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Abstract: We study the fluctuations of random surfaces on a two-dimensional discrete
torus. The random surfaces we consider are defined via a nearest-neighbor pair potential,
which we require to be twice continuously differentiable on a (possibly infinite) interval
and infinity outside of this interval. No convexity assumption is made and we include the
case of the so-called hammock potential, when the random surface is uniformly chosen
from the set of all surfaces satisfying a Lipschitz constraint. Our main result is that these
surfaces delocalize, having fluctuations whose variance is at least of order log n, where n
is the side length of the torus. We also show that the expected maximum of such surfaces
is of order at least log n. Themain tool in our analysis is an adaptation to the lattice setting
of an algorithm of Richthammer, who developed a variant of a Mermin–Wagner-type
argument applicable to hard-core constraints. We rely also on the reflection positivity of
the random surface model. The result answers a question mentioned by Brascamp et al.
on the hammock potential and a question of Velenik.

1. Introduction

In this paper we study the fluctuations of random surface models in two dimensions. We
consider the following family of models. Denote by T

2
n the two-dimensional discrete

torus in which the vertex set is {−n + 1,−n + 2, . . . , n − 1, n}2 and (a, b) is adjacent to
(c, d) if (a, b) and (c, d) are equal in one coordinate and differ by exactly one modulo
2n in the other coordinate. Let U be a potential, i.e, a measurable function U : R →
(−∞,∞] satisfying U (x) = U (−x). The random surface model with potential U ,
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normalized at the vertex 0 := (0, 0), is the probability measure μT2
n ,0,U on functions

ϕ : V (T2
n) → R defined by

dμT2
n ,0,U (ϕ) := 1

ZT2
n ,0,U

exp

(
−

∑
(v,w)∈E(T2

n)

U (ϕv − ϕw)

)
δ0(dϕ0)

∏
v∈V (T2

n)\{0}
dϕv,

(1.1)
where the vertices and edges of T2

n are denoted by V (T2
n) and E(T2

n) respectively, dϕv

denotes Lebesgue measure on ϕv , δ0 is a Dirac delta measure at 0 and ZT2
n ,0,U is a

normalization constant. For this definition to make sense the potentialU needs to satisfy
additional requirements. It suffices, for instance (see Lemma 3.1 for additional details),
that

inf
x
U (x) > −∞ and 0 <

∫
exp(−U (x))dx < ∞. (1.2)

Suppose ϕ is sampled from the measure μT2
n ,0,U . The expectation of ϕ is zero at all

vertices by symmetry.How large are the fluctuations ofϕ around zero?Let us focus on the
variance of ϕ at the vertex (n, n). It is expected that this variance is of order log n under
mild conditions on U . This has been shown when the potential U is twice continuously
differentiable with U ′′ bounded away from zero and infinity, and certain extensions
of this class, as discussed in the survey paper [31, Remarks 6 and 7]. Specifically, a
lower bound of order log n has been established by Brascamp et al. [5] whenU is twice
continuously differentiable,∫

exp(−αU (x))dx < +∞, ∀α > 0, lim|x |→∞(|x | + |U ′(x)|) exp(−U (x)) = 0,

and either of the following holds:

(1) supx U
′′(x) < ∞ or

(2) supx |U ′(x)| < ∞ or
(3) U is convex and

∫
U ′(x)2 exp(−U (x))dx < ∞.

The class of potentials covered by their result can be further extended by taking suitable
limits, as indicated in [5]. In addition, using arguments of Ioffe et al. [15] it is possible
to derive qualitatively correct lower bounds for the variance for a class of, possibly
discontinuous, potentials satisfying

‖U − Ũ‖∞ < ε

for a small enough ε > 0 and some twice continuously differentiable Ũ satisfying
supx Ũ

′′(x) < ∞.
The case of the hammock potential, when U (x) = 0 for |x | ≤ 1 and U (x) = ∞ for

|x | > 1, is explicitly mentioned as open in [5] and [31, Open Problem 2]. In this paper
we prove a lower bound of order log n on the variance for a wide class of potentials,
which includes the hammock potential. A sample from the random surface measure with
the hammock potential is depicted in Fig. 1, both in 2 and 3 dimensions.

We say thatU ∈ C2(I ) for an interval I ⊆ R ifU is twice continuously differentiable
on I . We consider the class of potentials U satisfying the following condition:

Either U ∈ C2(R) or U ∈ C2((−K , K )) for some 0 < K < ∞ and

U (x) = ∞ when |x | > K . (1.3)
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Fig. 1. Samples of the random surface measure with the hammock potential, i.e., samples of a uniformly
chosen Lipschitz function taking real values, which differ by at most one between adjacent vertices. The left
picture shows a sample on the 100× 100 square and the right picture shows the middle slice (at height 50) of
a sample on the 100× 100× 100 cube, both conditioned to have all boundary values in the [− 1

2 , 1
2 ] interval.

Sampled using coupling from the past [28]

This class includes the hammock potential aswell as “doublewell” potentials, oscillating
potentials with finite support (that is, infinity outside of a bounded interval) and all
smooth examples. In the case that U ∈ C2((−K , K )) we allow the possibility of a
discontinuity at the endpoints −K and K . The following theorem is the main result of
this paper. Besides proving a lower bound on the variance at the vertex (n, n) we also
obtain estimates for other vertices, for small ball and large deviation probabilities and
for the maximum of the random surface.

Theorem 1.1. Let U : R → (−∞,∞] satisfy U (x) = U (−x) and conditions (1.2) and
(1.3). Let n ≥ 2 and let ϕ be randomly sampled from μT2

n ,0,U . There exist constants

C(U ), c(U ) > 0, depending only on U, such that for any v ∈ V (T2
n) with ‖v‖1 ≥

(log n)2 we have

Var(ϕv) ≥ c(U ) log(1 + ‖v‖1),
P(|ϕv| ≤ δ

√
log(1 + ‖v‖1)) ≤ C(U )δ2/3, δ ≥ 1√

log(1 + ‖v‖1)
,

P(|ϕv| ≥ c(U )t
√
log(1 + ‖v‖1)) ≥ c(U )e−C(u)t2 , 1 ≤ t ≤ 1 +

√‖v‖1
1 + log n

.

In addition,

P

(
max

v∈V (T2
n)

|ϕv| ≥ c(U ) log n

)
≥ 1

2
.

We remark that condition (1.2) is mainly required in this theorem for the probability
measure (1.1) to make sense. One may replace it by other conditions of a similar nature.
Additional remarks may be found following Theorem 4.1 below.
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Our results can be viewed in a broader context of Mermin–Wagner-type arguments.
Such arguments show, roughly, that continuous translational symmetry cannot be broken
in one- or two-dimensional systems. For lattice models with compact spin spaces this
implies that spins are uniformly distributed in the infinite volume limit. For latticemodels
with non-compact spin spaces, such as the random surface models we consider, such
arguments prove delocalization and consequently non-existence of infinite volumeGibbs
measures. We present now a non-exhaustive list of papers studying these phenomena.
Such arguments were pioneered byMermin andWagner [18], who worked in a quantum
context and relied on the so called Bogoliubov inequalities. These techniques were later
extended and transferred to a classical context—see e.g. Hohenberg [14] and Brascamp
et al. [5]. New techniques were developed by Dobrushin and Shlosman [6,7], McBryan
and Spencer [17] and Fröhlich and Pfister [9,26]. The methods in all of the above
papers require the potential to satisfy certain smoothness assumptions. Ioffe et al. [15]
and Gagnebin and Velenik [12] presented extensions to some classes of non-smooth
potentials. These works left open the case of potentials taking infinite values and a
solution to this problem came from Richthammer [29], who studied Gibbsian point
processes in R

2. Our approach follows closely his elaborate technique introduced for
proving that all Gibbs states of such point process models are translation invariant,
even in the presence of hard-core constraints, as in the hard sphere model. The main
ingredient in Richthammer’s approach is an algorithm designed for perturbing a given
configuration in a prescribed manner while preserving the hard-core constraints. Our
proof adapts this algorithm from the continuum to the graph setting and from the point
process to the random surface context. The resulting adaptation is presented in some
detail in Sect. 2 and we hope that it will be useful in other contexts as well.

1.1. Overview of the proof. In order to illustrate our proof we first explain how to
establish a lower bound on fluctuations in the simpler case that the potential U satisfies
that

U is twice continuously differentiable on R and sup
x

U ′′(x) < ∞, (1.4)

in addition to the condition (1.2). The methods of this section are similar to the one of
[26]. We then provide details on the modification of this method, following the approach
of Richthammer, which we use for potentials satisfying condition (1.3).

1.1.1. Delocalization argument for potentials with bounded second derivative. Suppose
the potential U satisfies (1.4) and the condition (1.2). Let n ≥ 1 and let ϕ be randomly
sampled from μT2

n ,0,U . We will show that

Var(ϕ(n,n)) ≥ c(U ) log n (1.5)

for some c(U ) > 0.
Write

g(ψ) := 1

ZT2
n ,0,U

exp

(
−

∑
(v,w)∈E(T2

n)

U (ψv − ψw)

)

for the density of the measure μT2
n ,0,U at the configuration ψ . Define a function

τ : V (T2
n) → [0,∞) by

τ(v) := log(1 + ‖v‖1)√
log(2n + 1)

, (1.6)



Delocalization of Two-Dimensional Random Surfaces with Hard-Core Constraints 5

where ‖(v1, v2)‖1 := |v1| + |v2|. It is not difficult to check that
∑

(v,w)∈E(T2
n)

|τ(v) − τ(w)|2 ≤ C (1.7)

for some absolute constant C > 0. For a configuration ψ : V (T2
n) → R define the two

shifted configurations
ψ+ := ψ + τ, ψ− := ψ − τ. (1.8)

A Taylor expansion of U , the assumption (1.4) and (1.7) imply that
√
g(ψ+)g(ψ−)

= 1

ZT2
m ,0,U

exp

(
− 1

2

∑
(u,w)∈E(T2

n)

[U (ψv − ψw + τ(v) − τ(w))

+U (ψv − ψw − τ(v) + τ(w))]
)

≥ 1

ZT2
n ,0,U

exp

(
−

∑
(v,w)∈E(T2

n)

U (ψv − ψw)

− sup
x

U ′′(x)
∑

(v,w)∈E(T2
n)

(τ (v) − τ(w))2
)

≥ c(U )g(ψ), (1.9)

for some c(U ) > 0.
We wish to convert the inequality (1.9) into an inequality of probabilities rather than

densities. To this end, define

Ea := {ψ : V (T2
n) → R : |ψ(n,n)| ≤ a}, a > 0,

dλ(ψ) := δ0(dψ0)
∏

v∈V (T2
n)\{0}

dψv.

Let a > 0 and define

I :=
∫
Ea

√
g(ψ+)g(ψ−)dλ(ψ).

On the one hand, by (1.9),

I ≥ c(U )

∫
Ea

g(ψ)dλ(ψ) = c(U )P(|ϕ(n,n)| ≤ a). (1.10)

On the other hand, the Cauchy–Schwarz inequality and a change of variables using (1.8)
and the fact that τ(0) = 0 yields

I ≤
(∫

Ea

g(ψ+)dλ(ψ)

∫
Ea

g(ψ−)dλ(ψ)

) 1
2

= (P(|ψ(n,n) − τ((n, n))| ≤ a)P(|ψ(n,n) + τ((n, n))| ≤ a)
) 1
2 . (1.11)
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Putting together (1.10) and (1.11) and recalling (1.6) we obtain

(
P(|ϕ(n,n) −√log(2n + 1)| ≤ a)P(|ϕ(n,n) +

√
log(2n + 1)| ≤ a)

) 1
2

≥ c(U )P(|ϕ(n,n)| ≤ a). (1.12)

Using the symmetry of the distribution of ϕ, the arithmetic-geometric mean inequality
and taking a := 1

3

√
log(2n + 1) in the last inequality, we conclude

1

2
P

(
|ϕ(n,n)| ≥ 2

3

√
log(2n + 1)

)

= 1

2

[
P

(
ϕ(n,n) ≥ 2

3

√
log(2n + 1)

)
+ P

(
ϕ(n,n) ≤ −2

3

√
log(2n + 1)

)]

≥
[
P

(
ϕ(n,n) ≥ 2

3

√
log(2n + 1)

)
P

(
ϕ(n,n) ≤ −2

3

√
log(2n + 1)

)]1/2

≥
[
P

(
|ϕ(n,n) −√log(2n + 1)| ≤ 1

3

√
log(2n + 1)

)

× P

(
|ϕ(n,n) +

√
log(2n + 1)| ≤ 1

3

√
log(2n + 1)

)]1/2

≥ c(U )P

(
|ϕ(n,n)| ≤ 1

3

√
log(2n + 1)

)
,

from which we conclude Eϕ2
(n,n) ≥ c′(U ) log n for some c′(U ) > 0. The inequality

(1.5) follows as Eϕ(n,n) = 0 by symmetry.

1.1.2. Modification of the argument for potentials satisfying (1.3). For simplicity,
assume the potential U satisfies U ∈ C2([−1, 1]) and U (x) = ∞ when |x | > 1,
as more general potentials satisfying (1.3) may be treated by similar arguments. Let
us say that a configuration ψ : V (T2

n) → R is Lipschitz if |ψv − ψw| ≤ 1 whenever
(v,w) ∈ E(T2

n). The measure μT2
n ,0,U is supported on Lipschitz configurations (satis-

fyingψ(0) = 0) under our assumption onU . The fundamental difficulty in applying the
previous argument to this case is that it may happen that although ψ is a Lipschitz con-
figuration, one of the configurations ψ+ or ψ− defined by (1.8) may fail to be, in which
case the inequality (1.9) will not be satisfied. The solution we use for this problem is to
replace the configurations ψ+ and ψ− in the previous argument by T +(ψ) and T−(ψ),
where T +, T− : RV (T2

n) → R
V (T2

n) are certain mappings, termed addition algorithms in
our paper, which sharemany of the properties of the operations of adding and subtracting
τ while preserving the class of Lipschitz configurations. The definitions and properties
of T + and T− are adapted from the work of Richthammer [29], who showed that all
Gibbs states of point process models in R

2 with hard-core constraints, such as the hard
spheremodel, are translation invariant. Our adaptation translates Richthammer’s notions
from the continuum to the graph setting and from the point process to the random surface
context. The main properties of T + and T− are detailed in Sect. 2.1. We highlight the
possibility of defining these mappings for general graphs and general addition functions
τ , as we believe these extensions to be useful in other contexts and as they are captured
with the same definitions and proofs.
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The mappings T + and T− are defined to satisfy T−(ψ) := 2ψ − T +(ψ), just as in
the definitions of ψ+ and ψ− in (1.8). It thus suffices to define T +(ψ). Let us remark
briefly on this definition for a Lipschitz configuration ψ . Roughly speaking, a certain
ψ-dependent ordering on the vertices of the graph is chosen. Then, for each vertex v in
this order, an amount between 0 and τ(v) is added toψv in such a way that the Lipschitz
property is maintained with respect to the previously treated vertices in the chosen order.
The amount added at vertex v is chosen to vary continuously with the value ψv , in such
a way that the resulting operation is invertible.

Two difficulties arise when replacing ψ+ and ψ− by T +(ψ) and T−(ψ) in the argu-
ment of Sect. 1.1.1. First, the change of variables used in inequality (1.11) relied on
the fact that the mappings ψ → ψ + τ and ψ → ψ − τ preserve Lebesgue mea-
sure. When making a change of variables from T +(ψ) and T−(ψ) to ψ , a Jacobian
factor enters, which needs to be estimated. Second, the argument uses the fact that
ψ+

(n,n) and ψ−
(n,n) differ significantly from ψ(n,n), by the amount

√
log(2n + 1). Thus

we also need to show that the difference of T +(ψ)(n,n) and T−(ψ)(n,n) from ψ(n,n) is
close to

√
log(2n + 1), at least for most configurations ψ . It turns out that both these

difficulties may be overcome if we can control the following percolation-like process.
We say an edge e = (v,w) ∈ E(T2

n) has extremal slope for the configuration ψ if
|ψv − ψw| ≥ 1− ε, for some small ε > 0 fixed in advance. Sampling ϕ randomly from
the measure μT2

n ,0,U , we denote by E(ϕ) the random subgraph of T2
n consisting of all

edges with extremal slope for ϕ. Both difficulties described above may be overcome by
showing that with high probability, the subgraph E(ϕ) is “subcritical” in the sense that
its connected components are small. Proving this turns out to be a non-trivial task, which
requires us to make use of reflection positivity techniques, specifically, the chessboard
estimate. We remark that here (and only here) we rely essentially on the fact that T2

n is
a torus (i.e., has periodic boundary) and that the measure μT2

n ,0,U is normalized at the
single vertex 0. Analogous estimates were also required in Richthammer’s work [29] but
were provided by the underlying Poisson process structure of the problem considered
there, via so-called Ruelle bounds.

1.1.3. Reader’s guide. In Sect. 2 we describe the mappings T + and T− mentioned
in the previous section. The section begins by listing the main properties of T + and
T−, continues with a precise definition of T + and proceeds to prove that the required
properties of T + indeedholdwith this definition. InSect. 3wediscuss reflection positivity
for random surface models and prove, via the chessboard estimate, that the subgraph of
edges with extremal slopes mentioned in the previous section is “subcritical” with high
probability. Sections 2 and 3 address disjoint aspects of the problem and may be read
independently. In Sect. 4 we prove our main theorem, Theorem 1.1, under alternative
assumptions, by modifying the argument presented in Sect. 1.1.1 to make use of the
mappings T + and T− and extending it to provide information also on small ball and
large deviation probabilities and on the maximum of the random surface. In the short
Sect. 5 we use the results of Sect. 3 to reduce Theorem 1.1 to the case discussed in
Sect. 4. Section 6 contains a discussion of future research directions and open questions.

2. The Addition Algorithm and its Properties

In this section we define the addition algorithm T + which forms a core part of our proof.
The algorithm is an adaptation to the graph setting of an algorithm of Richthammer [29]
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used in a continuum setting. Our presentation adapts the proofs in [29] but emphasizes
the applicability of the algorithm to general graphs and general addition functions τ .

2.1. Properties of the addition algorithm. Herewedescribe the properties of the addition
algorithm which will be used by our application. The algorithm itself is defined in the
next section and the fact that it satisfies the stated properties is verified in the subsequent
sections.

Let G = (V, E) be a finite, connected graph. We sometimes write v ∼ w to denote
that (v,w) ∈ E . Let τ : V → [0,∞) and 0 < ε ≤ 1

2 be given. We define a pair of
measurable mappings T +, T− : RV → R

V related by the equality

T +(ϕ) − ϕ = ϕ − T−(ϕ), ϕ ∈ R
V , (2.1)

and satisfying the following properties:

(1) T + and T− are one-to-one and onto.
(2) For every ϕ ∈ R

V and every v ∈ V ,

0 ≤ T +(ϕ)v − ϕv = ϕv − T−(ϕ)v ≤ τ(v). (2.2)

(3) For every ϕ ∈ R
V and every (v,w) ∈ E ,

if |ϕv − ϕw| ≥ 1 then T +(ϕ)v − T +(ϕ)w = T−(ϕ)v − T−(ϕ)w = ϕv − ϕw,

and if |ϕv−ϕw| < 1 then |T +(ϕ)v − T +(ϕ)w| < 1 and |T−(ϕ)v − T−(ϕ)w| < 1.

The properties stated so far do not exclude the possibility that T + is the identity mapping
[implying the same for T− by (2.1)]. The next property shows that T +(ϕ)−ϕ is close to
τ under certain restrictions on the set of edges on which ϕ changes by more than 1− ε.
We require a few definitions.

Let dG stand for the graph distance in G. The next two definitions concern the
Lipschitz properties of τ .

τ ′(v, k) := max{τ(v) − τ(w) : w ∈ V, dG(v,w) ≤ k}, (2.3)

L(τ, ε) := max
{
k : ∀v ∈ V, τ ′(v, k) ≤ ε

2

}
− 1. (2.4)

In the following definitionswe consider the connectivity properties of the subset of edges
on which ϕ changes by more than 1 − ε. For ϕ ∈ R

V define

E(ϕ) := {(v,w) ∈ E : |ϕv − ϕw| ≥ 1 − ε} (2.5)

and write, for a pair of vertices v,w ∈ V ,

v
E(ϕ)←−→ w if v is connected to w by edges of E(ϕ), (2.6)

where we mean in particular v
E(ϕ)←−→ v for all v ∈ V . Let

r(ϕ, v) := max{dG(v,w) : w ∈ V, v
E(ϕ)←−→ w}, (2.7)

M(ϕ) := max{dG(v,w) : v,w ∈ V, v
E(ϕ)←−→ w}.
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(4) If ϕ satisfies M(ϕ) ≤ L(τ, ε) then

∀v ∈ V, T +(ϕ)v − ϕv = ϕv − T−(ϕ)v ≥ τ(v) − ε

2
.

Together with property (2) above this shows that T +(ϕ) − ϕ and ϕ − T−(ϕ) are
approximately equal to τ when M(ϕ) ≤ L(τ, ε). A slightly stronger property is given
in Proposition 2.7 below.

Our final property regards the change of measure induced by the mappings T + and
T−.We bound the Jacobians of thesemappingswhen the subgraph E(ϕ) does not contain
many large connected components.

Partition the vertex set V into V0 and V1 by letting

V0 := {v ∈ V : τ(v) = 0} and V1 := V \V0. (2.8)

Given a function θ : V0 → R we write

dμθ(ϕ) :=
∏
v∈V1

dϕv

∏
v∈V0

δθv (dϕv) (2.9)

for the measure on R
V given by product Lebesgue measure on the subspace where

ϕv = θv , v ∈ V0.

(5) There are measurable functions J+ : RV → [0,∞) and J− : RV → [0,∞) satisfy-
ing that for every θ : V0 → R and every g : RV → [0,∞), integrable with respect
to dμθ ,∫

g(T +(ϕ))J+(ϕ)dμθ(ϕ) =
∫

g(T−(ϕ))J−(ϕ)dμθ(ϕ) =
∫

g(ϕ)dμθ(ϕ).

(2.10)
Moreover, if ϕ satisfies M(ϕ) ≤ L(τ, ε) then

√
J+(ϕ)J−(ϕ) ≥ exp

(
− 1

ε2

∑
v∈V

τ ′ (v, 1 + max
w∼v

r(ϕ,w)
)2)

.

2.2. Description of the addition algorithm. In this section we define the mapping T +

whose properties were discussed in the previous section.
Let the graph G = (V, E), function τ and constant ε be as above. Fix an arbitrary

total order � on the vertex set V . Define a Lipschitz “bump” function f : R → R by

f (x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x ∈ (−∞,−1]
1+x
ε

x ∈ [−1,−1 + ε]
1 x ∈ [−1 + ε, 1 − ε]
1−x

ε
x ∈ [1 − ε, 1]

0 x ∈ [1,∞).

(2.11)

We also define a family of shifted and rescaled versions of f . For a vertex v ∈ V and
h, t ∈ R let

mv,h,t (h
′) :=

{
min
(
τ(v) − t, ε

2

)
f (h′ − h) + t, if τ(v) ≥ t

t, if τ(v) < t
. (2.12)
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One should have in mind the case τ(v) ≥ t and think of mv,h,t as being the same as
f , scaled and shifted to have maximum τ(v), minimum t and to have its “center” at h.
However, if the function just described has Lipschitz constant more than 1/2, we lower
its maximum so that its Lipschitz constant becomes 1/2. For easy reference we record
this as

the function mv,h,t has Lipschitz constant at most
1

2
. (2.13)

The case τ(v) < t is not used in the definition of T + below. It is included here as
it is technically convenient in the analysis to have mv,h,t defined for all values of the
parameters.

The definition of T + is based on the following algorithm. The algorithm takes as
input a function ϕ ∈ R

V . It outputs three sequences indexed by 1 ≤ k ≤ |V |:
(1) A sequence (Pk) which is a ordering of the vertices V , that is, {Pk} = V .
(2) A sequence (sk) ⊆ [0,∞) with sk representing the amount to add to ϕ at vertex Pk .
(3) A sequence (τk) of functions, τk : V ×R → R, which will play a role in analyzing

the Jacobian of the mapping T +.

The mapping T + is then defined by

T +(ϕ) := ϕ̃ with ϕ̃Pk := ϕPk + sk, 1 ≤ k ≤ |V |. (2.14)

Addition algorithm
Initialization. Set τ1(v, h) := τ(v) for all v ∈ V and h ∈ R.
Loop. For k between 1 and |V | do:
(1) Set Pk to be the vertex v in V \{P1, . . . , Pk−1} which minimizes τk(v, ϕv). If there

are multiple vertices achieving the same minimum let Pk be the smallest one with
respect to the total order �.

(2) Set sk := τk(Pk, ϕPk ).
(3) If k < |V | set, for each v ∈ V and h ∈ R,

τk+1(v, h) :=
{

τk(v, h) if v ∈ {P1, . . . , Pk} or v �∼ Pk
min(τk(v, h),mv,ϕPk ,sk (h)) if v /∈ {P1, . . . , Pk} and v ∼ Pk .

(2.15)

In the next sections we verify that the mapping T + defined by (2.14) satisfies the
properties declared in Sect. 2.1. An illustration of the action of the addition algorithm is
provided in Table 1.

2.3. Increments and Lipschitz property. In this section we verify properties (2) and (3)
from Sect. 2.1 for T +. Property (2) is an immediate consequence of the definition (2.14)
of T + combined with (2.17) below.

Lemma 2.1. For any ϕ ∈ R
V we have

τ(v) ≡ τ1(v, ·) ≥ τ2(v, ·) ≥ · · · ≥ τ|V |(v, ·) ≥ 0, v ∈ V, (2.16)

sk ∈ [0, τ (Pk)], 1 ≤ k ≤ |V |, (2.17)

s1 ≤ s2 ≤ · · · ≤ s|V |. (2.18)
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Proof. Observe that, by (2.12), we have

mv,h,t ≥ t. (2.19)

We shall prove by induction that

sk ≥ 0 for all 1 ≤ k ≤ |V |. (2.20)

Assume that for some 1 ≤ k ≤ |V | we have
s j ≥ 0 for all 1 ≤ j < k. (2.21)

Recall that the function τ is non-negative. It follows from (2.19), (2.21) and the initial-
ization and step (3) of the addition algorithm that

τ(v) ≡ τ1(v, ·) ≥ τ2(v, ·) ≥ · · · ≥ τk(v, ·) ≥ 0, v ∈ V . (2.22)

In particular, sk = τk(Pk, ϕPk ) ≥ 0. Thus, (2.21) remains true when k is replaced by
k + 1. We conclude that (2.20) holds.

It now follows, in the same way that (2.22) was deduced from (2.21), that (2.16) is
valid. Now (2.17) is verified upon recalling that sk = τk(Pk, ϕPk ). It remains to verify
(2.18). Let 1 ≤ k < |V |. Our choice of the point Pk in step (1) of the addition algorithm
ensures that

sk = τk(Pk, ϕPk ) ≤ τk(Pk+1, ϕPk+1). (2.23)

In addition, it follows from (2.19) that

sk ≤ mPk+1,ϕPk ,sk (h) for all h ∈ R.

Thus (2.15) implies that

sk+1 = τk+1(Pk+1, ϕPk+1) ≥ sk .

As k is arbitrary, this establishes (2.18). ��
In the next lemma we investigate the gradient of T +(ϕ), establishing property (3)

from Sect. 2.1 for T +.

Lemma 2.2. For any ϕ ∈ R
V and any edge (v,w) ∈ E,

if |ϕv − ϕw| ≥ 1 then T +(ϕ)v − T +(ϕ)w = ϕv − ϕw, (2.24)

if |ϕv − ϕw| < 1 then |T +(ϕ)v − T +(ϕ)w| < 1. (2.25)

Proof. Fix an edge (v,w) ∈ E . Assume without loss of generality that v = Pk and
w = P
 for some 1 ≤ k < 
 ≤ |V |. Observe that, by step (3) of the addition algorithm,

s
 = τ
(w, ϕw) ≤ mw,ϕv,sk (ϕw). (2.26)

Now assume that |ϕv − ϕw| ≥ 1. Then, by the definition (2.12) of m, we have that

mw,ϕv,sk (ϕw) = sk .

Combining the last two inequalities with (2.18) shows that s
 = sk . The equality (2.24)
now follows from (2.14). Assume now that |ϕv − ϕw| < 1. On the one hand, by (2.18),

T +(ϕ)v − T +(ϕ)w = ϕv − ϕw + sk − s
 ≤ ϕv − ϕw < 1.
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On the other hand, by (2.26) and the definition (2.12) of m,

T +(ϕ)v − T +(ϕ)w = ϕv − ϕw + sk − s
 ≥ ϕv − ϕw + sk − mw,ϕv,sk (ϕw)

= ϕv − ϕw + mw,ϕv,sk (ϕv+1)−mw,ϕv,sk (ϕw).

Therefore, by (2.13) and our assumption that |ϕv − ϕw| < 1,

T +(ϕ)v − T +(ϕ)w ≥ ϕv − ϕw − 1

2
(ϕv + 1 − ϕw) = −1 +

1

2
(ϕv + 1 − ϕw) > −1.

Hence |T +(ϕ)v − T +(ϕ)w| < 1, establishing (2.25). ��

2.4. Bijectivity. In this section we define an inverse (T +)−1 to the mapping T +, thereby
establishing that T + is one-to-one and onto as claimed in property (1) from Sect. 2.1.

The definition of (T +)−1 uses the same graph G = (V, E), function τ , constant ε,
total order � on V and family of functions mv,h,t as the definition of T +. It is based
on the following algorithm which takes as input a function ϕ̃ ∈ R

V and outputs four
sequences indexed by 1 ≤ k ≤ |V |:
(1) A sequence (P̃k) which is a ordering of the vertices V , that is, {P̃k} = V .
(2) A sequence (s̃k) ⊆ [0,∞) with s̃k representing the amount to subtract from ϕ̃ at

vertex P̃k .
(3) Two auxiliary sequences of functions, τ̃k : V × R → R and D̃k : V × R → R.

The mapping (T +)−1 : RV → R
V is then defined by

(T +)−1(ϕ̃) := ϕ with ϕP̃k
:= ϕ̃P̃k

− s̃k, 1 ≤ k ≤ |V |. (2.27)

Inverse addition algorithm
Initialization. Set τ̃1(v, h) := τ(v) for all v ∈ V and h ∈ R.
Loop. For k between 1 and |V | do:
(1) For each v ∈ V , define D̃k(v, ·) to be the inverse of the mapping h → h + τ̃k(v, h),

which exists by Lemma 2.3 below.
(2) Set P̃k to be the vertex v in V \{P̃1, . . . , P̃k−1} which minimizes τ̃k(v, D̃k(v, ϕ̃v)).

If there are multiple vertices achieving the same minimum let P̃k be the smallest
one with respect to the total order �.

(3) Set s̃k := τ̃k(P̃k, D̃k(P̃k, ϕ̃P̃k
)).

(4) If k < |V | set, for each v ∈ V and h ∈ R,

τ̃k+1(v, h) :=
{
τ̃k(v, h) if v ∈ {P̃1, . . . , P̃k} or v �∼ P̃k
min(τ̃k(v, h),mv,ϕ̃P̃k

−s̃k ,s̃k (h)) if v /∈{P̃1, . . . , P̃k} and v ∼ P̃k
.

(2.28)

Lemma 2.3. For any ϕ̃ ∈ R
V , any v ∈ V and any 1 ≤ k ≤ |V | the function h →

h + τ̃k(v, h) is continuous and strictly increasing from R onto R. Consequently D̃k(v, ·)
is well-defined on R, is also continuous and strictly increasing and we have

D̃k(v, h + τ̃k(v, h)) = h, h ∈ R,

D̃k(v, h̃) + τ̃k(v, D̃k(v, h̃)) = h̃, h̃ ∈ R.



Delocalization of Two-Dimensional Random Surfaces with Hard-Core Constraints 15

Proof. Fix ϕ̃ ∈ R
V and v ∈ V . We prove the lemma by induction. Let 1 ≤ 
 ≤ |V |,

suppose the algorithm is well-defined and the lemma holds for all 1 ≤ k < 
 and let us
prove the assertions of the lemma for k = 
. Observe that τ̃
(v, ·) is obtained by taking
the minimum of τ(v) and the function mv,h,t (·) with various values of h and t . Thus,
since mv,h,t (·) has Lipschitz constant at most 1

2 by (2.13), it follows that τ̃
(v, ·) has
Lipschitz constant at most 12 . Thus h → h+ τ̃
(v, h) is continuous and strictly increasing
from R onto R. The remaining assertions of the lemma are immediate consequences. ��
We claim that (T +)−1 is indeed the inverse of T +, that is, that

For any ϕ ∈ R
V , (T +)−1(T +(ϕ)) = ϕ and (2.29)

for any ϕ̃ ∈ R
V , T +((T +)−1(ϕ̃)) = ϕ̃. (2.30)

These assertions are proved in the next two sections.

2.4.1. Injectivity. In this section we prove (2.29), showing that T + is one-to-one.
Fix ϕ ∈ R

V . Let {Pk}, {sk}, {τk}, {P̃k}, {s̃k}, {τ̃k}, {D̃k}, 1 ≤ k ≤ |V |, be the
sequences generated when calculating T +(ϕ) and when calculating (T +)−1(ϕ̃) with
ϕ̃ := T +(ϕ). By (2.14) and (2.27) it suffices to show that

P̃k = Pk, s̃k = sk, τ̃k = τk, 1 ≤ k ≤ |V |.
We prove this claim by induction. We have τ̃1 = τ1 by the initialization steps of the
algorithms. Fix 1 ≤ k ≤ |V | and assume that

P̃j = Pj , s̃ j = s j for 1 ≤ j < k and τ̃ j = τ j for 1 ≤ j ≤ k. (2.31)

We need to show that

P̃k = Pk, s̃k = sk and, if k < |V |, τ̃k+1 = τk+1. (2.32)

Denote

�v := τk(v, ϕv) and �̃v := τ̃k(v, D̃k(v, ϕ̃v)).

These sequences need not be equal. However, they satisfy certain relations as the fol-
lowing lemma clarifies.

Lemma 2.4. We have �̃Pk = �Pk and �̃v ≥ �̃Pk for all v ∈ V \{P̃1, . . . , P̃k−1}. In
addition, for each v ∈ V \{P̃1, . . . , P̃k−1} for which �̃v = �̃Pk we have �v = �Pk .

Comparing the definitions of Pk, sk and τk+1 with those of P̃k, s̃k and τ̃k+1 and using
(2.31) and (2.14) we deduce from the lemma that (2.32) holds, completing the inductive
proof.

Proof of Lemma 2.4. Let us first show that �̃Pk = �Pk . By (2.14) and (2.31),

ϕ̃Pk = ϕPk + sk = ϕPk + τk(Pk, ϕPk ) = ϕPk + τ̃k(Pk, ϕPk ).

Thus D̃k(Pk, ϕ̃Pk ) = ϕPk and hence, using (2.31) again,

�̃Pk = τ̃k(Pk, D̃k(Pk, ϕ̃Pk )) = τk(Pk, ϕPk ) = �Pk .
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Now fix some v ∈ V \{P̃1, . . . , P̃k−1} and let us show that �̃v ≥ �̃Pk = �Pk . By
(2.31), v ∈ V \{P1, . . . , Pk−1} so that v = Pm for some m ≥ k. Hence we may write

ϕ̃v = ϕv + sm . (2.33)

By (2.16) we have

�v = τk(v, ϕv) ≥ τm(v, ϕv) = sm .

Thus, using (2.31) again,

ϕv + τ̃k(v, ϕv) = ϕv + τk(v, ϕv) = ϕv + �v ≥ ϕv + sm = ϕ̃v.

Hence, since D̃k(v, ·) is increasing by Lemma 2.3, we conclude that

D̃k(v, ϕ̃v) ≤ ϕv. (2.34)

Consequently, by (2.33) and Lemma 2.3,

ϕv + sm = ϕ̃v = D̃k(v, ϕ̃v) + τ̃k(v, D̃k(v, ϕ̃v)) = D̃k(v, ϕ̃v) + �̃v ≤ ϕv + �̃v. (2.35)

It follows that �̃v ≥ sm , whence, by (2.18),

�̃v ≥ sm ≥ sk = �Pk (2.36)

as we wanted to prove.
Lastly, suppose that equality holds in (2.36). It follows that equality holds also in

(2.35) and hence in (2.34). Thus, using (2.31), �Pk = �̃v = τ̃k(v, D̃k(v, ϕ̃v))) =
τk(v, ϕv) = �v , as required. ��

2.4.2. Surjectivity. In this section we prove (2.30), showing that T + is onto. The proof
is similar to the proof that T + is one-to-one as given in the previous section.

The proof requires the following lemma, an analog of Lemma 2.1 for T +.

Lemma 2.5. For any ϕ̃ ∈ R
V we have

τ(v) ≡ τ̃1(v, ·) ≥ τ̃2(v, ·) ≥ · · · ≥ τ̃|V |(v, ·) ≥ 0, v ∈ V, (2.37)

s̃k ∈ [0, τ (P̃k)], 1 ≤ k ≤ |V |, (2.38)

s̃1 ≤ s̃2 ≤ · · · ≤ s̃|V |. (2.39)

Proof. The proof of (2.37) and (2.38) follows in exactly the same way as the proof of
Lemma 2.1 with (P̃k), (s̃k) and (τ̃k) replacing (Pk), (sk) and (τk).

It remains to prove (2.39). We start by showing that

τ̃k(v, D̃k(v, a)) ≥ b ⇐⇒ τ̃k(v, a − b) ≥ b, v ∈ V, 1 ≤ k ≤ V, a, b ∈ R. (2.40)

To verify this, observe that by Lemma 2.3, τ̃k(v, D̃k(v, a)) ≥ b is equivalent to
D̃k(v, a) ≤ a − b which, by definition of D̃k and Lemma 2.3 [the fact that D̃k(v, ·)
is increasing], is equivalent to a ≤ a − b + τ̃k(v, a − b), as required.

Now let 1 ≤ k < |V |. Our choice of the point P̃k in step (2) of the inverse addition
algorithm ensures that

s̃k = τ̃k(P̃k, D̃k(P̃k, ϕ̃P̃k
)) ≤ τ̃k(P̃k+1, D̃k(P̃k+1, ϕ̃P̃k+1

)).
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We conclude by (2.40) that

s̃k ≤ τ̃k(P̃k+1, ϕ̃P̃k+1
− s̃k). (2.41)

The definition (2.12) of m implies that

s̃k ≤ mP̃k+1,ϕ̃P̃k
−s̃k ,s̃k

(h), for all h ∈ R. (2.42)

Putting together (2.41) and (2.42) and recalling (2.28) yields

s̃k ≤ τ̃k+1(P̃k+1, ϕ̃P̃k+1
− s̃k),

whence, by (2.40) again,

s̃k ≤ τ̃k+1(P̃k+1, D̃k+1(P̃k+1, ϕ̃P̃k+1
)) = s̃k+1.

As k is arbitrary, this establishes (2.39). ��

Fix ϕ̃ ∈ R
V . Let {Pk}, {sk}, {τk}, {P̃k}, {s̃k}, {τ̃k}, {D̃k}, 1 ≤ k ≤ |V |, be the

sequences generated when calculating T +(ϕ) with ϕ := (T +)−1(ϕ̃) and when cal-
culating (T +)−1(ϕ̃). To show that T + is onto it suffices, by (2.14) and (2.27), to show
that

Pk = P̃k, sk = s̃k, τk = τ̃k, 1 ≤ k ≤ |V |.

We prove this claim by induction. We have τ1 = τ̃1 by the initialization steps of the
algorithms. Fix 1 ≤ k ≤ |V | and assume that

Pj = P̃j , s j = s̃ j for 1 ≤ j < k and τ j = τ̃ j for 1 ≤ j ≤ k. (2.43)

We need only show that

Pk = P̃k, sk = s̃k and, if k < |V |, τk+1 = τ̃k+1. (2.44)

Denote

�v := τk(v, ϕv) and �̃v := τ̃k(v, D̃k(v, ϕ̃v)).

As in the previous section, these sequences satisfy certain relations as the following
lemma clarifies.

Lemma 2.6. We have �P̃k
= �̃P̃k

and �v ≥ �P̃k
for all v ∈ V \{P1, . . . , Pk−1}. In

addition, for each v ∈ V \{P1, . . . , Pk−1} for which �v = �P̃k
we have �̃v = �̃P̃k

.

Comparing the definitions of Pk, sk and τk+1 with those of P̃k, s̃k and τ̃k+1 and using
(2.43) and (2.27) we deduce from the lemma that (2.44) holds, completing the inductive
proof.
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Proof of Lemma 2.6. Let us first show that �P̃k
= �̃P̃k

. By (2.27) and Lemma 2.3,

ϕP̃k
= ϕ̃P̃k

− s̃k = ϕ̃P̃k
− τ̃k(P̃k, D̃k(P̃k, ϕ̃P̃k

)) = D̃k(P̃k, ϕ̃P̃k
).

Thus, using (2.43),

�P̃k
= τk(P̃k, ϕP̃k

) = τ̃k(P̃k, D̃k(P̃k, ϕ̃P̃k
)) = �̃P̃k

.

Now fix some v ∈ V \{P1, . . . , Pk−1} and let us show that �v ≥ �P̃k
= �̃P̃k

. By

(2.43), v ∈ V \{P̃1, . . . , P̃k−1} so that v = P̃m for some m ≥ k. Hence we may write,
using Lemma 2.3,

ϕv = ϕ̃v − s̃m = ϕ̃v − τ̃m(v, D̃m(v, ϕ̃v)) = D̃m(v, ϕ̃v). (2.45)

Consequently, by (2.43), (2.37) and (2.39),

�v = τk(v, ϕv) = τ̃k(v, ϕv) ≥ τ̃m(v, ϕv) = τ̃m(v, D̃m(v, ϕ̃v)) = s̃m ≥ s̃k = �̃P̃k
,

(2.46)
as we wanted to show.

Finally, suppose that equality holds in (2.46). Then, in particular, s̃m = τ̃k(v, ϕv),
which, by (2.27), implies that

ϕ̃v = ϕv + τ̃k(v, ϕv).

The definition of D̃k now yields

D̃k(v, ϕ̃v) = ϕv,

from which we conclude that

�̃P̃k
= τ̃k(v, ϕv) = τ̃k(v, D̃k(v, ϕ̃v)) = �̃v,

completing the proof. ��

2.5. The shifts produced by the algorithm. Our goal in this section is to analyze the
shifts produced by the addition algorithm of Sect. 2.2 and to give conditions under
which T +(ϕ)v − ϕv is approximately equal to τ(v). Corollary 2.8 verifies property (4)
from Sect. 2.1 for T +.

Recall from Sect. 2.1 that E(ϕ) is the subgraph of edges on which ϕ changes by at
least 1− ε, that r(ϕ, v) is the radius of the connected component of v in E(ϕ) and M(ϕ)

is the diameter of the largest connected component of E(ϕ). Recall also the definitions
of τ ′(v, k) and L(τ, ε). Depending on the choice of τ and ε the value of L(τ, ε) may be
negative, though our theorems will be meaningful only when this is not the case. The
following is the main proposition of this section.

Proposition 2.7. For any ϕ ∈ R
V satisfying M(ϕ) ≤ L(τ, ε) we have

τ(v) − τ ′(v, r(ϕ, v)) ≤ T +(ϕ)v − ϕv ≤ τ(v) for all v ∈ V .

The definitions of M(ϕ) and L(τ, ε) imply the following corollary.
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Corollary 2.8. For any ϕ ∈ R
V satisfying M(ϕ) ≤ L(τ, ε) we have

τ(v) − ε

2
≤ T +(ϕ)v − ϕv ≤ τ(v) for all v ∈ V .

Proof of Proposition 2.7. Fix ϕ ∈ R
V and let (Pk), (sk) and (τk) be the outputs of the

addition algorithm of Sect. 2.2 when running on the input ϕ. For v ∈ V , let kv stand for
that integer for which v = Pkv and let

σv := T +(ϕ)v − ϕv = skv

be the amount added to ϕv by T +.
The relation σv ≤ τ(v) holds without any assumptions, by Lemma 2.1, proving the

upper bound in Proposition 2.7. Recalling (2.6), define E(ϕ, v) :=
{
w ∈ V : w

E(ϕ)←−→ v

}

for v ∈ V .We say that v is the first vertex visited in E(ϕ, v) if kv ≤ ku for all u ∈ E(ϕ, v).
The lower bound in Proposition 2.7 is a consequence of the following fact: For any v ∈ V ,

σv ≥ τ(v) − τ ′(v, r(ϕ, v)) and if v is the first vertex visited in E(ϕ, v) then σv = τ(v).

(2.47)

We prove (2.47) by induction on kv . Fix v ∈ V . Suppose first that v is the first vertex
visited in E(ϕ, v). If all neighbors u of v have ku > kv (in particular, if kv = 1) then
the definition of the addition algorithm implies that σv = τ(v) and (2.47) follows.
Otherwise, let u be a neighbor of v with ku < kv and note that necessarily u �∈ E(ϕ, v)

by our assumption on v. Now, the induction hypothesis (2.47), definitions (2.3), (2.4)
and (2.7) and our assumption that M(ϕ) ≤ L(τ, ε) yield that

τ(v) − σu ≤ τ(v) − (τ (u) − τ ′(u, r(ϕ, u))) ≤ τ ′(v, r(ϕ, u) + 1)

≤ τ ′(v, M(ϕ) + 1) ≤ τ ′(v, L(τ, ε) + 1) ≤ ε

2
.

This, together with |ϕv − ϕu | < 1 − ε and (2.12), imply that in step (3) of the addition
algorithm,when k = ku , we havemv,ϕu ,σu (ϕv) = τ(v) so that τku+1(v, ϕv) = τku (v, ϕv).
As u is an arbitrary neighbor of v with ku < kv we conclude that σv = τ(v) as required
in (2.47).

Now suppose that v is not the first vertex visited in E(ϕ, v). Let u be the vertex of
E(ϕ, v) with minimal ku . Clearly, ku < kv and by the induction hypothesis (2.47), σu =
τ(u). Thus, Lemma 2.1 and (2.7) yield that σv ≥ σu = τ(u) ≥ τ(v) − τ ′(v, r(ϕ, v)),
finishing the proof of (2.47). ��

2.6. Jacobian definition. In this section we find a formula for the Jacobian of the map-
ping T +. We start with some smoothness properties of the functions used in defining
T +. We write (Pk), (sk) and (τk) for the outputs of the addition algorithm of Sect. 2.2
when running on the input ϕ.

Lemma 2.9. For any ϕ ∈ R
V , 1 ≤ k ≤ |V | and v ∈ V , the function τk(v, ·) is every-

where differentiable from the right and is Lipschitz continuous with Lipschitz constant
at most 1

2 .
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Proof. The function τk(v, ·) is defined by taking a pointwise minimum of the constant
function τ(v) and functions of the form mw,h,t (·) for various values of the parameters
w, h and t . The lemma follows by noting that both τ(v) and mw,h,t (·) are everywhere
differentiable from the right and Lipschitz continuous with Lipschitz constant at most
1
2 [see (2.12) and (2.13)] and these properties are preserved under taking pointwise
minimum [it follows, in fact, that τk(v, ·) is piecewise linear with all slopes of size at
most 1

2 ]. ��
Let J+ : RV → (0,∞)V be defined by

J+(ϕ) :=
|V |∏
k=1

(
1 + ∂2τk(Pk, ϕPk )

)
(2.48)

where the notation ∂2τk(Pk, ϕPk ) stands for the right derivative of τk with respect to
its second variable (which exists by Lemma 2.9), evaluated at (Pk, ϕPk ). Lemma 2.9
ensures also that the factors in the product are positive.

Recall the definition of the partition V0, V1 of V and the measure dμθ from (2.8) and
(2.9).

Lemma 2.10. For any θ : V0 → R and any function g : RV → R integrable with respect
to dμθ the function g(T +(ϕ))J+(ϕ) is integrable with respect to dμθ and

∫
g(T +(ϕ))J+(ϕ)dμθ(ϕ) =

∫
g(ϕ)dμθ(ϕ). (2.49)

We remark that T + is clearly Borel measurable by its definition in Sect. 2.2 and hence
the integrand on the left-hand side of (2.49) is measurable. The rest of the section is
devoted to proving this lemma.

We need the following basic facts about Lipschitz continuous maps. Let d ≥ 1 be
an integer. First, by Rademacher’s theorem a Lipschitz continuous map T : Rd → R

d

is almost everywhere differentiable. Second, the following change of variables formula
holds for any integrable h : Rd → R (see [8, Section 3.3.3]),

∫
h(ϕ)|det(∇T (ϕ))|dϕ =

∫ [ ∑
ϕ∈T−1(ψ)

h(ϕ)

]
dψ, (2.50)

where we have written dϕ for the Lebesgue measure on R
d . Here, as remarked in [8],

T−1(ψ) is at most countable for almost every ψ .
Now, let � stand for the set of bijections σ : {1, . . . , |V |} → V . For each σ ∈ �

define the set
Aσ := {ϕ ∈ R

V : Pk = σ(k) for 1 ≤ k ≤ |V |}. (2.51)

Referring back to the definition of the addition algorithm in Sect. 2.2 we see that each
Aσ is measurable, possibly empty, and R

V = ∪σ∈� Aσ . For each σ ∈ � we define a
version of the addition algorithm in which the points are taken in the order σ . More
precisely, we define an algorithm taking as input a function ϕ ∈ R

V and outputting two
sequences indexed by 1 ≤ k ≤ |V |:
(1) A sequence (sσ

k ) ⊆ [0,∞).
(2) A sequence (τσ

k ) of functions, τσ
k : V × R → R.
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Addition algorithm with order σ

Initialization. Set τσ
1 (v, h) := τ(v) for all v ∈ V and h ∈ R.

Loop. For k between 1 and |V | do:
(1) Set sσ

k := τσ
k (σ (k), ϕσ(k)).

(2) If k < |V | set, for each v ∈ V and h ∈ R,

τσ
k+1(v, h) :=

{
τσ
k (v, h) if v ∈ {σ(1), . . . , σ (k)} or v �∼ σ(k)

min(τσ
k (v, h),mv,ϕσ(k),sσk

(h)) if v /∈ {σ(1), . . . , σ (k)} and v ∼ σ(k).
(2.52)

We then define a mapping T σ : RV → R
V by

T σ (ϕ) := ϕ̃σ with ϕ̃σ
σ(k) := ϕσ(k) + sσ

k , 1 ≤ k ≤ |V |. (2.53)

Comparing the definitions of T + and T σ we conclude that

T +(ϕ) = T σ (ϕ), sk = sσ
k and τk = τσ

k for ϕ ∈ Aσ . (2.54)

Fix a θ : V0 → R and let

X := {ϕ ∈ R
V : ∀v ∈ V0, ϕv = θv}.

Observe that T + maps X bijectively onto X by properties (1) and (2) (see Sect. 2.1) and
the definition of V0. The measure dμθ is supported on X ; identifying X with RV1 in the
natural way it coincides with the Lebesgue measure on X .

By (2.12), the function mv,h,t (h′) is Lipschitz continuous as a function of h, t and
h′, for every fixed v. In addition, the composition and pointwise minimum of Lipschitz
continuous functions is also Lipschitz continuous. It follows that for every v and k, the
function τσ

k (v, h) is Lipschitz continuous as a function of h and ϕ (i.e., as an implicit
function of ϕw for every w ∈ V ). We thus deduce from the definition of sσ

k and (2.53)
that T σ is a Lipschitz continuous map. We also note that T σ maps X into X since

τσ
k (v, ·) ≡ 0 for all v ∈ V0, (2.55)

as follows by induction on k using the fact thatmv,h,t ≥ t by (2.12). Thus we may apply
the formula (2.50) (by identifying X with R

V1 and dμθ with the Lebesgue measure on
R
V1 ) to obtain that

∫
X
h(ϕ)|det(∇V1T

σ (ϕ))|dμθ(ϕ) =
∫
X

[ ∑
ϕ∈(T σ )−1(ψ)

h(ϕ)

]
dμθ(ψ) (2.56)

for every σ ∈ � and h : X → R integrable with respect to dμθ . Here and below, we
denote by ∇WT σ , W ⊆ V , the matrix-valued function

∇WT σ (ϕ) :=
(∂T σ (ϕ)v

∂ϕw

)
v,w∈W .

We continue to find a formula for |det(∇V1T
σ (ϕ))|. We note first that ∇V1T

σ (ϕ) exists
for dμθ -almost every ϕ ∈ X as, by the above discussion, T σ is Lipschitz continuous
from X to X . By construction of T σ , ∇V T σ has a triangular form when its rows and
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columns are sorted in the order of σ . Hence the definition of sσ
k , Eqs. (2.53) and (2.55)

yield that for dμθ -almost every ϕ ∈ X we have

|det(∇V1T
σ (ϕ))| =

∏
1≤k≤|V |
σ(k)∈V1

∣∣1 + ∂2τ
σ
k (σ (k), ϕσ(k))

∣∣ =
|V |∏
k=1

∣∣1 + ∂2τ
σ
k (σ (k), ϕσ(k))

∣∣ .

(2.57)
Now let h : RV → R be a function integrable with respect to dμθ and define

hσ (ϕ) := h(ϕ)1(ϕ∈Aσ ), σ ∈ �.

Putting together (2.48), the fact that J+ ≥ 0, (2.51), (2.54), (2.57) and (2.56) we have

∫
X
h(ϕ)J+(ϕ)dμθ(ϕ) =

∑
σ∈�

∫
X
hσ (ϕ)

|V |∏
k=1

∣∣1 + ∂2τk(Pk, ϕPk )
∣∣ dμθ(ϕ)

=
∑
σ∈�

∫
X
hσ (ϕ)

|V |∏
k=1

∣∣1 + ∂2τ
σ
k (σ (k), ϕσ(k))

∣∣ dμθ(ϕ)

=
∑
σ∈�

∫
X
hσ (ϕ)|det(∇V1T

σ (ϕ))|dμθ(ϕ)

=
∑
σ∈�

∫
X

[ ∑
ϕ∈(T σ )−1(ψ)

hσ (ϕ)

]
dμθ(ψ).

Finally, T + is invertible by Sect. 2.4 and T + = T σ on Aσ by (2.54). Hence T σ restricted
to Aσ is one-to-one. Thus, since hσ (ϕ) = 0 when ϕ /∈ Aσ , we may continue the last
equality to obtain

∫
X
h(ϕ)J+(ϕ)dμθ(ϕ) =

∑
σ∈�

∫
X
hσ ((T +)−1(ψ))dμθ(ψ)=

∫
X
h((T +)−1(ψ))dμθ(ψ).

This equality is obtained for any h : RV → R integrable with respect to dμθ . Letting
g : RV → R be integrable with respect to dμθ , Lemma 2.10 now follows by substituting
h with g(T +(ϕ)). Formally, this is done by using the above equality to approximate
g(T +(ϕ)) with h which are integrable with respect to dμθ .

2.7. Properties of T−. The relation (2.1) defines a mapping T− : RV → R
V by

T−(ϕ) := 2ϕ − T +(ϕ). (2.58)

In this section we establish that T− satisfies similar properties to those proved for T +,
as claimed in Sect. 2.1.
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In this section, to emphasize the dependence on ϕ, we write (Pϕ
k ), (sϕ

k ) and (τ
ϕ
k ) for

the outputs of the addition algorithm of Sect. 2.2 when running on the input ϕ. Putting
together (2.14) and (2.58) we see that

T−(ϕ) = ϕ̃ with ϕ̃Pϕ
k

:= ϕPϕ
k

− sϕ
k , 1 ≤ k ≤ |V |. (2.59)

We claim that, due to the symmetry of the function f of (2.11),

T−(ϕ) = −T +(−ϕ) for all ϕ ∈ R
V . (2.60)

To see this observe first that the symmetry of f and (2.12) imply

mv,−h,t (−h′) = mv,h,t (h
′) for all v ∈ V and h, h′, t ∈ R.

Thus, examining the addition algorithm of Sect. 2.2 we conclude that

P−ϕ
k = Pϕ

k , s−ϕ
k = sϕ

k and τ
−ϕ
k (v,−h) = τ

ϕ
k (v, h)

for all 1 ≤ k ≤ |V |, v ∈ V , h ∈ R and ϕ ∈ R
V . (2.61)

Together with (2.14), this equality implies (2.60).
Now, the fact that T− satisfies properties (1)–(4) in Sect. 2.1 follows immediately

from (2.58), (2.60) and the fact that T + satisfies these properties. We now show that T−
also satisfies (2.10). Define J− : RV → (0,∞)V by

J−(ϕ) :=
|V |∏
k=1

(
1 − ∂2τ

ϕ
k (Pϕ

k , ϕPϕ
k
)
)

, (2.62)

analogously to (2.48). Observe that J−(ϕ) = J+(−ϕ) by (2.58) and (2.61). Recall the
definition of the measure dμθ from (2.9). Using (2.60) and the equality (2.10) for T +

we have for every θ : V0 → R and every g : RV → [0,∞), integrable with respect to
dμθ ,∫

g(T−(ϕ))J−(ϕ)dμθ(ϕ) =
∫

g(−T +(−ϕ))J+(−ϕ)dμθ(ϕ)

=
∫

g(−T +(ϕ))J+(ϕ)dμ−θ (ϕ) =
∫

g(−ϕ)dμ−θ (ϕ)

=
∫

g(ϕ)dμθ(ϕ).

We remark that the symmetry of the function f of (2.11), while essential for establish-
ing (2.60), is not necessary for establishing the properties of T− described in Sect. 2.2.
These properties may also be obtained without using (2.60) by repeating the proofs used
for T +.

2.8. The geometric average of the Jacobians. In this section we provide an estimate
for the geometric average of the Jacobians J+ and J− in terms of the connectivity
properties of the subgraph E(ϕ) and the Lipschitz properties of the function τ . This
estimate establishes property (5) from Sect. 2.1.

Lemma 2.11. For any ϕ ∈ R
V satisfying M(ϕ) ≤ L(τ, ε) we have

√
J+(ϕ)J−(ϕ) ≥ exp

(
− 1

ε2

∑
v∈V

τ ′ (v, 1 + max
w∼v

r(ϕ,w)
)2)

.
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Proof. Fix ϕ ∈ R
V satisfying M(ϕ) ≤ L(τ, ε). Write (Pk), (sk) and (τk) for the

outputs of the addition algorithm of Sect. 2.2 when running on the input ϕ. Denote
σv := T +(ϕ)v − ϕv for v ∈ V . By (2.48) and (2.62) we get

log
(√

J+(ϕ)J−(ϕ)
)

≥ 1

2

|V |∑
k=1

log
(
1 − (∂2τk(Pk, ϕPk )

)2) ≥ −
|V |∑
k=1

(
∂2τk(Pk, ϕPk )

)2
,

(2.63)
where we have used that |∂2τk(Pk, ϕPk )| ≤ 1/2 for all k according to Lemma 2.9.
Examination of the addition algorithm of Sect. 2.2 reveals that τk(v, h) is the minimum
of τ(v) andmv,ϕw,σw (h)wherew ranges over a (possibly empty) subset of the neighbors
of v. Observing that the Lipschitz constant of mv,h,t is at most max

( 1
ε
(τ (v) − t), 0

)
by

(2.12), we see that

|∂2τk(v, h)| ≤ max

(
1

ε

(
τ(v) − min

w∼v
σw

)
, 0

)
. (2.64)

Now, using our assumption that M(ϕ) ≤ L(τ, ε), Proposition 2.7 yields that

τ(v) − min
w∼v

σw ≤ τ(v) − min
w∼v

(τ (w) − τ ′(w, r(ϕ,w))) ≤ τ ′ (v, 1 + max
w∼v

r(ϕ,w)
)

.

(2.65)
Plugging (2.65) into (2.64) shows that

|∂2τk(v, h)| ≤ 1

ε
τ ′ (v, 1 + max

w∼v
r(ϕ,w)

)
.

The lemma follows by substituting this estimate in (2.63). ��

3. Reflection Positivity for Random Surfaces

Recall the random surfacemeasureμT2
n ,0,U , defined in (1.1), corresponding to a potential

U . In this section we estimate the probability that the random surface has many edges
with large slopes.

We start by explaining why the measure μT2
n ,0,U is well-defined under our assump-

tions.

Lemma 3.1. The measure μT2
n ,0,U is well-defined for any potential U satisfying condi-

tion (1.2). In addition, there exists a constant c(U ) > 0 for which

ZT2
n ,0,U ≥ c(U )|V (T2

n)|. (3.1)

Proof. Let U be a potential satisfying condition (1.2). In order that μT2
n ,0,U be well-

defined it suffices that

ZT2
n ,0,U =

∫
exp

(
−

∑
(v,w)∈E(T2

n)

U (ϕv − ϕw)

)
δ0(dϕ0)

∏
v∈V (T2

n)\{0}
dϕv (3.2)

satisfies 0 < ZT2
n ,0,U < ∞.

We first show that ZT2
n ,0,U < ∞. Let S be a spanning tree of T2

n , regarded here as a
subset of edges. Then
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ZT2
n ,0,U ≤ C1(U )|E(T2

n)\S|
∫

exp

(
−
∑

(v,w)∈S
U (ψv − ψw)

)
δ0(dψ0)

∏
v∈V (T2

n)\{0}
dψv

where C1(U ) := supx exp(−U (x)) < ∞ by (1.2). By integrating the vertices in
V (T2

n)\{0} leaf by leaf according to the spanning tree S the integral above equals(∫
exp(−U (x))dx

)|S|, which is finite by (1.2).
We now prove (3.1), implying in particular that ZT2

n ,0,U > 0. Condition (1.2) implies
the existence of some α < ∞ for which the set A := {x : U (x) ≤ α} has positive
measure. The Lebesgue density theorem now yields the existence of a point a ∈ A and
an ε > 0 such that

|[a − 2ε, a + 2ε] ∩ A| ≥ 0.9 · 4ε,
where we write |B| for the Lebesgue measure of a set B ⊆ R. This implies that

inf
x,y,z,w∈[−ε,ε] |{u ∈ [a − ε, a + ε] : u − x, u − y, u − z, u − w ∈ A}| ≥ 0.4ε (3.3)

and, using that U (x) = U (−x), the analogous statement

inf
x,y,z,w∈[a−ε,a+ε] |{u ∈ [−ε, ε] : u − x, u − y, u − z, u − w ∈ A}| ≥ 0.4ε. (3.4)

Denote by (Veven, Vodd) a bipartition of the vertices of the bipartite graph T
2
n , with

0 ∈ Veven, and define the following set of configurations,

� := {ϕ : V (T2
n) → R : ϕ(Veven) ⊆ [−ε, ε], ϕ(Vodd) ⊆ [a − ε, a + ε]}.

We conclude from the definition of A, (3.3) and (3.4) that the integral in (3.2), restricted
to the set �, is at least (0.4ε exp(−α))|V (T2

n)\{0}| > 0. This can be seen by again fixing
a spanning tree of T2

n and integrating the vertices in V (T2
n)\{0} leaf by leaf according

to it.
As a side note we remark that the fact that T2

n is bipartite was essential for showing
that ZT2

n ,0,U > 0. If T2
n is replaced by a triangle graph on 3 vertices then the analogous

quantity to ZT2
n ,0,U is zero when, say, {x : U (x) < ∞} = [−3,−2] ∪ [2, 3]. However,

the above argument can be easily modified to work for all graphs if {x : U (x) < ∞}
contains an interval around 0. ��

For 0 < L < ∞ and 0 < δ < 1 we say a potentialU has (δ, L)-controlled gradients
on T

2
n if the following holds:

(1) There exists some K > L such that U (x) < ∞ for |x | < K .
(2) If ϕ is randomly sampled from the measure μT2

n ,0,U and if we define the random

subgraph E(ϕ, L) of T2
n by

E(ϕ, L) := {(v,w) ∈ E(T2
n) : |ϕv − ϕw| ≥ L} (3.5)

then

P(e1, . . . , ek ∈ E(ϕ, L)) ≤ δk for all k ≥ 1 and distinct e1, . . . , ek ∈ E(T2
n).
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Theorem 3.2. Suppose a measurable U : R → (−∞,∞] satisfies U (x) = U (−x),
condition (1.2) and the condition:

Either U (x) < ∞ for all x or there exists some 0 < K < ∞ such

that U (x) < ∞ when |x | < K and U (x) = ∞ when |x | > K .
(3.6)

Then for any 0 < δ < 1 there exists an 0 < L < ∞ such that for all n ≥ 1, U has
(δ, L)-controlled gradients on T

2
n.

This theorem is proved in the following sections, making use of reflection positivity and
the chessboard estimate.

3.1. Reflection positivity. We start by reviewing the basic definitions pertaining to our
use of reflection positivity and the chessboard estimate. Our treatment is based on [3,
Section 5].

Let n ≥ 1. For −n + 1 ≤ j ≤ n the vertical plane of reflection Pver
j (passing through

vertices) is the set of vertices

Pver
j := {( j, k) ∈ V (T2

n) : − n + 1 ≤ k ≤ n}.
The plane Pver

j divides T2
n into two overlapping parts, Pver,+

j and Pver,−
j , according to

Pver,+
j := {( j + m, k) ∈ V (T2

n) : 0 ≤ m ≤ n,−n + 1 ≤ k ≤ n},
Pver,−
j := {( j − m, k) ∈ V (T2

n) : 0 ≤ m ≤ n,−n + 1 ≤ k ≤ n},
where here and below, arithmetic operations on vertices of T 2

n are performed modulo 2n
(in the set {−n + 1,−n + 2, . . . , n − 1, n}). The parts Pver,+

j and Pver,−
j overlap in

P̄ver
j := Pver

j ∪ {( j + n, k) ∈ V (T2
n) : − n + 1 ≤ k ≤ n}.

The reflection θPver
j

is the mapping θPver
j

: V (T2
n) → V (T2

n) defined by

θPver
j

(
, k) = (2 j − 
, k),

which exchanges Pver,+
j and Pver,−

j . We also define horizontal planes of reflection Phor
j

and their associated Phor,+
j , Phor,−

j , P̄hor
j and θPhor

j
in the same manner by switching the

role of the two coordinates of vertices in T
2
n . We write simply P, P+, P−, P̄ and θP

when the plane of reflection P is one of the planes Pver
j or Phor

j which is left unspecified.

Denote by F the set of all measurable functions f : RV (T2
n) → R satisfying

f (ϕ) = f (ϕ + c) for all ϕ ∈ R
V (T2

n) and c ∈ R. (3.7)

Equivalently, F is the set of all measurable functions depending only on the gradient
of ϕ. For a plane of reflection P we write F+

P (respectively F−
P ) for the set of f ∈ F

for which f (ϕ) depends only on ϕv , v ∈ P+ (respectively v ∈ P−). We extend the
definition of θP to act on R

V (T2
n) and F by

(θPϕ)v := ϕθP (v) and (θP f )(ϕ) := f (θPϕ).
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When ϕ is randomly sampled from a probability measure on R
V (T2

n) we will regard
a function f ∈ F as a random variable [taking the value f (ϕ)] and write E f for its
expectation.

Definition 3.3. Let ϕ be randomly sampled from a probability measure P on R
V (T2

n).
We say that P is reflection positive with respect to F if for any plane of reflection P and
any two bounded f, g ∈ F+

P ,

E( f θPg) = E(g θP f ) (3.8)

and
E( f θP f ) ≥ 0. (3.9)

We call a function f ∈ F a block function at ( j, k) ∈ V (T2
n) if

f (ϕ) = f0(ϕ( j,k), ϕ( j+1,k), ϕ( j,k+1), ϕ( j+1,k+1)) (3.10)

for some f0 : R4 → R. For t = (t1, t2) ∈ V (T2
n) we define a reflection operator ϑt

acting on block functions as follows. If f is a block function at ( j, k) ∈ V (T2
n) then

ϑt f is the function obtained from f by performing the reflections which map the block
at ( j, k) to the block at ( j + t1, k + t2). Explicitly, if f is defined by (3.10) then ϑt f is
the block function at ( j + t1, k + t2) defined by

(ϑt f )(ϕ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f0(ϕ( j+t1,k+t2), ϕ( j+t1+1,k+t2), ϕ( j+t1,k+t2+1), ϕ( j+t1+1,k+t2+1)) t1, t2 even

f0(ϕ( j+t1+1,k+t2), ϕ( j+t1,k+t2), ϕ( j+t1+1,k+t2+1), ϕ( j+t1,k+t2+1)) t1 odd, t2 even

f0(ϕ( j+t1,k+t2+1), ϕ( j+t1+1,k+t2+1), ϕ( j+t1,k+t2), ϕ( j+t1+1,k+t2)) t1 even, t2 odd

f0(ϕ( j+t1+1,k+t2+1), ϕ( j+t1,k+t2+1), ϕ( j+t1+1,k+t2), ϕ( j+t1,k+t2)) t1, t2 odd.
(3.11)

Theorem 3.4 (Chessboard estimate). Let ϕ be randomly sampled from a probability
measure P on R

V (T2
n). Suppose that P is reflection positive with respect to F . Then for

any 1 ≤ m ≤ |V (T2
n)|, any f1, . . . , fm, bounded block functions at (0, 0), and any

distinct t1, . . . , tm ∈ V (T2
n) we have∣∣∣∣∣E
(

m∏
i=1

ϑti fi

)∣∣∣∣∣
|V (T2

n)|
≤

m∏
i=1

E

⎛
⎝∏

t∈T2
n

ϑt fi

⎞
⎠ . (3.12)

In particular, the right-hand side is non-negative.

For completeness, we provide a short proof of the chessboard estimate in Sect. 3.3
below. We remark that the same proof shows that if P is reflection positive with respect
to all measurable functions on RV (T2

n) then it also satisfies the chessboard estimate with
respect to this class. We restrict here to the class F in view of our application to random
surface measures, see Proposition 3.5 below.

3.2. Controlled gradients property. In this section we prove Theorem 3.2. We start by
proving that our random surface measures are reflection positive.

Proposition 3.5. Suppose a measurable U : R → (−∞,∞] satisfies U (x) = U (−x)
and the condition (1.2). Then for any n ≥ 1 the measure μT2

n ,0,U is reflection positive
with respect to F .
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Proof. Suppose ϕ is randomly sampled from μT2
n ,0,U . Fix a plane of reflection P , a

vertex v0 ∈ P and suppose ϕ̃ is randomly sampled fromμT2
n ,v0,U

[the measureμT2
n ,v0,U

is obtained by replacing 0 with v0 in (1.1)]. We write Eμ
T
2
n ,0,U

and Eμ
T
2
n ,v0,U

for the

expectation operators corresponding to ϕ and ϕ̃, respectively. Observe that

f (ϕ)
d= f (ϕ̃) for any f ∈ F (3.13)

since the induced measure on the gradient of ϕ is translation invariant. In addition, by
symmetry,

ϕ̃
d= θP ϕ̃. (3.14)

For two bounded f, g ∈ F+
P the relation (3.8) now follows from (3.13) and (3.14) by

Eμ
T
2
n ,0,U

( f θPg) = Eμ
T
2
n ,v0,U

( f θPg) = Eμ
T
2
n ,v0,U

(θP ( f θPg)) = Eμ
T
2
n ,v0,U

(g θP f )

= Eμ
T
2
n ,0,U

(g θP f ).

To see the relation (3.9) observe that, by the domain Markov property and symmetry,
conditioned on (ϕ̃v)v∈P̄ the configurations (ϕ̃v)v∈P+ and ((θP ϕ̃)v)v∈P+ are independent
and identically distributed. Thus, for any f ∈ F+

P we have

Eμ
T
2
n ,0,U

( f θP f ) = Eμ
T
2
n ,v0,U

( f θP f ) = Eμ
T
2
n ,v0,U

(
Eμ

T
2
n ,v0,U

(
f θP f | (ϕ̃v)v∈P̄

))

= Eμ
T
2
n ,v0,U

(
Eμ

T
2
n ,v0,U

(
f | (ϕ̃v)v∈P̄

)
Eμ

T
2
n ,v0,U

(
θP f | (ϕ̃v)v∈P̄

))

= Eμ
T
2
n ,v0,U

(
Eμ

T
2
n ,v0,U

(
f | (ϕ̃v)v∈P̄

)2) ≥ 0.

��
We now prove Theorem 3.2. Fix 0 < δ < 1, n ≥ 1 and suppose ϕ is randomly sampled
from μT2

n ,0,U . Let K be the constant from (3.6), where we write K = ∞ if U (x) < ∞
for all x . Recall the definition of the random graph E(ϕ, L) from (3.5). For an edge
e = (v,w) ∈ E(T2

n) and 0 < L < ∞ define the function fe,L ∈ F by

fe,L(ψ) := 1(|ψv−ψw |≥L).

We need to show that there exists some 0 < L < K , independent of n, such that

E

(
k∏

i=1

fei ,L

)
≤ δk for all k ≥ 1 and distinct e1, . . . , ek ∈ E(T2

n).

Fix some k ≥ 1 and distinct e1, . . . , ek ∈ E(T2
n). Define four block functions at (0, 0)

by

f hor,0L (ψ) := 1(|ψ(1,0)−ψ(0,0)|≥L), f ver,0L (ψ) := 1(|ψ(0,1)−ψ(0,0)|≥L),

f hor,1L (ψ) := 1(|ψ(1,1)−ψ(0,1)|≥L), f ver,1L (ψ) := 1(|ψ(1,1)−ψ(1,0)|≥L).

The definition (3.11) of the reflection operators (ϑt ) implies that there exist
k1, k2, k3, k4 ≥ 0 with k1 + k2 + k3 + k4 = k and, for each 1 ≤ j ≤ 4, distinct
(t j,i )1≤i≤k j ⊆ V (T2

n) such that

E

(
k∏

i=1

fei ,L

)
= E

(
k1∏
i=1

ϑt1,i f
hor,0
L

k2∏
i=1

ϑt2,i f
hor,1
L

k3∏
i=1

ϑt3,i f
ver,0
L

k4∏
i=1

ϑt4,i f
ver,1
L

)
.
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Assume, without loss of generality, that k1 ≥ k/4 (as the cases that k j ≥ k/4 for some
2 ≤ j ≤ 4 follow analogously). Then, by the chessboard estimate, Theorem 3.4,

E

(
k∏

i=1

fei ,L

)
≤ E

(
k1∏
i=1

ϑt1,i f
hor
L

)
≤
(
E

( ∏
t∈T2

n

ϑt f
hor
L

)) k1
|V (T2n )|

and thus it suffices to show that there exists some 0 < L < K , independent of n, such
that

E

⎛
⎝∏

t∈T2
n

ϑt f
hor
L

⎞
⎠ ≤ δ4|V (T2

n)|. (3.15)

We note that

E

⎛
⎝∏

t∈T2
n

ϑt f
hor
L

⎞
⎠ = P(ϕ ∈ EL) (3.16)

where

EL := {ψ ∈ R
V (T2

n) : |ψ( j+1,k) − ψ j,k | ≥ L for all − n + 1 ≤ j ≤ n

and all even − n + 1 ≤ k ≤ n}.
Thus, recalling (1.1), we have

P(ϕ ∈ EL) = 1

ZT2
n ,0,U

∫
EL

exp

(
−

∑
(v,w)∈E(T2

n)

U (ψv − ψw)

)
δ0(dψ0)

×
∏

v∈V (T2
n)\{0}

dψv =: ZT2
n ,0,U (EL)

ZT2
n ,0,U

. (3.17)

We estimate the numerator and denominator in the last fraction separately. First, we have
already shown a lower bound on ZT2

n ,0,U in (3.1). Second, denote by H the subset of

edges (( j, k), ( j + 1, k)) ∈ E(T2
n) for which k is even. Let S be a spanning tree of T2

n ,
regarded here as a subset of edges, satisfying

|S ∩ H | ≥ 1

10
|E(T2

n)|. (3.18)

Then

ZT2
n ,0,U (EL) ≤ C1(U )|E(T2

n)\S|
∫
EL

exp

(
−
∑

(v,w)∈S
U (ψv − ψw)

)
δ0(dψ0)

∏
v∈V (T2

n)\{0}
dψv

where C1(U ) := supx exp(−U (x)) < ∞ by (1.2). The integral above can be estimated
by integrating the vertices in V (T2

n)\{0} leaf by leaf according to the spanning tree S.
Recalling the definition of EL , two cases arise depending on whether or not the edge
connecting a leaf to the remaining tree belongs to H . Thus we obtain

ZT2
n ,0,U (EL) ≤ C1(U )|E(T2)\S|C2(U )|S\H |C3(U, L)|S∩H |

where

C2(U ) :=
∫

exp (−U (x)) dx and C3(U, L) :=
∫

1|x |≥L exp (−U (x)) dx .
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Condition (1.2) ensures that C2(U ) < ∞ and the definition of K gives that
limL↑K C3(U, L) = 0. Thus, using (3.18), for every ε > 0 there exists an 0 < L < K ,
independent of n, for which

ZT2
n ,0,U (EL) ≤ ε|V (T2

n)|.

This inequality, together with (3.16), (3.17) and (3.1), implies that we may choose an
0 < L < K , independent of n, so that (3.15) holds, as we wanted to show.

3.3. Proof of the chessboard estimate. In this section we prove Theorem 3.4.
Let ϕ be randomly sampled from the given measure P. Reflection positivity of Pwith

respect to F implies that for each plane of reflection P , the bilinear form E(gθPh) is a
degenerate inner product on bounded g, h ∈ FP+ . In particular, we have the Cauchy–
Schwarz inequality,

|EgθPh| ≤ √E(gθPg)E(hθPh), for all bounded g, h ∈ FP+ . (3.19)

For a function f ∈ F of the form

f (ϕ) =
∏

t∈V (T2
n)

ϑt ft for some ( ft ), bounded block functions at (0, 0) (3.20)

and a plane of reflection P , define two functions, the “parts of f in P− and P+”, by

fP− :=
∏

t∈P−\P
ϑt ft ∈ FP− and fP+ :=

∏
t∈P+\(P̄\P)

ϑt ft ∈ FP+ .

Define also the function ρP f ∈ F by

ρP f := fP+θP fP+

and note that E(ρP f ) ≥ 0 by (3.9). Observe that

f = fP+ fP− = fP+θP (θP fP−).

Thus, using the Cauchy–Schwarz inequality (3.19) with g = fP+ and h = θP fP− we
have

|E( f )| ≤ √E( fP+θP fP+)E( fP−θP fP−) =
√
E(ρP f )E(ρP̄\P f ). (3.21)

Our first goal is to show that starting with a function of the form (3.20), one may
iteratively apply the operator ρP with different planes of reflection P to reach a function
of the form (3.20) with all the block functions identical.

Proposition 3.6. For each s ∈ V (T2
n) there exists a sequence of planes of reflection

P1, . . . , Pm such that for each f of the form (3.20) we have

ρPmρPm−1 · · · ρP1 f =
∏

t∈V (T2
n)

ϑt fs .

Proof. Let s = ( j, k) ∈ V (T2
n). Define the vertical planes of reflection (Qi ), 0 ≤ i ≤

�log2(n)�, by Qi := Pver
ji

for ji := j + 1 − 2i modulo 2n. One may verify directly that
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ρQ�log2(n)� . . . ρQ1ρQ0 f =
∏

t∈V (T2
n)

ϑt fπ(t)

for some π : V (T2
n) → V (T2

n) satisfying that π((a, b)) = ( j, b) for all−n+1 ≤ a ≤ n.
In the same manner, one may now take the horizontal planes of reflection (Ri ), 0 ≤ i ≤
�log2(n)�, defined by Ri := Phor

ki
for ki := k + 1 − 2i modulo 2n, and conclude that

ρR�log2(n)� . . . ρR1ρR0ρQ�log2(n)� . . . ρQ1ρQ0 f =
∏

t∈V (T2
n)

ϑt fs,

as required. ��
For a bounded block function f0 at (0, 0) define

‖ f0‖ :=
(
E

( ∏
t∈V (T2

n)

ϑt f0

)) 1
|V (T2n )|

which is well-defined and non-negative by (3.9). Let f have the form (3.20). With the
above notation, the chessboard estimate (3.12) becomes the inequality

|E( f )| ≤
∏

s∈V (T2
n)

‖ fs‖, (3.22)

where we note that in Theorem 3.4 we may assume that m = |V (T2
n)| by taking some

of the block functions to be constant.
Consider first the case that

‖ fs‖ = 0 for some s ∈ V (T2
n). (3.23)

Let P1, . . . , Pm be the planes of reflection corresponding to s as given by Proposition 3.6.
By iteratively applying the Cauchy–Schwarz inequality (3.21) with the planes (Pi ) we
may obtain that |E( f )| is bounded by a product in which ‖ fs‖, raised to some positive
power, is one of the factors. Thus we conclude from (3.23) that E( f ) = 0, establishing
(3.22) in this case.

Second, assume that (3.23) does not hold. Define

gs := fs
‖ fs‖ , s ∈ V (T2

n).

Let h ∈ F be an (arbitrary) function maximizing |E(h)| among all functions of the form

h =
∏

t∈V (T2
n)

ϑt ht with each ht being one of the (gs). (3.24)

Observe that, by the Cauchy–Schwarz inequality (3.21) and the definition of h, we have

|E(h)| ≤
√
E(ρPh)E(ρP̄\Ph) ≤ √E(ρPh)|E(h)| for any plane of reflection P .

Thus,
|E(h)| ≤ E(ρPh) for any plane of reflection P. (3.25)

In particular, E(ρPh) also maximizes |E(h)| among functions of the form (3.24) (so
that equality holds in the last inequality). Let P1, . . . , Pm be the planes ofreflection
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corresponding to s = 0 as given by Proposition 3.6. By iteratively applying (3.25) with
these planes we obtain that

|E(h)| ≤ E(ρPmρPm−1 . . . ρP1h) = ‖h0‖|V (T2
n)| = 1

since ‖gs‖ = 1 for all s and h has the form (3.24). Finally, the definition of h now shows
that

|E( f )|∏
s∈V (T2

n)
‖ fs‖ ≤ |E(h)| ≤ 1

implying (3.22) and finishing the proof of Theorem 3.4.

4. Lower Bound for Random Surface Fluctuations in Two Dimensions

Recall the definition of the controlled gradients property from Sect. 3. Throughout the
section we fix n ≥ 2 and a potential U with the following properties:

• There exists an 0 < ε ≤ 1/2 for which U has (1/8, 1 − ε)-controlled gradients on
T
2
n .• U restricted to [−1, 1] is twice continuously differentiable.

We fix ε to the value given by the first property. Write 0 := (0, 0). For the rest of the
section we suppose that ϕ is a random function sampled from the probability distribution
μT2

n ,0,U defined in (1.1). For a vertex v = (v1, v2) of T2
n we write ‖v‖1 := |v1| + |v2|.

Theorem 4.1. There exist constants C(U ), c(U ) > 0 such that for any v ∈ V (T2
n) with

‖v‖1 ≥ (log n)2 we have

Var(ϕv) ≥ c(U ) log(1 + ‖v‖1), (4.1)

P(|ϕv| ≤ r) ≤ C(U )

(
r√

log(1 + ‖v‖1)

)2/3
, r ≥ 1, (4.2)

P(|ϕv| ≥ t
√
log(1 + ‖v‖1)) ≥ c(U )e−C(u)t2 , 1 ≤ t ≤ 1 +

√‖v‖1
1 + log n

. (4.3)

The theorem establishes lower bounds for the variance and large deviation probabilities
of ϕv as well as upper bounds on the probability that ϕv is atypically small. The lower
bound on the variance is expected to be sharp up to the value of c(U ).

The theorem is not optimal in several ways. One expects the results to hold for all
v ∈ V (T2

n) without the restriction on ‖v‖1, one expects that the exponent 2/3 may be
replaced by 1 and that the restrictions on r and t may be relaxed. We believe that further
elaboration of our methods may address some of these issues. However, since our main
focus is on vertices v for which ‖v‖1 is of order n and on estimating the variance of ϕv

we prefer to present simpler proofs.

Theorem 4.2. There exists a constant c(U ) > 0 such that

P

(
max

v∈V (T2
n)

|ϕv| ≥ c(U ) log n

)
≥ 1

2
.

Again, this estimate is expected to be sharp up to the value of c(U ).
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4.1. Tools. In this section we let τ : V (T2
n) → [0,∞) be an arbitrary function satisfying

τ(0) = 0. We let T +, T− be the functions defined in Sect. 2 acting on the graph T2
n with

the given τ function and constant ε. We also recall the notation J+, J−, M(ϕ) and
L(τ, ε) from Sect. 2.1. Our main tool for lower bounding the fluctuations of ϕ is the
following lemma.

Lemma 4.3. Denote

V0 := {v ∈ V (T2
n) : τ(v) = 0}

and let F0 be the sigma-algebra generated by (ϕv), v ∈ V0. There exists a constant
c(U ) > 0 such that for any a, s > 0, any u ∈ V (T2

n) and any event A ∈ F0 we have

[
P

({
|ϕu − τ(u)| ≤ a +

ε

2

}
∩ A

)
P

({
|ϕu + τ(u)| ≤ a +

ε

2

}
∩ A

)]1/2

≥ c(U )s
[
P ({|ϕu | ≤ a} ∩ A) − P

(({J+(ϕ)J−(ϕ) < s2} ∪ {M(ϕ) > L(τ, ε)}) ∩ A
)]

.

(4.4)

Proof. Write

g(ψ) := 1

ZT2
n ,0,U

exp

(
−

∑
(v,w)∈E(T2

n)

U (ψv − ψw)

)

for the density of the measure μT2
n ,0,U . Fix a function θ : V0 → R satisfying θ(0) = 0

and denote by dλ the measure

dλ(ψ) = δ0(dψ0)
∏

v∈V \{0}
dψv.

Define the event

E := {ψ ∈ R
V (T2

n) : |ψu | ≤ a, J+(ψ)J−(ψ) ≥ s2, M(ψ) ≤ L(τ, ε)}

and the quantity

I :=
∫
E∩A

√
g(T +(ψ))g(T−(ψ))J+(ψ)J−(ψ)dλ(ψ).

We wish to bound I from below and from above. We start with the bound from below.
Since U restricted to [−1, 1] is twice continuously differentiable there exists some

0 < c(U ) ≤ 1 such that

exp

(
−1

2
(U (x + r) +U (x − r))

)
≥ c(U ) exp(−U (x)) (4.5)

for all x, r ∈ R for which x + r, x − r ∈ [−1, 1].



34 P. Miłoś, R. Peled

Abbreviate σv := T +(ψ)v − ψv = ψv − T−(ψ)v [using (2.1)] and observe that

√
g(T +(ψ))g(T−(ψ)) = 1

ZT2
n ,0,U

exp

(
− 1

2

∑
(v,w)∈E(T2

n)

[U (ψv − ψw + σv − σw)

+U (ψv − ψw − σv + σw)]
)

≥ c(U )

ZT2
n ,0,U

exp

(
−

∑
(v,w)∈E(T2

n)

U (ψv − ψw)

)
= c(U )g(ψ),

where we have used property (3) from Sect. 2.1 to justify our use of (4.5). Together with
the definition of the event E this implies that

I ≥ c(U )s
∫
E∩A

g(ψ)dλ(ψ). (4.6)

To bound I from above we use the Cauchy–Schwarz inequality and the Jacobian
identity in (2.10) to obtain

I ≤
(∫

E∩A
g(T +(ψ))J+(ψ)dλ(ψ)

∫
E∩A

g(T−(ψ))J−(ψ)dλ(ψ)

) 1
2

=
(∫

T +(E∩A)

g(ψ)dλ(ψ)

∫
T−(E∩A)

g(ψ)dλ(ψ)

) 1
2

. (4.7)

Comparing (4.6) and (4.7) and recalling that ϕ is sampled from the probability distrib-
ution μT2

n ,0,U we conclude that

[
P
(
ϕ ∈ T +(E ∩ A)

)
P
(
ϕ ∈ T−(E ∩ A)

)] 1
2 ≥ c(U )sP

(
ϕ ∈ E ∩ A

)
. (4.8)

We continue by noting that by the definition of E ,

P
(
ϕ ∈ E ∩ A

) ≥ P
({|ϕu | ≤ a} ∩ A

)− P
(
({J+(ϕ)J−(ϕ) < s2}

∪{M(ϕ) > L(τ, ε)}) ∩ A
)
.

In addition, we recall from properties (2) and (4) of T + in Sect. 2.1 that if ψ satisfies
|ψu | ≤ a and M(ψ) ≤ L(τ, ε) then −a − ε

2 ≤ T +(ψ)u − τ(u) ≤ a and a similar
relation for T− by (2.1). In addition, since A ∈ F0, properties (1) and (2) imply that
A = T +(A) = T−(A). Therefore, using that T + and T− are one-to-one,

P
(
ϕ ∈ T +(E ∩ A)

)
P
(
ϕ ∈ T−(E ∩ A)

)
= P
(
ϕ ∈ T +(E) ∩ A

)
P
(
ϕ ∈ T−(E) ∩ A

)
≤ P
({|ϕu − τ(u)| ≤ a +

ε

2
} ∩ A

)
P
({|ϕu + τ(u)| ≤ a +

ε

2
} ∩ A

)
.

Combining the last two inequalities with (4.8) establishes the lemma. ��
Our next lemma bounds the error terms appearing on the right-hand side of (4.4).
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Lemma 4.4. For any s > 0 we have

P

(
{J+(ϕ)J−(ϕ) < s2} ∪ {M(ϕ) > L(τ, ε)}

)

≤ (2n)22−L(τ,ε) +
4
∑

v∈V (T2
n)

∑∞
k=0 2

−kτ ′ (v, k + 1)2

ε2 log
( 1
s

) .

Proof. Given a vertex v ∈ V (T2
n) and k ≥ 1 denote by Pv,k the set of all simple

paths in T
2
n starting at v and having length k. Here, by such a path we mean a vector

(e1, . . . , ek) ⊆ E(T2
n) of distinct edges with ei = (vi , vi+1) and v = v1. Observe that,

trivially, |Pv,k | ≤ 4k for all v and k. Now note that since U has (1/8, 1 − ε)-controlled
gradients on T

2
n we have for each v ∈ V (T2

n) and k ≥ 1,

P(r(ϕ, v) ≥ k) ≤
∑

(e1,...,ek )∈Pv,k

P(e1, . . . , ek ∈ E(ϕ)) ≤ 4k
(
1

8

)k
= 2−k . (4.9)

Observe that

P

(
{J+(ϕ)J−(ϕ) < s2} ∪ {M(ϕ) > L(τ, ε)}

)

= P (M(ϕ) > L(τ, ε)) + P

(
{J+(ϕ)J−(ϕ) < s2} ∩ {M(ϕ) ≤ L(τ, ε)}

)
. (4.10)

We estimate each of the terms on the right-hand side separately.
First, using (4.9) we have

P (M(ϕ) > L(τ, ε)) ≤ |V (T2
n)|2−L(τ,ε) ≤ (2n)22−L(τ,ε), (4.11)

observing that the inequality holds trivially if L(τ, ε) is zero or negative.
Second, using property (5) from Sect. 2.1 we see that

P

(
{J+(ϕ)J−(ϕ) < s2} ∩ {M(ϕ) ≤ L(τ, ε)}

)

≤ P

⎛
⎝ ∑

v∈V (T2
n)

τ ′ (v, 1 + max
w∼v

r(ϕ,w)
)2

> ε2 log

(
1

s

)⎞⎠ . (4.12)

Now,

E

⎛
⎝ ∑

v∈V (T2
n)

τ ′ (v, 1 + max
w∼v

r(ϕ,w)
)2⎞⎠ ≤ E

⎛
⎝ ∑

v∈V (T2
n)

∑
w∼v

τ ′ (v, 1 + r(ϕ,w))2

⎞
⎠

=
∑

v∈V (T2
n)

∑
w∼v

∞∑
k=0

τ ′ (v, 1 + k)2 P(r(ϕ,w)=k)

and using again (4.9) we conclude that

E

⎛
⎝ ∑

v∈V (T2
n)

τ ′ (v, 1 + max
w∼v

r(ϕ,w)
)2⎞⎠ ≤ 4

∑
v∈V (T2

n)

∞∑
k=0

2−kτ ′ (v, 1 + k)2 .
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Thus, Markov’s inequality and (4.12) show that

P

(
{J+(ϕ)J−(ϕ) < s2} ∩ {M(ϕ) ≤ L(τ, ε)}

)
≤ 4
∑

v∈V (T2
n)

∑∞
k=0 2

−kτ ′ (v, 1 + k)2

ε2 log
( 1
s

) .

The lemma follows by combining this estimate with (4.10) and (4.11). ��

4.2. Fluctuation bounds. In this section we prove Theorem 4.1.
Fix v ∈ V (T2

n)\{0}. Define the increasing function h : [0,∞) → [0,∞) by

h(x) := log(1 + x)√
log(1 + ‖v‖1)

and the function η : V (T2
n) → [0,∞) by

η(w) :=

⎧⎪⎨
⎪⎩
0 ‖w‖1 ≤ √‖v‖1
h(‖w‖1) − h(

√‖v‖1) √‖v‖1 ≤ ‖w‖1 ≤ ‖v‖1
h(‖v‖1) − h(

√‖v‖1) ‖w‖1 ≥ ‖v‖1
. (4.13)

We aim to use the lemmas of the previous section with the τ function a constant multiple
of η. The above definition is chosen so that we may control the quantities appearing in
Lemma 4.4. The first case allows us to lower bound the function L while the second
and third cases ensure that η is slowly varying. The next lemma formalizes these ideas.
Write, as in (2.3),

η′(w, k) := max(η(w) − η(u) : u ∈ V (T2
n), dT2

n
(w, u) ≤ k}, w ∈ V (T2

n), k ≥ 1.
(4.14)

Lemma 4.5. There exists an absolute constant C > 0 such that

∑
w∈V (T2

n)

∞∑
k=0

2−kη′ (w, k + 1)2 ≤ C.

For any α > 0 we have

L(α · η, ε) ≥
⌊

(1 +
√‖v‖1)

(
exp

(
ε
√
log(1 + ‖v‖1)

2α

)
− 1

)⌋
− 1. (4.15)

Proof. The fact that η(w) depends only on ‖w‖1 and η(w1) ≥ η(w2) when ‖w1‖1 ≥
‖w2‖1 shows that for each w ∈ V (T2

n) and k ≥ 0 we have

0 ≤ η′(w, k + 1) ≤

⎧⎪⎨
⎪⎩
0 ‖w‖1 > ‖v‖1 + k + 1
h(‖w‖1) − h(‖w‖1 − (k + 1)) k + 1 ≤ ‖w‖1 ≤ ‖v‖1 + k + 1
h(‖w‖1) − h(0) ‖w‖1 < k + 1

.
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By considering separately the latter two cases in the above inequality we have

∑
w∈V (T2

n)

∞∑
k=0

2−kη′ (w, k + 1)2

≤ 4
‖v‖1∑
t=0

∞∑
k=0

2−k(t + k + 1)(h(t + k + 1) − h(t))2 + 4
∞∑

m=1

∞∑
k=m

2−km(h(m) − h(0))2,

where we have also used that there are at most 4m vertices w ∈ V (T2
n) with ‖w‖1 = m

(strict inequality is possible when m ≥ n). Continuing the last inequality we obtain

∑
w∈V (T2

n)

∞∑
k=0

2−kη′ (w, k + 1)2

≤ 4
‖v‖1∑
t=0

∞∑
k=0

2−k(t + k + 1)(h(t + k + 1) − h(t))2 + 4
∞∑

m=1

2−m+1m(h(m) − h(0))2

≤ 8
‖v‖1∑
t=0

∞∑
k=0

2−k(t + k + 1)(h(t + k + 1) − h(t))2

= 8

log(1 + ‖v‖1)
‖v‖1∑
t=0

∞∑
k=0

2−k(t + k + 1) log2
(
t + k + 2

t + 1

)

≤ C ′

log(1 + ‖v‖1)
‖v‖1∑
t=0

(t + 1) log2
(
t + 2

t + 1

)
≤ C ′

log(1 + ‖v‖1)
‖v‖1∑
t=0

1

t + 1
≤ C

for some absolute constants C,C ′ > 0.
We note that for any x, s, k ≥ 0 we have that

h(x + k) − h(x) ≤ s if and only if k ≤ (1 + x)
(
exp
(
s
√
log(1 + ‖v‖1)

)− 1
)
.

Thus, (4.15) follows from the definitions (2.4) and (4.13) of L(τ, ε) and η. ��
Proof of Theorem 4.1. Assume that ‖v‖1 ≥ (log n)2. It suffices to prove (4.2) and (4.3)
as (4.1) is an immediate consequence of the case t = 1 of (4.3) and the fact thatEϕv = 0
by symmetry.

Let N (U ) > 0 be large enough for the following derivations. We first claim that
choosing c(U ) sufficiently small and C(U ) sufficiently large the theorem holds when
n ≤ N (U ). Indeed, this is clear for (4.2) as wemaymake the right-hand side greater than
1 by choosingC(U ) appropriately. To see this for (4.3) first note that our assumption that
the potentialU restricted to [−1, 1] is bounded away from infinity implies that P(|ϕv| ≥
0.99‖v‖1) > 0. Thus it suffices to check that

(1+
√‖v‖1)

√
log(1+‖v‖1)

1+log n ≤ 0.99‖v‖1 and this
follows, using our assumption that n ≥ 2, as

(1+
√
x)

√
log(1+x)

1+log 2 ≤ 0.99x for x ≥ 1.

Assume for the rest of the proof that n > N (U ). Consequently, since ‖v‖1 ≥ (log n)2,
we have

η(v) ≥ 1

4

(√
log(1 + ‖v‖1) + 1

)
. (4.16)
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We start with the proof of (4.3). Let 1 ≤ t ≤ 1+
√‖v‖1
log n . If P(|ϕv| ≥

t
√
log(1 + ‖v‖1)) ≥ 1

2 there is nothing to prove. Thus we suppose that P(|ϕv| ≤
t
√
log(1 + ‖v‖1)) ≥ 1

2 . Pick the function τ := 8t · η so that, since ε ≤ 1
2 , we have

τ(v) ≥ 2t
√
log(1 + ‖v‖1) + ε

2 by (4.16). Combining the arithmetic-geometric mean
inequality with Lemma 4.3, taking A to be the full event, we have

1

2
P

(
|ϕv| ≥ t

√
log(1 + ‖v‖1)

)

= 1

2

[
P

(
ϕv ≥ t

√
log(1 + ‖v‖1)

)
+ P

(
ϕv ≤ −t

√
log(1 + ‖v‖1)

)]

≥
[
P

(
ϕv ≥ t

√
log(1 + ‖v‖1)

)
P

(
ϕv ≤ −t

√
log(1 + ‖v‖1)

)]1/2

≥
[
P

(
|ϕv − τ(v)| ≤ t

√
log(1 + ‖v‖1) + ε

2

)
P

(
|ϕv + τ(v)| ≤ t

√
log(1 + ‖v‖1) + ε

2

)]1/2

≥ c(U )s
[
P

(
|ϕv| ≤ t

√
log(1 + ‖v‖1)

)
− P
({J+(ϕ)J−(ϕ) < s2} ∪ {M(ϕ) > L(τ, ε)})]

≥ c(U )s

[
1

2
− P
({J+(ϕ)J−(ϕ) < s2} ∪ {M(ϕ) > L(τ, ε)})

]
, (4.17)

where s > 0 is arbitrary. By Lemmas 4.4 and 4.5 we have

P

(
{J+(ϕ)J−(ϕ) < s2} ∪ {M(ϕ) > L(τ, ε)}

)
≤ (2n)22−L(τ,ε) +

256Ct2

ε2 log(1/s)
.

Furthermore, our assumption that t ≤ 1+
√‖v‖1
log n and ‖v‖1 ≥ (log n)2 combined with

(4.15) yields that

(2n)22−L(τ,ε) ≤ 1

2n
≤ 1

8
(4.18)

when N (U ) is sufficiently large. Thus, choosing s = exp
(
− 1024Ct2

ε2

)
and combining

the last inequalities we conclude that

P

(
|ϕv| ≥ t

√
log(1 + ‖v‖1)

)
≥ c′(U ) exp(−C(U )t2)

for some c′(U ),C(U ) > 0 depending only on U .
We now prove (4.2). We may suppose that r ≤ 1

4

√
log(1 + ‖v‖1) since otherwise

(4.2) is trivial. Fix 1 ≤ r ≤ 1
4

√
log(1 + ‖v‖1). For k ≥ 1 choose τ := 5rk

η(v)
· η, so that

τ(v) = 5rk, to obtain similarly to (4.17),

1

2
[P(|ϕv − 5rk| ≤ r + 1) + P(|ϕv + 5rk| ≤ r + 1)]

≥ [P(|ϕv − 5rk| ≤ r + 1)P(|ϕv + 5rk| ≤ r + 1)]1/2

≥
[
P

(
|ϕv − τ(v)| ≤ r +

ε

2

)
P

(
|ϕv + τ(v)| ≤ r +

ε

2

)]1/2

≥ 1

2
c(U )

[
P (|ϕv| ≤ r) − P

({
J+(ϕ)J−(ϕ) <

1

4

}
∪ {M(ϕ) > L(τ, ε)}

)]
.
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Assume k ≤ η(v)
r [recalling that η(v) > r by our assumption that r ≤ 1

4

√
log(1 + ‖v‖1)

and (4.16)], so that by (4.15) and our assumption that N (U ) is large we have that (4.18)
holds. Hence by Lemmas 4.4, 4.5 and the fact that r, k ≥ 1,

P

({
J+(ϕ)J−(ϕ) <

1

4

}
∪ {M(ϕ) > L(τ, ε)}

)
≤ 1

2n
+ C ′(U )

(
rk

η(v)

)2

≤ C ′′(U )

(
rk

η(v)

)2

for some constants C ′(U ),C ′′(U ) > 0 (depending onU through ε). Thus, in particular,

for all 1 ≤ k ≤
(

η(v)
r

)2/3
we have

1

2
[P(|ϕv − 5rk| ≤ r + 1) + P(|ϕv + 5rk| ≤ r + 1)]

≥ 1

2
c(U )

[
P (|ϕv| ≤ r) − C ′′(U )

(
r

η(v)

)2/3]
.

Summing over k and using that the sum of probabilities of disjoint events is at most one
yields

c(U )

⌊(
η(v)

r

)2/3 ⌋[
P (|ϕv| ≤ r) − C ′′(U )

(
r

η(v)

)2/3]
≤ 1.

Since η(v) > r by our assumption that r ≤ 1
4

√
log(1 + ‖v‖1) and (4.16) it follows that

P (|ϕv| ≤ r) ≤
(

2

c(U )
+ C ′′(U )

)(
r

η(v)

)2/3
.

Together with (4.16) this proves (4.2). ��

4.3. Maximum. In this section we prove Theorem 4.2.
Let ρ(U ) > 0 be a constant to be chosen later, depending only on U and small

enough for the following derivations. We may choose c(U ) sufficiently small so that the
theorem holds when n ≤ exp(1/ρ(U )2) and thus we assume that

n ≥ exp

(
1

ρ(U )2

)
. (4.19)

Fix a collection of arbitrary vertices u1, . . . , un ∈ V (T2
n) satisfying ‖ui‖1 ≥ n

2 and
dT2

n
(ui , u j ) > 2n1/3 when i �= j . Define the events, for 1 ≤ i ≤ n,

Bi := {|ϕui | ≥ ρ(U ) log n},
Ai := ∩1≤ j<i B

c
j ,

where we mean that A1 is the full event. We have

P

(
max

v∈V (T2
n)

|ϕv| ≥ ρ(U ) log n

)
≥ P(∪n

i=1Bi ) = P(B1)+P(B2∩ A2)+ · · ·+P(Bn ∩ An)

(4.20)



40 P. Miłoś, R. Peled

and we aim to use Lemma 4.3 to estimate the summands on the right-end side. Let
v0 := (�n1/3�, 0) and let η : V (T2

n) → [0,∞) be the function defined by (4.13) with
v = v0. Noting that η takes its maximal value at v0 wemay define ηi : V (T2

n) → [0,∞),
1 ≤ i ≤ n, by

ηi (w) := η(v0) − η(w − ui ), (4.21)

where w − ui is the vertex in T
2
n obtained by doing the coordinate-wise difference

modulo 2n. We define also the functions τi : V (T2
n) → [0,∞) by

τi (w) := 16ρ(U )
√
log n · ηi (w).

Lemma 4.6. For all 1 ≤ i ≤ n we have

τi (w) = 0 when dT2
n
(w, ui ) ≥ �n1/3�. (4.22)

In addition, if ρ(U ) is sufficiently small then

τi (ui ) ≥ 2ρ(U ) log n +
ε

2
, (4.23)

L(τi , ε) ≥ n1/6 (4.24)

and

∑
w∈V (T2

n)

∞∑
k=0

2−kτ ′
i (w, k + 1)2 ≤ Cρ(U )2 log n (4.25)

for some absolute constant C > 0.

Proof. Property (4.22) is an immediate consequence of the fact that η(v) = η(v0) for
all vertices v with ‖v‖1 ≥ ‖v0‖1 and the definition of τi .

To see (4.23), recall (4.19) and observe that

ηi (ui ) = η(v0) ≥ 1

8
(
√
log n + 1), (4.26)

when ρ(U ) is sufficiently small, as in (4.16). Now use the definition of τi and the fact
that ε ≤ 1

2 .
Since (4.21) defines ηi via η we may use Lemma 4.5, taking ρ(U ) sufficiently small,

to obtain (4.24). Finally, Eq. (4.25) follows from a similar derivation as in the proof of
Lemma 4.5. ��

We may now apply Lemma 4.3 with τi playing the role of τ and Ai playing the role of
A, noting that by (4.22) and our choice of the ui , Ai is indeed measurable with respect
to the sigma algebra generated by {ϕv : τi (v) = 0}. Using also the arithmetic-geometric
mean inequality and (4.23) we have
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1

2
P (Bi ∩ Ai ) = 1

2

[
P
({

ϕui ≥ ρ(U ) log n
} ∩ Ai

)
+ P
({

ϕui ≤ −ρ(U ) log n
} ∩ Ai

)]
≥ [P ({ϕui ≥ ρ(U ) log n

} ∩ Ai
)
P
({

ϕui ≤ −ρ(U ) log n
} ∩ Ai

)]1/2
≥
[
P

({
|ϕui − τi (ui )| ≤ ρ(U ) log n +

ε

2

}
∩ Ai

)

× P

({
|ϕui + τi (ui )| ≤ ρ(U ) log n +

ε

2

}
∩ Ai

)]1/2
≥ c(U )s

[
P
({|ϕui | ≤ ρ(U ) log n

} ∩ Ai
)

− P
({J+(ϕ)J−(ϕ) < s2} ∪ {M(ϕ) > L(τi , ε)} ∩ Ai

)]
≥ c(U )s

[
1 − P(Bi ∪ Ac

i ) − P
({J+(ϕ)J−(ϕ) < s2} ∪ {M(ϕ) > L(τi , ε)}

)]
,

(4.27)

where s > 0 is arbitrary. Combining Lemma 4.4 with (4.24) and (4.25) we have

P

(
{J+(ϕ)J−(ϕ) < s2} ∪ {M(ϕ) > L(τi , ε)}

)
≤ (2n)22−n1/6 +

4Cρ(U )2 log n

ε2 log
( 1
s

) .

Choosing s := exp(−20Cρ(U )2 log n/ε2), taking ρ(U ) small enough and using (4.19)
yields

P

(
{J+(ϕ)J−(ϕ) < s2} ∪ {M(ϕ) > L(τi , ε)}

)
≤ 1

4
.

Plugging back into (4.27) and summing over i using (4.20) gives

P(∪n
i=1Bi ) ≥ 2c(U )n−20Cρ(U )2/ε2

n∑
i=1

[
3

4
− P(Bi ∪ Ac

i )

]
.

Finally, choosing ρ(U ) sufficiently small this implies that

1 ≥ P(∪n
i=1Bi ) ≥ 8

n

n∑
i=1

[
3

4
− P(Bi ∪ Ac

i )

]
.

It follows that there exists some 1 ≤ i ≤ n for which P(Bi ∪ Ac
i ) ≥ 1

2 , whence, by the
definition of Ai , P(∪n

i=1Bi ) ≥ 1
2 and the theorem follows.

5. Proof of Main Theorem

In this section we prove Theorem 1.1.
Let n ≥ 2. Let U : R → (−∞,∞] satisfy U (x) = U (−x) and conditions (1.2)

and (1.3). Then U satisfies the conditions of Theorem 3.2, whence U has (1/8, L)-
controlled gradients on T

2
n for some 0 < L = L(U ) < ∞ which is independent of n.

By the definition of the controlled gradients property and condition (1.3) it follows that
there exists some K ′ = K ′(U ) > 0, independent of n, such that L < K ′ ≤ 2L and U
is twice continuously differentiable on [−K ′, K ′]. Define

Ũ (x) := U (K ′ · x). (5.1)
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Let ϕ be randomly sampled from μT2
n ,0,U and let ϕ̃ be randomly sampled from μ

T2
n ,0,Ũ .

The relation (5.1) implies that

ϕ̃
d= ϕ/K ′. (5.2)

Thus Ũ has (1/8, 1 − ε)-controlled gradients on T
2
n , where ε := 1 − L/K ′ ∈ (0, 1/2],

and Ũ is twice continuously differentiable on [−1, 1]. We conclude that Ũ satisfies the
conditions in the beginning of Sect. 4. The validity of Theorem 1.1 for U now follows
from (5.2) and the validity of Theorems 4.1 and 4.2 for Ũ by noting the following
points: First, Var(ϕv) = K ′2 Var(ϕ̃). Second, P(|ϕv| ≤ δ

√
log(1 + ‖v‖1)) = P(|ϕ̃v| ≤

δ
√
log(1 + ‖v‖1)/K ′) and we may consider separately the cases K ′ ≤ 1 and K ′ >

1 when applying Theorem 4.1. Third, P(|ϕv| ≥ c(U )t
√
log(1 + ‖v‖1)) = P(|ϕ̃v| ≥

c(U )t
√
log(1 + ‖v‖1)/K ′) and we may choose c(U ) ≤ K ′ in order to use Theorem 4.1.

Finally, maxv∈V (T2
n)

|ϕv| d= K ′ maxv∈V (T2
n)

|ϕ̃v|.

6. Discussion and Open Questions

In this work we prove lower bounds for the fluctuations of two-dimensional random
surfaces. Specifically, we investigate random surface measures of the form (1.1) based
on a potential U satisfying the conditions (1.2) and (1.3). These conditions allow for a
wide range of potentials including the hammock potential, when U (x) = 0 for |x | ≤ 1
and U (x) = ∞ for |x | > 1, double well and oscillating potentials. We prove that
such random surfaces delocalize, with the variance of their fluctuations being at least
logarithmic in the side-length of the torus. We also establish related bounds on the
maximum of the surface and on large deviation and small ball probabilities. In this
section we discuss related research directions and open questions.

Upper bound on the fluctuations. It is expected that under mild conditions on
the potential there holds an upper bound of matching order on the fluctuations of the
random surface. For instance, that if ϕ is randomly sampled from the measure (1.1) then
Var(ϕ(n,n)) ≤ C(U ) log n for some C(U ) < ∞ and all n ≥ 2. One may well speculate
the result to hold for all potentials satisfying (1.2) and (1.3) and indeed even in greater
generality. Certain potentials are known to satisfy such a bound but it appears that even
the case of the potential U (x) = x4 has not yet been settled [31, Remark 6 and Open
Problem 1].

Reflection positivity. Our work relies crucially on reflection positivity and the chess-
board estimate to establish what we called the controlled gradients property, see the
beginning of Sect. 3. This restricts our results in ways that are probably not essential.
Specifically, we may handle only random surface measures on a torus with even side
length and we must normalize such measures at a single point. It is desirable to lift these
restrictions, by possibly arriving at a more illuminating proof of the controlled gradients
property. This will allow one to treat random surface measures on other graphs as well
as on the graph T

2
n with other boundary conditions. For instance, one would expect

our results to hold for zero boundary conditions, when ϕv is normalized to zero at all
v = (v1, v2) with max(|v1|, |v2|) = n.

With regard to this we put forward that the controlled gradients property possibly
holds for any finite, connected graph G and any potential U , satisfying the conditions
(1.2) and (1.3), say. Precisely, let G and U be such a graph and potential. Write K :=
sup{x : U (x) < ∞} ∈ (0,∞] and let ϕ be randomly sampled from the probability
measure
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dμG,v0,U (ϕ) := 1

ZG,v0,U
exp

(
−

∑
(v,w)∈E(G)

U (ϕv − ϕw)

)
δ0(dϕv0)

∏
v∈V (G)\{v0}

dϕv,

(6.1)
for some vertex v0 ∈ V (G). Then it may be that for any 0 < δ < 1 there exists some
0 < L < K such that L depends only on δ and U (and not on G) and if we define the
random subgraph E(ϕ, L) of G by

E(ϕ, L) := {(v,w) ∈ E(G) : |ϕv − ϕw| ≥ L} (6.2)

then

P(e1, . . . , ek ∈ E(ϕ, L)) ≤ δk for all k ≥ 1 and distinct e1, . . . , ek ∈ E(G).

More general random surfaces. One may try to extend the applicability of our
results in several directions. First, one may try and relax the condition (1.3) to allow
for singular potentials. Ioffe et al. [15] introduced a technique for proving lower bounds
on fluctuations for potentials that are small perturbations, in some sense, of smooth
potentials. These ideas were also incorporated in the work of Richthammer [29], upon
which our addition algorithm is based. It is a promising avenue for future research to
try to combine the techniques of [15] with our technique. This may allow one to treat
all continuous (not necessarily differentiable) potentials as well as certain classes of
discontinuous potentials.

Second, one may try to extend the results to integer-valued random surface mod-
els. For instance, to probability measures on configurations ϕ : T2

n → Z (rather than
ϕ : T2

n → R) with ϕ(0) = 0 for which the probability of ϕ is proportional to

exp

(
− ∑(v,w)∈E(T2

n)
U (ϕv − ϕw)

)
. This direction seems much more challenging,

as our technique is based on an argument that relies crucially on the continuous nature
of the model. We mention that while it is expected that many integer-valued random
surface models have fluctuations with variance of logarithmic order this has been estab-
lished only in two cases: when U (x) = β|x | and U (x) = βx2, both with β sufficiently
small. This result is by Fröhlich and Spencer [10]. It is also known that if β is large then
these models become localized, having fluctuations with bounded variance, a transition
that is called the roughening transition. As specific examples of surfaces for which delo-
calization is expected but remains unproved we mention integer-valued analogs of the
hammock potential, when U (x) = 0 for x ∈ {−1, 1} and otherwise U (x) = ∞ (the
graph-homomorphism or homomorphism height function model) or whenU (x) = 0 for
x ∈ {−M,−M + 1, . . . , M} and otherwise U (x) = ∞ (the M-Lipschitz model). The
former of these models can be used as a height function representation for the square-ice
or 6-vertex models and is also related to the zero temperature 3-state antiferromagnetic
Potts model (i.e., uniformly chosen proper colorings of T2

n with 3 colors). For more on
these models we refer to [23] where it is proved that the homomorphism height function
and 1-Lipschitz models are localized in sufficiently high dimensions.

Scaling limits and Gibbs states. The study of various limits for random surface
models has received a great deal of attention in the literature. Infinite volume Gibbs
states fail to exist for the random surface itself due to its delocalization but may exist
for its gradients. Funaki and Spohn [11] proved that for uniformly convex potentials
U , i.e., potentials satisfying 0 < c ≤ U ′′(x) ≤ C < ∞, a unique infinite volume
gradient Gibbs measure exists for any value of ‘tilt’. Another direction studied in [11]
was to consider the Langevin dynamics of the random surface. Under hydrodynamic
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scaling, convergence to a solution of a PDE, the so-called motion by mean curvature
dynamics, was established. Naddaf and Spencer [21], with an alternative scaling, proved
the convergence of the model to a continuous Gaussian free field. Further, Giacomin et
al. [13] extended these results to the Langevin dynamics, obtaining convergence to an
infinite-dimensional Ornstein–Uhlenbeck process. Under similar convexity assumptions
Miller [20] extended the scaling limit results to handle various choices of boundary
conditions. Finally, we mention deep connections with the SLE theory. Schramm and
Sheffield [30] discovered that, in the scaling limit, appropriately defined contour lines
of the two-dimensional discrete Gaussian free field converge to an SLE curve with
parameter κ = 4. It was conjectured that this is a universal phenomena independent of
potential details. A significant contribution in this area has been made by Miller [19],
who resolved the conjecture for a large class of uniformly convex potentials.

It is expected that the results described in this section hold under mild assumptions
on the potentialU . As a first step, one may let ϕ be randomly sampled from the random
surface model (1.1) with the potential U (x) = x4 or the hammock potential and try to
prove that the law of ϕ(n,n), suitably normalized, converges to a Gaussian distribution.
The above-mentioned works used uniform convexity via the Brascamp–Lieb inequality,
Helffer-Sjöstrand representation or homogenization techniques and novel techniques
may be required to extend the results beyond this setting. The question of unicity for
gradient Gibbs states seems more delicate as Biskup and Kotecký [4] gave an example
of a non-convex potential admitting multiple gradient Gibbs states with the same ‘tilt’.

Maximum in high dimensions. Our work establishes that the expected maximum
of the random surfaces we consider is of order at least log n and it is expected that this
is the correct order of magnitude. A curious question regards the maximum in higher
dimensions. For instance, denote by Td

n the d-dimensional discrete torus with vertex set
{−n+1,−n+2, . . . , n−1, n}d and let ϕ be randomly sampled from the random surface
measure (1.1) with T

2
n replaced by T

d
n for some d ≥ 3. It is known that for the discrete

Gaussian free field, when U (x) = x2, the maximum of the field is typically of order√
log n as n tends to infinity. However, it may well be that the behavior of the maximum

is now potential-specific. How would the maximum behave for the hammock potential,
i.e., for a uniformly chosen Lipschitz function? Observe that if a Lipschitz function is at
height t at a given vertex then it is at height at least t/2 in a ball of radius t/2 around that
vertex, a ball containing order td vertices. This raises the possibility that the probability
of a random Lipschitz function to attain height t at a given vertex decays as exp(−ctd).
This bound would imply that the typical maximal height is of order at most (log n)1/d , as
n tends to infinity. Is this the correct order of magnitude? The technique of Benjamini et
al. [2] may lead to a lower bound of this order. For the integer-valuedmodels of Lipschitz
functions mentioned above, the homomorphism height function and 1-Lipschitz models,
an upper bound of order (log n)1/d on the expected maximum was established in [23] in
sufficiently high dimensions. We mention also the works [24,25], where the maximum
of such Lipschitz function models is studied on expander and tree graphs.

Decay of correlations. Let ϕ be randomly sampled from the random surfacemeasure
(1.1). Our results focus on estimating Var(ϕv) for various vertices v, i.e., the diagonal
elements of the covariance matrix of ϕ. How do the off-diagonal elements behave? How
fast do the values ofϕ decorrelate?A related question is to study the decay of correlations
for the gradient of ϕ. Sufficiently fast decay of gradient correlations will lead to an upper
bound on Var(ϕv), by writing ϕv as the sum of the gradients of ϕ on a path leading from
0 to v and averaging over many such paths. With regard to this we mention the results
of Aizenman [1] and Pinson [27], following ideas of Patrascioiu and Seiler [22], who
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give a lower bound, in a certain sense, for the decay of correlations for the Hammock
potential and for the integer-valued homomorphism height function model mentioned
above.

High-dimensional convex geometry. The case that the potentialU is the hammock
potential is natural also from a geometric point of view. In this case the measure (1.1)
is the uniform measure on the high-dimensional convex polytope of Lipschitz functions
defined by

Lip :=
{
ϕ : T2

n → R : ϕ0 = 0 and |ϕv − ϕw| ≤ 1 when v ∼ w
}

.

The field of convex geometry is highly developed and we mention here the central limit
theoremofKlartag [16], which states that uniformmeasures on high-dimensional convex
bodies have many projections that are approximately Gaussian. It would be interesting
to use this point of view to obtain new results for the random surface with the hammock
potential.

Acknowledgements. We wish to thank people whose support we enjoyed during the research connected with
this paper. First of all, we thank Yvan Velenik who introduced PM to the problem, put the two authors together
and suggested using the techniques developed in [29]. Further, we thank Senya Shlosman for the suggestion
to use reflection positivity, and Marek Biskup and Roman Kotecký for useful discussions. Finally, we thank
an anonymous referee whose many suggestions greatly improved the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aizenman, M.: On the slow decay of O(2) correlations in the absence of topological excitations: remark
on the Patrascioiu–Seiler model. J. Stat. Phys. 77(1–2), 351–359 (1994)

2. Benjamini, I., Yadin, A., Yehudayoff, A.: Random graph-homomorphisms and logarithmic degree. Elec-
tron. J. Probab. 12(32), 926–950 (2007)

3. Biskup,M.: Reflection positivity and phase transitions in lattice spinmodels. In:Methods ofContemporary
Mathematical Statistical Physics. Lecture Notes in Math., vol. 1970, pp. 1–86. Springer, Berlin (2009)

4. Biskup, M., Kotecký, R.: Phase coexistence of gradient Gibbs states. Probab. Theory Relat. Fields 139(1–
2), 1–39 (2007)

5. Brascamp, H.J., Lieb, E.H., Lebowitz, J.L: The statistical mechanics of anharmonic lattices. In: Proceed-
ings of the 40th Session of the International Statistical Institute (Warsaw, 1975), Vol. 1. Invited Papers.
Bull. Inst. Internat. Statist. 46 (1975), no. 1, pp. 393–404 (1976)

6. Dobrushin, R.L., Shlosman, S.B.: Absence of breakdown of continuous symmetry in two-dimensional
models of statistical physics. Commun. Math. Phys. 42, 31–40 (1975)

7. Dobrushin, R.L., Shlosman, S.B.: Nonexistence of one- and two-dimensional Gibbs fields with noncom-
pact group of continuous symmetries. In:Multicomponent RandomSystems.Adv. Probab. Related Topics,
vol. 6, pp. 199–210. Dekker, New York (1980)

8. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced
Mathematics. CRC Press, Boca Raton (1992)

9. Fröhlich, J., Pfister, C.E.: On the absence of spontaneous symmetry breaking and of crystalline ordering
in two-dimensional systems. Commun. Math. Phys. 81(2), 277–298 (1981)

10. Fröhlich, J., Spencer, T.: The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and
the Coulomb gas. Commun. Math. Phys. 81(4), 527–602 (1981)

11. Funaki, T., Spohn, H.: Motion by mean curvature from the Ginzburg–Landau ∇φ interface model. Com-
mun. Math. Phys. 185(1), 1–36 (1997)

12. Gagnebin, M., Velenik, Y.: Upper bound on the decay of correlations in a general class of O(N)-symmetric
models. Commun. Math. Phys. 332, 1235–1255 (2014)

13. Giacomin, G., Olla, S., Spohn, H.: Equilibrium fluctuations for ∇φ interface model. Ann.
Probab. 29(3), 1138–1172 (2001)

http://creativecommons.org/licenses/by/4.0/


46 P. Miłoś, R. Peled
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