcut

rcut−1

∣∣∣∣
d f

dr

∣∣∣∣

2

dr

for any c > 0 sufficiently large. ��
Lemma 4.3. Let a ∈ A be fixed. There exist constants r+ < B0 < B1 < ∞ and
C0, C1 > 0, such that, for large enough m, we have for all smooth functions f for which
the following integrals are defined that

∫ ∞

r+

(
�−

r2 + a2 h2
∣∣∣∣
d

dr

(
h−1 f

)∣∣∣∣

2

+ C01[B0,B1]c
| f |2
r2

)

dr ≤ C1

∫ B1

B0

| f |2 dr + 2L̃a( f ).

Proof. The proof follows the strategy of Lemma 3.3. The analysis of the potential goes
through as in Sect. 3.1 as the twisting part of Ṽ h

a does not depend on m and has the right
asymptotics. Thus we know that there is an R1 such that

r2 + a2

�−
Ṽ h

a > 0

on (r+, R1). Moreover, there is an R2 > R1 such that

r2 + a2

�−
Ṽ h

a > − C

2r2
and

C

(1 − κ)2
<

�−
r2 + a2

for r ≥ R2. Hence

∫ ∞

R2

r2 + a2

�−
Ṽ h

a | f |2 dr ≥ −1

2

∫ ∞

R2−1

�−
r2 + a2 r−1+2κ

∣∣∣∣
d

dr

(
r1/2−κ f

)∣∣∣∣

2

dr

− C ′
∫ R2

R2−1
| f |2 dr

for some large constant C ′ > 0 by the Hardy inequality of Lemma 4.2. Choosing B0,B1,
C0 and C1 appropriately (as in the proof of Lemma 3.3), we obtain the inequality. ��
Lemma 4.4. The functional L̃a is weakly lower semicontinuous in H1

κ(r+,∞).

Proof. See the comments to Lemma 3.5. ��
Lemma 4.5. Let a ∈ A. There exists an fa ∈ H1

κ(r+,∞) with norm ‖ fa‖L2(r+,∞) = 1

such that L̃a achieves its infimum in

H1
κ(r+,∞) ∩ {‖ f ‖L2(r+,∞) = 1}

on fa.

Proof. The proof is similar to the one in Sect. 3.1. We obtain a minimising sequence
( fa,n) that converges weakly in H1

κ and strongly in L2 on compact subsets of (r+,∞).
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In analogy to the Dirichlet, the fa,n are can be taken from a dense subset and can be
chosen to be of the form fa,n = r−1/2+κ ga,n for ga,n smooth and compactly supported
around infinity.

We will show that the norm is conserved. Suppose not. Then, for any N , there are
infinitely many of the fa,n such that

∥∥ fa,n
∥∥

L2((r+,∞)\[r++1/N ,N ]) ≥ � > 0.

Suppose
∥∥ fa,n

∥∥
L2(r+,r++δ)

≥ �1 > 0

for infinitely many fa,n and any δ > 0. Because of the L2 convergence on compact
subsets, there is an R such that fa,n(R) → fa(R) as n → ∞, in particular fa,n(R) is
bounded for all n. By Lemma 4.3, we have for r ∈ (r+, R):

|r1/2−κ fa,n(r)| ≤
∫ R

r

∣∣∣
∣
d

dr ′
(

r ′1/2−κ fa,n

)∣∣∣
∣ dr ′ + R1/2−κ fa,n(R)

≤
(∫ R

r

1

r ′ − r+
dr ′
)1/2

×
(∫ R

r
(r ′ − r+)r

′−1+2κ
∣∣∣∣
d

dr ′
(

r ′1/2−κ fa,n

)∣∣∣∣

2

dr ′
)1/2

+ R1/2−κ fa,n(R)

≤ C

(

1 +

√

log
R − r+
r − r+

)

for a constant C > 0. Since r �→ √| log(r − r+)| is integrable on compact subsets of
[r+,∞), we obtain

∥∥ fa,n
∥∥

L2(r+,r++δ)
→ 0 as δ → 0, a contradiction.

Hence we only need to exclude the case that the norm is bounded away from zero
for large r . Thus, suppose that

∥∥ fa,n
∥∥

L2(R0,∞)
≥ �2 > 0

for infinitely many fa,n and any R0 > 0. Since fa,n(r+) = 0, we have

r
1
2−κ | fa,n|(r) ≤

∫ r

r+

∣∣∣∣
d

dr

(
r ′ 12−κ fa,n

)∣∣∣∣ dr ′

≤
(∫ ∞

r+

1

r1+2κ
dr

)1/2 (∫ ∞

r+
r1+2κ

∣∣
∣∣
d

dr

(
r

1
2−κ fa,n

)∣∣
∣∣ dr

)1/2

,

which is uniformly bounded for all n. Hence

∫ ∞

R0

| fa,n|2
r2

dr ≤ C ′
∫ ∞

R0

r−3+2κ dr → 0

as R0 → ∞, a contradiction.
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As in the proof of Lemma 3.6, we have

νa ≤ La( fa) ≤ lim inf
n→∞ La( fa,n) = νa

and the rest follows. ��
Wewould like to derive theEuler–Lagrange equation corresponding to thisminimiser.

Lemma 4.6. The minimiser fa satisfies
∫ ∞

r+

(
�−

r2 + a2 h2 d

dr

(
h−1 fa

) d

dr

(
h−1ψ

)
+ Ṽ h

a
r2 + a2

�−
faψ

)
dr = −νa

∫ ∞

r+

fa

r2
ψ dr

(4.3)

for all ψ ∈ H1
κ(r+,∞).

The proof of Lemma 4.6 can be found in Appendix C.

Proposition 4.7. There is an â and a corresponding non-zero function fâ ∈ C∞(r+,∞)

such that

�−
r2 + â2

d

dr

(
�−

r2 + â2

d fâ

dr

)
− Ṽâ fâ = 0

and fa satisfies the horizon regularity condition and the Neumann boundary condition
at infinity.

Proof. As in Proposition 3.8, we find an fâ ∈ H1
κ such that

∫ ∞

r+

(
�−

r2 + â2 r−1+2κ d

dr

(
r

1
2−κ fâ

) d

dr

(
r

1
2−κψ

)
+ Ṽ h

â

r2 + â2

�−
fâψ

)
dr = 0.

Choosing ψ(r) = r− 1
2 +κ g(r) with g having compact support around infinity and inte-

grating by parts, we obtain

�−
r2 + â2 r−1+2κ d

dr

(
r

1
2−κ fâ

)
g → 0

as r = ∞ for all g as in (4.1). This yields the asymptotics.
Moreover, as in the proof of Proposition 3.8, we retrieve the ODE. The boundary

condition at the horizon follows analogously to Sect. 3.1. ��

4.2. Perturbing the Neumann modes into the complex plane. In Sect. 4.1, we constructed
real mode solutions for 5/4 < α < 9/4 satisfying Neumann conditions. For the growing
radial parts, we proceed as in Sect. 3.1 with the difference that here, finding a mode
solution is equivalent to finding a zero of B. The present case is considerably more
difficult than the Dirichlet case. A first manifest difference is the asymmetry in the
definitions of Dirichlet and Neumann boundary conditions since a Dirichlet mode has
more decay than required by Definition 1.5. This means that if a function satisfies the
Dirichlet boundary condition for a mass α1, it also does so for every α2 sufficiently
close to α1. As Definition 1.13 is tighter, this is not true in the Neumann case. Another
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difficulty stems from twisting as the dependence of the equations on α becomes more
complicated.

We have already chosen B(α(0), ωR(0)) = 0. Recall from Sect. 2.4 that

QT = Im

(
r− 1

2 +κ d

dr∗
(

r
1
2−κu

)
u

)
, QT (r+) = �am − ωR(r2+ + a2).

Hence, analogously to Sect. 3.2, the problem reduces to showing that

∂ B

∂α
(α(0), ωR(0)) 
= 0.

Again, for the sake of contradiction, suppose that this is not the case. Then, near infinity,
we have

uα(r, α(0), ωR(0)) = ∂ A

∂α
(α(0), ωR(0))h1(r, α(0), ωR(0))

+ A(α(0), ωR(0))
∂h1

∂α
(r, α(0), ωR(0)).

By the horizon regularity condition, u ∼ (r − r+)ξ near the horizon, uα is smooth at
r = r+. However, uα does not satisfy the Neumann condition at infinity as the second
term behaves as r−1/2+κu log r .

Let f : (r+,∞) → C be C1 and piecewise C2. Then the function

v(r) := uα(r) − ∂κ

∂α
f (r)u(r) = uα(r) +

1

2κ
f (r)u(r),

does satisfy the Neumann boundary condition if, for large r , f (r) = log r + O(r−γ ),
where γ > 0.

From the radial ODE, we obtain

d

dr

(
�−

r2 + a2

duα

dr

)
− r2 + a2

�−
Ṽauα = 1

r2 + a2

[
∂λ

∂α
− 1

�2
(r2 + a2)

]
u.

Lemma B.1 yields a twisted version

1

h

d

dr

(
�−

r2 + a2 h2 d

dr

(uα

h

))
+ Ṽ h

a
r2 + a2

�−
uα = 1

r2 + a2

[
∂λ

∂α
− 1

�2
(r2 + a2)

]
u.

(4.4)

We will use the previous twisting, i. e. h = r−1/2+κ .
For the second term of v, we compute:

1

h

d

dr

(
�−

r2 + a2 h2 d

dr

(
f

u

h

))
= h−1 d

dr

(
�−

r2 + a2 h2 d f

dr

)
(h−1u)

+ 2h−1 �−
r2 + a2 h2 d f

dr

d

dr
(h−1u)

+ h−1 f
d

dr

(
�−

r2 + a2 h2 d

dr
(h−1u)

)
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We add this to the equation to (4.4) multiplied by 2κ . Then we multiply the resulting
equation by u and integrate by parts, noting that v satisfies the Neumann boundary
condition. Hence we obtain

0 =
∫ ∞

r+

2κ

r2 + a2

(
∂λ

∂α
− a2

�2

)
|u|2 dr

−
∫ ∞

r+

(
2κ

�2

r2

r2 + a2 |u|2 − d

dr

(
�−

r2 + a2 h2 d f

dr

) ∣∣∣h−1u
∣∣∣
2
)

dr

− 2
∫ ∞

r+
f

(
�−

r2 + a2 h2
∣∣∣∣
d

dr

(
h−1u

)∣∣∣∣

2

+ Ṽ h
a

r2 + a2

�−
|u|2
)

dr. (4.5)

Our aim is to show that the right hand side of (4.5) is negative, which yields the desired
contradiction.

From Sect. 3.2, we already know that

∫ ∞

r+

2κ

r2 + a2

(
∂λ

∂α
− a2

�2

)
|u|2 dr = −

∫ ∞

r+

2κ

r2 + a2

∫ π

0

a2

�2
cos2 ϑ |S|2 sin ϑ |u|2 dϑ dr

has the right sign. We set

f (r) :=
⎧
⎨

⎩

log r + 1
2κ

R2κ

r2κ
, r ≥ R

log R + 1
2κ , r < R

(4.6)

for an R > r+ + 1 to be determined. Note that f is continuously differentiable. For
r > R,

d f

dr
(r) = 1

r

(
1 − R2κ

r2κ

)
> 0,

whence f is monotonic.
First, we choose R sufficiently large such that Ṽ h

a > 0 for r > R according to
Lemma B.2, whence

∫ ∞

r+
f

(
�−

r2 + a2 h2
∣
∣
∣
∣
d

dr

(
h−1u

)
∣
∣
∣
∣

2

+ Ṽ h
a

r2 + a2

�−
|u|2
)

dr

=
(
log R +

1

2κ

)∫ ∞

r+

(
�−

r2 + a2 h2
∣
∣∣
∣
d

dr

(
h−1u

)
∣
∣∣
∣

2

+ Ṽ h
a

r2 + a2

�−
|u|2
)

dr

+
∫ ∞

R

(
log

r

R
+

1

2κ

(
R2κ

r2κ
− 1

))(
�−

r2 + a2 h2
∣
∣
∣
∣
d

dr

(
h−1u

)
∣
∣
∣
∣

2

+ Ṽ h
a

r2 + a2

�−
|u|2
)

dr,

which is non-negative since the first integral with the constant coefficient is zero and the
second integral is positive. For r > R, one easily computes

2κ

�2

r2

r2 + a2 − h−2 d

dr

(
�−

r2 + a2 h2 d f

dr

)
= −2κa2/�2 + (2κ − 2)

r2
− 2

R2κ

r2κ
1

r2
+O(r−3)
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Therefore, there is a C1 > 0 such that
∫ ∞

R

(
2κ

�2

r2

r2 + a2 |u|2 − h−2 d

dr

(
�−

r2 + a2 h2 d f

dr

))
|u|2 dr > −C1

∫ ∞

R

|u|2
r2

dr.

We can prove the following Hardy inequality:

Lemma 4.8. Let u satisfy the Neumann boundary condition at infinity and let β > 0.
Then
∫ ∞

R

1

r1+β

∣∣∣r
1
2−κu

∣∣∣
2
dr ≤ lim

r→∞
2β

Rβ

∣∣∣r
1
2−κu(r)

∣∣∣
2

+ 4β2
∫ ∞

R
r2−2κ−β

(
1 −

( r

R

)β
)2

h2
∣∣∣
∣
d

dr

(u

h

)∣∣∣
∣

2

dr.

Proof. We compute
∫ ∞

R

1

r1+β

∣∣
∣r

1
2−κu

∣∣
∣
2
dr =

∫ ∞

R
∂r

(
− β

rβ
+

β

Rβ

) ∣∣
∣r

1
2−κu

∣∣
∣
2
dr

≤ β

Rβ

∣∣
∣r

1
2−κu

∣∣
∣
2
(∞) +

∫ ∞

R

1

2

1

r1+β

∣∣
∣r

1
2−κu

∣∣
∣
2
dr

+ 2β2
∫ ∞

R
r1+β

(
r−β − R−β

)2
∣
∣∣∣
d

dr

(
r

1
2−κu

)∣∣∣∣

2

dr,

yielding the result. ��
Since

C1 lim
r→∞

2β

Rβ

∣∣∣r
1
2−κu(r)

∣∣∣
2 → 0

as R → ∞, by choosing R possibly larger, we obtain

C1
2β

Rβ
lim

r→∞
∣∣∣r

1
2−κu(r)

∣∣∣
2

<

∫ ∞

r+

2κ

r2 + a2

(
∂λ

∂α
− a2

�2

)
|u|2 dr.

For convenience, set C2 := 4β2C1. Since Ṽ h
a ∼ r−2, we need to show that

C2

∫ ∞

R

|u|2
r2

dr <

∫ ∞

R

(
log

r

R
+

1

2κ

(
R2κ

r2κ
− 1

))
�−

r2 + a2 h2
∣
∣∣∣
d

dr

(
h−1u

)∣∣∣∣

2

dr.

(4.7)

We will deal with the two cases 0 < κ ≤ 1/2 and 1/2 < κ < 1 separately. Let us
first consider 0 < κ ≤ 1/2. We choose β = 2κ . Note that in this case

∫ ∞

R

|u|2
r2

dr ≤
∫ ∞

R

1

r1+2κ

∣∣∣r1/2−κu
∣∣∣
2
dr.

Lemma 4.9. Let C > 0. There is an R such that, for all r > R,

Cr2−4κ
(
1 −

( r

R

)2κ)2

≤ r2
(

log
r

R
+

1

2κ

((
R

r

)2κ

− 1

))

.
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Proof. It suffices to show that

Cr−4κ
(
1 −

( r

R

)2κ)2

≤ log
r

R
+

1

2κ

((
R

r

)2κ

− 1

)

.

As this holds at r = R, it suffices to show the statement for the derivatives. Substituting
x := r2κ , we need to show

0 ≤ x2 − (R2κ + 4κC R−2κ)x + 4κC = (x − R2κ)(x − 4κC R−2κ).

Therefore, the result holds if R4κ > 4κC . ��
This lemma immediately yields (4.7) for 0 < κ ≤ 1/2. Let us now turn to 1/2 <

κ < 1. Here we choose β = 2 − 2κ .

Lemma 4.10. Let C > 0 and 1/2 < κ < 1. There is an R such that, for all r > R,

C

(
1 −

( r

R

)2−2κ
)2

≤ r2
(

log
r

R
+

1

2κ

((
R

r

)2κ

− 1

))

.

Proof. As equality holds for r = R, it suffices to consider the derivatives, i. e. we would
like to establish

2r

(

log
r

R
+

1

2κ

((
R

r

)2κ
))

+ r2
(
1

r
−
(

R

r

)2κ 1

r

)

− 2C

(( r

R

)2−2κ − 1

)
(2 − 2κ)R−2+2κr1−2κ ≥ 0.

This again holds for r = R, so, after dividing the inequality by r , it suffices to prove the
corresponding inequality for the derivatives, i. e.

1

r

(

2 − 2 (1 − κ)

(
R

r

)2κ
)

− 4Cκ(2 − 2κ)
1

R2

( r

R

)−1−2κ

+ 2C(2 − 2κ)(4κ − 2)R−4−4κr1−4κ ≥ 0.

The last term on the left hand side is always positive. Thus the left hand side is greater
than

κ

r
− 4Cκ(2 − 2κ)

1

R

(
R

r

)2κ

≥
(
1

2
− 4C

1

R

)
1

r
,

which is positive for sufficiently large R. ��
Therefore, for both ranges of κ , the right hand side of (4.5) is bounded below by

−
∫ R

r+

1

�2

r2

r2 + a2 |u|2 dr − 2
∫ ∞

R

(
log

r

R
+

1

2κ

(
R2κ

r2κ
− 1

))
Ṽ h

a
r2 + a2

�−
|u|2 dr < 0

for non-trivial u, a contradiction. Thus we have shown the following

Lemma 4.11.
∂ B

∂α
(α(0), ωR(0)) 
= 0.
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4.3. Behaviour for small ε > 0 for Neumann boundary conditions. The main new
idea of this section can be found in the proof of Proposition 4.13, where the insights
of Sect. 4.2 are essential to overcome the difficulties outlined at the beginning of the
previous section.

Proposition 4.12. For sufficiently large |m|,

ωR(0)
∂ωR

∂ε
(0) < 0.

Proof. We define an appropriate modified microlocal energy current

Q̃T := Im

(
r− 1

2 +κ
(

r
1
2−κ
)′

ωu

)
.

Let ε > 0, then Q̃T (r+) = Q̃T (∞) = 0. This yields

∫ ∞

r+

(

ε
�−

r2 + a2 h2
∣∣∣
∣
d

dr

(
h−1u

)∣∣∣
∣

2

− r2 + a2

�−
Im (Ṽ h

a ω)|u|2
)

dr = 0. (4.8)

Similarly to Sect. 3.3, we obtain

−Im
(

Ṽ h
a ω
)

>
ε

(r2 + a2)2

(
K (r) + V+(r

2 + a2)2 − α

�2
�−(r2 + a2)

)

+ ε

(
1

2
− κ

)
�−

r2 + a2 r1/2−κ d

dr

(
�−

r2 + a2 r−3/2+κ

)
(4.9)

with the additional term due to the twisting. Again

K (r) = |ω|2(r2 + a2)2 − �2a2m2 − �−a2|ω|2.
Recall from Sect. 3.3 that

dK

dr
(r) = |ω|2

(
4

(
1 − a2

�2

)
r3 + 2a2M + 2a2

(
1 − a2

�2

))
> 0. (4.10)

By Lemma B.2, there is an R > r+ such that

r2 + a2

�−

∣∣∣
∣V+ + Vα +

(
1

2
− κ

)
�−

r2 + a2 r1/2−κ d

dr

(
�−

r2 + a2 r−3/2+κ

)∣∣∣
∣ <

C

2r2

for any C > 0. Thus, by an application of Lemma 4.2 as in the proof of Lemma 4.3, we
have

∫ ∞

R

(

ε
�−

r2 + a2 h2
∣∣∣∣
d

dr

(
h−1u

)∣∣∣∣

2

− r2 + a2

�−
Im (Ṽ h

a ω)|u|2
)

dr

>

∫ ∞

R

ε

(r2 + a2)2
K (r)|u|2 −

∫ R

R−1
εC ′|u|2 dr

for sufficiently large R and a large constant C ′ > 0.
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For the sake of contradiction, suppose that K (r+) ≥ 0. Then, of course,

∫ ∞

R

(

ε
�−

r2 + a2 h2
∣∣
∣∣
d

dr

(
h−1u

)∣∣
∣∣

2

− r2 + a2

�−
Im (Ṽ h

a ω)|u|2
)

dr

>

∫ ∞

R

ε

(r2 + a2)2
K (r)|u|2 +

∫ R

R−1
ε

(
K (r)

(r2 + a2)2
− C ′

)
|u|2 dr (4.11)

By (4.10), this means that K > 0 on (r+,∞). Since ε �→ ω(ε) is continuous and

|ω(0)|2 ≥ Cm2,

|ω|2 scales as m2, so dK/dr can be chosen to be as large as possible by increasing m2, in
particular, it can be used to overcome the potentially negative derivative of the remaining
terms of the right hand side of (4.9) on (r+, R) and in (4.11) on (R − 1, R). Using (4.8)
and (4.11), we conclude u = 0, a contradiction. ��

From now on we fix m—see Remark 3.13.

Proposition 4.13.

∂α

∂ε
(0) > 0.

Proof. The proof proceeds as in Sect. 3.3, adapting the idea used already in Sect. 4.2.
Set uε := ∂u/∂ε. For an f as in (4.6) with an R to be determined,

v(r) := uε(r) − ∂κ

∂ε
f (r)u(r) = uε(r) +

1

2κ

∂α

∂ε
f (r)u(r)

satisfies the Neumann boundary condition at infinity. As f u extends smoothly to the
horizon, the behaviour of v at r = r+ is dominated by uε. Using the h of Lemma B.2
yields the ODE

h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(v

h

))
− r2 + a2

�−
Ṽ h

a v

= r2 + a2

�−
∂ Ṽa

∂ε
u +

1

2κ

∂α

∂ε
h−1 d

dr

(
�−

r2 + a2 h2 d f

dr

)
(
h−1u

)

+ 2
1

2κ

∂α

∂ε
h−1 �−

r2 + a2 h2 d f

dr

d

dr

(
h−1u

)
+

1

2κ

∂α

∂ε
f h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(
h−1u

))
.

Observe that as in the proof of Proposition 3.14

d

dr

(
�−

r2 + a2 h2 d

dr

(
h−1uε

)
)

h−1u = d

dr

(
�−

r2 + a2 h

[
d

dr

(
h−1uε

)
u − uε

d

dr

(
h−1u

)
])

+ uεh−1 d

dr

(
�−

r2 + a2 h2 d

dr

(
h−1u

)
)

.
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This yields

−2κ|u(r+)|2 =
∫ ∞

r+

(
r2 + a2

�−
2κRe

(
∂ Ṽ

∂ε

) ∣
∣
∣
∣
ε=0

+
∂α

∂ε

d

dr

(
�−

r2 + a2 h2 d f

dr

) ∣
∣h−1u

∣
∣2
)

dr

− ∂α

∂ε

∫ ∞

r+
f

(
�−

r2 + a2 h2
∣
∣∣
∣
d

dr

(
h−1u

)
∣
∣∣
∣

2

+ Ṽ h
a

r2 + a2

�−
|u|2
)

dr

− ∂α

∂ε

∫ ∞

r+
f

�−
r2 + a2 h2

∣
∣
∣
∣
d

dr

(
h−1u

)
∣
∣
∣
∣

2

dr. (4.12)

The expression for Re
(

∂ Ṽ
∂ε

) ∣∣∣
ε=0

can be taken from (3.13). First one can eliminate the

explicit λ dependence via Lemma 3.15 and one obtains a lower bound on the right hand
side using Proposition 4.12. Then suppose for the sake of contradiction that ∂α/∂ε ≤ 0.
It follows immediately from Sect. 4.2 that the right hand side of (4.12) is positive, a
contradiction. ��

4.4. The continuity argument for Neumann boundary conditions. To apply the conti-
nuity argument to the Neumann case, we need to take the two steps outlined in the
introduction to Sect. 3.4. The second step merely relied on continuity properties of A
and the monotonicity properties of ω(ε) and α(ε) established in Sects. 3.3 and 4.3,
respectively; in particular, it did not rely directly on properties of the functional. Hence
this part of the argument can be carried out almost verbatim. Therefore, we only need
to deal with the first step here.

Wemake the analogous definitions forAα,r+ and	 as in Sect. 3.4. For f = r−1/2+κ g,
x �→ g(1/x) ∈ C∞

0 [0, 1/r+), we define

Aα,r+( f ) := {a > 0 : L̃α,r+,a( f ) < 0}
and

Aα,r+ :=
⋃

g∈C∞
0 [0,1/r+)

Aα,r+(r �→ r−1/2+κ g(1/r)))

= {a > 0 : ∃(x �→ g(1/x)) ∈ C∞
0 [0, 1/r+) : L̃α,r+,a(r−1/2+κ g) < 0}.

Moreover, we define

	 : (5/4, 9/4) × (0,∞) → (0,∞), 	(α, r+) := inf Aα,r+

if Aα,r+ 
= ∅. Instead of showing monotonicity for 	, we will define a left-continuous
function � that can play the rôle of 	 in the continuity argument. For each α ∈
(5/4, 9/4), there will be a value 	(α, r+) for a such that there is a real mode solution
satisfying the Neumann boundary condition for α and this a. The function �(·, r+) will
essentially look like 	(·, r+), but will be modified on potential jump points to achieve
left-continuity. The arguments of Sects. 4.2 and 4.3 (which depend only on the existence
of a Neumann mode solution) can be repeated for �(α, r+) instead of 	(α, r+), thus we
can substitue 	 by � in the remainder of the proof of Sect. 3.4.
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Lemma 4.14. There is a left-continuous function �(·, r+) such that there is a real mode
solution satisfying the Neumann boundary condition for each 5/4 < α < 9/4 and each
a = �(α, r+).

To prove this lemma, we need a monotonicity result about the twisted functional.
Note that for a fixed g (where (x �→ g(1/x)) ∈ C∞

0 [0, 1/r+)), the function

(α, a) �→ L̃α,r+,a(r−1/2+κ g) (4.13)

is continuous.

Lemma 4.15. Let 5/4 < κ0 < 9/4. Fix all spacetime parameters. Let u0 := r−1/2+κ0g0
be a solution to the radial ODE at κ0. Define u(r, κ) := r−1/2+κ g0. Then

∂

∂κ
L̃α,r+,a(u(r, κ))

∣∣∣
∣
κ=κ0

> 0.

Proof. We start from the identity

h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(u

h

))
− Ṽ h

a
r2 + a2

�−
u = d

dr

(
�−

r2 + a2

du

dr

)
− Ṽa

r2 + a2

�−
u

where we always take h = r−1/2+κ . Set uκ := ∂u/∂κ . Let f be as in (4.6) with an
R > r+ + 1 to be determined and set v := uκ − f u. Then we have

∂

∂κ

(
h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(u

h

))
− Ṽ h

a
r2 + a2

�−
u

)

= d

dr

(
�−

r2 + a2

duκ

dr

)
− Ṽa

r2 + a2

�−
uκ − ∂ Ṽa

∂κ

r2 + a2

�−
u

= h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(uκ

h

))
− Ṽ h

a
r2 + a2

�−
uκ − ∂ Ṽa

∂κ

r2 + a2

�−
u

= h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(v

h

))
− Ṽ h

a
r2 + a2

�−
v − ∂ Ṽa

∂κ

r2 + a2

�−
u

+ h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(
h−1 f u

))
− Ṽ h

a
r2 + a2

�−
f u.

Multiplying by u, integrating over (r+,∞), integrating by parts as in Sect. 4.2 and
evaluating at κ = κ0 yields:

∫ ∞

r+

∂

∂κ

(
h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(u

h

))
− Ṽ h

a
r2 + a2

�−
u

)
u dr

∣∣∣∣
κ=κ0

= 2κ
∫ ∞

r+

1

r2 + a2

(
∂λ

∂α
− a2

�2

)
|u|2 dr

∣∣
∣∣
κ=κ0

−
∫ ∞

r+

(
2κ

�2

r2

r2 + a2 |u|2 − d

dr

(
�−

r2 + a2 h2 d f

dr

) ∣∣∣h−1u
∣∣∣
2
)

dr

∣∣∣∣
κ=κ0

− 2
∫ ∞

r+
f

(
�−

r2 + a2 h2
∣∣
∣∣
d

dr

(
h−1u

)∣∣
∣∣

2

+ Ṽ h
a

r2 + a2

�−
|u|2
)

dr

∣∣
∣∣
κ=κ0

.
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By repeating the proof of Sect. 4.2, one shows that the right hand side is negative. For
the left hand side, we compute:

∂

∂κ

(
�−

r2 + a2 h2
∣
∣∣∣
d

dr

(
h−1u

)∣∣∣∣

2

+ Ṽ h
a

r2 + a2

�−
|u|2
)

= ∂2

∂r∂κ

(
�−

r2 + a2 h2 d

dr

(
h−1u

)
h−1u

)

− ∂

∂κ

(
h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(u

h

))
u − Ṽ h

a
r2 + a2

�−
uu

)

= − ∂

∂κ

(
h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(u

h

))
− Ṽ h

a
r2 + a2

�−
u

)
u

−
(

h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(u

h

))
− Ṽ h

a
r2 + a2

�−
u

)
∂u

∂α

+
∂2

∂r∂κ

(
�−

r2 + a2 h2 d

dr

(
h−1u

)
h−1u

)

Again we have
(

h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(u

h

))
− Ṽ h

a
r2 + a2

�−
u

) ∣∣∣
∣
κ=κ0

= 0.

Moreover,

∂

∂κ

(
�−

r2 + a2 h2 d

dr

(
h−1u

)
h−1u

) ∣∣∣∣
κ=κ0

∼ r1+2κ0
d

dr

(
r1/2−κ0u0

)
log r.

Therefore,

∂

∂κ
L̃α,r+,a(u(r, κ))

∣∣∣∣
κ=κ0

= −
∫ ∞

r+

∂

∂κ

(
h−1 d

dr

(
�−

r2 + a2 h2 d

dr

(u

h

))
− Ṽ h

a
r2 + a2

�−
u

)
u dr,

whence positivity. ��
Corollary 4.16. For all α ∈ (5/4, 9/4), there is a δ > 0 such that 	(·, r+) is decreasing
in [α, α + δ)

Proof. Lemma 4.15 shows that monotonicity is an open property. ��
Now we can prove the main lemma.

Proof of Lemma 4.14. Let ε > 0. By Corollary 4.16, there is an indexing set X and
disjoint half-open intervals Iβ , β ∈ X , containing their left endpoints, such that one has
∪β∈X Iβ = [5/4 + ε, 9/4) and 	(·, r+)

∣∣
Iβ
is decreasing for all β ∈ X . For α ∈ ∪β∈X I̊β ,

set

�(α, r+) := 	(α, r+).
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Let α0 ∈ ∂ Iβ1 ∩ Iβ2 . Choose a sequence (αk) ⊆ Iβ1 such that αk → α0. As the sequence
(	(αk, r+)) is monotonically decreasing and bounded below, it is convergent. We set
a0 := limk 	(αk, r+). Let fαk be the unique solution to the radial ODE with parameters
αk , ak = 	(αk, r+) and ωk = �R(αk)—see Definition (3.14). Let fα0 be the unique
solution corresponding to the parameters α0 and a0. Since all fαk satisfy the Neumann
boundary condition, continuity of the reflection and transmission coefficients yields that
fα0 satisfies the Neumann boundary condition as well. We set

�(α0, r+) := a0.

As we can repeat this construction for all ε > 0 and all jump points α0, we obtain a
function �(·, r+) defined in (5/4, 9/4), whose values correspond to parameters a with
periodic mode solutions.

Since we have left-continuity at the jump points by construction, it remains to show
that �(·, r+) is left-continuous in α ∈ ∪β∈X I̊β , which can be proved as Lemma 3.19:
Suppose not. Then there is an ε > 0 such that, for all δ > 0, there is an α′ < α with

α − α′ < δ

and

�(α′, r+) − �(α, r+) ≥ ε.

Then there is an a between �(α, r+) and �(α′, r+) such that there is an g with a ∈
Aα,r+(r

−1/2+κ g), but, for each δ, there is an α′ with a /∈ Aα′,r+(r
−1/2+κ g). Therefore,

since L̃α,r+,a(r−1/2+κ g) < 0 and due to the continuity (4.13), there is a δ > 0 such
that for all α − α′ < δ, we have L̃α′,r+,a(r−1/2+κ g) < 0, i. e. a ∈ Aα′,r+(r

−1/2+κ g), a
contradiction. ��
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Appendix A: The Angular ODE

Assume throughout the section that m 
= 0. Recall Eqs. (2.1) and (2.2). We will only give details for α ≤ 0.
The other case can be treated analogously. Define x := cosϑ . Then the equation becomes

d

dx

(
�ϑ(1 − x2)

dS

dx

)
−
(

�2

�ϑ

m2

1 − x2
−
(

�

�ϑ
a2ω2 − 2maω

�

�ϑ

a2

�2
− α

�2
a2
)

x2
)

S + λS = 0.

Set

K (x) := d

dx

((

1 − a2

�2
x2
)
(
1 − x2

)
)

= 4
a2

�2
x3 − 2x

(

1 +
a2

�2

)

.

Using the language of Theorem 2.1, we see that at ±1, we have

f0 = 1, g0 = −m2/4.

Thus for m 
= 0, 1, we have two zeros which do not differ by an integer. Then we know that solutions are
linear combinations of (x ∓ 1)−|m|/2 and (x ∓ 1)|m|/2 near ±1.
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Proposition A.1. Suppose that for some fixed ω0, α0 ∈ R, we have an eigenvalue λ0. Then, for κ sufficiently
close to κ0, we can uniquely find a complex analytic function λ(ω, α) of eigenvalues for the angular ODE
with parameter (ω, α) ∈ C × R such that λ0 = λ(ω, α).

Proof. We can use the proof in [SR13]. If S is an eigenfunction, we clearly must have

S ∼ (1 ∓ x)|m|/2

as x → ±1. For any ω, α and λ, we can uniquely define a solution S(ϑ, ω, α, λ) by requiring that

S(x, ω, α, λ)(1 + x)−|m|/2

is holomorphic at x = −1 and

(
S(·, ω, α, λ)(1 + ·)−|m|/2) (x = −1) = 1.

Then we have holomorphic functions F(ω, α, λ) and G(ω, α, λ) such that

S(x, ω, α, λ) ∼ F(ω, α, λ)(1 − x)−|m|/2 + G(ω, α, λ)(1 − x)|m|/2

as x → 1. Since λ0 is an eigenvalue, we have F(ω0, α0, λ0) = 0. We want to appeal to the implicit function
theorem and define our function λ(ω, α) uniquely near (ω0, α0). Suppose (for the sake of contradiction) that

∂ F

∂λ
(ω0, α0, λ0) = 0.

Set Sλ := ∂S/∂λ. Since ∂ F/∂λ = 0, Sλ satisfies the boundary conditions of eigenfunctions. Moreover, we
have

d

dx

(
�ϑ(1 − x2)

dSλ

dx

)
−
(

�2

�ϑ

m2

1 − x2
−
(

�

�ϑ
a2ω2

0 − 2maω0
�

�ϑ

a2

�2
− α

�2
a2
)

x2
)

Sλ + λ0S = −S.

Multiplying both sides by S, integrating over (0, π) with measure sin ϑ dϑ , integrating by parts and using
that S satisfies the angular ODE implies

∫ π

0
|S|2 sin ϑ dϑ = 0,

which is a contradiction. The proof for α < 0 proceeds similarly. ��

Proposition A.2. If ωI > 0, then

−Im (λω) > 0.

Proof. Let α ≤ 0. Multiplying the ODE by ωS, integrating by parts and taking imaginary parts gives
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−
∫ π

0
Im (λω) sin ϑ dϑ

=
∫ π

0
ωI

(

�ϑ

∣
∣∣∣
dS

dϑ

∣
∣∣∣
2
+

[
�2

�ϑ

m2

sin2 ϑ
− α

�2
a2 cos2 ϑ

]

|S|2
)

sin ϑ dϑ

+
∫ π

0

�

�ϑ
cos2 ϑ Im (a2ω2ω)|S|2 sin ϑ dϑ,

which is positive for ωI > 0. For α > 0, the proof proceeds almost verbatim. ��
Proposition A.3. When ω is real, we have

∂λ

∂α
= − a2

�2

∫ π

0
cos2 ϑ |S|2 sin ϑ dϑ

for α ≤ 0 and

∂λ

∂α
= a2

�2

∫ π

0
sin2 ϑ |S|2 sin ϑ dϑ

for α > 0.

Proof. Let Sα := ∂S/∂α. First, let α ≤ 0. First one differentiates (2.1) with respect to α, then multiplies by
S and then integrates by part. Since ω ∈ R, S satisfies the angular ODE, which yields the result. Similarly we
obtain the result for α > 0. ��

Appendix B: Twisted Derivatives and the Modified Potential
To deal with the slow decay or even growth of modes satisfying the Neumann boundary condition, we need
to use renormalised derivatives

h
d

dr

(
h−1·

)

with a sufficiently regular function h. Defining the modified potential

Ṽ h
a := Ṽ − 1

h

�−
r2 + a2

d

dr

(
�−

r2 + a2
dh

dr

)
,

we obtain a twisted expression for the radial ODE:

Lemma B.1. For all f ∈ C1 that are piecewise C2,

h−1 d

dr

(
�−

r2 + a2
h2

d

dr

(
h−1 f

))
− Ṽ h

a
r2 + a2

�−
f = d

dr

(
�−

r2 + a2
d f

dr

)
− Ṽa

r2 + a2

�−
f.

By virtue of twisting, the modified potential can be chosen to be positive for large r :

Lemma B.2. Let h := r−1/2+κ . If |m| is sufficiently large, then there is an R > r+ such that Ṽ h
a > 0 for

r > R. The choice of R is independent of a and α. Moreover Ṽ h
a = O(1) as r → ∞.

Proof. We look at the asymptotic behaviour of the different parts of Ṽa :

V0 − ω2 ∼ 1

�2

(
λ + a2ω2 − 2maω�

)
>

1

�2
m2�2 > 0

V+ = 2�−
(r2 + a2)2

r2

�2
+

�−
(r2 + a2)4

(
a4�− + (r2 − a2)2Mr

)

∼ 2�−
(r2 + a2)2

r2

�2
+

a4�2−
(r2 + a2)4

One easily computes that

v(r) := 2 − α

�2
�−

(r2 + a2)2
r2 − h−1 �−

r2 + a2
d

dr

(
�−

r2 + a2
dh

dr

)
= O(1),

which yields the result. ��
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Appendix C: The Twisted Euler–Lagrange Equation

We give here the derivation of the weak twisted Euler–Lagrange equation.

Proof of Lemma 4.6. The following proof can be extracted from [Eva10]. We give the extension to twisted
derivatives here for the sake of completeness. The minimiser fa is a minimiser of the functional

L̃a( f ) :=
∫ ∞

r+

(
�−

r2 + a2
r−1+2κ

∣∣
∣∣
d

dr

(
r
1
2−κ f

)∣∣
∣∣
2
+ Ṽ h

a
r2 + a2

�−
| f |2

)

dr

under the constraint

J ( f ) = 0,

where

J ( f ) =
∫ ∞

r+
G(r, f ) dr, G(r, f ) = 1

r2

(
| f |2 − r+

)
.

Moreover, define g(r, f ) := 2 f /r2. Fix ψ1 ∈ H1
κ (r+,∞). We assume in a first step that g(r, fa) is not

identically zero almost everywhere on (r+, ∞). Then we can find a ψ2 ∈ H1
κ (r+,∞) such that

∫ ∞
r+

g(r, fa)ψ2(r) dr 
= 0.

Define j (τ, σ ) := J ( fa + τψ1 + σψ2) for τ, σ ∈ R. Clearly, j (0, 0) − 0. Since ∂g(r, fa+τψ1+σψ2)
∂τ

ψ1 and
∂g(r, fa+τψ1+σψ2)

∂τ
ψ2 are integrable on (r+, ∞), j is in C1. In particular, we have

∂ j

∂σ
(0, 0) =

∫ ∞
r+

g(r, fa)ψ2(r) dr 
= 0.

By the Implicit Function Theorem, there is a κ : R → R such that κ(0) = 0 and

j (τ, κ(τ )) = 0.

In other words, the function fa + χ(τ), where

χ(τ) := τψ1 + κ(τ)ψ2, (C.1)

satisfies the integral constraint. Thus, setting i(τ ) := L̃a( fa + χ(τ)), we obtain i ′(0) = 0. Note here that i is
differentiable in τ since fa ∈ H1

κ (r+, ∞). We have

di

dτ

∣
∣
∣
∣
τ=0

= 2
∫ ∞

r+

(
�−

r2 + a2 r−1+2κ d

dr

(
r

1
2−κ fa

)( d

dr

(
r

1
2−κψ1

)
+ κ ′(0) d

dr

(
r

1
2−κψ2

))

+ Ṽ h
a

r2 + a2

�−
fa(ψ1 + κ ′(0)ψ2)

)
dr.

From (C.1), we deduce

κ ′(0) = −
∫∞

r+
g(r, fa)ψ1 dr

∫∞
r+

g(r, fa)ψ2 dr
.

Setting

λ := 2

∫∞
r+

(
�−

r2+a2
r−1+2κ d

dr

(
r
1
2−κ fa

)
d
dr

(
r
1
2−κ

ψ2

)
+ Ṽ h

a
r2+a2
�− faψ2

)
dr

∫∞
r+

g(r, fa)ψ2 dr
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yields that

∫ ∞
r+

(
�−

r2 + a2
r−1+2κ d

dr

(
r
1
2−κ fa

)
d

dr

(
r
1
2−κ

ψ1

)
+ Ṽ h

a
r2 + a2

�−
faψ1

)
dr

= λ

∫ ∞
r+

fa
r2

ψ dr

for all ψ ∈ H1
κ (r+, ∞). We have fa ∈ H1

κ (r+,∞), whence λ = −νa .
It remains to deal with the case g(r, fa) = 0 a. e. This, however, would yield that f = 0 in contradiction to
the norm constraint. ��
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