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Abstract: The problem of approximating the discrete spectra of families of self-adjoint
operators that are merely strongly continuous is addressed. It is well-known that the
spectrum need not vary continuously (as a set) under strong perturbations. However, it
is shown that under an additional compactness assumption the spectrum does vary con-
tinuously, and a family of symmetric finite-dimensional approximations is constructed.
An important feature of these approximations is that they are valid for the entire family
uniformly. An application of this result to the study of plasma instabilities is illustrated.

1. Introduction

1.1. Overview. We present a method for obtaining finite-dimensional approximations
of the discrete spectrum of families of self-adjoint operators. We are interested in oper-
ators that decompose into a system of two coupled Schrödinger operators with opposite
signs (see (1.1) below). However our results are applicable to “standard” Schrödinger
operators, and in fact we prove our main result, Theorem 3, for Schrödinger operators
first, see Theorem 3′. We are interested in the following problem:

Problem 1. Consider the family of self-adjoint unbounded operators

Mλ = A +Kλ =
[−� + 1 0

0 � − 1

]
+

[
Kλ

++ Kλ
+−

Kλ−+ Kλ−−

]
, λ ∈ [0, 1] (1.1)

acting in an appropriate subspace of L2(Rd)⊕ L2(Rd), where {Kλ}λ∈[0,1] is a bounded,
symmetric and strongly continuous family. Is it possible to construct explicit finite-
dimensional self-adjoint approximations of Mλ whose spectrum in compact subsets of
(−1, 1) converges to that of Mλ uniformly in λ?

This problem is motivated by Maxwell’s equations, which in the Lorenz gauge may
be written as the following elliptic system for the electromagnetic potentials φ and A
(after taking a Laplace transform in time):
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{
(−� + λ2)A + j = 0

(� − λ2)φ + ρ = 0
, (1.2)

where ρ and j are the charge and current densities, respectively. The specific problemwe
have in mind, treated separately in [2], is that of instabilities of the relativistic Vlasov-
Maxwell system describing the evolution of collisionless plasmas and it is outlined in
Sect. 6 below. The Vlasov equation provides the coupling of the two equations in (1.2),
making the system self-adjoint (see, for instance, the expressions (6.5) and (6.6)).

1.2. The main result. Let us first summarise the notation we use throughout this article.
For operators we use upper case calligraphic letters, such as T . The spectrum of T is
denoted sp(T ). For the sesquilinear form associated to an operator we use the same letter
in lower case Fraktur font. Hence the operator T has the associated form t. The space of
bounded linear operators on a Hilbert space H is denoted B(H). Domains of operators
or forms are denoted byD. The graph norms of an operator T and a form t are denoted
‖·‖T and ‖·‖t, respectively. Strong, strong resolvent and norm resolvent convergence
are denoted by

s−→,
s.r.−→ and

n.r.−−→, respectively. For brevity, we denote N = N ∪ {∞}.
We also recall the definition of a sectorial form:

Definition 2. A form t is said to be sectorial if its numerical range �(t) (that is, the set
{t[u, u] : ‖u‖ = 1, u ∈ D(t)} ⊆ C) is a subset of a sector of the form

{ζ : | arg(ζ − γ )| ≤ θ} , θ ∈ [0, π/2), γ ∈ R.

Let H = H+ ⊕ H− be a (separable) Hilbert space with inner product 〈·, ·〉 and norm
‖·‖ and let

Aλ =
[
Aλ

+ 0
0 −Aλ−

]
and Kλ =

[
Kλ

++ Kλ
+−

Kλ−+ Kλ−−

]
, λ ∈ [0, 1]

be two families of operators on H depending upon the parameter λ ∈ [0, 1], where the
family Aλ is also assumed to be defined for λ in an open neighbourhood D of [0, 1] in
the complex plane. The two families Aλ and Kλ satisfy:

(i) Sectoriality:The families {Aλ±}λ∈D are holomorphic of type (B).1 That is, they are
families of sectorial operators and the associated sesquilinear forms aλ± are holomorphic
of type (a): all {aλ±}λ∈D are sectorial and closed, with domains that are independent of
λ and dense in H±,2 and D  λ �→ aλ±[u, v] are holomorphic for any u, v ∈ D(aλ±).
Furthermore, we assume that Aλ± are self-adjoint for λ ∈ [0, 1].

(ii) Gap: Aλ± > 1 for every λ ∈ [0, 1].
(iii) Bounded perturbation: {Kλ}λ∈[0,1] ⊂ B (H) is a self-adjoint strongly contin-

uous family.

(iv) Compactness: There exist self-adjoint operators P± ∈ B (H±) which are rela-
tively compact with respect to Aλ±, satisfying Kλ = KλP for all λ ∈ [0, 1] where

P =
[
P+ 0
0 P−

]
.

1 We adopt the terminology of Kato [8].
2 Hence we shall remove the λ superscript when discussing the domains of aλ and aλ±.
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Finally, if the family Aλ does not have a compact resolvent we assume:

(v) Compactification of the resolvent: There exist holomorphic forms {wλ±}λ∈D of
type (a) and associated operators {Wλ±}λ∈D of type (B) such that for λ ∈ [0, 1],Wλ± are
self-adjoint and non-negative. Define

Wλ =
[
Wλ

+ 0
0 −Wλ−

]
, λ ∈ D,

and
Aλ

ε := Aλ + εWλ, λ ∈ D, ε ≥ 0 (1.3)

with respective associated forms wλ and aλ
ε . Then we assume that D(wλ) ∩ D(a) are

dense for all λ ∈ D and the inclusion (D(wλ) ∩ D(a), ‖·‖aλ
ε
) → (H, ‖·‖) is compact

for some λ ∈ D and all ε > 0.

Goal Define the family of (unbounded) operators {Mλ}λ∈[0,1], acting in H, as

Mλ = Aλ +Kλ, λ ∈ [0, 1]. (1.4)

It is these operators that we wish to approximate.

The projections Let Aλ
ε be as in (1.3), and define

Mλ
ε = Aλ

ε +Kλ, λ ∈ [0, 1]. (1.5)

Let

• {eλ
ε,k}k∈N ⊂ H be a complete orthonormal set of eigenfunctions of Aλ

ε ,

• Gλ
ε,n : H → H be the orthogonal projection operators onto span(eλ

ε,1, . . . , e
λ
ε,n),

• M̃λ
ε,n be the n-dimensional operator defined as the restriction of Mλ

ε to Gλ
ε,n(H).

Fix ε∗ > 0, and define the function

� : [0, 1] × [0, ε∗] → (closed subsets of (−1, 1), dH )

�(λ, ε) = (−1, 1) ∩ sp(Mλ
ε )

and for fixed ε > 0

�ε : [0, 1] × N → (closed subsets of (−1, 1), dH )

�ε(λ, n) = (−1, 1) ∩ sp(M̃λ
ε,n)

,

where sp(O) is the spectrum of the operatorO and dH is the Hausdorff distance, defined
for two bounded sets X,Y ⊂ C as:

dH (X,Y ) = max

(
sup
y∈Y

inf
x∈X |x − y|, sup

x∈X
inf
y∈Y |x − y|

)
.

This defines a pseudometric, which becomes a metric if restricting to closed bounded
sets (this is indeed the case here, see Remark 4 below). Our main result is formulated
for the general case where the spectrum of Aλ may have a continuous part:

Theorem 3. The mappings �(·, ·) and �ε(·, n) are continuous in their arguments, and
as n → ∞, �ε(λ, n) → �(λ, ε) uniformly in λ ∈ [0, 1].
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Remark 4. It is well known that the spectrum of an operator is a closed set. Moreover,
in our case we know that the spectrum in (−1, 1) is discrete and with no accumulation
points. Hence when it is stated that � and �ε take values in “closed subsets of (−1, 1)”
there is no ambiguitywith respect towhich topology is considered: the standard topology
on the real line, or the topology on (−1, 1) thought of as a subspace of the real line. We
consider the standard topology on the real line.

A simpler case: semi-bounded operators As the notation becomes quite cumbersome
due to the decomposition H = H+ ⊕ H−, we shall first treat the simpler case of semi-
bounded operators. Let Aλ and Kλ, where λ ∈ [0, 1], be two families of operators on
some Hilbert space H (which is not assumed to decompose as before) where the family
Aλ is also assumed to be defined for λ in an open neighbourhood D of [0, 1] in the
complex plane. For the sake of precision, we repeat the assumptions (i)-(v) reformulated
for this case.

(i) Sectoriality: The family Aλ is sectorial of type (B) in λ ∈ D and self-adjoint for
λ ∈ [0, 1].

(ii) Semi-boundedness: Aλ > 1 for every λ ∈ [0, 1].
(iii) Bounded perturbation: {Kλ}λ∈[0,1] ⊂ B (H) is a self-adjoint strongly contin-

uous family.
(iv) Compactness:There exists a self-adjoint operatorP ∈ B (H)which is relatively

compact with respect to Aλ, satisfying Kλ = KλP for all λ ∈ [0, 1].
(v) Compactification of the resolvent: There exist holomorphic forms {wλ}λ∈D of

type (a) and associated operators {Wλ}λ∈D of type (B) such that for λ ∈ [0, 1],Wλ are
self-adjoint and non-negative. Define

Aλ
ε := Aλ + εWλ, λ ∈ D, ε ≥ 0

with respective associated forms wλ and aλ
ε . Then we assume that D(wλ) ∩ D(a) are

dense for all λ ∈ D and the inclusion (D(wλ) ∩ D(a), ‖·‖aλ
ε
) → (H, ‖·‖) is compact

for some λ ∈ D and all ε > 0.
We define the projections as above and therefore do not repeat the definition again.

However, we do define the functions � and �ε again3 as their ranges are now different.
Now fix ε∗ > 0, and define the function

� : [0, 1] × [0, ε∗] → (closed bounded subsets of (−∞, 1), dH )

�(λ, ε) = (−∞, 1) ∩ sp(Mλ
ε )

and for fixed ε > 0 and n ∈ N the function

�ε : [0, 1] × N → (closed bounded subsets of (−∞, 1), dH )

�ε(λ, n) = (−∞, 1) ∩ sp(M̃λ
ε,n).

Theorem 3′. In the semi-bounded case the mappings �(·, ·) and �ε(·, n) are also con-
tinuous in their arguments, and as n → ∞,�ε(λ, n) → �(λ, ε) uniformly in λ ∈ [0, 1].

In the subsequent sections we will prove Theorem 3′ before proving Theorem 3 in
Sect. 5.

3 Despite the slight abuse of notation, we do not alter the names � and �ε,n .
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Remark 5. As in Remark 4, here too the spectrum in (−∞, 1) is discrete (with no ac-
cumulation points) so that there is no topological ambiguity when stating that a set is
“closed”. Note that as the operatorsMλ

ε are semi-bounded the sets in question are indeed
bounded. Hence, when restricted to these sets, the Hausdorff distance defines a metric.

Thus an immediate corollary of both theorems, by the Heine-Cantor theorem, is that
the two maps �(·, ·) and �ε(·, n) are in fact uniformly continuous.

1.3. Discussion. One of the main driving forces behind the study of linear operators in
the 20th century was the development of quantum mechanics. Particular attention had
been given to the characterisation of the spectra of such operators, as it encodes many
important physical properties (such as energy levels, for instance). When operators
become too complex, a typical approach is to view them as perturbations of simpler
operators whose spectrum is well understood. Two of the classic texts on this topic are
those written by Kato [8] and Reed and Simon [12]. Both are still widely cited to this
day. We also refer to Simon’s review paper [15] and the references therein.

Recently, Hansen [6] presented new techniques for approximating spectra of linear
operators (self-adjoint and non-self-adjoint) from a more computational point of view.
In [16], Strauss presents a new method for approximating eigenvalues and eigenvectors
of self-adjoint operators via an algorithm that is itself self-adjoint, and which does not
produce spectral pollution. Both papers provide extensive references to additional liter-
ature in the field. We also mention [9], where analysis similar to ours is performed for
bounded operators. We note that spectral pollution (the appearance of spurious eigenval-
ues within gaps in the essential spectrum when approximating) has attracted significant
attention [4,10,11]. We do not encounter this issue here because of how the problem is
set up: the trial spaces are (and therefore commute with) the spectral projectors of the
block diagonal parts of the unperturbed operator, see e.g. [11] for more discussion of
this topic.

The question that we are motivated by is somewhat different. We are interested in
the simultaneous approximation of families of operators, rather than approximating a
single fixed linear operator. This may be viewed as perturbation theory with two parame-
ters: the continuous parameter λ representing small continuous perturbations generating
the family of operators, and the discrete parameter n representing the dimension of the
finite-dimensional approximation. One of the important aspects of this theory is that
the finite-dimensional approximations approximate the entire family of operators uni-
formly in λ. Previously, in [1, Proposition 2.5] a much weaker result of this type was
obtained, where the resolvent set of Schrödinger operators with a compact resolvent
was shown to be stable under similar perturbations. We also mention [3,5,7] where the
convergence of the so-calledHill’s method (or Fourier-Floquet-Hill) is studied. This is a
numerically-oriented method for studying spectra of periodic differential operators (not
necessarily self-adjoint) and involves the truncation of the associated Fourier series. We
refer in particular to [7] for an instance where this method is also applied to a family of
operators.

There are two substantial difficulties in proving our results. If the spectrumofAλ were
discrete for some λ (and therefore for all λ) we would have a natural way to construct
approximations by projecting onto increasing subspaces associated to the eigenvalues
of Mλ. However we do not require the spectrum to be discrete, and, indeed, in the
type of problems we have in mind it is not. This necessitates the introduction of yet
another perturbation parameter, ε, related to the compactification of the resolvent. The
other difficulty is in ensuring that the finite-dimensional approximations approximate
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the whole family of operators uniformly in λ. To this end, the compactness assumption
(iv) plays a crucial role.

Wemake several remarks on Theorem 3 and Theorem 3′ and the assumptions (i)–(v):

Remark 6. The compactness requirements (iv) on P are motivated by (1.1). If A has a
compact resolvent (e.g. when acting in L2(Td)⊕ L2(Td)whereTd is the d-dimensional
torus) we may take P to be the identity. Otherwise (e.g. for L2(Rd) ⊕ L2(Rd)) if the
perturbations Kλ are compactly supported in the sense that

⋃
λ∈[0,1],u∈H

supp(Kλu) ⊂ K (1.6)

where K = K+ × K− ⊂ R
d × R

d is compact, then we may take P± as multiplications
by the indicator functions of the sets K±. Indeed, we first note that (1.6) implies that
for all λ, Kλ = PKλ. Then as Kλ and P are symmetric, we deduce that Kλ = (Kλ)∗ =
(Kλ)∗P∗ = KλP as required. That P is relatively compact with respect to −� follows
from Rellich’s theorem. We also remark that this choice of P is in fact the natural
inclusion map from L2 to L2(K ).

Remark 7. Care must be taken regarding the spaces we view operators as acting on. If
we view Mλ

ε,n = Gλ
ε,nMλ

εGλ
ε,n : H → H then 0 will always be a spurious eigenvalue

with infinite multiplicity. To remove this unwanted eigenvalue we must instead consider
M̃λ

ε,n : Hλ
ε,n → Hλ

ε,n where Hλ
ε,n = Gλ

ε,n(H) is the n-dimensional space corresponding
to the eigenprojection Gλ

ε,n .

Remark 8. Property (ii) implies that there existsα(λ) > 0 such that (−α(λ)−1, 1+α(λ))

is in the resolvent set of Aλ. Since the spectrum is continuous in λ ∈ [0, 1] this implies
that there is a uniform constant α > 0 such that (−α − 1, 1 + α) is in the resolvent set
of Aλ for all λ ∈ [0, 1].
Remark 9. We finally remark that the construction of a compactifying operator W in
general is not easy. We have in mind an application to a case where this is applied to
−� and then it is simple: any unbounded potential will do.

This paper is organised as follows. In Sect. 2 we present some results related to
general properties (such as self-adjointness, equivalence of norms, etc.) of the various
operators. In Sect. 3 we construct the finite-dimensional approximations to our family
of operators, which are used in Sect. 4 to prove Theorem 3′. In Sect. 5 these results are
extended to families of operators which are not positive, proving Theorem 3. Finally, in
Sect. 6 we give a brief description of an application of these results related to plasma
instabilities, which is the subject of [2], where one can find the full details.

2. Preliminary Results

We remind the reader that in this section, as well as in Sects. 3 and 4 we treat the
semi-bounded case (Theorem 3′).

Considering the definition (1.4) and the subsequent specifications of the properties
of the various operators and associated forms, we have the following results.
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Lemma 10. The formsmλ have the same domains as the forms aλ, and are independent
of λ. For any λ ∈ [0, 1], Mλ is self-adjoint and has the same essential spectrum and
domain as Aλ. In particular its spectrum inside (−∞, 1] is discrete.
Proof. The equalityD(mλ) = D(aλ) holds sinceKλ is bounded for each λ. The fact that
the domains are independent of λ was assumed above in the sectoriality assumption (i).
Self-adjointness follows from the Kato-Rellich theorem, due to Aλ being self-adjoint
for λ ∈ [0, 1] and the symmetry assumption (iii) on Kλ. The essential spectrum result
follows from Weyl’s theorem as Kλ = KλP is relatively compact with respect to Aλ

(for any λ) because P is. ��
Next, we turn our attention to the map λ �→ Mλ. Intuitively, one would expect Mλ

to have continuity properties similar to those of Kλ and therefore be merely continuous
in the strong resolvent sense. In fact, due to the relative compactness assumption on P
we have more:

Proposition 11. The family {Mλ}λ∈[0,1] is norm resolvent continuous.

Proof. Fix some λ ∈ [0, 1] and let [0, 1]  λn → λ as n → ∞. It is sufficient to prove
∥∥∥(Mλn + i)−1 − (Mλ + i)−1

∥∥∥
B(H)

→ 0 as n → ∞.

Using the triangle inequality we have
∥∥∥(Mλn + i)−1 − (Mλ + i)−1

∥∥∥
B(H)

≤
∥∥∥(Mλn + i)−1 − (Aλn +Kλ + i)−1

∥∥∥
B(H)

+
∥∥∥(Aλn +Kλ + i)−1 − (Mλ + i)−1

∥∥∥
B(H)

.

By observing that {Aσ + Kλ}σ∈D is also a holomorphic family of type (B) we deduce
that the second term tends to zero as n → ∞. For the first term we follow the method
used to deduce the second Neumann series (see [8, II-(1.13)])

(Aλn +Kλn + i)−1 = (Aλn +Kλ + i)−1(1 + (Kλn − Kλ)(Aλn +Kλ + i)−1)−1

which is valid whenever
∥∥(Kλn − Kλ)(Aλn +Kλ + i)−1

∥∥
B(H)

< 1. By the norm resol-
vent continuity of operator inversion and again using the norm resolvent continuity of
the family {Aσ +Kλ}σ∈[0,1], it is sufficient to show that

∥∥∥(Kλn − Kλ)(Aλ +Kλ + i)−1
∥∥∥
B(H)

→ 0 as n → ∞. (2.1)

We observe that Aλ +Kλ is self-adjoint with the same domain as Aλ by Lemma 10, so
P is also relatively compact with respect to Aλ +Kλ. By assumption (iv) we have

(Kλn − Kλ)(Aλ +Kλ + i)−1 = (Kλn − Kλ)P(Aλ +Kλ + i)−1.

This is a composition of a strongly convergent sequence of operators and the compact
operator P(Aλ +Kλ + i)−1. The compactness converts the strong convergence to norm
convergence and proves (2.1). ��



622 J. Ben-Artzi, T. Holding

3. Constructing Approximations

We first treat approximations of operators with discrete spectra, which are naturally
defined via a sequence of increasing projection operators. For brevity, we call these
approximations n-approximations (“n” refers to the dimension of the projection). Then,
our strategywhen treating operators with a continuous spectrum is to first “perturb” them
by adding a family of unbounded operators (think of adding an unbounded potential to
a Laplacian) depending upon a small parameter ε. For each ε > 0 these perturbations
are assumed to eliminate any continuous spectrum, so that then we may apply an n-
approximation. We therefore call these (ε, n)-approximations. We start with a standard
result for which we could not find a good reference and we therefore state and prove it
here.

Lemma 12. Let H be a Hilbert space and let Tn
s.r.−→ T as n → ∞ with Tn, T self-

adjoint operators on H. Let Kn
s−→ K as n → ∞ with Kn,K bounded self-adjoint

operators on H. Then Tn +Kn and T +K are self-adjoint in H and Tn +Kn
s.r.−→ T +K.

Proof. The self-adjointness follows from theKato-Rellich theorem. For the convergence
it is sufficient to prove that (Tn +Kn +αi)−1 s−→ (T +K+αi)−1 for some real α �= 0. As
theKn are strongly convergent, by the uniform boundedness principle they are uniformly
bounded in operator norm by some M ≥ ‖K‖B(H). Letting α = 2M , and using the
second Neumann series,

(Tn +Kn + αi)−1 = (Tn + αi)−1(1 +Kn(Tn + αi)−1)−1

= (Tn + αi)−1
∞∑
k=0

(−1)k(Kn(Tn + αi)−1)k

is convergent uniformly in n as
∥∥Kn(Tn + αi)−1

∥∥
B(H)

≤ M/α = 1/2 < 1. As n → ∞
each term of the series converges strongly to the corresponding term of the series for
(T + K + αi)−1 and as the series convergences uniformly in n we may swap the order
of summation and take strong limits. ��

3.1. Operators with discrete spectra. In this paragraph we assume thatAλ has discrete
spectrum and compact resolvent for some λ (and, in fact, for all λ, asAλ is a holomorphic
family of type (B)4). We exploit a property of self-adjoint holomorphic families [8, VII
Theorem 3.9 and VII Remark 4.22]: all eigenvalues of Aλ can be represented by func-
tions which are holomorphic on [0, 1]. That is, there exists a sequence of scalar-valued
functions {μλ

k }k∈N which are all holomorphic functions of λ ∈ [0, 1] that represents all
the repeated eigenvalues ofAλ. Moreover, there exists a sequence of vector-valued func-
tions {eλ

k }k∈N which are all also holomorphic functions of λ ∈ [0, 1] such that for every
λ ∈ [0, 1], {eλ

k }k∈N form a complete orthonormal family of corresponding eigenvectors.
An immediate consequence is that the unitary operator defined by

Uλ
σ : H → H

eσ
k �→ eλ

k for any k ∈ N

4 See property (i) in Sect. 1.2 for a precise definition.
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is jointly holomorphic in λ, σ ∈ [0, 1], i.e. possesses a locally convergent power series
in the two variables λ, σ . We now define the n-truncation operator by

Gλ
n : H → H

eλ
k �→

{
eλ
k if k ≤ n,

0 if k > n.

Since the eigenfunctions form a complete orthonormal set we have the convergence
Gλ
n

s−→ 1 as n → ∞ for fixed λ. Additionally by expressing Gλ
n = Uλ

σGσ
n Uσ

λ for some

fixed σ ∈ [0, 1] we see that Gλ
n

s−→ 1 as n → ∞. Moreover, for any sequence λn → λ

we have Gλn
n

s−→ 1 as n → ∞. For notational convenience we define Gλ∞ = 1 for all
λ ∈ [0, 1].

We now define the finite-dimensional approximations of Aλ and Mλ by

Aλ
n = Gλ

nAλGλ
n and Mλ

n = Gλ
nMλGλ

n , (3.1)

respectively. It is too much to hope for convergence Mλ
n

n.r.−−→ Mλ as n → ∞, but we

can hope for Mλ
n

s.r.−→ Mλ. Indeed:

Lemma 13. For any sequence λn → λ ∈ [0, 1] as n → ∞, we have the convergence

Mλn
n

s.r.−→ Mλ.

Proof. By the stability of strong resolvent continuity with respect to bounded strongly
continuous perturbations (see Lemma 12), it is sufficient to prove that Aλn

n
s.r.−→ Aλ

as n → ∞ and that Gλn
n KλnGλn

n
s−→ Kλ. The latter is true as it is the composition of

strong convergences of bounded operators. For the former it is sufficient to show that
(Aλn

n + i)−1 s−→ (Aλ + i)−1 as n → ∞. Splitting this term as

(Aλn
n + i)−1 = Gλn

n (Aλn
n + i)−1Gλn

n + (1 − Gλn
n )(Aλn

n + i)−1(1 − Gλn
n ),

(where we have used the fact that Gλn
n is a spectral projection which commutes with

(Aλn
n + i)−1), we see that the second term converges strongly to zero since (Aλn

n + i)−1

is uniformly bounded and since Gλn
n

s−→ 1. For the first term on the right hand side, note
that

Gλn
n (Aλn

n + i)−1Gλn
n = Gλn

n (Aλn + i)−1Gλn
n

which converges strongly to (Aλ + i)−1 by the composition of strong convergences. ��

3.2. Operators with continuous spectra. We are now ready to turn to the general case
of families {Aλ}λ∈[0,1] that may have continuous spectra. Such operators require (ε, n)-
approximations. The ε-approximations Aλ

ε of Aλ were defined in (1.3) and the corre-
sponding approximations Mλ

ε were defined in (1.5).

Lemma 14. 1. Forany ε > 0, {Aλ
ε }λ∈D is a holomorphic family of type (B)with compact

resolvent.
2. For any λ ∈ [0, 1], ε ≥ 0, Aλ

ε is self-adjoint and we have Aλ
ε ≥ Aλ ≥ 1 + α, where

α was defined in Remark 8.
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Proof. The second claim is obvious since Wλ ≥ 0. For the first we must show that
aλ
ε is sectorial and that its domain D(aλ

ε ) is independent of λ and dense in H, and that
for any fixed u ∈ D(aλ

ε ) the function aλ
ε [u] is holomorphic in λ ∈ D. For any λ ∈ D,

aλ
ε is the sum of the sectorial forms aλ and εwλ so by [8, VI§1.6-Theorem 1.33] it

is closed and sectorial with domain D(a) ∩ D(wλ), which is independent of λ since
both Aλ and Wλ are holomorphic families of type (B). Furthermore, we assumed that
D(a) ∩ D(wλ) is dense in H. For any fixed u ∈ D(aλ

ε ), a
λ
ε [u] = aλ[u] + εwλ[u] is the

sum of two holomorphic functions of λ ∈ D, so aλ
ε [u] is also holomorphic in D. Finally

by the assumption that the inclusion (D(aλ
ε ), ‖·‖aλ

ε
) ↪→ H is compact we deduce that

the resolvent of Aλ
ε is compact. ��

For each ε > 0 the operator Aλ
ε has a discrete spectrum, and therefore the n-

approximations of Aλ
ε and Mλ

ε may be defined analogously to (3.1) via the projection
operators

Gλ
ε,n : H → H

eλ
ε,k �→

{
eλ
ε,k if k ≤ n,

0 if k > n,

(where {eλ
ε,k}k∈N are normalised eigenfunctions of Aλ

ε ) as

Aλ
ε,n = Gλ

ε,nAλ
εGλ

ε,n and Mλ
ε,n = Gλ

ε,nMλ
εGλ

ε,n .

We know by Lemma 13 that the family {Aλ
ε,n}λ∈[0,1],n∈N is continuous in the strong

resolvent sense. In addition, we have:

Lemma 15. The family {Aλ
ε }λ∈[0,1],ε∈[0,∞) is continuous in the strong resolvent sense.

Proof. By the equivalence of strong and weak convergence of the resolvent for self-
adjoint operators [13, VIII, Problem 20(a)] it is sufficient to prove that (Aλ

ε + 1)−1 is
weakly continuous jointly in λ and ε. Without loss of generality we restrict to ε ∈ [0, 1]
the general case being no harder. LetU ⊆ D be an open set containing the interval [0, 1]
such that for λ ∈ U , Re aλ ≥ 1 and Rewλ ≥ −1. Then, for λ ∈ U and ε ∈ [0, 1] the
forms aλ

ε are closed and sectorial, with Re aλ
ε ≥ 0. Hence the associated operators have

the resolvent bound
∥∥(Aλ

ε + ζ )−1
∥∥
B(H)

≤ 1/Re ζ for Re ζ > 0. In particular,

sup
ε∈[0,1],λ∈U

∥∥∥(Aλ
ε + 1)−1

∥∥∥
B(H)

≤ 1. (3.2)

Now fix u, v ∈ H, let εn → ε∞ ∈ [0,∞) and define the sequence of holomorphic
functions fn : U → C by

fn(λ) =
〈
(Aλ

εn
+ 1)−1u − (Aλ

ε∞ + 1)−1u, v
〉

with f∞ = 0. To prove the joint weak continuity of the resolvent it is clearly sufficient
to show that fn → 0 uniformly over λ ∈ [0, 1]. The case ε∞ > 0 is straightforward
so we assume that ε∞ = 0. Without loss of generality we may assume that εn �= 0 for
all n. We will use a simple corollary of Montel’s theorem (see e.g. [14, Theorem 14.6])
that states that a sequence of holomorphic functions that is uniformly bounded on an
open setU ⊆ C and converges pointwise inU converges uniformly on any compact set
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K ⊂ U . The uniform boundedness of fn follows from (3.2) above. Thus it suffices to
show that fn → 0 pointwise. To this end we will establish pointwise convergence of the
corresponding forms aλ

εn
. Indeed,

∀λ ∈ D, w ∈ D(aλ
εn

), aλ
εn

[w] − aλ[w] = εnw
λ[w] → 0 as n → ∞.

For n ∈ N the forms have common form domain D(a) ∩ D(w), which is a form core
for aλ, and the sequence of form differences aλ

εn
− aλ is uniformly sectorial. Thus due

to [8, VIII.§3.2-Theorem 3.6] Aλ
εn

s.r.−→ Aλ as n → ∞, which implies the pointwise
convergence fn → 0 and completes the proof. ��
Corollary 16. The family {Mλ

ε }λ∈[0,1],ε∈[0,∞) is continuous in the strong resolvent sense.

Proof. This follows from the stability of strong resolvent continuity with respect to
bounded strongly continuous perturbations. ��

4. Proof of Theorem 3′

We split the proof into first proving upper and lower semi-continuity of �(·, ·) and
of �ε(·, n). Informally, we recall that upper-semicontinuity of spectra means that the
spectrum cannot expand when perturbed, while lower-semicontinuity means that the
spectrum cannot shrink when perturbed. Then, the uniform convergence in λ ∈ [0, 1] of
�ε(λ, n) → �(λ, ε) as n → ∞ is addressed.

Proof of Theorem 3′. (1) Lower semi-continuity. The lower semi-continuity of spec-
tra under strong resolvent convergence of self-adjoint operators is standard (e.g. [8,
VIII.§1.2-Theorem 1.14.]). As {Mλ

ε }λ∈[0,1],ε∈[0,∞) is continuous in the strong resolvent
sense (Corollary 16) we have that � is lower semi-continuous.

Now let us consider �ε. For fixed n, �ε(·, n) is associated to a finite dimensional
operator and hence is clearly lower semi-continuous (and, in fact, continuous). However,
let us also consider what happens as n varies. This requires some caution due to the
spurious eigenvalue of Mλ

ε,n at 0 for n < ∞ (see Remark 7 for further discussion).
We instead consider the operator M̂λ

ε,n := Mλ
ε,n + M(1 − Gλ

ε,n) : H → H where
M > 1 is arbitrary (note that M̂λ

ε,∞ = Mλ
ε,∞). This moves the spurious eigenvalue to

M �∈ (−∞, 1]. By Lemma 13, along any sequence λn → λ ∈ [0, 1] as n → ∞ we
haveMλn

ε,n
s.r.−→ Mλ

ε as n → ∞. Thanks to the stability of strong resolvent convergence

with respect to strongly continuous bounded perturbations we also have M̂λn
ε,n

s.r.−→ Mλ
ε .

Moreover, the spectra of M̂λ
ε,n and M̃λ

ε,n agree in (−∞, 1] as M > 1.We have therefore
established that given any δ > 0 there exists N > 0 such that for all n > N any point
in �(λ, ε) is within δ of a point in �ε(λn, n).

(2) Upper semi-continuity follows from Proposition 17 below. Moreover, it follows
from Proposition 17 that given any δ > 0 there exists N > 0 such that for all n > N
any point in �ε(λn, n) is within δ of a point in �(λ, ε).

(3) Note that from (1) and (2) it follows that �ε(λn, n) → �(λ, ε) for any sequence
λn that converges to λ as n → ∞.

(4) The uniform convergence of �ε(·, n) → �(·, ε) as n → ∞ follows from (3)
combined with the fact that [0, 1] is compact. Indeed, by contradiction, if uniform
convergence didn’t hold, then there would exist a δ > 0 such that for every N there
would exist n > N such that dH (�ε(λn, n),�(λn, ε)) > δ for some λn ∈ [0, 1].



626 J. Ben-Artzi, T. Holding

By compactness there exists a subsequence (we abuse notation and keep the index n)
along which λn → λ∞ ∈ [0, 1]. As �(·, ε) is continuous, for all sufficiently large
n we must have dH (�(λn, ε),�(λ∞, ε)) < δ/2. Therefore, it must also hold that
dH (�ε(λn, n),�(λ∞, ε)) > δ/2 for infinitely many n’s. However, this is a contra-
diction to (3). ��
The missing ingredient in the above proof is:

Proposition 17. Let σn → σ as n → ∞ with σn, σ ∈ (−∞, 1] and λn → λ as n → ∞
with λn, λ ∈ [0, 1]. Then the following hold.

1. Let εn → ε ≥ 0 as n → ∞, and {un}∞n=1 be a sequence with ‖un‖ = 1, un ∈
D(Mλ

εn
) andMλn

εn un = σnun. Then {un}∞n=1 has a subsequence strongly converging
to some u �= 0, which satisfies Mλ

εu = σu.
2. Let ε > 0 be fixed, and {un}∞n=1 be a sequence with ‖un‖ = 1, Gλn

ε,nun = un and

Mλn
ε,nun = σnun. Then {un}∞n=1 has a subsequence strongly converging to some

u �= 0, which satisfies Mλ
εu = σu.

Proof. As the proof of the first claim is slightly simpler and otherwise the same, we only
give the proof for the second claim, leaving the first to the reader. Each un solves the
equation

Gλn
ε,nAλn

ε Gλn
ε,nun − σnun + Gλn

ε,nKλnGλn
ε,nun = 0.

The requirement that un = Gλn
ε,nun and the fact that Gλn

ε,n commutes withAλn
ε means that

this is equivalent to
Aλn

ε un = σnun − Gλn
ε,nKλn un . (4.1)

Taking the inner product with un we estimate,

a0[un] ≤ Caλn [un] ≤ Caλn
εn

[un] ≤ Cσn ‖un‖2 + C sup
λ∈[0,1]

∥∥Kλ
∥∥
B(H)

‖un‖2 ≤ C ′

(4.2)
where C is independent of n and comes from the relative form boundedness of the
holomorphic family {Aλ}λ∈D (see [8, VII-§4.2]) and the supremum is finite by the
uniform boundedness principle as {Kλ}λ∈[0,1] is strongly continuous. Hence for all n we
have

∥∥|A0|1/2un
∥∥2 ≤ C ′, where |A0|1/2 is the square root of the positive self-adjoint

operatorA0. By assumption, P is relatively compact with respect toA0, and hence also
to |A0|1/2. Indeed, the inverse of |A0|1/2 can be expressed using the functional calculus
(see [8, V-§3.11-Equation 3.43]) of the self-adjoint operator A0 as

|A0|−1/2 = 1

π

∫ ∞

0
ζ−1/2(A0 + ζ )−1 dζ

where the integral is absolutely convergent in operator norm due to the bound∥∥(A0 + ζ )−1
∥∥
B(H)

≤ (1 + ζ )−1 for ζ ≥ 0. By composing both sides of this equa-

tion on the left with P and moving P inside the integral (which is possible as P is
bounded and the integral converges absolutely in norm) we deduce that P|A0|−1/2 is
given by an absolutely norm convergent integral of compact operators, and is hence
compact.

Thus we may pass to a subsequence (though we retain the subscript n) for which

Pun → v ∈ H.
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Then by rewriting (4.1) and using Kλ = KλP for all λ ∈ [0, 1] we have

un = −(Aλn
ε − σn)

−1Gλn
ε,nKλnPun (4.3)

where the resolvent exists by the assumption that Aλ ≥ 1 + α for all λ ∈ [0, 1]. As
remarked before Gλ

ε,n
s−→ 1 uniformly in λ ∈ [0, 1] so that Gλn

ε,n
s−→ 1 as n → ∞.

Therefore by the composition of strong convergences

un → −(Aλ
ε − σ)−1Kλv := u

as n → ∞. Then as un is strongly convergent, necessarily v = Pu and the assertion of
the proposition follows. ��

5. Non-Positive Operators: Proof of Theorem 3

We define the ε-approximations of Aλ± as before in terms of a pair of holomorphic
families Wλ± with the same assumptions. The eigenprojections of Aλ

ε are then denoted
by Gλ±,ε,n and we define

Gλ
ε,n =

[
Gλ
+,ε,n 0
0 Gλ−,ε,n

]

and
Aλ

ε,n = Gλ
ε,nAλ

εGλ
ε,n

Mλ
ε,n = Gλ

ε,nMλ
εGλ

ε,n .

All the preceding proofs of continuity can be adapted to this case. Indeed, Proposition 11
holds without modification, while Lemma 13 and Lemma 15 can be extended by using
the identity ([

T+ 0
0 T−

]
+ i

)−1

=
[
(T+ + i)−1 0

0 (T− + i)−1

]

and the stability of norm (resp. strong) continuity to symmetric bounded norm (reps.
strongly) continuous perturbations. With these continuity results, the proof of lower
semi-continuity of � and �ε can be easily adapted. The compactness result Proposition
17 that establishes the upper semi-continuity needs a little more modification. Recall
that the discrete region of the spectrum is the gap (−α−1, 1+α) rather than the half-line
(−∞, 1 + α). We restate the compactness result below.

Proposition 18. Let σn → σ as n → ∞ with σn, σ ∈ [−1, 1] and λn → λ as n → ∞
with λn, λ ∈ [0, 1]. Then the following hold.

1. Let εn → ε ≥ 0 as n → ∞, and {un}∞n=1 be a sequence with ‖un‖ = 1, un ∈
D(Mλ

εn
) andMλn

εn un = σnun. Then {un}∞n=1 has a subsequence strongly converging
to some u �= 0, which satisfies Mλ

εu = σu.
2. Let ε > 0 be fixed, and {un}∞n=1 be a sequence with ‖un‖ = 1, Gλn

ε un = un and

Mλn
ε,nun = σnun. Then {un}∞n=1 has a subsequence strongly converging to some

u �= 0, which satisfies Mλ
εu = σu.
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Proof (sketched). We need only change (4.2) to the two estimates

a0±[u±
k ] ≤ C±aλk± [u±

k ] ≤ C±aλk±,εk
[u±

k ]
≤ C±|σk |

∥∥u±
k

∥∥2 + C± sup
λ∈[0,1]

∥∥Kλ
∥∥
B(H)

‖uk‖2 ≤ C ′

obtained by taking the inner product of (4.1) with u±
k where uk = (u+k , u

−
k ) ∈ H+ ×H−,

from which the relative compactness of Puk follows as before, and lastly note that
Aλ± ≥ 1 + α implies that the resolvent (Aλk

εk − σk)
−1 exists in (4.3). ��

This proves Theorem 3.

6. An Application: Plasma Instabilities

The discussion in this section is informal. As stability analysis typically relies on a
detailed understanding of the spectrum of the linearised problem, most results in this
direction require delicate spectral analysis. However, an outstanding open problem has
been stability analysis of plasmas that do not possess special symmetries (such as pe-
riodicity or monotonicity5) due to the more complicated structure of the spectrum. A
significant obstacle has been the existence of an essential spectrum extending to both
±∞. Let us briefly outline the problem, which is treated in detail in [2].

Plasmas are typically modelled by the relativistic Vlasov-Maxwell system: Letting
f = f (t, x, v) be a probability density function measuring the density of electrons that
at time t ≥ 0 are located at the point x ∈ R

d , have momentum v ∈ R
d and velocity

v̂ = v/
√
1 + |v|2, the (relativistic) Vlasov equation

∂ f

∂t
+ v̂ · ∇x f + F · ∇v f = 0 (6.1)

is a transport equation describing their evolution due to theLorentz forceF = −E−v̂×B.
Here we have taken the mass of the electrons and the speed of light to be 1 for simplicity.
The fields E = E(t, x) and B = B(t, x) are the (self-consistent) electric and magnetic
fields, respectively. They satisfy Maxwell’s equations (written here for their respective
potentials φ and A, satisfying E = −∇φ − ∂tA and B = ∇ × A in the Lorenz gauge
∂tφ + ∇ · A = 0): {

(−� + ∂2t )A − j = 0,

(� − ∂2t )φ + ρ = 0,
(6.2)

where ρ = ρ(t, x) = − ∫
f dv is the charge density and j = j(t, x) = − ∫

v̂ f dv is
the current density (negative signs are due to the electrons charge). Linearising (6.1) we
obtain

∂ f

∂t
+ v̂ · ∇x f + F0 · ∇v f = −F · ∇v f

0, (6.3)

where f 0 and F0 are the equilibrium density and force field, respectively, and f and F
are their first order perturbations. Maxwell’s equations do not require linearisation as
they are already linear. We seek solutions to (6.2)–(6.3) that grow exponentially in time.

5 Monotonicity, roughly speaking, means that there are fewer particles at higher energies. For a precise
definition see e.g. [1].
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Therefore, substituting into (6.3) the ansatz that all time-dependent quantities behave
like eλt with λ > 0, we get

λ f + v̂ · ∇x f + F0 · ∇v f = −F · ∇v f
0.

An inversion of this equation leaves us with the integral expression

f = −(λ + (v̂,F0) · ∇x,v)
−1(F · ∇v f

0) (6.4)

which depends uponλ as a parameter. By substituting the expression (6.4) intoMaxwell’s
equations (6.2), f is eliminated as an unknown, and the only unknowns left are φ andA.
Note that an immediate benefit is that the problem now only involves the spatial variable
x , and not the full phase-space variables x, v.

We are therefore left with the task of showing that Maxwell’s equations are satisfied
with the parameter λ > 0. Gauss’ equation, for instance, becomes

(� − λ2)φ = −ρ =
∫

f dv = −
∫

(λ + (v̂,F0) · ∇x,v)
−1(F · ∇v f

0) dv

which is an equation of the form

(� − λ2)φ +Kλ−−φ +Kλ−+A = 0, (6.5)

where, for instance,

Kλ−−φ =
∫

(λ + (v̂,F0) · ∇x,v)
−1(∇φ · ∇v f

0) dv,

Kλ−+A =
∫

(λ + (v̂,F0) · ∇x,v)
−1((v̂ × (∇ × A)) · ∇v f

0) dv.

The rest of Maxwell’s equations can be written as

(−� + λ2)A +Kλ
+−φ +Kλ

++A = 0. (6.6)

(we omit the precise form of these operators here). The system (6.5)–(6.6) for φ and A
turns out to be self-adjoint and is precisely of the form (1.1). Exhibiting linear instability,
i.e. the existence of a growing mode with rate λ > 0, is equivalent to solving this system
for some λ > 0. The operator in this system has the form

Mλ = Aλ +Kλ =
[−� + λ2 0

0 � − λ2

]
+

[
Kλ

++ Kλ
+−

Kλ−+ Kλ−−

]
, λ > 0.

Hence now one would like to show that for some λ > 0, the operator Mλ has a
nontrivial kernel. As this operator is self-adjoint for all λ > 0, its spectrum lies on the
real line. We use this fact to “track” the spectrum as λ varies from 0 to +∞ and find an
eigenvalue that crosses through 0. By adding to Aλ the operator

W =
[
1 + x2 0
0 −1 − x2

]

and defining
Mλ

ε = Aλ + εW +Kλ, λ > 0, ε > 0
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we obtain a family of operators with a compact resolvent. This family enjoys the prop-
erties that we studied in this paper. For instance, natural candidates for the projection
operators P± are multiplications by the indicator functions (in the appropriate spaces)
onto the (compact) support of the steady-state around which we linearise.

Let us describe the method for finding a nontrivial kernel in a nutshell. It is shown
that there exist 0 < λ∗ < λ∗ < ∞ (independent of n and ε) for which the corresponding
approximate operatorsMλ∗

ε,n andMλ∗
ε,n have a different number of negative (and positive)

eigenvalues, and therefore due to the continuous dependence of the spectrum (as a set) on
the parameter λ there must exist λ∗ < λn < λ∗ for whichMλn

ε,n has a nontrivial kernel.
Since λn is a bounded sequence, one can extract a convergent subsequence converging,
say, to some λ∞ ∈ [λ∗, λ∗]. Theorem 3 is then invoked to show that one can also take
the two limits n → ∞ and ε → 0 to conclude that Mλ∞ has a nontrivial kernel. We
refer to [2] for full details.
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