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Abstract: The gap function of a domain Ω ⊂ R
n is

ξ(Ω) := d2(λ2 − λ1),

where d is the diameter ofΩ , andλ1 andλ2 are the first two positive Dirichlet eigenvalues
of the Euclidean Laplacian onΩ . It was recently shown by Andrews and Clutterbuck (J
Amer Math Soc 24:899–916, 2011) that for any convex Ω ⊂ R

n ,

ξ(Ω) ≥ 3π2,

where the infimum occurs for n = 1. On the other hand, the gap function on the moduli
space of n-simplices behaves differently. Our first theorem is a compactness result for
the gap function on the moduli space of n-simplices. Next, specializing to n = 2, our
second main result proves the recent conjecture of Antunes-Freitas (J Phys A: Math
Theor 41(5):055201, 2008) for any triangle T ⊂ R

2,

ξ(T ) ≥ 64π2

9
,

with equality if and only if T is equilateral.

1. Introduction

Let Ω ⊂ R
n be a convex domain. Let λ1 and λ2 be the first two eigenvalues of the

Euclidean Laplacian onΩ with Dirichlet boundary condition. It is a classical result that
0 < λ1 < λ2. The gap between λ1 and the rest of the spectrum,

λ2 − λ1
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is known as the fundamental gap of Ω . The gap function

ξ(Ω) = d2(λ2 − λ1),

where d is the diameter of Ω . The gap function is a scale invariant: it is purely deter-
mined by the shape of the domain. Physically, if we consider heating the domain at some
initial time and then keeping the boundary of the domain fixed at zero temperature, the
fundamental gap determines the rate at which the overall heat in the domain vanishes as
time tends to infinity. It is natural to ask the following question:

How does the shape of a convex domain affect the rate at which it loses heat over
a long period of time?

The mathematical formulation of this question is:

What is the relationship between the geometry of a convex domain Ω ⊂ R
n and

ξ(Ω)?

M. van den Berg [17] observed that for many convex domains, the gap function is
bounded below by a constant. For example, consider a rectangular domain R ⊂ R

2,

R =
{
(x, y) ∈ R

2 | 0 ≤ x ≤ a, 0 ≤ y ≤ b
}
.

Using separation of variables, it is straightforward to compute that the eigenfunctions
and corresponding eigenvalues of the rectangle are

φ j,k(x, y) = sin

(
j xπ

a

)
sin

(
kyπ

b

)
, λ j,k = j2π2

a2 +
k2π2

b2 , j, k ∈ N.

Making the additional assumption b ≤ a, one computes the gap function of the rectangle
R,

ξ(R) = 3π2(a2 + b2)

a2 .

If we then think about the gap function on all possible rectangles R, we see that the
square uniquely maximizes the gap function with

ξ(Square) = 6π2.

On the other hand, if a rectangle collapses to a segment, by letting b ↓ 0, then ξ ↓ 3π2.
An even more elementary example is the segment. The gap function on any (finite)
segment [a, b] with a < b is

3π2.

Perhaps based on this intuition, Yau formulated the fundamental gap conjecture in [18]
which was recently proven by Andrews and Clutterbuck [1].

Theorem 1 (Andrews-Clutterbuck). For any convex domain in R
n, the gap function is

bounded below by 3π2.
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This result shows that among all convex domains, the gap function is minimized
in dimension 1. If the gap function is restricted to a certain moduli space of convex
domains, what are its properties?

In this work, we focus on the gap function restricted to the moduli space of n-simpli-
ces and in particular, the moduli space of Euclidean triangles. Recall that an n-simplex
X is a set of n + 1 vectors {v0, . . . , vn} in R

n such that v1 − v0, . . . , vn − v0 are linearly
independent. The convex domain

⎧⎨
⎩

n∑
j=0

t jv j

∣∣∣∣∣∣
n∑

j=0

t j = 1, t j ≥ 0 for 0 ≤ j ≤ n

⎫⎬
⎭

defined by X is bounded with piecewise smooth boundary. For the sake of simplicity,
we don’t distinguish the simplex X with the domain it defines. The moduli space of
n-simplices is the set of all similarity classes of n-simplices; it is parametrized by the
set of n-simplices with diameter equal to one. We note that in case n = 2, this theorem
is straightforward to deduce from the main result of [6].

Theorem 2. Let Y be an n − 1 simplex for some n ≥ 2. Let {X j } j∈N be a sequence of
n simplices each of which is a graph over Y . Assume the height of X j over Y vanishes
as j → ∞. Then ξ(X j ) → ∞ as j → ∞. More precisely, there is a constant C > 0
depending only on n and Y such that ξ(X j ) ≥ Ch(X j )

−4/3, where h(X j ) is the height
of X j .

Since any triangle with unit diameter is a graph over the unit interval, this theorem
implies that there exists at least one triangle which minimizes the gap function on the
moduli space of triangles. The moduli space of triangles is the set of all similarity classes
of triangles, which we identify with

M ∼=
{
(x, y) ∈ R

2 : y > 0,
1

2
≤ x ≤ 1, x2 + y2 ≤ 1

}
,

where the vertices of a triangle in each similarity class are (0, 0), (1, 0) and (x, y). The
following result shows that the gap function on triangular domains is more than twice
as large as the gap function on a generic convex domain; the theorem was conjectured
in [2].

Theorem 3. For any triangle T with unit diameter,

ξ(T ) ≥ 64π2

9
,

where equality holds iff T is equilateral.

Let us recall the famous question posed by M. Kac [9]:

Can one hear the shape of a drum?

The resonant tones of a domain are in bijection with the eigenvalues of the Euclidean
Laplacian with Dirichlet boundary condition. Therefore, with a perfect ear that is capa-
ble of registering all tones, one can hear the spectrum, that is, the set of all eigenvalues.
Kac’s question is then mathematically reformulated as follows.
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If two domains in R
2 have the same spectrum, do the domains also have the same

shape?

A negative answer to Kac’s question was demonstrated by Gordon, Webb and Wolpert
[7], who showed that there exist isospectral planar domains which are not isomorphic.
On the other hand, Durso [5] proved that if the two domains are triangles in R

2, and they
have the same spectrum, then they must be the same triangle. The proof uses the entire
spectrum, so we can reformulate her result as follows.

With a perfect ear, one can hear the shape of a triangle [5].

In practice, however, one does not have a perfect ear. That is, one may only detect a
finite portion of the spectrum. Our Theorem 3 implies that the equilateral triangle can be
heard with a realistic ear, because Theorem 3 demonstrates that the gap function alone
uniquely distinguishes the equilateral triangle within the moduli space of all triangles.
In fact, we expect that it is possible to distinguish triangles based on a finite number of
eigenvalues. This is supported by numerical data in [3], which shows that one expects
that triangles are uniquely determined by their first three eigenvalues.

Our work is organized as follows. The compactness result for simplices is proven
in § 2; in § 3 this is refined to prove that Theorem 3 holds for all sufficiently “thin”
triangles. In § 4, we prove that the equilateral triangle is a strict local minimum for the
gap function on the moduli space of triangles, and in § 5 we determine a lower bound for
the radius of the neighborhood in the moduli space of triangles on which the equilateral
triangle is a strict local minimum. Finally, in § 6, we provide an algorithm to complete
the proof of Theorem 3. Concluding remarks and conjectures are offered in § 7.

2. A Compactness Result for the Gap of Simplices

Let us first fix the notation. The Laplace operator on R
n is

Δ =
n∑

i=1

∂2

∂x2
i

,

The Dirichlet (respectively, Neumann) eigenvalues of the Laplace operator are the real
numbers λ for which there exists an eigenfunction

u ∈ C∞(Ω) such that −Δu = λu and u|∂Ω = 0, (respectively,
∂u

∂n

∣∣∣∣
∂Ω

= 0).

We shall use λ to denote Dirichlet eigenvalues, μ to denote Neumann eigenvalues, and
index the Dirichlet eigenvalues by N and the Neumann eigenvalues by 0∪N. The Dirich-
let and Neumann1 eigenvalues, respectively, satisfy the following variational principles
[4];

λk = inf
ϕ∈C1(M)

{ ∫
M |∇ϕ|2∫

M f 2

∣∣∣∣∣ ϕ|∂M = 0, ϕ �≡ 0 =
∫

M
ϕφ j , 0 ≤ j < k

}
,

μ j = inf
ϕ∈C1(M)

{ ∫
M |∇ϕ|2∫

M ϕ
2

∣∣∣∣∣ ϕ �≡ 0 =
∫

M
ϕϕl , −1 ≤ l < j

}
,

(1)

1 Note that the Neumann boundary condition is automatically satisfied if no boundary condition is imposed
in the variational principle.
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for k ≥ 1 and j ≥ 0 where φ j and ϕl are, respectively, eigenfunctions for λ j and μl
(assuming that φ0 ≡ 0 and ϕ−1 ≡ 0). The well known property of domain monotonicity
for the Dirichlet eigenvalues is that, if a domain Ω ⊂ Ω∗, then

λk(Ω) ≥ λk(Ω
∗).

In [14], we demonstrated the following weighted variational principle for so-called
drift Laplacians. Given a weight function φ, the drift Laplacian with weight φ is

Δφ := Δ− ∇φ · ∇.
The Dirichlet and Neumann eigenvalues of the drift Laplacian satisfy the following
variational principles.

λk = inf
ϕ∈C1(M)

{ ∫
M |∇ϕ|2e−φ
∫

M ϕ
2e−φ

∣∣∣∣∣ ϕ �≡ 0 =
∫

M
ϕφ j e

−φ, 0 ≤ j < k, ϕ|∂M = 0

}
,

μk = inf
ϕ∈C1(M)

{ ∫
M |∇ϕ|2e−φ
∫

M ϕ
2e−φ

∣∣∣∣∣ ϕ �≡ 0 =
∫

M
ϕϕ j e

−φ, −1 ≤ j < k

}

for k ≥ 1 and ł ≥ 0, where ϕ j achieves the infimum for k = j (and as above φ0 ≡ 0
and ϕ−1 ≡ 0). Finally, throughout this paper we will use the following notations: for a
function f (t) and fixed k ≥ 0,

f (t) = O(tk) as t → 0 if there exist C, δ > 0 such that | f (t)| ≤ Ctk for all |t | ≤ δ;
f (t) = o(tk) as t → 0 if lim

t→0

f (t)

tk
= 0.

2.1. Proof of Theorem 2. To prove Theorem 2, we show that if a sequence of n-sim-
plices collapse, there exists C > 0 such that ξ(X j ) ≥ Ch(X j )

−4/3, where the height
h of the simplex (defined in the arguments below) vanishes as j → ∞. For simplicity
in notation, let us drop the subscript. We may assume that the simplex is defined by the
points

{p j }n
j=0 ⊂ R

n, p0 = 0,

such that

p j =
n∑

i=1

p j
i ei , p j

n = 0, 1 ≤ j ≤ n − 1,

where {ei }n
i=1 are the standard basis of R

n . In other words, p0, . . . ,pn−1 are contained
in the span of {ei }n−1

i=1 . The collapse is described by

|pn
n | → 0.

In fact, we may assume without loss of generality that the simplex is contained in the
set of points

{
x ∈ R

n
∣∣ x =

n∑
k=1

xkek, xn ≥ 0

}
.
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Then, for any point

x ∈ X, x =
n∑

k=1

xkek,

the height of x,

h(x) := xn .

The height of the simplex itself is defined to be

h = h(X) := h(pn) = pn
n .

Since the simplex collapses, we assume in the remaining arguments that h < 0.1.
Let λi , i = 1, 2, be the first and second Dirichlet eigenvalues of X with correspond-

ing eigenfunctions φi such that
∫

X φ
2
i = 1. In the following claim, we demonstrate the

quantitative estimate that at least 90 % of the mass of the eigenfunctions φ1 and φ2
is contained in a cylinder around pn intersected with X . We call this estimate “cutting
corners” because it shows that we may “cut off the corners” and use the cylinder to
estimate the gap. Let

p̃ :=
n−1∑
i=1

pn
i ei ,

and let

Bn−1
ch2/3(p̃)

be the (n−1) dimensional ball in the space spanned by e1, . . . , en−1. The constant c will
be chosen later. We define U to be the intersection of the cylinder with base Bn−1

ch2/3(p̃)
and height h with X ,

U :=
(

Bn−1
ch2/3(p̃)× Ih

)
∩ X,

where Ih is the interval of length h. Let

V := X \ U,

and let

β := max

{∫

V
φ2

1 ,

∫

V
φ2

2

}
.

Claim. There exists a constant A which depends only on n and Y such that if

c > A and h ≤
(

1

2c

)3/2

,

then

β <
1

10
.
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Proof of Claim: We shall begin by assuming

h ≤
(

1

2c

)3/2

,

which guarantees

1 − ch2/3 ≥ 1

2
.

By definition of the simplex as the convex hull of its defining points, since p0, . . . ,pn−1

are contained in the span of e1, . . . , en−1, the diameter of the simplex is 1, and h ≤ 0.1,
it follows that

h(x) ≤ h(1 − ch2/3), ∀x ∈ V . (2)

By the one dimensional Poincaré inequality and since
∫

U φ
2
i = 1 − ∫V φ

2
i ,

λi ≥ π2

h2

(
1 −

∫

V
φ2

i

)
+

π2

h2(1 − ch2/3)2

∫

V
φ2

i , i = 1, 2. (3)

On the other hand, X contains a cylinder

Σ ∼= [0, h(1 − h2/3)] × h2/3Y,

where h2/3Y is the base scaled by h2/3. One computes explicitly

λ2(Σ) = π2

h2(1 − h2/3)2
+

C2

h4/3 , (4)

where C2 is the second Dirichlet eigenvalue of Y . Consequently, (3) and (4) imply that
for i = 1, 2,

π2

h2

(
1 −

∫

V
φ2

i

)
+

π2

h2(1 − ch2/3)2

∫

V
φ2

i ≤ λi ≤ λ2(Σ) = π2

h2(1 − h2/3)2
+

C2

h4/3 ,

which shows that
(

π2

(1 − ch2/3)2
− π2

)∫

V
φ2

i ≤ π2

(1 − h2/3)2
+ C2h2/3 − π2 ≤

(
C2 + 3π2

)
h2/3,

where the final inequality follows since h < 1
10 . On the other hand,

h ≤
(

1

2c

)3/2

,

which shows that

ch2/3 ≤ 1

2
and 2π2ch2/3 ≤ π2

(1 − ch2/3)2
− π2.

We have for i = 1, 2,
∫

V
φ2

i ≤ C2 + 3π2

2cπ2 �⇒ β ≤ C2 + 3π2

2cπ2 . (5)
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Therefore, letting

A = 5(C2 + 3π2)

π2 , then c > A and h ≤
(

1

2c

)3/2

�⇒ β <
1

10
.

��
Consider the so-called “drift Laplacian”ΔU on U with respect to the weight function

f = −2 logφ1,

ΔU := Δ + 2∇ logφ1∇.
Let μ be the first non-zero Neumann eigenvalue of ΔU on U , and let

ψ := φ2

φ1
.

Then, ψ satisfies

Δψ + 2∇ logφ1∇ψ = −(λ2 − λ1)ψ.

Let

α :=
∫

U ψφ
2
1∫

U φ
2
1

, ψ̃ := ψ − α.

Then ∫

U
ψ̃φ2

1 = 0. (6)

Thus, by the weighted variational principle, since ψ̃ satisfies (6),

μ ≤
∫

U |∇ψ̃ |2φ2
1∫

U ψ̃
2φ2

1

=
∫

U |∇ψ |2φ2
1∫

U ψ̃
2φ2

1

. (7)

We have ∫

U
|∇ψ |2φ2

1 ≤
∫

X
|∇ψ |2φ2

1 = (λ2 − λ1)

∫

X
ψ2φ2

1 = λ2 − λ1. (8)

Using the claim we have,
∫

U
ψ2φ2

1 =
∫

X
ψ2φ2

1 −
∫

V
ψ2φ2

1 = 1 −
∫

V
φ2

2 >
9

10
.

Since
∫

X φ1φ2 = 0,
∣∣∣∣
∫

U
φ1φ2

∣∣∣∣ =
∣∣∣∣
∫

V
φ1φ2

∣∣∣∣ ,

so by the Cauchy inequality,

α =
∫

U φ1φ2∫
U φ

2
1

≤
√∫

V φ
2
1

√∫
V φ

2
2

9/10
≤ 1

9
.
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Thus,
∫

U
ψ̃2φ2

1 ≥ 9

10
− 1

9
>

1

2
. (9)

Putting together (7), (8), and (9), we have

μ ≤ 2(λ2 − λ1). (10)

By [1]

μ ≥ π2

d(U )2
. (11)

We estimate that

d(U )2 ≤ (2ch2/3)2 + h2.

This estimate for d(U ) together with (10) and (11) give

λ2 − λ1 ≥ π2

2(2ch2/3)2 + h2 . (12)

Fixing c, (12) demonstrates that ξ(X) ≥ Ch−4/3 → ∞ as h → 0, for a constant C
which depends only on n and the base of the simplex Y . ��

3. Theorem 3 is True for Short Triangles

Refining estimates from the proof of Theorem 2, we demonstrate that if a triangle is
sufficiently “short,” its fundamental gap is strictly larger than 64π2/9.

Proposition 1. Let T be a triangle with vertices (0, 0), (1, 0), and (x0, h), where h ≤
0.005, and 0.5 ≤ x0 ≤ 1. Let λ1 and λ2 be the first two Dirichlet eigenvalues of T .
Then,

λ2 − λ1 >
64π2

9
.

Proof. Define

U := {(x, y) ∈ T : x0 − ch2/3 ≤ x ≤ x0 + ch2/3}, V := T − U,

where the constant c will be specified later. The main idea, as in the proof of Theorem
2, is that λ2 − λ1 is well approximated by the first positive Neumann eigenvalue of U .
Assume the eigenfunctions φi for λi satisfy

∫

T
φ2

i = 1, i = 1, 2,

and let

β := max

{∫

V
φ2

i

}

i=1,2
, α :=

∫
U φ2φ1∫

U φ
2
1

, f := φ2

φ1
.
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Noting that
∫

U
( f − α)φ2

1 = 0,

the weighted variational principle for the first positive Neumann eigenvalue μ(U ) of the
drift Laplacian ΔU with weight function −2 logφ1 gives

μ(U ) ≤
∫

U |∇ f |φ2
1∫

U ( f − α)2φ2
1

≤
∫

T |∇ f |2φ2
1∫

U ( f − α)2φ2
1

= λ2 − λ1∫
U ( f − α)2φ2

1

.

We compute the denominator
∫

U
( f − α)2φ2

1 =
∫

U
φ2

2 − α2
(∫

U
φ2

1

)
≥ 1 − β − α2,

where we have used the definition of β with
∫

U φ
2
2 = 1 − ∫V φ

2
2 , together with

∫
U φ

2
1 ≤∫

T φ
2
1 = 1. So, we have

μ(U ) ≤ λ2 − λ1

1 − β − α2 .

By Corollary 1 of [14] and Corollary 1.4 of [1],

μ(U ) ≥ 3π2

d2(U )
,

which implies

λ2 − λ1 ≥ (1 − β − α2)
3π2

d2(U )
.

Since φ1 and φ2 are L2 orthogonal,

|α| = | ∫V φ1φ2|∫
U φ

2
1

,

which by the Cauchy Schwarz inequality and definition of β gives

|α| ≤ β

1 − β
.

Consequently,

λ2 − λ1 ≥
(

1 − β − β2

(1 − β)2

)
3π2

d2(U )
. (13)

Proceeding by contradiction, we assume

λ2 − λ1 ≤ 64π2

9
�⇒ λ2 ≤ λ1 +

64π2

9
. (14)
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By trigonometry, T contains a rectangle

R ∼= [0, h2/3] × [0, h − h5/3].
By domain monotonicity,

λ1 ≤ λ1(R) = π2

h2(1 − h
2
3 )2

+
π2

h
4
3

.

The height of V is at most

h
(

1 − ch2/3
)
,

since x0 ∈ [0.5, 1]. By the one dimensional Poincaré inequality for i = 1, 2,

π2

h2

∫

U
φ2

i +
π2

h2(1 − ch
2
3 )2

∫

V
φ2

i ≤ λi .

Since

λ1 < λ2 ≤ λ1 +
64π2

9
≤ λ1(R) +

64π2

9
,

by definition of β, since for either i = 1 or i = 2,
∫

U φ
2
i = 1 − β,

π2

h2 (1 − β) +
π2

h2(1 − ch
2
3 )2
β ≤ λ2 ≤ π2

h2(1 − h
2
3 )2

+
π2

h
4
3

+
64π2

9
,

so we have

−c2h4/3 + 2ch2/3

(1 − ch2/3)2
β ≤ 1

(1 − h2/3)2
+ h2/3 +

64h2

9
− 1.

Since h < 0.1, we have

β ≤
(

(1 − ch2/3)2

−c2h4/3 + 2ch2/3

)(
4h2/3 +

64h2

9

)

which simplifies to

β ≤
(
(1 − ch2/3)2

c(2 − ch2/3)

)(
4 +

64h4/3

9

)
. (15)

Since we assume h ≤ 0.005, then for any c < 34, ch2/3 < 1. In particular, fixing
c = 10, we compute that (15) gives for any h ≤ 0.005,

β < 0.12.

Then,
(

1 − β − β2

(1 − β)2

)
> 0.86,
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so (13) becomes

λ2 − λ1 ≥ 3 ∗ 0.86 ∗ π2

d2(U )
.

Since

d2(U ) ≤ h2 + (2ch2/3)2,

we compute that for any h ≤ 0.005,

λ2 − λ1 >
64π2

9
,

which contradicts (14). Thus if h ≤ 0.005, then we have ξ(T ) > 64π2

9 .

4. The Equilateral Triangle is a Strict Local Gap Minimizer

The main result of this section demonstrates that the equilateral triangle is a strict local
minimum for the gap function on the moduli space of triangles. In the proof, we consider
all possible linear deformations of the equilateral triangle and demonstrate that in any
direction, such a deformation strictly increases the gap function (Fig. 1).

4.1. Linear deformation theory. Let T be a triangle with vertices (0, 0), (1, 0), and
z = ( j, k), and side lengths A ≤ B ≤ 1. Consider a deformation to the triangle T (t)
which has vertices (0, 0), (1, 0), and z + tx, where

x = (a, b), a2 + b2 = 1, t ≥ 0.

The direction of the deformation is given by (a, b), while the magnitude is given by
t ≥ 0. The linear transformation which maps the triangle T to the triangle T (t) is
represented by the matrix

A =
[

1 ta
k

0 1 + tb
k

]
.

Fig. 1. Linear deformation of a triangle
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We may view the linear transformation T �→ T (t) as a change of the (Euclidean) Rie-
mannian metric on R

2. In other words, T (t) is isomorphic to T with the metric,

g = (dx)2 + 2
ta

k
dxdy +

((
1 +

tb

k

)2

+
t2a2

k2

)
(dy)2

We compute

det g =
(

1 +
tb

k

)2

.

Thus

g−1 =
[

k2+2bkt+t2

(k+bt)2
−tak
(k+tb)2

−tak
(k+tb)2

k2

(k+tb)2

]
=
[

A B
B D

]
.

If the eigenvalues of the original triangle and the deformation triangle are respectively
λi and λi (t), then they satisfy

γ−λi ≤ λi (t) ≤ γ+λi , (16)

where γ± are the eigenvalues of g−1. It follows that

|λi (t)− λi | ≤ (γ+ − γ−)λi .

We compute

γ± = A + D

2
±
√
(A − D)2 + 4B2

2
.

Substituting the values of A, B, and D gives

γ+ − γ− = t

√
4k2 + t2 + 4bkt

(k + tb)2
,

The relationship between integration over T (t) and T differs by a linear factor,
∫

T (t)
=
(

1 +
tb

k

)∫

T
,

where throughout this paper, integration is assumed to be with respect to the standard
Lebesgue measure dxdy on R

2. The Laplace-Beltrami operator associated to a
Riemannian metric (in dimension n) is

Δ = 1√
det(g)

n∑
i, j=1

∂i g
i j
√

det(g)∂ j ,

so one computes the Laplacian for the deformation metric g,

Δ = 1

(1 + tb/k)2

(((
1 +

tb

k

)2

+
t2a2

k2

)
∂2

x − 2ta

k
∂x∂y + ∂2

y

)
.
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Henceforth we shall useΔ0 = ∂2
x + ∂2

y for the Euclidean Laplacian,Δ for the Lapla-
cian associated to a deformation metric, and ∇ f = ( fx , fy) the gradient (with respect
to the standard Euclidean metric). In §6, we shall use this linear deformation theory to
complete the proof of Theorem 3. Presently, we specialize to the equilateral triangle
which we call T , and whose vertices are

(0, 0), (1, 0), and

(
1

2
,

√
3

2

)
.

A triangle obtained by a linear deformation of T , with vertices

(0, 0), (1, 0), and

(
1

2
,

√
3

2

)
+ t (a, b),

is equivalent to T with the metric

g = (dx)2 +
4ta√

3
dxdy +

((
1 +

2tb√
3

)2

+
4t2a2

3

)
(dy)2.

We compute,

det g =
(

1 +
2tb√

3

)2

,

and

αi := λi (t)− λi

t
, |αi | ≤ 4

√
3 + 2

√
3bt + t2

(
√

3 + 2tb)2
. (17)

The associated Laplace operator

Δ = 1

(1 + 2bt/
√

3)2

(((
1 +

2tb√
3

)2

+
4t2a2

3

)
∂2

x − 4ta√
3
∂x∂y + ∂2

y

)
.

Let

L := 1(
1 + 2tb√

3

)2

(
4ta2

3
∂2

x − 4a√
3
∂x∂y −

(
4b√

3
+

4tb2

3

)
∂2

y

)
,

then

Δ = ∂2
x + ∂2

y + t L = Δ0 + t L1 + t2L2, (18)

where

L1 = 4
√

3

(
√

3 + 2tb)2

(
−a∂x∂y − b∂2

y

)
, L1(t = 0) = 4

√
3

3

(
−a∂x∂y − b∂2

y

)
, (19)

and

L2 = 4

(
√

3 + 2tb)2

(
a2∂2

x − b2∂2
y

)
. (20)
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By the variational principle since λ1 is smooth, the first eigenvalue for the T (t), which
we write as λ1(t) satisfies

λ1(t) = λ1 + t λ̇1 + t2 O1, λ̇1 = −
∫

T
φ1 (L1|t=0) φ1, (21)

where φ1 is an eigenfunction for λ1 with unit L2 norm. If λ2 is simple, then we also have

λ2(t) = λ1 + t λ̇2 + t2 O2, λ̇2 = −
∫

T
φ2 (L1|t=0) φ2,

where φ2 is an eigenfunction for λ2 with unit L2 norm.
In general, λ2 is not differentiable because the second eigenspace may have dimen-

sion greater than one; this is the case for the equilateral triangle. Nonetheless, we may
use the variational principle to show that the equilateral triangle is a strict local minimum
for the gap function restricted to the moduli space of triangles.

Theorem 4. The equilateral triangle is a strict local minimum for the gap function on
the moduli space of triangles.

We will prove the theorem by applying the following proposition together with
explicit calculations for the eigenvalues and eigenfunctions of the equilateral triangle.

Proposition 2. For any deformation of the equilateral triangle which preserves diameter,
for the corresponding L1,

−
(∫

T
φ2(L1|t=0)φ2 −

∫

T
φ1(L1|t=0)φ1

)
> 0,

for all eigenfunctions φi for λi (T ), i = 1, 2, with unit L2 norm.

Proof that Proposition 2 implies Theorem 4. Let φ1 and φ2 be eigenfunctions for the
first two Dirichlet eigenvalues λ1 and λ2, respectively, for the equilateral triangle T .
Assume the eigenfunctions have unit L2 norm on T . Let f1 and f2 be eigenfunctions
for the first two Dirichlet eigenvalues of T (t). Let

ε = ε(t) := − ∫ φ1 f2∫
φ1 f1

,

where above and indeed throughout this paper, integration is over the equilateral triangle
T unless otherwise indicated. For simplicity, in this section we shall use L1 to denote
L1|t=0. Since A is a linear transformation from T to T (t), f1 and f2 are orthogonal with
respect to dxdy, so by the convergence of f1 → φ1,

ε =
∫

f2( f1 − φ1)∫
φ1 f1

= O(t) as t → 0. (22)

Note that
∫
( f2 + ε f1)φ1 = 0,
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so by the variational principle,

λ2 ≤ − ∫ ( f2 + ε f1)Δ0( f2 + ε f1)∫ | f2 + ε f1|2 . (23)

Since these functions are uniformly bounded in Ck for any fixed k, the Laplace operator
on T (t),

Δ = Δ0 + t L1 + O(t2).

Then,

−
∫
( f2 + ε f1)Δ0( f2 + ε f1) = −

∫
( f2 + ε f1)(Δ− t L1)( f2 + ε f1) + O(t2)

= λ2(t) + t
∫

f2 L1 f2 + O(t2).

Consequently,

λ2 ≤ λ2(t) + t
∫

f2L1 f2 + O(t2).

Since λ1 is differentiable with λ̇1 = − ∫ φ1L1φ1,

λ1(t) = λ1 + t λ̇1 + O(t2) �⇒ λ1 = λ1(t) + t
∫
φ1L1φ1 + O(t2). (24)

Then, (23) and (24) imply

λ2 − λ1 ≤ [λ2(t)− λ1(t)] + t

[∫
f2L1 f2 −

∫
φ1L1φ1

]
+ O(t2). (25)

Since the deformation preserves diameter, we may re-write (25) as

ξ(T ) ≤ ξ(T (t)) + t

[∫
f2 L1 f2 −

∫
φ1L1φ1

]
+ O(t2). (26)

We can always construct a sequence of eigenfunctions f2 which converge in C2 to some
eigenfunction φ2 for λ2 with

∫
φ2

2 = 1. Consequently,

ξ(T ) ≤ ξ(T (t)) + t

[∫
φ2L1φ2 −

∫
φ1L1φ1

]
+ O(t2).

Since for all φ2,
∫
φ2L1φ2 −

∫
φ1L1φ1 < 0,

we have ξ(T ) < ξ(T (t)) for all t sufficiently small. Finally, we note that we need
only consider deformations in directions which preserve the diameter because the gap
function is scale invariant. We have therefore reduced the theorem to verifying explicit
calculations involving the eigenfunctions and eigenvalues of the equilateral triangle.
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4.2. Eigenfunctions and eigenvalues of the equilateral triangle. In 1852, Lamé com-
puted the eigenfunctions and eigenvalues of the equilateral triangle by real analytically
extending the eigenfunctions to the plane using the symmetry of the equilateral triangle
[10–12]. The eigenvalues are given by the general formula

λ = 16π2

27
(m2 + n2 − mn), m, n ∈ Z, (27)

such that m and n satisfy

m + n ≡ 0 mod 3, m �= 2n, n �= 2m, m �= −n. (28)

The eigenfunctions are

∑
(m,n)

± cos

(
2π

3

)(
nx +

(2n − m)y√
3

)
and

∑
(m,n)

± sin

(
2π

3

)(
nx +

(2n − m)y√
3

)
,

where the sum alternates over the orbit

(−n,m − n) �→ (−n,−m) �→ (n − m,−m) �→ (n − m, n) �→ (m, n) �→ (m,m − n),

such that (m, n) satisfy (27, 28) for the eigenvalue

λ = 16π2

27
(m2 + n2 − mn).

4.2.1. The first eigenspace of the equilateral triangle. The first Dirichlet eigenvalue of
the equilateral triangle with side lengths one is given by (27) with m = 0 and n = 3, (or
with m = n = 3),

λ1 = 16π2

3
. (29)

Since the first Dirichlet eigenvalue is always simple, it follows from Corollary 2 of [15]
that the first L2 normalized eigenfunction of the equilateral triangle T is

φ1(x, y) = 2
√

2

33/4

(
sin

(
4πy√

3

)
− sin

(
2π

(
x +

√
3y

3

))
+ sin

(
2π

(
x −

√
3y

3

)))
.

Proposition 3.

φ1(x, y) = 2
√

2

33/4 sin

(
2π

√
3y

3

)
sin

(
π

(
x +

√
3y

3

))
sin

(
π

(
x −

√
3y

3

))
.
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Proof. The standard angle addition and subtraction identities for sine and cosine show
that,

sin

(
4π

√
3y

3

)
− 2 cos 2πx sin

(
2π

√
3y

3

)

= 2 sin

(
2π

√
3y

3

)(
cos

2π
√

3y

3
− cos 2πx

)

= sin

(
2π

√
3y

3

)
sin

(
π

(
x +

√
3y

3

))
sin

(
π

(
x −

√
3y

3

))
.

The last equality follows from the identity

cosα − cosβ = −2 sin

(
1

2
(α + β)

)
sin

(
1

2
(α − β)

)
.

We compute

∫
(φ1)

2
y =

∫
(φ1)

2
x = 8π2

3
,

∫
(φ1)x (φ1)y = 0.

∫
(φ1)

2
xy = 32π4

9
,

∫
(φ1)

2
yy =

∫
(φ1)

2
xx = 32π4

3
.

∫
φ1 = 33/4

√
2π
.

∫
(φ1)xx (φ1)xy = 0 =

∫
(φ1)yy(φ1)xy .

4.2.2. The second eigenspace of the equilateral triangle. The second Dirichlet eigen-
value of the equilateral triangle is given by (27) with m = 1 and n = 5 (or with m = −1
and n = 4),

λ2 = 112π2

9
.

This eigenspace has dimension two. An L2 orthonormal basis of eigenfunctions is given
by

u(x, y) = 2

3
3
4

⎛
⎝

cos 2π
3 (5x − √

3y)− cos 2π
3 (5x +

√
3y) + cos 2π

3 (−x + 3
√

3y)
− cos 2π

3 (−x − 3
√

3y) + cos 2π
3 (−4x − 2

√
3y)

− cos 2π
3 (−4x + 2

√
3y)

⎞
⎠ ,

and

v(x, y) = 2

3
3
4

⎛
⎝

sin 2π
3 (5x − √

3y)− sin 2π
3 (5x +

√
3y) + sin 2π

3 (−x + 3
√

3y)
− sin 2π

3 (−x − 3
√

3y) + sin 2π
3 (−4x − 2

√
3y)

− sin 2π
3 (−4x + 2

√
3y)

⎞
⎠ .
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The following calculations will play a key role in the proof of Theorem 2.

∫
|ux |2 =

∫
|vy |2 = −6561

800
+

56π2

9
,

∫
ux uy = −6561

√
3

800
.

∫
vxvy =

∫
uyvy = 6561

√
3

800
,

∫
uxvy = 6561

800
,

∫
uxvx = −6561

√
3

800
,

∫
|uy |2 =

∫
|vx |2 = 6561

800
+

56π2

9
.

∫
u2

xy = −5103π2

200
+

1568π4

81
,

∫
u2

yy = 5103π2

40
+

1568π4

27
,

∫
u2

xx = 7π2(−59049 + 44800π2)

5400
,

∫
v2

xx = 7π2(59049 + 44800π2)

5400
,

∫
v2

xy = 5103π2

200
+

1568π4

81
,

∫
v2

yy = −5103π2

40
+

1568π4

27
,

∫
vxyuxy = −5103

√
3π2

200
,

∫
vxx uxx = −15309

√
3π2

200
,

∫
vyyuyy = 5103

√
3π2

40
.

4.2.3. The third and higher eigenspaces of the equilateral triangle. The third (distinct)
eigenvalue is given by (27) with m = n = 6,

λ3 = 64π2

3
.

The eigenspace has dimension one. The eigenfunction is

A(x, y) = 2

3
3
4

(
2 sin

2π

3
(6x + 4

√
3y)− 2 sin

2π

3
(6x + 2

√
3y)− 2 sin

2π

3
(2

√
3πy)

)
.

4.3. Proof of Proposition 2. Any real eigenfunction ϕ of λ2 is a linear combination,

ϕ = αu + βv, α2 + β2 = 1,

and we may assume without loss of generality that α ≥ 0. We compute
∫
ϕ2

y = 56π2

9
+
[
α2 − β2 + 2

√
3αβ

] 6561

800
,

and
∫
ϕxϕy =

[
β2 − α2 +

2αβ√
3

]
6561

√
3

800
.

As previously observed, we need only consider those deformations in directions which
preserve diameter, and by symmetry, we need only consider those directions θ with
cos θ ≥ 0. These are deformations in directions θ ∈ [−π/2,−π/6], so the direction
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vector (a, b) satisfies a2 + b2 = 1 , a ≥ 0, and a +
√

3b ≤ 0. We compute the minimum
of

I := −
∫
ϕ(L1|t=0)ϕ +

∫
φ1(L1|t=0)φ1 =

(
2bλ1√

3
− 4b√

3

∫
|ϕy |2 − 4a√

3

∫
ϕxϕy

)

= −
(

25600π2 + (α2 − β2 + 2
√

3αβ)59049

1800
√

3

)
b − 6561

200

(
β2 − α2 +

2αβ√
3

)
a.

Since (a, b) is a unit vector, a ≥ 0, and b ≤ − a√
3
, it follows that b = −√

1 − a2. So,
we determine the minimum of

I =
(

25600π2 + (α2 − β2 + 2
√

3αβ)59049
)√

1 − a2 + 59049
√

3(α2 − β2 − 2αβ√
3
)a

1800
√

3
,

subject to the constraints

α2 + β2 = 1, 0 ≤ a ≤
√

3

2
.

Introducing the polar coordinates,

cos(t) := α, sin(t) := β,

we compute that I is minimized for

t = π

2
, a =

√
3

2
,

and the minimum is

25600π2 − 236196

3600
√

3
> 2.64 > 0.

��
Remark 1. In the proof of the theorem, we have shown that for any triangle T ∈ M with
vertices (0, 0), (1, 0), and (x, y), where (x − 1/2)2 + (y − √

3/2)2 ≤ t2,

λ2(T )− λ1(T ) ≥ 64π2

9
+ t (2.64) + O(t2).

In the arguments below, we use the calculations in §2 to precisely estimate the error
O(t2).

5. Theorem 3 is True for Almost Equilateral Triangles

The following proposition is the last step we need to reduce the proof of Theorem 2 to
finitely many numerical calculations.
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Proposition 4. Let T be any triangle with vertices (0, 0), (1, 0) and (x, y) such that

x2 + y2 ≤ 1, (x − 1)2 + y2 ≤ 1,

and

t :=
√√√√
(

x − 1

2

)2

+

(
y −

√
3

2

)2

≤ 0.0004.

Then, the gap function ξ(T ) satisfies

ξ(T ) >
64π2

9
.

Proof. We shall again use λi , i = 1, 2 for the eigenvalues of the equilateral triangle and
λi (t), i = 1, 2, for the corresponding eigenvalues of a triangle T (t) which satisfies the
hypotheses of the proposition.

Since λ1 is differentiable, we have

λ1(t) = λ1 + t λ̇1 + O1(t
2).

By the variational principle,

λ1(t) ≤ − ∫T (t) φ1Δφ1∫
T (t) φ

2
1

,

which simplifies to

λ1(t) ≤ −
∫
φ1Δφ1,

since integration over T and T (t) differ by linear factors which cancel in the numerator
and denominator, and

∫
φ2

1 = 1. We then have

λ1(t) ≤ −
∫
φ1(Δ0 + t L)φ1,

where L = L1 + L2 is defined in (19, 20). So, we compute directly

λ1(t) ≤ λ1 − t
∫
φ1 (L1|t=0) φ1 − t

∫
φ1 (L − L1|t=0) φ1.

Thus, we have made explicit

|O1(t
2)| ≤

∣∣∣∣t
∫
φ1 (L − L1|t=0) φ1

∣∣∣∣ .

We have

L − L1|t=0 = 4ta2∂2
x − 4tb2∂2

y

(
√

3 + 2tb)2
+

(
−4

√
3

(
√

3 + 2tb)2
+

4√
3

)(
a∂x∂y + b∂2

y

)
.
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We estimate using the calculations for the first eigenfunction of the equilateral triangle
and a2 + b2 = 1,

∣∣∣O1(t
2)

∣∣∣ ≤ t

(∣∣∣∣∣
4
√

3

(
√

3 + 2tb)2
− 4√

3

∣∣∣∣∣ |b|
∫
(φ1)

2
y

)
+ t2 4(a2 − b2)

(
√

3 + 2tb)2

∫
(φ1)

2
y

≤ t2

(
16

√
3 + 16t√

3(
√

3 + 2tb)2
8π2

3
+

4

(
√

3 + 2tb)2
8π2

3

)
,

which for t ≤ 0.0004 gives

|O1(t
2)| ≤ t2(175.95). (30)

5.1. Estimates for the second eigenspace. Since λ2 of the equilateral triangle is not dif-
ferentiable, the estimates for its error term require a bit more work. The main idea is to
expand the first two eigenfunctions for the linearly-deformed triangle using the ortho-
normal basis of eigenfunctions for the equilateral triangle. We then use the Poincaré
inequality and our explicit calculations for the eigenfunctions of the equilateral triangle
to estimate the error.

5.1.1. The first eigenfunction of the linearly deformed triangle. Our eventual goal is to
estimate λ2(t) from below. To accomplish this, we require not only estimates for the
second eigenspace of the linearly deformed triangle, T (t), but also estimates for its first
eigenfunction. Let f be the first eigenfunction of T (t) and write

f = φ1 + tg, αi := λi (t)− λi

t
for i = 1, 2,

with ∫
φ2

1 = 1,
∫
φ1g = 0. (31)

As usual, integration is over the equilateral triangle T with respect to the standard mea-
sure dxdy, and we use || · || to denote the L2 norm over T . Since we assume t ≤ 0.0004,
by (17),

|λi (t)− λi | = t |αi | ≤ t (2.32)λi . (32)

We compute
∫

f L f =
∫
φ1Lφ1 + 2t

∫
gLφ1 + t2

∫
gLg. (33)

Since
∫
φ1g = 0, by the variational principle (1)

λ2 ≤
∫ |∇g|2∫

g2
,

which gives the Poincaré inequality for g,

||g|| ≤ 1√
λ2

||∇g||. (34)
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To estimate ||∇g||, we use the definition of f and g to compute

(Δ0 + λ1)g = −α1 f − Lφ1 − t Lg. (35)

By definition of g and (31),
∫

f g =
∫
(φ1 + tg)g = t

∫
g2. (36)

We compute using integration by parts and then substituting (35, 36),
∫

g(Δ0 + λ1)g = −
∫

|∇g|2 + λ1

∫
g2 = −tα1

∫
g2 −

∫
gLφ1 − t

∫
gLg,

which gives

||∇g||2 = (λ1 + α1t)
∫

g2 +
∫

gLφ1 + t
∫

gLg. (37)

By definition of L , and since a2 + b2 = 1, for any function ψ which vanishes on ∂T ,
we have

∣∣∣∣
∫
ψLψ

∣∣∣∣ ≤
4
√

3

(
√

3 − 2t |b|)2 ||ψx ||||ψy || +
4|b|√3 + 4tb2

(
√

3 − 2t |b|)2 ||ψy ||2,

and since we always have ||ψx || ≤ ||∇ψ ||, ||ψy || ≤ ||∇ψ ||, and −1 ≤ b ≤ 1, we have
∣∣∣∣
∫
ψLψ

∣∣∣∣ ≤
8
√

3 + 4t

(
√

3 − 2t)2
||∇ψ ||2 for any ψ which vanishes on ∂T . (38)

Applying this to g, we have
∣∣∣∣
∫

gLg

∣∣∣∣ ≤
8
√

3 + 4t

(
√

3 − 2t)2
||∇g||2.

By the Poincaré inequality for g (34), (37) with the Cauchy inequality, and the above
estimate, we have

||∇g||2 ≤ λ1 + |α1|t
λ2

||∇g||2 +
||∇g||√
λ2

||Lφ1|| + t
8
√

3 + 4t

(
√

3 − 2t)2
||∇g||2,

which gives

||∇g|| ≤
(
λ2 − λ1 − |α1|t

λ2
− t

(
8
√

3 + 4t

(
√

3 − 2t)2

))−1 ||Lφ1||√
λ2

.

We assume t ≤ 0.0004, so substituting the estimate (32) for α1, we have

||∇g|| ≤
(
λ2 − λ1 − 0.00232λ1

λ2
− 0.0046309

)−1 ||Lφ1||√
λ2

.

Using the values for λ1 and λ2, we have

||∇g|| ≤ 0.15948||Lφ1||. (39)
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Next we estimate ||Lφ1||. For these calculations it is convenient to drop the subscript
and write simply φ. We have

Lφ = 4ta2

(
√

3 + 2tb)2
φxx − 4

√
3a

(
√

3 + 2tb)2
φxy − 4

√
3b + 4tb2

(
√

3 + 2tb)2
φyy .

Recalling
∫
φxxφxy =

∫
φyyφxy =

∫
φxxφyy = 0,

and a2 + b2 = 1, we compute
∫
(Lφ)2 ≤ 16t2

(
√

3 − 2t |b|)4 ||φxx ||2 +
48

(
√

3 − 2t |b|)4 ||φxy ||2

+
48 + 32

√
3t + 16t2

(
√

3 − 2t |b|)4 ||φyy ||2.

Assuming t ≤ 0.0004 and substituting the value of the integrals, we have

||Lφ||2 ≤ (1.7861)t2 32π4

3
+ 5.3581

32π4

9
+ 5.3581

32π4

3
+ 6.1870t

32π4

3

+1.7861t2 32π4

3
.

Assuming t ≤ 0.0004, we have the estimate for ||Lφ||,
||Lφ|| ≤ 86.194, (40)

and this gives us the approximation for ||∇g||,
||∇g|| ≤ 0.15948||Lφ|| ≤ 13.747.

Moreover, we have the estimate for ||g||,

||g|| ≤ ||∇g||√
λ2

≤ (11.907)(3)√
112π

≤ 1.2404. (41)

5.1.2. The second eigenspace. Let F be an eigenfunction in the second eigenspace of
T (t), and assume ||F || = 1, where as usual, the L2 norm is taken over the equilateral
triangle T . Expanding F in terms of the eigenfunctions of the equilateral triangle,

F = ϕ + Aφ1 + tG,

where ϕ is an eigenfunction for λ2, and G satisfies
∫

Gφ1 = 0,
∫

Gφ2 = 0 ∀ eigenfunction φ2 for λ2.

Then, we have
∫

G F = t
∫

G2 and
∫

Fφ1 = A =
∫

F( f − tg) = −t
∫

Fg, (42)
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so by the Cauchy inequality

A2 ≤ t2||g||2||F ||2.
By definition of F and G,

∫
F2 = 1 + A2 + t2||G||2.

Combining these, we have

A2 ≤ t2||g||2||F ||2 = t2||g||2(1 + A2 + t2||G||2),
so we obtain the estimate for A,

A2 ≤ t2||g||2(1 + t2||G||2)
1 − t2||g||2 �⇒ |A| ≤ t ||g||(1 + t ||G||)√

1 − t2||g||2 . (43)

Since G is orthogonal to the first two eigenspaces, the variational principle for λ3 gives

λ3 ≤
∫ |∇G|2∫

G2
,

which implies the Poincaré inequality for G,

||G||2 ≤ ||∇G||2
λ3

. (44)

We estimate G in the same spirit as g. We compute,

(Δ0 + λ2)G = (Δ0 + λ2)

(−Aφ1 + F

t

)
,

since

(Δ0 + λ2)ϕ = 0.

So,

(Δ0 + λ2)G = 1

t
(λ1 Aφ1 − λ2 Aφ1 + (Δ− t L + λ2(t)− tα2)F) ,

= (λ1 − λ2)Aφ1

t
− (L + α2)F.

To estimate ||∇G|| and hence ||G|| by the Poincaré inequality (44), we use the above
calculation together with integration by parts (as we did with g),

∫
G(Δ0 + λ2)G =

∫
G(λ1 − λ2)Aφ1

t
−
∫

G(L + α2)F,

which since G is orthogonal to φ1 becomes

= −
∫

GL F − α2

∫
G F.
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By definition of F and (42), this is

−
∫

GL(Aφ1 + ϕ + tG)− tα2

∫
G2

= −A
∫

GLφ1 −
∫

GLϕ − t
∫

GLG − tα2

∫
G2.

On the other hand, integrating by parts gives
∫

G(Δ0 + λ2)G = −
∫

|∇G|2 + λ2

∫
G2.

Combining this with the above calculation, we have

−
∫

|∇G|2 + λ2

∫
G2 = −A

∫
GLφ1 −

∫
GLϕ − t

∫
GLG − tα2

∫
G2.

The estimate for L (38) and the Cauchy inequality imply

||∇G||2 ≤ λ2||G||2 + ||G||(|A|||Lφ1|| + ||Lϕ||) + t
8
√

3 + 4t

(
√

3 − 2t)2
||∇G||2 + t |α2|||G||2.

By the Poincaré inequality for G (44),

||∇G||2 ≤ λ2

λ3
||∇G||2 +

||∇G||√
λ3

(|A|||Lφ1|| + ||Lϕ||) + t
8
√

3 + 4t

(
√

3 − 2t)2
||∇G||2

+t
|α2|
λ3

||∇G||2.

This gives the estimate

||∇G|| ≤
(

1 − λ2 + t |α2|
λ3

− t

(
8
√

3 + 4t

(
√

3 − 2t)2

))−1 ( |A|||Lφ1|| + ||Lϕ||√
λ3

)
,

and

||G|| ≤ 1√
λ3

(
1 − λ2 + t |α2|

λ3
− t

(
8
√

3 + 4t

(
√

3 − 2t)2

))−1 ( |A|||Lφ1|| + ||Lϕ||√
λ3

)
.

Expanding and simplifying we have

||G|| ≤ (
√

3 − 2t)2(|A|||Lφ1|| + ||Lϕ||)
(
√

3 − 2t)2(λ3 − λ2 − t |α2|)− tλ3(8
√

3 + 4t)
.

Recalling the estimate (43) for A,

||G|| ≤ (
√

3 − 2t)2

(
√

3 − 2t)2(λ3 − λ2 − t |α2|)− tλ3(8
√

3 + 4t)

×
(

t ||Lφ1||||g|| + t2||Lφ1||||g||||G||√
1 − t2||g||2 + ||Lϕ||

)
.
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Collecting the ||G|| terms,

||G||
(

1 − (
√

3 − 2t)2

(
√

3 − 2t)2(λ3 − λ2 − t |α2|)− tλ3(8
√

3 + 4t)

t2||Lφ1||||g||√
1 − t2||g||2

)

≤ (
√

3 − 2t)2

(
√

3 − 2t)2(λ3 − λ2 − t |α2|)− tλ3(8
√

3 + 4t)

(
||Lφ1||t ||g||√

1 − t2||g||2 + ||Lϕ||
)
.

This gives the estimate from above for ||G||,
(
√

3 − 2t)2
(

t ||Lφ1||||g|| +
√

1 − t2||g||2||Lϕ||
)

(
(
√

3 − 2t)2(λ3 − λ2 − t |α2|)− tλ3(8
√

3 + 4t)
)√

1 − t2||g||2 − t2(
√

3 − 2t)2||Lφ1||||g||
.

(45)

At this point, we may substitute estimates for every term except ||Lϕ||, which we now
estimate. By definition of L ,

Lϕ = 4ta2

(
√

3 + 2tb)2
ϕxx − 4

√
3a

(
√

3 + 2tb)2
ϕxy − 4

√
3b + 4b2

(
√

3 + 2tb)2
ϕyy .

By the triangle inequality for L2 and since t ≤ 0.0004,

||Lϕ|| ≤ 0.0013365||ϕxx || + 2.3148||ϕxy || + 3.6512||ϕyy ||. (46)

Since ϕ is an L2 orthonormal eigenfunction for λ2,

ϕ = αu + βv, α2 + β2 = 1.

By our calculations for the second eigenspace of the equilateral triangle,

||ϕxx || =
√
α2 7π2(−59049 + 44800π2)

5400
+ β2 7π2(54049 + 44800π2)

5400
− 2αβ

15309
√

3π2

200
,

||ϕxy || =
√
α2

(
−5103π2

200
+

1568π4

81

)
+ β2

(
5103π2

200
+

1568π4

81

)
− 2αβ

5103
√

3π2

200
,

||ϕyy || =
√
α2

(
5103π2

40
+

1568π4

27

)
+ β2

(
−5103π2

40
+

1568π4

27

)
+ 2αβ

5103
√

3π2

40
.

We introduce the polar coordinates

cos(t) := α, sin(t) := β.

The expressions simplify a bit,

||ϕxx || =
√

1568π4

27
− cos(2t)

15309π2

200
− sin(2t)

15309
√

3π2

200
,

||ϕxy ||
√

1568π4

81
− cos(2t)

5103π2

200
− sin(2t)

5103
√

3π2

200
,

||ϕyy || =
√

1568π4

27
+ cos(2t)

5103π2

40
+ sin(2t)

5103
√

3π2

40
.
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Using these calculations and (46), we estimate ||Lϕ|| by determining the maximum of

0.0013365

√
1568π4

27
− cos(2t)

15309π2

200
− sin(2t)

15309
√

3π2

200

+ 2.3148

√
1568π4

81
− cos(2t)

5103π2

200
− sin(2t)

5103
√

3π2

200

+ 3.6512

√
1568π4

27
+ cos(2t)

5103π2

40
+ sin(2t)

5103
√

3π2

40
,

for 0 ≤ t < 2π . We compute that the maximum is achieved when t = π/6, with the
approximate value 416.269, and in particular

||Lϕ|| ≤ 416.27.

Substituting the estimate for ||Lϕ||, the values of λi for i = 1, 2, 3, the estimate (40) for
||Lφ1||, and the estimate (41) for ||g|| into the estimate for ||G|| (45), we arrive at our
numerical estimate for ||G||,

||G|| ≤ 4.7772. (47)

We use this to estimate ||∇G|| using the Poincaré inequality

||∇G|| ≤ √λ3||G|| ≤
√

64π2

3
4.7772 ≤ 69.32.

Recalling the estimate for A (43), we have

|A| ≤ t

(
||g|| + t ||g||||G||√

1 − t2||g||2
)

≤ t (1.243). (48)

Based on these estimates, we shall use the variational principle to estimate λ2(t) from
below. Since F − Aφ1 = ϕ + tG is orthogonal to φ1, the variational principle for λ2
gives

λ2 ≤ − ∫ (F − Aφ1)Δ0(F − Aφ1)

||F − Aφ1||2 = − ∫ (F − Aφ1)(Δ− t L)(F − Aφ1)

1 + t2||G||2 . (49)

We compute the numerator to be

λ2(t) + t
∫

F L F +
∫

Aφ1(Δ− t L)(F − Aφ1) +
∫

F(Δ− t L)Aφ1.

The last two terms are

A
∫
φ1Δ0(ϕ + tG) + A

∫
FΔ0φ1.

By definition of φ1 and integration by parts, these are

= −Aλ1

∫
φ1(ϕ + tG)− Aλ1

∫
Fφ1.



The Fundamental Gap of Simplices 139

The first integral vanishes since ϕ and G are orthogonal to φ1. So, the numerator of (49)
is

−
∫
(F − Aφ1)Δ0(F − Aφ1) = λ2(t) + t

∫
F L F − Aλ1

∫
Fφ1.

Thus, the variational principle for λ2 implies

λ2 ≤ λ2(t) + t
∫

F L F − Aλ1
∫

Fφ1

1 + t2||G||2 ,

which gives the estimate for λ2(t),

λ2(t) ≥ λ2(1 + t2||G||2)− t
∫

F L F + Aλ1

∫
Fφ1.

This implies

λ2(t) ≥ λ2 − t
∫

F L F + Aλ1

∫
Fφ1.

Substituting (42), we have

λ2(t) ≥ λ2 − t
∫

F L F + A2λ1 ≥ λ2 − t
∫

F L F. (50)

By definition of F = ϕ + Aφ1 + tG and integration by parts,
∫

F L F =
∫
ϕLϕ + A2

∫
φ1Lφ1 + t2

∫
GLG + 2A

∫
ϕLφ1 + 2t

∫
GLϕ

+2At
∫

GLφ1.

This gives

λ2(t) ≥ λ2 − t
∫
ϕ(L1|t=0)ϕ − t

∫
ϕ(L − L1|t=0)ϕ

−t A2
∫
φ1Lφ1 − t3

∫
GLG − 2At

∫
ϕLφ1 − 2t2

∫
GLϕ − 2At2

∫
GLφ1.

Incorporating estimate (30) for λ1(t), we have

λ2(t)− λ1(t) ≥ λ2 − λ1 + t
∫
φ1(L1|t=0)φ1 − t

∫
ϕ(L1|t=0)ϕ − |O1(t

2)|

−t
∫
ϕ(L − L1|t=0)ϕ

−t A2
∫
φ1Lφ1 − t3

∫
GLG − 2At

∫
ϕLφ1 − 2t2

∫
GLϕ − 2At2

∫
GLφ1.

Our calculations from the proof of Theorem 4 and the estimate (30) of |O1(t2)| imply

ξ(T (t)) ≥ 64π2

9
+ (2.64)t − t2(175.95)− t

∫
ϕ(L − L1|t=0)ϕ

−t A2
∫
φ1Lφ1 − t3

∫
GLG − 2At

∫
ϕLφ1 − 2t2

∫
GLϕ − 2At2

∫
GLφ1.
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Recall the calculation

L − L1|t=0 = 4ta2∂2
x − 4tb2∂2

y

(
√

3 + 2t)2
+

(
−4

√
3

(
√

3 + 2tb)2
+

4√
3

)(
a∂x∂y + b∂2

y

)
.

Thus, we have
∫
ϕ(L − L1|t=0)ϕ =

− 4ta2

(
√

3 + 2t)2
||ϕx ||2 +

4tb2

(
√

3 + 2t)2
||ϕy ||2

+

(
4
√

3

(
√

3 + 2tb)2
− 4√

3

)(
a
∫
ϕxϕy + b||ϕy ||2

)
.

We estimate using the Cauchy inequality, ||ϕx || and ||ϕy || ≤ ||∇ϕ|| with ||∇ϕ||2 = λ2,

∫
ϕ(L − L1|t=0)ϕ ≤ 4t

(
√

3 + 2t)2
λ2 + 2

(
4
√

3

(
√

3 + 2tb)2
− 4√

3

)
λ2.

Since we assume t ≤ 0.0004, we have
∫
ϕ(L − L1|t=0)ϕ ≤ 0.58997.

We estimate the remaining terms using the Cauchy inequality, our estimates for
||Lϕ||, ||Lφ1||,G, ||∇G||, and the general estimate (38) for L ,

∣∣∣∣
∫
φ1Lφ1

∣∣∣∣ ≤ ||Lφ1|| ≤ 86.194,

∣∣∣∣
∫

GLG

∣∣∣∣ ≤
8
√

3 + 4t

(
√

3 − 2t)2
||∇G||2 ≤ 22664,

∣∣∣∣
∫
ϕLφ1

∣∣∣∣ ≤ ||Lφ1|| ≤ 86.194,
∣∣∣∣
∫

GLϕ

∣∣∣∣ ≤ ||G||||Lϕ|| ≤ 2009,
∣∣∣∣
∫

GLφ1

∣∣∣∣ ≤ ||G||||Lφ1|| ≤ 416,

since ||φ1|| = ||ϕ|| = 1. Substituting the estimate for A gives our eventual estimate for
the entire O(t2) error term, and we have

ξ(T (t)) ≥ 64π2

9
+ (2.64)t − t2(175.95)− t (0.58997)

− t3(1.243)2(86.194)− t3(22664)− 2t2(1.243)(86.194)− 2t2(2009)

− 2t3(1.243)(416).
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This becomes

ξ(T (t)) ≥ 64π2

9
+ (2.05003)t

− t2 (175.95 + t ∗ 133.174 + t ∗ 22664 + 214.278 + 4018 + t ∗ 1034.18) .

Thus, we compute the largest t for which

2.05003 > t (t ∗ 23831.4 + 4408.23) .

This is satisfied for any t ≤ 0.0004. ��

6. Proof of Theorem 3

By our preceding results and continuity of the eigenvalues, we may now complete the
proof of Theorem 3 by computing the first two eigenvalues of a large but finite number
of triangles.

6.1. Continuity estimate. The following calculation is based on the linear deformation
theory at the beginning of Sect. 4. We use T (x, y) to denote a triangle with vertices
(0, 0), (1, 0), and (x, y), and we use λi (x, y) to denote its i th Dirichlet eigenvalue, and
ξ(x, y) to denote its fundamental gap,

ξ(x, y) = λ2(x, y)− λ1(x, y).

If a triangle T (x∗, y∗) satisfies

(x∗ − x)2 + (y∗ − y)2 ≤ t2,

then by (16),

ξ(x∗, y∗) ≥ ξ(x, y)− 2.4t

y2 (λ2(x, y) + λ1(x, y)) . (51)

Therefore, for each triangle T (x, y) at which we compute numerically

ξ(x, y) >
64π2

9
,

we may use (51) to determine a neighborhood of triangles satisfying

ξ >
64π2

9
,

without numerically computing the eigenvalues of the triangles in this neighborhood.
Consequently, we have reduced the problem to numerically computing the fundamental
gap of finitely many triangles and using the following algorithm.
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6.2. Algorithm. The main idea of the algorithm is to use the preceding calculations to
compute, to sufficient numerical accuracy, the first two eigenvalues of a finite grid of
triangles and use this grid together with the continuity estimate to demonstrate that the
gap of all triangles lying outside the cases covered by Propositions 1 and 4 is strictly
larger than that of the equilateral triangle. In particular, it follows from Propositions 1
and 4, the invariance of the gap function under scaling and symmetry that we need only
compute for those triangles with vertices

(0, 0), (1, 0) and (x, y),

such that the following inequalities hold.

i.1 x2 + y2 ≤ 1, by invariance of the gap function under scaling.
i.2 0.5 ≤ x ≤ 1, by symmetry.
i.3 0.005 ≤ y ≤ 1, by Proposition 1.

i.4
√
(x − 1/2)2 + (y − √

3/2)2 > 0.0004, by Proposition 4.

6.2.1. The steps of the algorithm. We begin with the triangle whose vertices are
(0, 0), (1, 0) and (0.5, 0.005); this is Step 0. Next, in Steps 1–2, we compute using (51)
the radius t of the neighborhood around which the gap is strictly larger than 64π2/9.
We then increase the x-coordinate in Step 3, and check that the inequalities i.1–i.4 hold.
If so, we repeat the calculations in Steps 1–2 for the triangle whose third vertex is at
the same height y but has been translated in the positive x-direction (to the right). We
repeat Steps 1–3 until the x coordinate is large enough so that one of the inequalities
i.1–i.4 fails; then we proceed to Step 4. In Step 4, we return the x-coordinate to 0.5 and
increase the y-coordinate and check that the inequalities i.1–i.4 hold. We then continue
repeating Steps 1–4.

0. Initially, we define

x0, j := 0.5 for all j, and y0 := 0.005.

1. At the (i, j)th iteration of the algorithm, where the first iteration of the algorithm is
(i, j) = (0, 0), for the triangle with vertices

(0, 0), (1, 0) and (xi, j , y j )

we compute
1.1 λ1 and λ2,
1.2 ξ = λ2 − λ1 and
1.3 A = λ2 + λ1.

2. We compute

t ′i, j :=
(
ξ − 64π2

9

) y2
j

2.4A
.

Let ni, j be the smallest n ∈ N such that the 10−n digit in the decimal expansion of
t ′i, j is positive; let this digit be di, j . Then, define

ti, j := 10−ni, j di, j .
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The numerical method must be accurate up to the 10−n−1 decimal place; it then fol-
lows from the continuity estimate (51) that for all triangles whose third vertex (x, y)
lies strictly within a neighborhood of radius ti, j about (xi, j , y j ), the gap function is

strictly larger than 64π2

9 .
3. We define

xi+1, j := xi, j + ti, j ,

and verify the following inequalities.
3.1 (xi+1, j )

2 + (y j )
2 ≤ 1.

3.2

√
(xi+1, j − 0.5)2 +

(
y j −

√
3

2

)2
> 0.0004.

If these inequalities are satisfied, repeat Steps 1–3. As soon as one of these inequalities
is not satisfied, proceed to Step 4 below.

4. Let x0, j = 0.5, and for j ≥ 1, define

y j = y j−1 + t0, j−1,

and verify the following inequalities.
4.1 (x0, j )

2 + (y j )
2 ≤ 1.

4.2

√
(xi, j − 0.5)2 +

(
y j −

√
3

2

)
> 0.0004.

If one of these inequalities is not satisfied, then the algorithm is complete. If the
inequalities are all satisfied, return to Step 1 and repeat the algorithm. ��

6.3. The numerical methods. The numerical computation of the eigenvalues were done
by Timo Betcke using the Finite Element Method FreeFEM++ [8]. For efficiency, the
calculations are made at each step but not stored, with the exception of t0, j which must
be stored until it is replaced by t0, j+1. To demonstrate the behavior of the gap function
numerically, Timo plotted the logarithm of the gap function in the figure below. The grid
points are parametrized so that each grid point corresponds to a triangle with vertices
(0, 0), (1, 0) and (x, y) where

x = 1 − τ

2
and y = ν

2

√
4 − (2 − τ)2.

Hence, the equilateral triangle corresponds to ν = τ = 1 (Fig. 2).

6.4. Concluding remarks. Based on the numerics, we make the following conjecture.

Conjecture 1. The logarithm of the gap function on the moduli space of triangles is a
strictly convex function.

Recently, Laugesen and Siudeja [13] proved an interesting related result.

Theorem 5 (Laugesen-Siudeja). For any triangle of diameter 1 with eigenvalues
{Λk}∞k=1,

n∑
k=1

Λk ≥
n∑

k=1

λk, ∀n ∈ N, (52)

where {λk}∞k=1 are the eigenvalues of the equilateral triangle.
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Fig. 2. Plot of the logarithm of the gap function on the moduli space of triangles

For n = 1, (52) is well known. The case n = 2 can be deduced from Theorem 3 as
follows. By Theorem 3 and (52) with n = 1,

Λ2 −Λ1 ≥ λ2 − λ1 �⇒ Λ2 +Λ1 ≥ λ2 − λ1 + 2λ1 = λ2 + λ1.

The existence and identity of a gap-minimizing simplex is a challenging open problem.
Based on our results, we expect the following.

Conjecture 2. Let Mn be the moduli space of all n-simplices with unit diameter. For
n ≥ 2, the regular simplex defined by points p0, p1, . . . , pn ∈ R

n such that

|pi − p j | = 1 for 0 ≤ i �= j ≤ n

uniquely minimizes the gap function on Mn .

There are several difficulties to be addressed. A subtle problem is the behavior of
the gap of a family of collapsing simplices when several directions collapse simulta-
neously. Is it possible that competing collapsing directions may result in a gap which
stays bounded or converges to that of the interval as simplices collapse? Numerical
calculations would provide insight into what one might expect; combining classical
techniques with modern computation may produce interesting new results.

We end this paper with a brief discussion of the similarities and differences between
the behavior of the gap function on convex domains and the gap function restricted to
the moduli space of n-simplices. In the fundamental work of [16] and subsequent papers
[19,20] culminating in the proof of the fundamental gap conjecture [1], the general
method is to compare the eigenvalue estimate in higher dimensions to the eigenvalue
estimate on a one dimensional manifold. The minimum gap for all convex domains can
be asymptotically approached by thin tubular domains, and the minimum is achieved in
dimension one. We pose the natural question:

Is this minimum unique?
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More precisely, we make the following conjecture.

Conjecture 3. Let Ω ⊂ R
n be a convex domain, and assume n > 1. Then

ξ(Ω) > 3π2.

In the case of triangular domains, the gap function is uniquely minimized by the equi-
lateral triangle. It would be interesting to extend the beautiful works in the spirit of
[16 and 1] to compare the eigenvalue estimate in higher dimensions to the eigenvalue
estimate in dimensions greater than one. In particular, it would be interesting to compare
the eigenvalue estimate to that on the equilateral triangle or other computable planar
domains.
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