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Abstract: We consider the spectrum of the almost Mathieu operator Hα with frequency
α and in the case of the critical coupling. Let an irrational α be such that |α − pn/qn| <

cq−�
n , where pn/qn , n = 1, 2, . . . are the convergents to α, and c, � are positive absolute

constants, � < 56. Assuming certain conditions on the parity of the coefficients of the
continued fraction of α, we show that the central gaps of Hpn/qn , n = 1, 2, . . . , are

inherited as spectral gaps of Hα of length at least c′q−�/2
n , c′ > 0.

1. Introduction

Let Hα,θ with α, θ ∈ (0, 1] be the self-adjoint operator acting on l2(Z) as follows:

(Hα,θφ)(n)=φ(n −1) + φ(n + 1) + 2 cos 2π(αn + θ)φ(n), n = . . . ,−1, 0, 1, . . .

(1.1)

This operator is known as the almost Mathieu, Harper, or Azbel-Hofstadter operator. It
is a one-dimensional discrete periodic (for α rational) or quasiperiodic (for α irrational)
Schrödinger operator which models an electron on the 2-dimensional square lattice
in a perpendicular magnetic field. Analysis of the spectrum of Hα,θ (and its natural
generalization when the prefactor 2 of cosine, the coupling, is replaced by an arbitrary
real number λ) has been a subject of many investigations. In the present paper, we
are concerned with the structure of the spectrum of Hα,θ as a set. Denote by a j ∈ Z+,
j = 1, 2, . . . (infinite sequence ifα is irrational) the coefficients of the continued fraction
of α:

α = [a1, a2, . . . ] = 1

a1 + 1
a2+···

.

If α = p/q is rational, where p, q are coprime, i.e. (p, q) = 1, positive integers, there
exists n such that
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p/q = [a1, a2, . . . , an] = 1

a1 + 1
a2+···+ 1

an

.

We denote by S(α) the union of the spectra of Hα,θ over all θ ∈ (0, 1]. (Note,
however, that if α is irrational, the spectrum of Hα,θ does not depend on θ ). If α = p/q,
S(p/q) consists of q bands separated by gaps. As shown by van Mouche [22] and by
Choi, Elliott, and Yui [7], all the gaps (with the exception of the centermost gap when
q is even) are open. Much effort was expended to prove the conjectures of [1,4] that if
α is irrational, the spectrum is a Cantor set. Béllissard and Simon proved in [6] that the
spectrum of the generalized operatormentioned above is a Cantor set for an (unspecified)
dense set of pairs (α, λ) in R

2. Helffer and Sjöstrand [11] proved the Cantor structure
and provided an analysis of gaps in the case when all the coefficients a j ’s of α are
sufficiently large. Choi, Elliott, and Yui [7] showed that in the case of α = p/q, each
open gap is at least of width 8−q (this bound was improved in [3] to e−εq with any
ε > 0 for q sufficiently large) which, together with a continuity result implies that all
admissible gaps are open (in particular, the spectrum is a Cantor set) if α is a Liouvillian
number whose convergents p/q satisfy |α − p/q| < e−Cq . Last [16] showed that S(α)

has Lebesgue measure zero (and hence, since S(α) is closed and known not to contain
isolated points, a Cantor set) for all α = [a1, a2, . . . ] such that the sequence {a j }∞j=1
is unbounded. The set of such α’s has full measure 1. On the other hand, it was shown
by Puig [23] that in the generalized case λ �= ±2, 0, the spectrum is a Cantor set for
α satisfying a Diophantine condition. Finally, Avila and Krikorian [2] completed the
proof that the spectrum for λ = 2 has zero measure, and hence a Cantor set, for all
irrational α’s; moreover, the proof of the fact that the spectrum is a Cantor set for all real
λ �= 0 and irrational α was completed by Avila and Jitomirskaya in [3]. The measure of
the spectrum for any irrational α and real λ is |4 − 2|λ||: in the case λ �= ±2, proved
for a.e. α also in [16] and for all irrationals in [12]. Also available are bounds on the
measure of the union of all gaps, see [8,14,17]. Furthermore, see [19] for a recent work
on the Hausdorff dimension of the spectrum, and [20], on the question of whether all
admissible gaps are open.

In order to have a quantitative description of the spectrum, one would like to know
if the exponential e−εq estimates for the sizes of the individual gaps can be improved at
least for some of the gaps.

In this paper we provide a power-law estimate Cq−κ , κ < 28, for the widths of
central gaps of S(p/q), i.e., the gaps around the centermost band (Theorem 3 below),
on a parity condition for the coefficients ak in p/q = [a2, a2, . . . , an].

From this result we deduce that S(α) has an infinite number of power-law bounded
gaps for any irrational α = [a1, a2, . . .] admitting a power-law approximation by its
convergents pn/qn = [a1, a2, . . . , an] and with a parity condition on a j ’s (Theorem 4
below). These gaps are inherited from the central ones of S(pn/qn), n = 1, 2, . . . .

First, let α = p/q, (p, q) = 1. A standard object used for the analysis of Hα,θ is the
discriminant

σ(E) = − tr

{(
E − 2 cos(2πp/q + π/2q) −1

1 0

)(
E − 2 cos(2π2p/q + π/2q) −1

1 0

)
· · ·

(
E − 2 cos(2πqp/q + π/2q) −1

1 0

)}
, (1.2)

a polynomial of degree q in E with the property that S(p/q) is the image of [−4, 4] under
the inverse of the mapping σ(E). The fact that S(p/q) consists of q bands separated by
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q−1 open gaps (except for the centermost empty gap for q even) means that all the zeros
of σ(E) are simple, in all the maxima the value of σ(E) is strictly larger than 4, while
in all the minima, strictly less than −4 (except for E = 0 for q even, where |σ(0)| = 4
and the derivative σ ′(0) = 0). Note an important fact that σ(E) = (−1)qσ(−E), and
hence S(p/q) is symmetric w.r.t. E = 0.

In what follows, we assume that q is odd. The case of even q can be considered
similarly. Let us number the bands from left to right, from j = −(q − 1)/2 to j = (q −
1)/2. Letλ j denote the centers of the bands, i.e.σ(λ j ) = 0.Note that, by the symmetry of
σ(E), λ0 = 0. Let μ j and η j denote the edges of the bands, i.e. |σ(μ j )| = |σ(η j )| = 4,
assigned as follows. If q = 4k + 3, k = 0, 1, . . . , we set σ(μ j ) = 4, σ(η j ) = −4 for all
j . (In this case the derivative σ ′(0) > 0, as follows from the fact that σ(E) < 0 for all E
sufficiently large.) If q = 4k +1, k = 0, 1, . . . , we set σ(μ j ) = −4, σ(η j ) = 4 for all j .
(In this case the derivative σ ′(0) < 0.) Thus, in both cases, the bands are Bj = [η j , μ j ]
for | j | even, and Bj = [μ j , η j ] for | j | odd.

Let w j = μ j − λ j , w′
j = λ j − η j for | j | even, and w j = η j − λ j , w′

j = λ j − μ j

for | j | odd. Thus, the width of the j’s band is always w j +w′
j . By the symmetry, for the

centermost band B0 = [η0, μ0], w0 = w′
0, and in general w j = w′− j .

For any real α, denote the gaps of S(α) by G j (α) and their length by � j (α). For
α = p/q, we order them in the natural way, namely,

G j = (μ j , μ j+1), � j = μ j+1 − μ j , for | j | even, (1.3)

G j = (η j , η j+1), � j = η j+1 − η j , for | j | odd. (1.4)

By the symmetry, � j = �− j−1 for 0 ≤ j < (q − 1)/2.
In Sect. 2, we prove

Lemma 1 (Comparison of the widths for the gaps and bands). Let q ≥ 3 be odd. There
hold the inequalities

�0 >
(w0

4

)2
, � j >

w2
j

4C2( j+1)
0

, 1 ≤ j <
q − 1

2
, (1.5)

� j >
(w0

8

)2 j
, 1 ≤ j <

q − 1

2
, (1.6)

where C0 = 1 + 2e/(
√
5 − 1) = 5.398 . . . .

Remark. The inequalities of Lemma 1 are better for small j , i.e., for central gaps and
bands, which is the case we need below. For large j , note the following estimate which
one can deduce using the technique of Last [16]: � j > min{w j

2, w′
j+1

2}/(4q), 0 ≤
j < (q − 1)/2.

The inequality (1.6) gives us a lower bound for the width of the j’s gap provided an
estimate for the width of the 0’s band can be established. Such an estimate is given by

Lemma 2 (Bound for the width of the centermost band). Let q ≥ 1, p/q = pn/qn =
[a1, a2, . . . , an], where a1 is odd and ak, 2 ≤ k ≤ n are even. Then there exist absolute
constants 1 < C1 < 14 and 1 < C2 < e10 such that for the derivative of σ(E) at zero

|σ ′(0)| < C2q
C1 , (1.7)
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and half the width of the centermost band of S(p/q)

w0 ≥ 4

|σ ′(0)| > 4C−1
2 q−C1 . (1.8)

If, in addition, qk+1 ≥ qν
k , for some ν > 1 and all 1 ≤ k ≤ n − 1, then for any ε > 0

there exists Q = Q(ε, ν) such that if q > Q,

|σ ′(0)| < q5+γ0+ε, w0 > 4q−(5+γ0+ε), (1.9)

where γ0 is Euler’s constant.

Remark. The bounds on C1, C2 can be somewhat improved.
This lemma is proved in Sect. 3. The inequalities (1.5), (1.6), and especially (1.7) are

the main technical results of this paper.

Combination of Lemmata 1 and 2 immediately yields

Theorem 3 (Bound for the widths of the gaps). Let q ≥ 3, p/q = [a1, a2, . . . , an],
where a1 is odd and ak, 2 ≤ k ≤ n, are even. Then, with Ck, k = 1, 2, from Lemma 2,
the width of the j’s gap of S(p/q) is

�0 >

(
1

C2qC1

)2

, � j >

(
1

2C2qC1

)2 j

, 1 ≤ j <
q − 1

2
. (1.10)

Remark. The improvements for large q on the additional condition qk+1 > Cqν
k are

obvious from (1.9).
A consequence of this is the following theorem proved in Sect. 4.

Theorem 4 There exists an absolute C3 > 0 such that the following holds. Let α =
[a1, a2, . . . ] ∈ (0, 1) be an irrational such that a1 is odd, ak , k ≥ 2, are even, and such
that ∣∣∣∣α − pn

qn

∣∣∣∣ <
1

C3q�
n

, � = 4C1, (1.11)

for all pn/qn = [a1, a2, . . . , an], n = 1, 2, . . . , where C1 is the constant from Lemma 2.
Then

(a) The interior of the centermost band B0 of S(pn/qn) contains the centermost band
and the closures of the gaps G0, G−1 of S(pn+1/qn+1), n = 1, 2, . . .

(b) There exist distinct gaps Gn, j (α), n = 1, 2, . . . , j = 1, 2, of S(α), such that the
intersections Gn,1(α) ∩G−1(pn/qn), Gn,2(α) ∩G0(pn/qn), n = 1, 2, . . . are non-
empty and the length of the gap Gn, j (α)

�n, j (α) = |Gn, j (α)| ≥ |Gn, j (α) ∩ G j−2(pn/qn)|
>

1

C4q
�/2
n

, n = 1, 2, . . . , j = 1, 2, (1.12)

for some absolute C4 > 0, where |A| denotes the Lebesgue measure of A.
(c) Let ε > 0, replace C3 by 2, and set � = 4(5 + γ0 + ε) in (1.11). Then there

exists n0 = n0(ε) such that (a) and (b) hold for all n = n0, n0 + 1, . . . (instead of
n = 1, 2, . . . ) with C4 replaced by 2, and with �/2 in (1.12) replaced by 2(5+γ0)+ε.
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Remarks. (1) The statements (a), (b) of the theorem hold a fortiori for � = 4 · 14 = 56
and for any larger �. It is easy to provide explicit examples of irrationals satisfying
the conditions of Theorem 4: take � = 56, any odd a1, and even an+1 such
that an+1 > C3q�−2

n , n ≥ 1. Indeed, in this case,

∣∣∣∣α − pn
qn

∣∣∣∣ <
1

qnqn+1
<

1

an+1q2n
<

1

C3q�
n

.

(2) Note that the parity condition on a j ’s implies, in particular, that all qn’s are odd.
This condition can be relaxed in all our statements. For example, we can allow a
finite number of a j ’s to be odd at the expense of excluding some G(pn/qn)’s from
the statement of Theorem 4 and worsening the bound on C1. Note that in Lemma 2
we need q to be odd in order to use the estimate (1.7) on σ ′(0) to obtain (1.8).
One could obtain a bound on w0 for even q by providing an estimate on the second
derivative σ ′′(0) in this case: for q even σ ′(0) = 0. The parity condition we assume
in this paper allows the best estimates and simplest proofs.

(3) In Theorem 4, we only use Theorem 3 for j = 0, i.e., for the 2 centermost gaps.
One can extend the result of Theorem 4, with appropriate changes, to more than 2
(at least a finite number) of central gaps of S(pn/qn).

(4) We can take C3 = 42602C4
2 , C4 = 2C2

2 , in terms of the constant C2 from Lemma 2.
(5) The statement (a) of the theorem holds already for � = 2C1.

2. Proof of Lemma 1

Assume that q = 4k + 3, k = 0, 1, . . . . (A proof in the case q = 4k + 1 is almost
identical.) Let

s = q − 1

2
.

In our notation, we can write

σ(E) =
s∏

k=−s

(E − λk), σ (E) − 4 =
s∏

k=−s

(E − μk),

σ (E) + 4 =
s∏

k=−s

(E − ηk). (2.1)

Setting in the last 2 equations E = λ j , we obtain the useful identities

4 =
s∏

k=−s

|λ j − μk |, 4 =
s∏

k=−s

|λ j − ηk |, −s ≤ j ≤ s. (2.2)

Fix 0 ≤ j ≤ s (by the symmetry of the spectrum, it is sufficient to consider only
nonnegative j). It was shown by Choi, Elliott, and Yui [7] that

∏
k �= j

|μ j − μk | ≥ 1,
∏
k �= j

|η j − ηk | ≥ 1. (2.3)
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For simplicity of notation, we assume from now on that j < s − 1: the extension to
j = s − 1 is obvious. Let j ≥ 0 be even. By the first inequality in (2.3), we can write

1 ≤ |σ ′(μ j )| =
∏
k �= j

|μ j − μk |

= |μ j − μ j+1|
∏s

k=−s |λ j − μk |
|λ j − μ j ||λ j − μ j+1|

j−1∏
k=−s

∣∣∣∣1 + μ j − λ j

λ j − μk

∣∣∣∣
s∏

k= j+2

∣∣∣∣1 − μ j − λ j

μk − λ j

∣∣∣∣ .
(2.4)

According to our notation, μ j+1 − μ j = � j , μ j − λ j = w j , μ j+1 − λ j = w j + � j .
Recalling the first identity in (2.2) and rearranging the last product in (2.4), we continue
(2.4) as follows

= 4� j

w j (w j + � j )

∏ j−1
k=−s

∣∣∣1 + w j
λ j−μk

∣∣∣
∏s

k= j+2

∣∣∣1 + w j
μk−μ j

∣∣∣ <
4� j

w j (w j + � j )

∏ j−1
k=−s

∣∣∣1 + w j
λ j−μk

∣∣∣
∏s

k= j+2

∣∣∣1 + w j
μk−λ j

∣∣∣ , (2.5)

because μ j > λ j .
Now note that, by the symmetry of the spectrum,

|μ j+� − λ j | < |μ− j−�−1 − λ j |, � = 2, 3, . . . (2.6)

Therefore, the r.h.s. of (2.5) is

<
4� j

w j (w j + � j )

j−1∏
k=− j−2

∣∣∣∣1 + w j

λ j − μk

∣∣∣∣ 1

1 +
w j

μs−λ j

. (2.7)

In the case j = 0, we now use the symmetry

w0 = w′
0 < λ0 − μ−k, k ≥ 1, (2.8)

to obtain from (2.7)

1 <
16�0

w0(w0 + �0)
<

16�0

w2
0

,

which gives the first inequality in (1.5).
In general, however, we need to compare w j and w′

j to estimate (2.7). According to
equations (3.11), (3.12) of Last [16],

w j , w
′
j < e� j , � j = 4

|σ ′(λ j )| , (2.9)

and further, by equations (3.27), (3.28) of [16],
√
5 − 1

2
� j < w j , w

′
j . (2.10)

(In fact, more is shown in [16]: for each pair of widths w j , w′
j , at least one of them is

larger than � j .)
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Therefore,

w j < c1w
′
j , c1 = 2e√

5 − 1
, 0 ≤ j ≤ s. (2.11)

Furthermore, it is obvious that

w′
j

λ j − μk
< 1, k = − j − 2, . . . , j − 1. (2.12)

Therefore, we have for the product in (2.7):

j−1∏
k=− j−2

∣∣∣∣1 + w j

λ j − μk

∣∣∣∣ < (1 + c1)
2( j+1), (2.13)

and since μs − λ j > 0, (2.7) finally gives

1 <
4� j

w j (w j + � j )
(1 + c1)

2( j+1), (2.14)

from which the inequality (1.5) with even j easily follows.

Remark. Last’s equation (2.9) together with the Last–Wilkinson formula [16,18]

s∑
j=−s

|σ ′(λ j )|−1 = 1/q (2.15)

implies [16] that the measure of the spectrum S(p/q) is at most 8e/q and that for any j ,

w j < 4e/q. (2.16)

Now consider j odd, 0 < j < s. Using the second inequalities in (2.3) and (2.2), we
obtain similarly to (2.5),

1 <
4� j

w j (w j + � j )

∏ j−1
k=−s

∣∣∣1 + w j
λ j−ηk

∣∣∣
∏s

k= j+2

∣∣∣1 + w j
ηk−λ j

∣∣∣ , (2.17)

and since

|η j+� − λ j | < |η− j−�−1 − λ j |, � = 2, 3, . . . , (2.18)

we obtain the inequality (1.5) for j odd in a similar way.
Let again j be even, 0 < j < s − 1. In order to compare � j with the width of the

centermost band and, thus, obtain (1.6), we write instead of (2.4) the following:

1 ≤ |σ ′(μ j )| =
∏
k �= j

|μ j − μk | (2.19)

= |μ j − μ j+1|
∏s

k=−s |λ0 − μk |
|λ0 − μ j ||λ0 − μ j+1|

j−1∏
k=−s

∣∣∣∣1 + μ j − λ0

λ0 − μk

∣∣∣∣
s∏

k= j+2

∣∣∣∣1 − μ j − λ0

μk − λ0

∣∣∣∣ .
(2.20)
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Proceeding in a similar way as before, and using the inequalities

|μ j+� − λ0| < |μ− j−�−1 − λ0|, � = 2, 3, . . . , (2.21)

we obtain

1 <
4� j

|λ0 − μ j ||λ0 − μ j+1|
j−1∏

k=− j−2

∣∣∣∣1 + μ j − λ0

λ0 − μk

∣∣∣∣

<
16� j

|λ0 − μ j ||λ0 − μ j+1|
j−1∏

k=− j

∣∣∣∣1 + μ j − λ0

λ0 − μk

∣∣∣∣

= 16� j

|λ0 − μ j ||λ0 − μ j+1|
∣∣∣∣μ j − μ0

λ0 − μ0

∣∣∣∣
∣∣∣∣μ j − μ1

λ0 − μ1

∣∣∣∣
j−1∏
k=− j
k �=0,1

∣∣∣∣μ j − μk

λ0 − μk

∣∣∣∣

<
16� j

|λ0 − μ0||λ0 − μ1|
j−1∏
k=− j
k �=0,1

∣∣∣∣μ j − μk

λ0 − μk

∣∣∣∣ , (2.22)

and since (note that S(α) ∈ [−4, 4])
∣∣∣∣μ j − μk

λ0 − μk

∣∣∣∣ <
8

w0
,

we obtain

1 <
� j

4

(
8

w0

)2 j

, (2.23)

which gives an inequality slightly better than (1.6) for j even. Finally, we establish
(1.6) for j odd by starting (instead of (2.19)) with the inequality 1 ≤ |σ ′(η j+1)| =∏

k �= j+1 |η j+1 − ηk | and arguing similarly.

Remark. Using the Last estimate (2.9)

4e

w j
> |σ ′(λ j )| =

∏
k �= j

|λ j − λk |, (2.24)

one can establish, in a way similar to the argument above, inequalities of the type

� j + w′
j+1 >

w j

C j
, (2.25)

with some absolute constant C > 0. 
�
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3. Proof of Lemma 2

As noted in a remark following Theorem 4, the parity conditions imposed on p/q
in Lemma 2 imply, in particular, that q is odd. It follows from the symmetry of the
discriminant σ(E) = −σ(−E) in this case that the maximum of the absolute value of
the derivative σ ′(E) in the j = 0 band is at E = 0. Therefore,

w0 ≥ 4

|σ ′(0)| (3.1)

(with the equality only for q = 1), and hence, in order to prove Lemma 2, it remains to
obtain the inequalities (1.7) and (1.9).

If q = 1, we have σ(E) = −E , and the result is trivial. Assume now that q is any
(even or odd) integer larger than 1. We start with the following representation of σ(E)

in terms of a q × q Jacobi matrix with the zero main diagonal:

σ(E) = det(Ĥ − E I ), (3.2)

where I is the identity matrix, and Ĥ is a q × q matrix Ĥ j k , j, k = 1, . . . q, where

Ĥ j j+1 = Ĥ j+1 j = 2 sin

(
π
p

q
j

)
, j = 1, . . . , q − 1, (3.3)

and the rest of the matrix elements are zero. For a proof, see e.g. the appendix of [15].
(This is related to a matrix representation for the almost Mathieu operator corresponding
to the chiral gauge of themagnetic field potential, noticed by several authors [13,21,25].)
The absence of the main diagonal in Ĥ allows us to obtain a simple expression for the
derivative σ ′(E) at E = 0. If q is even, it is easily seen that σ ′(E) = 0. If q is odd, we
denote s = (q − 1)/2 and immediately obtain from (3.2) (henceforth we set

∏b
j=a ≡ 1

and
∑b

j=a ≡ 0 if a > b):

σ ′(0) = (−1)s
s∑

k=0

⎡
⎣ k∏

j=1

2 sin
πp

q
(2 j − 1)

s∏
j=k+1

2 sin
πp

q
2 j

⎤
⎦
2

. (3.4)

From now on, we assume that q ≥ 3 is odd unless stated otherwise.

Remark. Using the identity
∏(q−1)/2

j=1 2 sin πp
q 2 j = q, we can represent (3.4) in the form

σ ′(0) = (−1)sq

⎛
⎝1 +

s∑
k=1

k∏
j=1

sin2 πp
q (2 j − 1)

sin2 πp
q 2 j

⎞
⎠ , (3.5)

which exhibits the fact that |σ ′(0)| > q. This is in accordance with the Last–Wilkinson
formula (2.15).

Thus we have

|σ ′(0)| =
s∑

k=0

exp{Lk}, (3.6)
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where

1

2
Lk =

k∑
j=1

ln

∣∣∣∣2 sin πp

q
(2 j − 1)

∣∣∣∣ +
s∑

j=k+1

ln

∣∣∣∣2 sin πp

q
2 j

∣∣∣∣ (3.7)

=
k∑

j=−s+k+1

ln

∣∣∣∣2 sin πp

q
(2 j − 1)

∣∣∣∣ =
s∑

j=1

ln

∣∣∣∣2 sin πp

q
2( j + k)

∣∣∣∣ . (3.8)

Here we changed the summation variable j = s + j ′ in the second sum in (3.7) to obtain
the first equation in (3.8), and then changed the variable j = k − s + j ′ to obtain the
final equation in (3.8).

We will now analyze Lk . Using the Fourier expansion, we can write

Lk = −2
s∑

j=1

∞∑
n=1

1

n
cos 4n

πp

q
( j + k). (3.9)

Representing n in the form n = qm + �, where � = 1, 2, . . . , q − 1 for m = 0, and
� = 0, 1, . . . , q − 1 for m = 1, 2, . . . , we have

Lk = −
∞∑

m=1

⎛
⎝q − 1

qm
− 1

q

q−1∑
�=1

1

m + �/q
F(�, k)

⎞
⎠ + Sk, (3.10)

where

Sk =
q−1∑
�=1

1

�
F(�, k), (3.11)

and

F(�, k) = −2
s∑

j=1

cos 4�
πp

q
( j + k)

= −2
s∑

j=1

exp{4π i p
q

( j + k)�} = cosπ
p
q �(4k + 1)

cosπ
p
q �

. (3.12)

Note that since 1 < j + k ≤ q − 1, (p, q) = 1, and q is odd, we have that (2 j + 2k)p �≡
0(mod q).

For 0 ≤ k ≤ s,

q−1∑
�=1

F(�, k) = −2
⎛
⎝ s∑

j=1

q−1∑
�=1

exp{4π i p
q

( j + k)�} + 1 − 1

⎞
⎠ = q − 1. (3.13)

We will use this fact later on.
Recall that

M∑
m=1

1

m
= lnM + γ0 + o(1), M → ∞, (3.14)
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where γ0 = 0.5772 . . . is Euler’s constant. Recall also Euler’s ψ-function

ψ(x + 1) = �′(x + 1)

�(x + 1)
= −γ0 −

∞∑
m=1

(
1

m + x
− 1

m

)
, x ≥ 0. (3.15)

The functionψ(x) continues to a meromorphic function in the complex plane with first-
order poles at nonpositive integers x = 0,−1,−2, . . . . The function ψ(x) satisfies the
equation

ψ(x + 1) = ψ(x) +
1

x
.

Expressions (3.14), (3.15) imply

M∑
m=1

1

m + x
=

M∑
m=1

(
1

m + x
− 1

m

)
+

M∑
m=1

1

m

= lnM − ψ(x + 1) + o(1), M → ∞, (3.16)

uniformly for x ∈ [0, 1], in particular. We now rewrite (3.10) in the form

Lk = − lim
M→∞

⎡
⎣q − 1

q

M∑
m=1

1

m
− 1

q

q−1∑
�=1

F(�, k)
M∑

m=1

1

m + �/q

⎤
⎦ + Sk . (3.17)

Substituting here (3.14), (3.16), and using (3.13), we finally obtain

Lk = −q − 1

q
γ0 − 1

q

q−1∑
�=1

F(�, k)ψ(1 + �/q) + Sk . (3.18)

Wewill nowprovide an upper bound for the absolute values of sums in this expression.
First, note that the derivativeψ ′(x) ≥ 0, x ∈ [1, 2], andψ(1) = −γ0,ψ(2) = ψ(1)+1 =
1 − γ0. Therefore,

max
x∈[1,2] |ψ(x)| = max{|ψ(1)|, |ψ(2)|} = γ0.

Thus, for the first sum in the r.h.s. of (3.18) we have
∣∣∣∣∣∣
1

q

q−1∑
�=1

F(�, k)ψ(1 + �/q)

∣∣∣∣∣∣ ≤ γ0

q

q−1∑
�=1

|F(�, k)| = γ0

q

q−1∑
�=1

1

| cos(πp�/q)|

= 4γ0
q

s−1∑
m=0

1

|1 − ei(2m+1)π/q | < γ0

s−1∑
m=0

1

m + 1/2

< γ0

(
2 +

∫ s−1

0

dx

x + 1/2

)
< γ0 (ln q + 2) , q ≥ 3.

(3.19)
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We will need a more subtle estimate for

Sk =
q−1∑
m=1

1

m
F(m, k) =

q−1∑
m=1

1

m

cosπ
p
q m(4k + 1)

cosπ
p
q m

(3.20)

in the r.h.s. of (3.18). We follow a method of Hardy and Littlewood [9] (see also [24]).
It relies on a recursive application of a suitably constructed contour integral.

For q ≥ 3 odd, (p, q) = 1, let

I (p/q, γ ) = −2
∫

�q

e(1+p/q)z

(1 + ezp/q)(1 − ez)

e−γ z

z
dz,

1

2

p

q
≤ γ ≤ 1 +

1

2

p

q
, (3.21)

where the contour �q are the 2 direct lines parallel to the real axis given by: (1) π i/2+ x ,
x ∈ R, oriented from −∞ to +∞; (2) 2π i(q − 1/4) + x , x ∈ R, oriented from +∞ to
−∞. Note that the choice of γ in (3.21) ensures that the integral converges both at +∞
and −∞.

Now again for q ≥ 3 odd, (p, q) = 1, let

S(p/q, γ ) =
q−1∑
m=1

eπ i p
q m−2π iγm

m cos (π
p
q m)

. (3.22)

Note that the sum (3.20)

Sk = S(p/q,−2kp/q), (3.23)

and that the denominators in (3.22) are nonzero.
We will also need the following auxiliary sum, (p, q) = 1,

T (p/q, γ, δ) = 2
q∑

n=1

(−1)δe2π i
p
q (n− 1

2 )

1 − (−1)δe2π i
p
q (n− 1

2 )

e−2π iγ (n− 1
2 )

n − 1
2

, δ = 0, 1, (3.24)

where we assume that p is odd if δ = 0 and that p and q have opposite parities if
δ = 1. These conditions imply that p(2n − 1) �= q(2m − δ), m, n ∈ Z, and therefore
the denominators in (3.24) are nonzero.

With this notation we have

Lemma 5. Let q be odd, (p, q) = 1, p > 0, q > 1. Let p/q have the following continued
fraction:

p

q
= 1

a + p′
q ′

, p′ ≥ 0, q ′ > p′. (3.25)

Then

I (p/q, γ ) = S(p/q, γ ) − (−1)ε
′
T (p′/q ′, γ ′, amod 2), γ ′ = q

p
γ (mod 1),

(3.26)

where ε′ = 0 if γ ′ = q
pγ (mod 2), and ε′ = 1 otherwise.

Moreover, there holds the bound

|I (p/q, γ )| < 4 ln
q

p
+

5

eπp
+ β, β = 4(e−1 + arcsinh(4/π)) = 5.719 . . .

(3.27)
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Remarks.(1) One can take any γ ′ satisfying the congruence in (3.26).
(2) The bound in (3.27) can be somewhat decreased by improving (3.33), (3.34) below.

Similar can be achieved in (3.38) below.

Proof. Consider the integral I�(p/q, γ ), which has the same integrand as in (3.21), but
with integration over some contour �. Let �q,ξ be the following quadrangle traversed

in the positive direction: �q,ξ = ∪4
j=1�

( j)
q,ξ , ξ > 0, where �

(1)
q,ξ = [π i/2− ξ, π i/2 + ξ ],

�
(2)
q,ξ = [π i/2 + ξ, 2π i(q − 1/4) + ξ ], �(3)

q,ξ = [2π i(q − 1/4) − ξ, 2π i(q − 1/4) + ξ ],
�

(4)
q,ξ = [2π i(q − 1/4) − ξ, π i/2 − ξ ].
Recalling the conditions on γ in (3.21), we first note that on the vertical segments,

for some constants C which may depend on p, q,

|I
�

(2)
q,ξ

(p/q, γ )| ≤C
e−γ ξ

ξ
≤ C

e− p
2q ξ

ξ
→ 0, as ξ → ∞, (3.28)

|I
�

(4)
q,ξ

(p/q, γ )| ≤C
e−(1+p/q−γ )ξ

ξ
≤ C

e− p
2q ξ

ξ
→ 0, as ξ → ∞. (3.29)

and we conclude that

I (p/q, γ ) = lim
ξ→∞ I�q,ξ (p/q, γ ). (3.30)

On the other hand, I�q,ξ (p/q, γ ) is given by the sum of residues inside the contour.
Clearly, the integrand has poles there at the points:

zm = 2π im, m = 1, . . . , q − 1 (3.31)

z̃n = 2π i
q

p
(n − 1/2), n = 1, . . . , p. (3.32)

Note that for all these m, n, zm �= z̃n because m �= q
p
2n−1
2 as q is odd. Hence we

conclude that all the poles inside �q,ξ are simple. Computing the residues and using the
facts that

q

p
= a +

p′

q ′ , q ′ = p,

we obtain (3.26) by (3.30). Note that the conditions on p′, q ′ in T (p′/q ′) are fulfilled
since q is odd.

Now, in order to obtain the inequality (3.27), we evaluate the integral along the
contour �q . On the lower part of it,

|I π i
2 +R(p/q, γ )| ≤ 2

∫ ∞

0

e−γ x + e−(1+ p
q −γ )x

(1 + 2e− p
q x cos πp

2q + e−2 p
q x )1/2(1 + e−2x )1/2

dx

(x2 + π2

4 )1/2

< 4
∫ ∞

0

e− p
2q x

(x2 + π2

4 )1/2
dx = 4

∫ ∞

0

e−u

(u2 + (
πp
4q )2)1/2

dx . (3.33)
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Separating the final integral into 2 parts, one along (0, 1) and another along (1,∞), we
can continue (3.33) as follows:

< 4

(∫ 1

0

du

(u2 + (
πp
4q )2)1/2

+
1

(1 + (
πp
4q )2)1/2

∫ ∞

1
e−udu

)

= 4

⎛
⎝− ln

πp

4q
+ ln

⎡
⎣1 +

√
1 +

(
πp

4q

)2
⎤
⎦ +

e−1

(1 + (
πp
4q )2)1/2

⎞
⎠

< 4

⎛
⎝ln

q

p
+ ln

⎡
⎣ 4

π
+

√(
4

π

)2

+ 1

⎤
⎦ + e−1

⎞
⎠ . (3.34)

Similarly, we obtain (recall that q > 1)

|I2π i(q− 1
4 )+R(p/q, γ )| ≤ 4

∫ ∞

0

e−u

(u2 + (π(p − p
4q ))2)1/2

dx

<
4e−1

π(p − p
4q )

<
4e−1

πp

1

1 − 1
4q

<
5

eπp
. (3.35)

The sum of (3.34) and (3.35) gives (3.27), and thus we finish the proof of Lemma 5. 
�
We will need another similar lemma.

Lemma 6. Let (p, q) = 1, p > 0, q > 1,

J (p/q, γ, δ) = 2
∫

�q

(−1)δe(1+p/q)z

(1 − (−1)δezp/q)(1 + ez)

e−γ z

z
dz,

1

2

p

q
≤ γ ≤ 1 +

1

2

p

q
, (3.36)

where δ = {0, 1}, and �q is the same contour as in (3.21). Assume that p is odd if
δ = 0, and either (p – even, q – odd), or (p – odd, q – even) if δ = 1. Let p/q have the
continued fraction (3.25). Then

J (p/q, γ, δ)

= T (p/q, γ, δ) +

{
−S(p′/q ′, γ ′), if δ = 0

(−1)ε
′
T (p′/q ′, γ ′, a + 1mod 2), if δ = 1

, γ ′ = q

p
γ (mod 1),

(3.37)

where ε′ = 0 if γ ′ = q
pγ (mod 2), and ε′ = 1 otherwise.

Moreover, there holds the bound with β from (3.27)

|J (p/q, γ, δ)| < Aδ

(
4 ln

q

p
+

5

eπp
+ β

)
,

Aδ =
{

(1 − cos2 π
p
q )−1/2, if δ = 0

1, if δ = 1
(3.38)
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Proof. We argue as in the proof of Lemma 5. The poles of the integrand in (3.36) inside
�q,ξ (p/q, γ ) are:

zm = 2π i(m − 1/2), m = 1, . . . , q, (3.39)

z̃n = 2π i
q

p
(n − δ/2), (3.40)

and n = 1, . . . , p − 1 if δ = 0, while n = 1, . . . , p if δ = 1. Our assumptions on
the parity of p, q immediately imply that all zn �= z̃m and hence all the poles inside
�q,ξ (p/q, γ ) are simple. Computing the residues we obtain (3.37).

Denote by J�(p/q, γ, δ) the integral which has the same integrand as in (3.36), but
with integration over some contour�. As in the previous proof, consider now an estimate
for the integral along the lower part of �q :

|Jπ i
2 +R(p/q, γ )| ≤ 2

∫ ∞

0

e−γ x + e−(1+ p
q −γ )x

(1 − 2(−1)δe− p
q x cos πp

2q + e−2 p
q x )1/2(1 + e−2x )1/2

dx

(x2 + π2

4 )1/2

< 4Aδ

∫ ∞

0

e− p
2q x

(x2 + π2

4 )1/2
dx, (3.41)

where Aδ is given in (3.38). The rest of the argument is very similar to that in the proof
of Lemma 5. 
�

Lemma 7 (recurrence). Let q > 1, pq = pn
qn

= [a1, . . . , an]anddenote t j = [a j , . . . , an],
j = 1, . . . , n. Assume that a1 is odd, and a j are even for j = 2, . . . , n. Fix 0 ≤ k ≤
(q − 1)/2. Then

S(p/q, γ1) = I (t1, γ1) +
n∑
j=2

(−1)ε j J (t j , γ j , 1) + 2(−1)εn e−iπγnan (3.42)

where ε j = {0, 1} and

γ1 = −2kt1 + k1, γ j = k j−1t j + k j , j = 2, . . . , n, (3.43)

with the sequence k j ∈ Z, j = 1, . . . , n, chosen so that 1
2 t j ≤ γ j ≤ 1 + 1

2 t j .
Furthermore, for this p/q, there holds the following bound for the sum (3.20):

|Sk | =
∣∣∣∣∣∣
q−1∑
m=1

1

m

cosπ
p
q m(4k + 1)

cosπ
p
q m

∣∣∣∣∣∣ <

(
4 +

β

ln 2

)
ln q + 9. (3.44)

If, in addition, qk+1 ≥ qν
k , for some ν > 1 and all 1 ≤ k ≤ n − 1, then for any ε > 0

there exist Q = Q(ε, ν) such that if q > Q,

|Sk | < (4 + ε) ln q. (3.45)
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Proof. First, note that t1 = p/q and t j = 1/(a j + t j+1), j = 1, . . . , n − 1, tn = 1/an .
Now note a simple fact that the conditions a1 – odd, a2, . . . , an – even ensure that q is
odd and all the fractions t j for j = 2, . . . , n are either odd

even or even
odd . We now choose k1

so that γ1 = −2kt1 + k1 satisfies 1
2 t1 ≤ γ1 ≤ 1 + 1

2 t1. Applying Lemma 5 to S(t1, γ1),
we obtain

S(t1, γ1) = I (t1, γ1) + (−1)εT (t2, γ2, a1 mod 2) (3.46)

We can and will choose γ2 so that 1
2 t2 ≤ γ2 ≤ 1 + 1

2 t2 by picking the appropriate k
′
2 and

setting

γ2 = q

p
γ1 + k′

2

= q

p
(−2kt1 + k1) + k′

2

= −2k +
q

p
k1 + k′

2 = −2k + (a1 + t2)k1 + k′
2 = t2k1 + k2, (3.47)

where k2 = −2k+a1k1+k′
2. The constant ε is determined by γ2 as described in Lemma 5.

Since a1 mod 2 = 1, we can now apply Lemma 6 with δ = 1 to T in the r.h.s. of
(3.46). This gives

S(t1, γ1) = I (t1, γ1) + (−1)ε[J (t2, γ2, 1) − (−1)ε
′
T (t3, γ3, a2 + 1mod 2)].

(3.48)

with

γ3 = 1

t2
γ2 + k′

3 = k1 + (a3 + t3)k2 + k′
3 = t3k2 + k3.

chosen so that 1
2 t3 ≤ γ3 ≤ 1 + 1

2 t3.
Note that according to our assumption a j +1mod 2 = 1, j = 2, . . . , n, so that we can

continue applying Lemma 6 with δ = 1 in (3.48) recursively. At the final step, revisiting
the residue calculations for Lemma 6 gives:

T (tn, γn, 1) = J (tn, γn, 1) + 2e−iπγnan , (3.49)

which proves (3.42).
Now using the bounds (3.27) and (3.38) for δ = 1, we write

|Sk | < |S(p/q, γ1)| ≤ |I (t1, γ1)| +
n∑
j=2

|J (t j , γ j , 1)| + 2

< 4 ln
1

t1t2 · · · tn +
5

eπ

n∑
j=1

1

p′
j
+ nβ + 2, (3.50)

where t j = [a j , . . . , an] = p′
j

q ′
j
.

Recall that we denote q = qn , p = pn . Observe that the following recurrence [10]
with tn+1 = 0

qn + tn+1qn−1 = (an + tn+1)qn−1 + qn−2 = 1

tn
(qn−1 + tnqn−2)
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gives

1

t1t2 · · · tn = qn . (3.51)

Note that this equation holds for any continued fraction.
Furthermore, the recurrence t j−1 = 1/(a j−1 + t j ) implies

p′
j−1 = q ′

j , q ′
j−1 = a j−1 p

′
j−1 + p′

j ,

and so

p′
j−2 = a j−1 p

′
j−1 + p′

j ,

which, with the initial conditions p′
n = 1, p′

n−1 = an , and our assumption that all a j ,
j = 2, . . . n, are even, gives

p′
j ≥ a j+1 · · · an ≥ 2n− j , j = 1, . . . , n. (3.52)

Thus we have
n∑
j=1

1

p′
j

< 2. (3.53)

Finally, since

qn = anqn−1 + qn−2 ≥ anqn−1 ≥ · · · ≥ anan−1 · · · a1 ≥ 2n−1,

we have

n ≤ ln qn
ln 2

+ 1. (3.54)

(In fact, as is well known, a slightly worse bound on n holds for any continued fraction).
Using (3.51), (3.53), (3.54) in (3.50), we obtain (3.44).
To obtain (3.45) note first the following.

Lemma 8. Let ν > 1, n ≥ 2, pk/qk = [a1, a2, . . . , ak], and such that qk+1 ≥ qν
k ,

1 ≤ k ≤ n − 1, q2 ≥ 3. Then

n ≤ 1

ln ν
ln

ln qn
ln 3

+ 2

Proof. We have

qn ≥ qν
n−1 ≥ qν2

n−2 ≥ · · · ≥ qνn−2

2 ≥ 3νn−2
, n ≥ 2,

from which the result follows. 
�
Now using Lemma 8 instead of (3.54) in (3.50) and choosing Q sufficiently large,

we obtain (3.45) if q > Q, and finish the proof of Lemma 7. 
�
Bringing together (3.6), (3.18), (3.19), and (3.44), yields the bound

|σ ′(0)| < e− 2
3 γ0

2

3
q · qγ0+4+β/ ln 2e2γ0+9 < qγ0+5+β/ ln 2 2

3
e9+4γ0/3, q ≥ 3.

(3.55)

Since γ0 + 5 + β/ ln 2 = 13.8 . . . < 14, 2
3e

9+4γ0/3 < e10, and σ(E) = −E if q = 1,
we obtain (1.7). Finally, using (3.45) instead of (3.44), we obtain (1.9). This finishes the
proof of Lemma 2. 
�
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4. Proof of Theorem 4

Note first that since for any irrational α

1

2qnqn+1
<

1

qn(qn + qn+1)
<

∣∣∣∣α − pn
qn

∣∣∣∣ ,
we obtain that for any α satisfying the conditions of Theorem 4,

C3

2
q�−1
n < qn+1, n = 1, 2, . . . (4.1)

We will denote μ j (p/q), w j (p/q), etc, the values μ j , w j , etc, for the spectrum
S(p/q). Fix n ≥ 1. Let E2, E0 be the right edges of the centermost bands in S(pn/qn),
S(pn+1/qn+1), respectively. By Lemma 2,

E2 = μ0(pn/qn) = w0(pn/qn) >
4

C2q
C1
n

. (4.2)

On the other hand by (2.16) and (4.1), we have

E0 = μ0(pn+1/qn+1) = w0(pn+1/qn+1) <
4e

qn+1
<

8e

C3q
�−1
n

. (4.3)

We will now show that G0(pn+1/qn+1) ⊂ (E0, E2 − ε) for a suitably chosen C3.
Recall a continuity property found by Avron, Van Mouche, Simon [5]: if E ∈ S(β),

there is E ′ ∈ S(β ′) such that

|E − E ′| < C |β − β ′|1/2. (4.4)

In [5], the authors give a good bound on C requiring that |β − β ′| be sufficiently small.
As the reader can verify, a trivial modification of the proof in [5] allows us to fix C = 60
for the almost Mathieu operator (worse than in [5]) but without any condition on β, β ′ ∈
(0, 1). Thus we set C = 60.

This continuity property (4.4) for β = pn/qn , β ′ = pn+1/qn+1, together with the
identity ∣∣∣∣ pnqn − pn+1

qn+1

∣∣∣∣ = 1

qnqn+1

and the bound (4.1) implies that there exists E ′ ∈ S(pn+1/qn+1) such that

E ′ ∈
(
E2

2
− C√

qnqn+1
,
E2

2
+

C√
qnqn+1

)
⊂

(
E2

2
− C√

C3q�
n /2

,
E2

2
+

C√
C3q�

n /2

)
.

(4.5)

Using (4.2) and recalling that1 � = 4C1, we see that

E2

2
− C√

C3q�
n /2

>
2

C2q
C1
n

− C√
C3/2q

2C1
n

= 2

C2q
C1
n

(
1 − CC2√

2C3q
C1
n

)
,

1 Note that here just � = 2C1 would do, cf a remark following Theorem 4.
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and setting now

C3 = 42C2C4
2 = 42602C4

2 , (4.6)

we have

E2

2
− C√

C3q�
n /2

>
q−C1
n

C2
. (4.7)

On the other hand, using (4.3), we obtain that

E0 <
8e

C3q
4C1−1
n

= e

2C2C4
2q

4C1−1
n

<
q−C1
n

C2
.

Inequality (4.7) also shows that

E2

2
+

C√
C3q�

n /2
< E2. (4.8)

Thus,

E ′ ∈ (E0, E2),

which implies that

G0(pn+1/qn+1) ⊂ (E0, E2 − ε),

for some ε > 0. The corresponding result for G−1 follows by the symmetry of the
spectra. This proves the statement (a) of Theorem 4.

Now by the continuity (4.4) with β = α, β ′ = pn/qn , and Theorem 3, we conclude
that, for all n = 1, 2, . . . , there exists a gap Gn,2(α) of S(α) such that Gn,2(α) ∩
G0(pn/qn) �= ∅ and of length

�n,2(α) > �0(pn/qn) − 2C |α − pn/qn|1/2 >
1

C2
2q

2C1
n

− 2C

C1/2
3 q�/2

n

= 1

2C2
2q

�/2
n

.

(4.9)

We now verify that the gaps Gn,2(α), Gn+1,2(α) are distinct. Using the continuity
once again, we obtain that there exists a point E ′′ ∈ S(α) such that

E ′′ ∈
(
E2

2
− C√

C3q�
n

,
E2

2
+

C√
C3q�

n

)
. (4.10)

Now it is easy to verify, similar to the calculations above, that

E2

2
− C√

C3q�
n

>
7

4

1

C2q
C1
n

and

E0 +
2C√
C3q�

n

<
1

C2q
C1
n

,
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and therefore (4.10) together with (4.8) yields

E ′′ ∈
(
E0 +

2C√
C3q�

n+1

, E2

)
. (4.11)

Thus Gn+1,2(α) lies to the left of E ′′, and Gn,2(α) to the right of E ′′, so that Gn,2(α)

and Gn+1,2(α) are distinct gaps, n = 1, 2, . . . . Similar results for Gn,1(α) follow by the
symmetry. This proves the statement (b) of Theorem 4.

The proof of the statement (c) is similar and based on (1.9). It is a simple
exercise. 
�
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